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To cite this version:
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ABSTRACT 

 

 

Background Information 

Microvillus inclusion disease (MVID) is a genetic disorder affecting intestinal absorption. It is 

caused by mutations in MYO5B or syntaxin 3 (STX3) affecting apical membrane trafficking. 

Morphologically MVID is characterised by a depletion of apical microvilli and the formation of 

microvillus inclusions inside the cells, suggesting a loss of polarity. To investigate this 

hypothesis we examined the location of essential apical polarity determinants in five MVID 

patients.  

 

Results 

We found that the polarity determinants Cdc42, Par6B, PKCζ/ι and the structural proteins ezrin 

and phospho-ezrin were lost from the apical membrane and accumulated either in the 

cytoplasm or on the basal side of enterocytes in patients which suggests an inversion of cell 

polarity. Moreover microvilli-like structures were observed at the basal side in electron 

microscopy. We next performed Myo5B depletion in 3D-grown human Caco2 cells forming cysts 

and we found a direct link between the loss of Myo5B and the mislocalisation of the same apical 

proteins; furthermore we observed that a majority of cyst displayed an inverted polarity 

phenotype as seen in some patients. Finally we found that this loss of polarity was specific for 

MVID: tissue samples of patients with Myo5B independent absorption disorders showed normal 

polarity but we identified Cdc42 as a potentially essential biomarker for tricho-hepato-enteric 

syndrome.  

 

Conclusion 

Our findings indicate that the loss of Myo5B induces a strong loss of enterocyte polarity, 

potentially leading to polarity inversion. 
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Significance 

Our results show that polarity determinants could be useful markers to help establishing a 

diagnosis in patients. Furthermore they could be used to characterise other rare intestinal 

absorption diseases. 
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INTRODUCTION 

 

Microvillus inclusion disease (MVID, also called microvillus atrophy, OMIM 251850) is a genetic 

disorder characterised morphologically by a loss of apical microvilli and formation of 

microvillus inclusions in the cytoplasm of enterocytes. The clinical picture in patients with 

MVID is characterised by severe secretory diarrhea most often starting the first days of life, 

which can be rapidly life-threatening. MVID is caused in 90% of cases by mutations affecting 

myosin 5B (MYO5B) which encodes a molecular motor implicated in apical transport (Muller et 

al., 2008). Other patients were shown to carry mutations in the apical protein syntaxin 3 (STX3) 

(Wiegerinck et al., 2014). Apical accumulation of periodic acid Schiff (PAS) positive granules and 

the abnormal staining of the apical marker CD10 were identified early as reliable markers for 

MVID (Groisman et al., 2002; Phillips et al., 2000). Following these studies, many other apical 

markers have been identified as affected in MVID patients, such as cystic fibrosis 

transmembrane conductance, sucrase isomaltase, alkaline phosphatase (Ameen and Salas, 

2000), ezrin, phospho-ezrin and aPKCι (Dhekne et al., 2014), villin (Muller et al., 2008; 

Shillingford et al., 2015) and phosphoinositide-dependent protein kinase 1 (PDK1) (Kravtsov et 

al., 2014). Indeed the cellular defects associated with MVID suggest a disturbed apical traffic as 

shown recently by several studies (Carton-Garcia et al., 2015; Dhekne et al., 2014; Knowles et 

al., 2014; Kravtsov et al., 2014; Schneeberger et al., 2015; Thoeni et al., 2014).  

 

Intestinal cells are polarised with an apical membrane composed of microvilli forming the brush 

border and of the terminal web (Crawley et al., 2014). But like all epithelial cells, intestinal cells 

rely on polarity determinants to establish and maintain their polarity (Overeem et al., 2015). 

The apical Cdc42/Par module composed of PAR-6, aPKC, PAR-3 and Cdc42 is the most essential 

and universally conserved polarity module since it is required in almost all polarised cells, from 

asymmetrically dividing cells to neurons, as well as in migrating cells or during the formation of 

the immunological synapse: the association of this module to a membrane domain is enough to 

determine the fate of this membrane (Etienne-Manneville, 2004; Suzuki and Ohno, 2006). 

Several studies demonstrated that membrane trafficking is required for the localisation of the 

apical Par/Cdc42 polarity module (Apodaca et al., 2012) and aPKCι has been shown to be 

mislocalised in MVID patients (Dhekne et al., 2014). However the severity of the loss of polarity 
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phenotype associated with MVID has not been investigated before. We therefore decided to 

systematically examine the localisation of the apical Par/Cdc42 module, as well as ezrin and 

phospho-ezrin, in five MVID patients and in Myo5B depleted 3D cultured Caco2 cells. We show 

that polarity determinants are mislocalised following the loss of Myo5B and this loss of polarity 

can even lead to a severe inverted polarity phenotype. 
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RESULTS AND DISCUSSION 

 

The apical Par/Cdc42 polarity determinants are depleted from the apical pole and 

accumulate intracellularly in MVID patients 

The cellular distribution of the polarity determinants Par6B, PKCζ/ι (isoforms of aPKC) and 

Cdc42 were analysed in five MVID patient samples by immunohistochemistry (IHC) and 

compared to normal tissue samples from children of a similar age (Fig1). In normal duodenal 

samples, Par6B, PKCζ/ι, and Cdc42 staining show a clear signal localised at the apical cortex. We 

also examined the localisation of ezrin and phospho-ezrin (P-ezrin) which are essential factors 

for the formation of the terminal web and microvilli; P-ezrin is restricted to the most apical part 

of enterocytes corresponding to microvilli and ezrin is an apical cortical protein. In contrast to 

healthy samples, a highly pathological phenotype was observed in all patients with MVID: Four 

patients (Patients no 1-2-4-5, Table S1) showed an identical phenotