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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52191869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.upmc.fr/hal-01256047


Distributed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Marangoni et al. Arthritis Research & Therapy  (2015) 17:128 
DOI 10.1186/s13075-015-0641-2
RESEARCH ARTICLE Open Access
A candidate gene study reveals association
between a variant of the Peroxisome Proliferator-
Activated Receptor Gamma (PPAR-γ) gene and
systemic sclerosis
Roberta Goncalves Marangoni1*†, Benjamin D Korman1†, Yannick Allanore2,3, Philippe Dieude4, Loren L Armstrong5,
Margarita Rzhetskaya5, Monique Hinchcliff1, Mary Carns1, Sofia Podlusky1, Sanjiv J Shah6, Barbara Ruiz2,
Eric Hachulla7, Kiet Tiev8, Jean-Luc Cracowski9, John Varga1,10 and M Geoffrey Hayes5,11,12*
Abstract

Introduction: The multifunctional nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) has
potent anti-fibrotic effects, and its expression and activity are impaired in patients with systemic sclerosis (SSc). We
investigated PPAR-γ gene (PPARG) single nucleotide polymorphisms (SNPs) associated with SSc.

Methods: Tag SNPs spanning PPARG were genotyped in a European ancestry US discovery cohort comprising 152
SSc patients and 450 controls, with replication of our top signal in a European cohort (1031 SSc patients and 1014
controls from France). Clinical parameters and disease severity were analyzed to evaluate clinical associations with
PPARG variants.

Results: In the discovery cohort, a single PPARG intronic SNP (rs10865710) was associated with SSc (p = 0.010; odds
ratio = 1.52 per C allele, 95% confidence interval 1.10-2.08). This association was replicated in the French validation
cohort (p = 0.052; odds ratio = 1.16 per C allele, 95% confidence interval 1.00-1.35). Meta-analysis of both cohorts
indicated stronger evidence for association (p = 0.002; odds ratio = 1.22 per C allele, 95% confidence interval
1.07-1.40). The rs10865710 C allele was also associated with pulmonary arterial hypertension in the French SSc
cohort (p = 0.002; odds ratio = 2.33 per C allele, 95% confidence interval 1.34-4.03).

Conclusions: A PPARG variant is associated with susceptibility to SSc, consistent with a role of PPAR-γ in the
pathogenesis of SSc.
Introduction
Systemic sclerosis (SSc) is a chronic multisystem disease of
unknown etiology. The hallmarks of SSc are microvascular
dysfunction, autoimmune reactivity and organ fibrosis
[1,2]. Systemic sclerosis shows substantial heterogeneity in
its clinical manifestations, patterns of organ involvement
and natural history [3]. Interstitial lung disease (ILD) and
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pulmonary arterial hypertension (PAH) are major com-
plications that portend a poor prognosis [2,4,5]. The eti-
ology and pathogenesis of SSc remain poorly understood.
Mounting evidence supports the role of genetic factors [6].
Recent studies have established genome-wide signifi-

cant associations of SSc with the major histocompatibil-
ity complex (MHC) region as well as CD247, IRF5, IRF8,
STAT4, and nominal significance at GRB10, JAZF1,
KIAA0319L, PXK, RHOB1, RPL41 and SOX5 [7-10].
Genome-wide association follow-up studies have re-
vealed significant additional association at ATG5, DNA-
SE1L3, CSK, SCHIP1-IL12A, IL12RB1, IL12RB2, NFKB1,
PPARG, PSD3 and TNIP1 [11-16]. In addition, signifi-
cant SSc associations have been derived from candidate
tral. This is an Open Access article distributed under the terms of the Creative
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Table 1 Clinical characteristics of SSc patients included in
the discovery and replication sets

US
cohort

French
cohort

P-value

Patients genotyped, n* 152 1031

Female 78 86 0.012

Diffuse cutaneous systemic sclerosis 35 31 0.578

Limited cutaneous systemic sclerosis 63 63 0.578

Anticentromere antibody-positive 22 41 <0.001

Anti-topoisomerase I antibody-positive 23 28 0.860

Interstitial lung disease 57 38 <0.001

Pulmonary hypertension 7 7 0.976

*Unless otherwise indicated, values indicate percentages. Bold P-values are
those that are statistically significant at P <0.05 (Student’s t-test).
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gene approaches including TNFSF4, TNFAIP3, BANK1,
BLK, CD226, IL2RA, KCNA5 and TLR2 [3,11]. Interest-
ingly, nearly all of these genetic studies implicate genes
involved in adaptive or innate immunity that have been
also associated with other autoimmune diseases includ-
ing rheumatoid arthritis, systemic lupus erythematosus,
psoriasis, and inflammatory bowel disease [17]. Notwith-
standing the prominent fibrotic and vasculopathic fea-
tures of SSc, genetic studies to date have failed to
identify major risk factors related to genes involved in
the processes of fibrosis or vascular homeostasis [18].
Progressive fibrosis in the skin and multiple organs con-

tributes to organ failure in SSc, and is ascribed to dere-
gulated fibroblast activation [1]. We have focused our
research on the multifunctional nuclear receptor peroxi-
some proliferator activated receptor-gamma (PPAR-γ).
Our findings, subsequently confirmed by others, have de-
lineated unexpected potent anti-fibrotic effects of PPAR-γ
in vitro and in vivo [19-24]. Moreover, we and others have
shown that the expression and activity of PPAR-γ are im-
paired in fibroblasts, lesional skin, and lung tissue from
patients with SSc, implicating PPAR-γ as a potentially
important factor in pathogenesis [22,25]. Mice deficient
in PPAR-γ show increased susceptibility to bleomycin-
induced fibrosis [26]. Additionally, serum levels of adipo-
nectin, a direct PPARG transcriptional target, are reduced
in patients with SSc [27].
In multiple cell types, PPAR-γ is a direct target, and is

responsible for the anti-diabetic effects of the glitazone
class of drugs [28]. At the cellular level, PPAR-γ regulates
adipocyte differentiation, insulin sensitivity, and fat metab-
olism, and has also been implicated in modulating im-
munity and inflammation [29,30]. Dysfunction of PPAR-γ
is implicated in diverse pathologies including diabetes, glo-
merulosclerosis, atherosclerosis and pulmonary artery
hypertension (PAH) [31].
In light of the potential role of PPAR-γ in pathogenesis

of SSc, we hypothesized that genetic variants in the PPARG
may influence disease susceptibility. Two coding, non-
synonymous PPARG polymorphisms (rs1801282 (P12A)
and rs3856806 (C141T)) have been extensively studied in
diabetes, coronary artery disease, the metabolic syndrome,
and non-alcoholic fatty liver disease [32-35]. The P12A
variant has been associated with increased insulin sensitiv-
ity, lower body mass and protection from type 2 diabetes
[35], while the C161T variant has been associated with in-
creased body weight [34]. In the present studies we sought
to conduct a candidate gene association approach to inves-
tigate common variants in the PPARG gene with SSc.

Methods
Study populations
Patients with SSc were evaluated at the Northwestern
Scleroderma Program between 2005 and 2009. Patients
and controls were enroled in NUgene, a Northwestern
University biobank in which participants gave qualified in-
vestigators de-identified access to their retrospective and
longitudinal electronic medical record (EMR) information,
as well as a blood draw for DNA extraction coded to match
their EMR information to conduct genetic studies [36].
These patients self-reported as having European ancestry.
The cohort consisted of 152 SSc patients (53 with diffuse

cutaneous SSc (dcSSc), 96 with limited cutaneous SSc
(lcSSc), and 2 patients who were unclassified). All patients
fulfilled American College of Rheumatology (ACR) criteria
for SSc and cutaneous subsets were defined according to
the criteria of LeRoy et al. [37,38]. Each SSc patient was
matched by age, gender, and ancestry to three NUgene bio-
bank controls without evidence of SSc or other clinical
autoimmune diseases according to self-report or by ICD-9
codes generated in the course of their clinical care at
Northwestern. This study was approved by the institutional
review board of Northwestern University, written informed
consent was acquired and blood was obtained. The demo-
graphic and clinical characteristics of patients with SSc in
the discovery and replication sets are presented in Table 1.
A replication study was performed using a French cohort

consisting of 1,031 SSc patients and 1,014 matched controls
[39,40]. Both the US discovery and French replication stud-
ies included only individuals of European ancestry, defined
as having four grandparents of European ancestry.

Assessment of clinical and laboratory parameters
Clinical and laboratory information obtained at the time of
blood sampling included age, gender, race/ethnicity, disease
duration (defined as the interval from first SSc-related non-
Raynaud event), forced vital capacity (FVC) and carbon
monoxide diffusion capacity (DLCO), both expressed as
percent of predicted, and high-resolution computerized
tomography (HRCT) of the chest. Interstitial lung disease
was defined as the presence of pulmonary reticular infil-
trates and/or honeycomb cysts on HRCTand/or FVC ≤70%
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predicted. Screening for pulmonary hypertension (PH)
was performed by echo/Doppler and PH was provisionally
defined as estimated pulmonary artery systolic pressure
≥40 mmHg; thereafter, the diagnosis was confirmed by
right heart catheterization using mean pulmonary artery
pressure ≥25 mmHg and capillary pressure <15 mmHg as
cut-off values. Anticentromere antibodies (ACA) were
detected by indirect immunofluorescence and anti-
topoisomerase I antibodies (ATA) were detected by pas-
sive immunodiffusion against calf thymus extract (Inova
Diagnostics) or by counterimmunoelectrophoresis.

Selection of single nucleotide polymorphisms (SNPs)
genotyped in each cohort
In the US cohort, the tag SNP Picker utility in HapMap
[53] was used to select SNPs spanning the 37.5 kb
PPARG gene and 5 kb up- and downstream to tag com-
mon variants in the region [41]. The nine tag SNPs were
selected to capture HapMap variants with ≥20% minor
allele frequency (MAF) with pairwise r2 ≤ 0.8 in the
European ancestry population (CEU). There was no evi-
dence of long-range linkage disequilibrium (LD) with
other genes in the region based on CEU data (Additional
file 1). For replication we examined rs10865710 in the
French cohort.

Genotyping
DNA was extracted from blood samples from all
NUgene SSc cases and matched controls using the Gen-
tra Autopure LS at the Northwestern University Center
for Genetic Medicine Genomics Core Facility. Genotyp-
ing was conducted using competitive allele-specific PCR
assays (KASP) at KBioscience (Hoddesdon, UK). Cases
and controls were randomly distributed across the geno-
typing plates, and there were no significant plate or
batch effects. We removed 19 samples that had four or
more (≥25%) SNP assays fail, after which the mean per
SNP call rate was 99.3%. Blind duplicates revealed a
99.6% genotyping concordance rate.
In the French cohort, genotyping was performed also

using KASP assays at KBioscience. The average genotype
completeness was 99% for both the SSc and the control
samples. Accuracy was >99%, according to duplicate
genotyping of 10% of all samples using the Taqman SNP
genotyping assay-allelic discrimination method (Applied
Biosystems).

Statistical analysis
All SNPs were tested for departures from Hardy-
Weinberg equilibrium by the chi squared goodness-of-fit
test. To test each SNP for association with SSc and
subgroups, we computed the overall allelic test of asso-
ciation using the chi squared statistic calculated from
two-by-two tables; association statistics and LD patterns
were analyzed using Haploview version 4.2 [42]. Meta-
analysis of the combined US and French cohorts was
performed using the Cochran-Mantel-Haenszel statis-
tical test, and heterogeneity was assessed by calculating
I2 as described by Higgins et al. [43]. We had 80% power
to detect associations of odds ratios (ORs) ≥1.3 for SNPs
with a risk allele frequency of 20 to 80% in the US co-
hort at a discovery P-value of 0.006 (Bonferroni correc-
tion of P = 0.05/nine SNPs).

Results
Association tests of PPARG SNPs with SSc
No significant deviations from Hardy-Weinberg equilib-
rium (P <0.05) were observed for any of the nine SNPs
genotyped. In the US population, one SNP (rs10865710)
located on the first intron of PPARG (Table 2) achieved
uncorrected statistical significance (P = 0.010; OR = 1.52
(95% CI 1.10, 2.08) per C allele) and narrowly missed
our multiple-testing-corrected significance threshold of
P = 0.006 for association with SSc. To test the robustness
of this association, this SNP was then genotyped in the
French cohort and found to trend towards association
with SSc (P = 0.052, OR = 1.16 per C allele, 95% CI 1.00,
1.35). Meta-analysis of the results from the discovery and
replication cohorts was performed for SNP rs10865710 in
a total combined study population of 1,145 SSc patients
and 1,428 controls. The meta-analysis strengthened the
association between SSc and rs10865710 (P = 0.002, OR =
1.22 per C allele, 95% CI 1.07, 1.40) with no significant evi-
dence for heterogeneity between the two populations
(Table 3). We also conducted genotype based tests under
dominant and recessive models and found no statistically
significant evidence at a Bonferroni-corrected threshold
(P <0.006) that dominant or recessive models better fit
the data than under an additive allelic model.

Association with disease subtypes and clinical
characteristics
Significant associations of rs10865710 were observed
with both the lcSSc and dcSSc when each subtype was
compared to controls. In the US cohort, this SNP was
associated with lcSSc (P = 0.004, OR = 1.78 per C allele,
95% CI 1.19, 2.65), whereas in the French cohort this
SNP was associated with dcSSc (P = 0.002, OR = 1.43 per
C allele, 95% CI 1.14, 1.81) (Table 3; Additional file 2).
Meta-analyses of the US and French results revealed that
both lcSSc (P = 0.028, OR = 1.16 per C allele, 95% CI
1.00, 1.36) and dcSSc (P = 0.002, OR = 1.37 per C allele,
95% CI 1.11, 1.69) were associated with this SNP. Signi-
ficant heterogeneity between the two populations was
observed for lcSSc, and after adjusting for this the associ-
ation between rs10865710 was no longer significant
(Table 3). Testing for associations with SSc-specific auto-
antibodies and clinical manifestations (ILD, PH) within



Table 3 Meta-analysis of rs10865710 association with SSc subtypes in the US and French cohorts

Overall lcSSc dcSSc

Cases Controls Cases Controls Cases Controls

US Number 152 450 96 450 53 450

C, % 80.6 73.2 83.3 73.2 75.5 73.2

G, % 19.4 26.8 16.7 26.8 24.5 26.8

P-value 0.010 0.004 0.619

Odds ratio (95% CI) 1.52 (1.10, 2.08) 1.78 (1.19, 2.65) 1.12 (0.71, 1.78)

French Number 993 978 632 978 303 978

C, % 79.0 76.4 77.6 76.4 82.3 76.4

G, % 21.0 23.6 22.4 23.6 17.7 23.6

P-value 0.052 0.438 0.002

Odds ratio (95% CI) 1.16 (1.00, 1.35) 1.07 (0.90, 1.27) 1.43 (1.14, 1.81)

Meta-analysis Number 1145 1428 728 1428 356 1428

Fixed effects P-value 0.002 0.028 0.002

Odds ratio (95% CI) 1.22 (1.07, 1.40) 1.16 (1.00, 1.36) 1.37 (1.11, 1.69)

I2 33.6 41.5 0

P-value 0.134 0.024 0.376

Random-effects P-value 0.432

SSc = systemic sclerosis; lcSSc = limited cutaneous SSc; dcSSc = diffuse cutaneous SSc; OR = odds ratio; 95% CI = 95% confidence interval. ORs are in reference to
the risk allele. I2 = Higgins et al. test for heterogeneity. Bold indicates statistically significant P-values.

Table 2 Summary of association of nine PPARG SNPs genotyped in US and French case-control cohorts

US French Meta-analysis

SNP Location Risk/protective
alleles

Risk allele frequency P-value Odds ratio Odds ratio Odds ratio I2 (P-value)

(chr 3) Cases Controls (95% CI) P-value (95% CI) P-value (95% CI)

rs2972164 12309416 T/C 0.51 0.48 0.349 1.17

(0.90, 1.53)

rs7620165 12319441 G/A 0.36 0.35 0.679 1.06

(0.80, 1.39)

rs10865710 12328198 C/G 0.81 0.73 0.010 1.52 0.052 1.16 0.002 1.22 33.6

(1.10, 2.08) (1.00, 1.35) (1.07, 1.40) (0.134)

rs10510418 12363563 C/A 0.35 0.34 0.592 1.07

(0.82, 1.41)

rs4135247 12371588 G/A 0.45 0.39 0.092 1.25

(0.96, 1.63)

rs2959273 12417731 C/T 0.62 0.62 0.999 1.00

(0.76, 1.30)

rs1151999 12422153 C/A 0.52 0.49 0.353 1.13

(0.87, 1.46)

rs709151 12429999 G/A 0.66 0.64 0.539 1.09

(0.82, 1.43)

rs1175540 12440243 C/A 0.65 0.64 0.736 1.04

(0.79, 1.37)

SNP, single-nucleotide polymorphism; chr, chromosome; SSc, systemic sclerosis; I2, Higgins et al. test for heterogeneity. Bold indicates statistically significant P-values.
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cases alone showed an association of SNP rs10865710
with PH in the French cohort (P = 0.002, OR = 2.33 per C
allele, 95% CI 1.34, 4.03), and in the US-French meta-
analysis (P = 0.001, OR = 2.38 per C allele, 95% CI 1.40,
4.03) (Additional file 3).

Discussion
We report an association between SSc and genetic vari-
ation within the PPARG gene. This novel finding along
with a recent report of association of SSc with an SNP
70 kb upstream of the PPARG locus add to the mount-
ing evidence of the importance of PPAR-γ in SSc [13].
PPAR-γ is a multi-functional nuclear receptor impli-
cated in a diverse range of metabolic and degenerative
diseases, and increasingly in SSc and other fibrotic dis-
orders [26]. This case-control study provides evidence
supporting our hypothesis for an association between
common variants in the PPARG locus and SSc in European
ancestry populations. The PPARG rs10865710-C sus-
ceptibility allele was associated with SSc in the US co-
hort, trended towards association in the French cohort,
and was significantly associated in a combined sample
of 1,145 patients and 1,428 controls. The C allele was
associated with a 1.22-fold increase in the odds of sus-
ceptibility to SSc over the G allele in the combined
meta-analysis, and the population-specific ORs ranged
from 1.16 (French) to 1.52 (US).
The association signal observed between the rs10865710-

C and SSc is most likely not derived from the coding
variants rs1801282 (P12A) and rs3856806 (C161T)
previously associated with diabetes and coronary artery
disease [32,34,35] because they are not in strong LD
with rs10865710 (r2 = 0.31 and 0.14 for P12A and
C161T, respectively). Given the limited power of our
study we were not able to test for associations at these
or any other SNPs with MAF <20% as observed for
these two coding variants. There is also no evidence of
long-range LD between rs10865710 and other nearby
loci; LD between rs10865710 and all chromosome-3
SNPs with MAF ≥5% from HapMap phase-II CEU
samples showed no SNP >150 kb from rs10865710
with r2 ≥ 0.8. This demonstrates that the effect of the
associated SNP is unlikely to be modulating any gene
other than PPARG.
It is noteworthy that the rs10865710 PPARG associ-

ation with SSc has not been found in genome-wide asso-
ciation studies (GWAS0 [7-10]. This may be due to the
low effect size limiting the power to achieve genome-
wide significance. In fact, a recent GWAS follow-up
study found an association of rs310746, an intergenic
SNP 70 kb upstream of the PPARG locus, with SSc
nearly reaching genome-wide significance [13] and larger
meta-analyses will be required to elucidate this. This ef-
fect is likely to be independent of the association
between SSc and rs10865710 given the low LD between
these two SNPs (HapMap CEU r2 = 0.02).
The SSc-associated SNP rs10865710 is located within

the first intron of PPARG <1 kb from the second exon.
As a tag SNP, it is unclear whether the functional rele-
vance of rs10865710 in SSc is derived from this SNP or
another SNP that is in LD. Review of data from the
ENCODE project and 1000 Genomes Project using
HaploReg did not identify any study analyzing the func-
tional relevance of PPARG variation in cell lines relevant
to SSc pathogenesis [44,45]. More generally, these data-
bases reveal that the region tagged by rs10865710 alters
the binding motif for transcription factor Pou3f2. More-
over, several SNPs in strong LD with rs10865710 (r2 >
0.9) are located in binding regions for important regula-
tory proteins including STAT3 (rs17036242) and gluco-
corticoid receptor GR (rs13433696). While these potential
mechanisms are intriguing, there is no evidence that
rs10865710 or other SNPs in strong LD have any direct
effect on PPARG mRNA expression levels. Nor is there
evidence to date that this intronic SNP is important for
alternative mRNA splicing, epigenetic modification of
supercoiled DNA, or miRNA binding. Resequencing of
the LD block tagged by rs10865710 may be needed in
order to identify one or more SSc causal variants. As in
the present studies only common variants were assayed, it
remains possible that rare variants with a large effect could
be in LD with rs10865710 and impact gene/protein ex-
pression in a direct fashion. Deep resequencing at the
PPARG locus in SSc patients will therefore be required to
define potentially causal variants.
A survey of SCANdb [46] reveals that rs10865710 is

an eQTL for GOLGA3 (P = 3 × 10−5) and AKAP8 (P =
1 × 10−4) in European ancestry populations. GOLGA3 is
a golgi apparatus gene which is ubiquitously expressed
and does not appear to have any specificity that would
make it likely to contribute to SSc pathogenesis based
on current knowledge [47]. AKAP8 is a scaffold protein
involved in protein kinase A (PKA) signaling, and al-
though unlikely to be important in SSc, one could
hypothesize that the role of this molecule in dendritic
cell antigen presentation could be of importance, given
that plasmacytoid dendritic cells are considered import-
ant in SSc pathogenesis [48,49].
While the US and French cohorts individually found

contrasting SSc subtype associations with rs10865710, the
combined analysis showed association with both limited
and diffuse SSc subtypes. It is unlikely that differences in
clinical assessment account for this discrepancy as both
cohorts used the same criteria to define SSc subtypes. The
fact that both subtypes are significant in the meta-analysis
suggests that the contrasting associations may be due to
stochastic variability due to small sample sizes of each in-
dividual cohort, particularly in the US cohort.
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The overall lack of association of rs10865710 with
SSc-specific antibodies is not unexpected as PPARG has
no major effect on adaptive immunity. The ability to de-
tect association with ILD and especially PH were quite
likely limited by our small sample size of SSc cases mea-
sured for these phenotypes. However, the French cohort
and the meta-analysis did have enough patients with
right heart catheterization proven PH to demonstrate an
association. PPAR-γ has previously been implicated in
PH through studies of mice with targeted deletion of
PPAR-γ in arterial smooth muscle cells that spontan-
eously develop PH [50]. Given other multiple studies
suggesting an important role of PPAR-γ in pulmonary
hypertension [51,52], it is intriguing as to whether the
associated SNP may be a risk factor for severe vasculop-
athy and may warrant further study in larger populations
of patients with PH.
A limitation of this study is that the participants in

the US-European ancestry cohort self-identified as
European ancestry, so it is possible that population
genetic substructure could be the underlying cause of
the observed association. To correct for this possibility
would require genotyping of approximately 100 ances-
try informative markers, which was not feasible within
the limited scope of this study.
Conclusion
In conclusion, the present studies provide evidence for as-
sociation of SSc with an intronic PPARG SNP the function
of which appears to be independent of known coding vari-
ants. These results combined with findings from previous
in vitro and in vivo studies, provide support for the poten-
tial role of PPAR-γ in the pathogenesis of fibrotic and vas-
cular complications of SSc. The observations suggest that
pharmacological regulation of PPAR-γ expression or activ-
ity might represent an innovative approach for the treat-
ment of patients with SSc.
Additional files

Additional file 1: Linkage disequilibrium map for PPARG region.
Linkage disequilibrium (D’) in European ancestry population (CEU)
individuals across the entire PPARG locus, green line indicates area in
which SNPs were genotyped for the present study. The green dot
indicates the location of the systemic sclerosis SSc associated variant
rs10865710.

Additional file 2: Meta-analysis of all single nucleotide polymorphisms
(SNPs) genotyped in limited cutaneous systemic sclerosis (lcSSc) and
diffuse cutaneous systemic sclerosis (dcSSc) in the US and French
cohorts. Genotype prevalence of all SNPs genotyped separated by disease
subtype (lcSSc and dcSSc) including meta-analysis for the associated SNP
rs10865710.

Additional file 3: Association of rs10865710 with systemic sclerosis
(SSc) autoantibodies and clinical manifestations. Genotype
prevalence of the associated single nucleotide polymorphism (SNP)
rs10865710 separated by autoantibodies (anticentromere and
antitopoisomerase I) and presence/absence of interstitial lung disease
and pulmonary hypertension.

Abbreviations
ACA: anticentromere antibodies; ACR: American College of Rheumatology;
ATA: anti-topoisomerase I antibodies; CEU: European ancestry population;
dcSSc: diffuse cutaneous systemic sclerosis; DLCO: carbon monoxide
diffusion capacity; EMR: electronic medical record; FVC: forced vital capacity;
GWAS: genome-wide association study; HRCT: high-resolution computerized
tomography; ILD: interstitial lung disease; lcSSc: limited cutaneous systemic
sclerosis; LD: linkage disequilibrium; MAF: minor allele frequency; MHC: major
histocompatibility complex; miRNA: microribonucleic acid; mRNA: messenger
ribonucleic acid; OR: odds ratio; PAH: pulmonary arterial hypertension;
PCR: polymerase chain reaction; PPAR-γ: peroxisome proliferator activated
receptor-gamma; SNP: single nucleotide polymorphism; SSc: systemic
sclerosis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RGM contributed to the acquisition, analysis and interpretation of data and
drafting of the manuscript. BDK participated in analysis and interpretation of
data and drafting of the manuscript. JV, MGH and YA participated in the
study design and interpretation of data, and critically revised the manuscript.
PD, LLA, MR, MH, MC, SP, SS, BR, EH, KT, and JLC contributed to the
acquisition and analysis of data and revised the manuscript. All authors
critically read and approved the final manuscript.

Acknowledgements
The authors thank French members of the GENESYS Consortium (Patrick
Carpentier (Grenoble), Jean Sibilia (Strasbourg), Elisabeth Diot (Tours), Jean
Cabane (Paris), Luc Mouthon (Paris), Camille Frances (Paris), Zahir Amoura
(Paris), Anne Cosnes (Créteil)). The authors also thank Dr J Benessiano and
Professor B Grandchamp (Centre de Ressources Biologiques, Hôpital Bichat,
Etablissement Français du Sang (Paris), for their assistance in setting up
the French Caucasian control sample. The work was supported by the
Association des Sclérodermiques de France, INSERM, Scleroderma Research
Foundation, Actelion Entelligence Award and Northwestern University.

Author details
1Division of Rheumatology, Department of Medicine, Northwestern
University Feinberg School of Medicine, 240 E. Huron Street, McGaw Pavillion
M230, Chicago, IL, USA. 2Paris Descartes University, INSERM U1016, Institut
Cochin, Sorbonne Paris Cité, Paris, France. 3Paris Descartes University,
Rheumatology A department, Cochin Hospital, APHP, Paris, France.
4Université Paris 7, INSERM U699, Rhumatologie, Hôpital Bichat, Paris, France.
5Division of Endocrinology, Metabolism, and Molecular Medicine,
Department of Medicine, Northwestern University Feinberg School of
Medicine, Chicago, IL, USA. 6Division of Cardiology, Department of Medicine,
Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
7Université Lille II, Médecine Interne, Lille, France. 8Université Pierre et Marie
Curie, Service de Médecine Interne, Hôpital Saint Antoine, Paris, France.
9INSERM CIC3, CHU Grenoble, Grenoble, France. 10Department of
Dermatology, Northwestern University Feinberg School of Medicine, Chicago,
IL, USA. 11Center of Genetic Medicine, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA. 12Department of Anthropology,
Northwestern University, Evanston, IL, USA.

Received: 15 January 2015 Accepted: 24 April 2015

References
1. Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis:

shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2012;8:42–54.
2. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med.

2009;360:1989–2003.
3. Mayes MD. The genetics of scleroderma: looking into the postgenomic era.

Curr Opin Rheumatol. 2012;24:677–84.

http://arthritis-research.com/content/supplementary/s13075-015-0641-2-s1.doc
http://arthritis-research.com/content/supplementary/s13075-015-0641-2-s2.doc
http://arthritis-research.com/content/supplementary/s13075-015-0641-2-s3.doc


Marangoni et al. Arthritis Research & Therapy  (2015) 17:128 Page 7 of 8
4. Mayes MD, Lacey Jr JV, Beebe-Dimmer J, Gillespie BW, Cooper B, Laing TJ,
et al. Prevalence, incidence, survival, and disease characteristics of systemic
sclerosis in a large US population. Arthritis Rheum. 2003;48:2246–55.

5. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic
disorder. J Clin Invest. 2007;117:557–67.

6. Martin JE, Bossini-Castillo L, Martin J. Unraveling the genetic component of
systemic sclerosis. Hum Genet. 2012;131:1023–37.

7. Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R,
et al. Genome-wide association study of systemic sclerosis identifies CD247 as
a new susceptibility locus. Nat Genet. 2010;42:426–9.

8. Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P, et al.
Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci
for systemic sclerosis. PLoS Genet. 2011;7:e1002091.

9. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M, et al. Identification
of novel genetic markers associated with clinical phenotypes of systemic
sclerosis through a genome-wide association strategy. PLoS Genet.
2011;7:e1002178.

10. Martin JE, Assassi S, Diaz-Gallo LM, Broen JC, Simeon CP, Castellvi I, et al.
A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS
reveals new shared susceptibility loci. Hum Mol Genet. 2013;22:4021–9.

11. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV, et al.
Immunochip analysis identifies multiple susceptibility loci for systemic
sclerosis. Am J Hum Genet. 2014;94:47–61.

12. Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, et al.
Identification of CSK as a systemic sclerosis genetic risk factor through
Genome Wide Association Study follow-up. Hum Mol Genet. 2012;21:2825–35.

13. Lopez-Isac E, Bossini-Castillo L, Simeon CP, Egurbide MV, Alegre-Sancho JJ,
Callejas JL, et al. A genome-wide association study follow-up suggests a
possible role for PPARG in systemic sclerosis susceptibility. Arthritis Res Ther.
2014;16:R6.

14. Lopez-Isac E, Bossini-Castillo L, Guerra SG, Denton C, Fonseca C, Assassi S,
et al. Identification of IL12RB1 as a Novel Systemic Sclerosis Susceptibility
Locus. Arthritis Rheum. 2014;66:3521–3.

15. Bossini-Castillo L, Martin JE, Broen J, Gorlova O, Simeon CP, Beretta L, et al.
A GWAS follow-up study reveals the association of the IL12RB2 gene with
systemic sclerosis in Caucasian populations. Hum Mol Genet. 2012;21:926–33.

16. Bossini-Castillo L, Martin JE, Broen J, Simeon CP, Beretta L, Gorlova OY, et al.
Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis
risk factors in a large independent replication study. Ann Rheum Dis.
2013;72:602–7.

17. Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics
and pathogenesis in autoimmune diseases. Nat Rev Endocrinol. 2013;9:646–59.

18. Romano E, Manetti M, Guiducci S, Ceccarelli C, Allanore Y, Matucci-Cerinic
M. The genetics of systemic sclerosis: an update. Clin Exp Rheumatol.
2011;29:S75–86.

19. Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J.
Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic
responses through peroxisome proliferator-activated receptor-gamma. Am J
Pathol. 2009;174:519–33.

20. Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J. Disruption of
transforming growth factor beta signaling and profibrotic responses in
normal skin fibroblasts by peroxisome proliferator-activated receptor
gamma. Arthritis Rheum. 2004;50:1305–18.

21. Bogatkevich GS, Highland KB, Akter T, Silver RM. The PPARgamma Agonist
Rosiglitazone Is Antifibrotic for Scleroderma Lung Fibroblasts: Mechanisms
of Action and Differential Racial Effects. Pulm Med. 2012;2012:545172.

22. Shi-wen X, Eastwood M, Stratton RJ, Denton CP, Leask A, Abraham DJ.
Rosiglitazone alleviates the persistent fibrotic phenotype of lesional skin
scleroderma fibroblasts. Rheumatology. 2010;49:259–63.

23. Ghosh AK, Wei J, Wu M, Varga J. Constitutive Smad signaling and Smad-
dependent collagen gene expression in mouse embryonic fibroblasts
lacking peroxisome proliferator-activated receptor-gamma. Biochem Biophys
Res Commun. 2008;374:231–6.

24. Kapoor M, McCann M, Liu S, Huh K, Denton CP, Abraham DJ, et al. Loss of
peroxisome proliferator-activated receptor gamma in mouse fibroblasts
results in increased susceptibility to bleomycin-induced skin fibrosis.
Arthritis Rheum. 2009;60:2822–9.

25. Wei J, Ghosh AK, Sargent JL, Komura K, Wu M, Huang QQ, et al.
PPARgamma downregulation by TGFs in fibroblast and impaired expression
and function in systemic sclerosis: a novel mechanism for progressive
fibrogenesis. PLoS One. 2010;5:e13778.
26. Wei J, Bhattacharyya S, Jain M, Varga J. Regulation of Matrix Remodeling by
Peroxisome Proliferator-Activated Receptor-gamma: A Novel Link Between
Metabolism and Fibrogenesis. Open Rheumatol J. 2012;6:103–15.

27. Lakota K, Wei J, Carns M, Hinchcliff M, Lee J, Whitfield ML, et al. Levels of
adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis
in systemic sclerosis: potential utility as biomarker? Arthritis Res Ther.
2012;14:R102.

28. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al.
PPARgamma signaling and metabolism: the good, the bad and the future.
Nat Med. 2013;19:557–66.

29. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism,
differentiation, and cell growth. J Biol Chem. 2001;276:37731–4.

30. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in
fibroblasts by PPAR gamma 2, a lipid-activated transcription factor.
Cell. 1994;79:1147–56.

31. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123:993–9.
32. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J,

et al. The common PPARgamma Pro12Ala polymorphism is associated with
decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.

33. Dongxia L, Qi H, Lisong L, Jincheng G. Association of peroxisome
proliferator-activated receptorgamma gene Pro12Ala and C161T
polymorphisms with metabolic syndrome. Circ J. 2008;72:551–7.

34. Liu Y, Yuan Z, Liu Y, Zhang J, Yin P, Wang D, et al. PPARgamma gene C161T
substitution is associated with reduced risk of coronary artery disease and
decreased proinflammatory cytokine expression. Am Heart J. 2007;154:718–24.

35. Rey JW, Noetel A, Hardt A, Canbay A, Alakus H, Zur Hausen A, et al.
Pro12Ala polymorphism of the peroxisome proliferator-activated receptor
gamma2 in patients with fatty liver diseases. World J Gastroenterol.
2010;16:5830–7.

36. Ormond KE, Cirino AL, Helenowski IB, Chisholm RL, Wolf WA. Assessing the
understanding of biobank participants. Am J Med Genet A. 2009;149A:188–98.

37. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger Jr TA, et al.
Scleroderma (systemic sclerosis): classification, subsets and pathogenesis.
J Rheumatol. 1988;15:202–5.

38. Preliminary criteria for the classification of systemic sclerosis (scleroderma).
Subcommittee for scleroderma criteria of the American Rheumatism
Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum.
1980;23:581–90.

39. Coustet B, Dieude P, Guedj M, Bouaziz M, Avouac J, Ruiz B, et al. C8orf13-
BLK is a genetic risk locus for systemic sclerosis and has additive effects
with BANK1: results from a large french cohort and meta-analysis.
Arthritis Rheum. 2011;63:2091–6.

40. Dieude P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Airo P, et al. NLRP1
influences the systemic sclerosis phenotype: a new clue for the contribution
of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis.
Ann Rheum Dis. 2011;70:668–74.

41. de Bakker PI, Burtt NP, Graham RR, Guiducci C, Yelensky R, Drake JA, et al.
Transferability of tag SNPs in genetic association studies in multiple
populations. Nat Genet. 2006;38:1298–303.

42. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics. 2005;21:263–5.

43. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
meta-analyses. BMJ. 2003;327:557–60.

44. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically
linked variants. Nucleic Acids Res. 2012;40:D930–4.

45. Consortium EP. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012;489:57–74.

46. Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner EO, Nicolae DL, et al.
SCAN: SNP and copy number annotation. Bioinformatics. 2010;26:259–62.

47. Fritzler MJ, Hamel JC, Ochs RL, Chan EK. Molecular characterization of two
human autoantigens: unique cDNAs encoding 95- and 160-kD proteins of a
putative family in the Golgi complex. J Exp Med. 1993;178:49–62.

48. Schillace RV, Miller CL, Pisenti N, Grotzke JE, Swarbrick GM, Lewinsohn DM,
et al. A-kinase anchoring in dendritic cells is required for antigen presentation.
PLoS One. 2009;4:e4807.

49. van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L,
et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic
sclerosis. N Engl J Med. 2014;370:433–43.

50. Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C,
Bekker JM, et al. An antiproliferative BMP-2/PPARgamma/apoE axis in



Marangoni et al. Arthritis Research & Therapy  (2015) 17:128 Page 8 of 8
human and murine SMCs and its role in pulmonary hypertension. J Clin
Invest. 2008;118:1846–57.

51. Rabinovitch M. PPARgamma and the pathobiology of pulmonary arterial
hypertension. Adv Exp Med Biol. 2010;661:447–58.

52. Liu Y, Tian XY, Mao G, Fang X, Fung ML, Shyy JY, et al. Peroxisome
proliferator-activated receptor-gamma ameliorates pulmonary arterial
hypertension by inhibiting 5-hydroxytryptamine 2B receptor. Hypertension.
2012;60:1471–8.

53. The International HapMap Consortium. Integrating common and rare
genetic variation in diverse human populations. Nature. 2010;467:52–58.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study populations
	Assessment of clinical and laboratory parameters
	Selection of single nucleotide polymorphisms (SNPs) genotyped in each cohort
	Genotyping
	Statistical analysis

	Results
	Association tests of PPARG SNPs with SSc
	Association with disease subtypes and clinical characteristics

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

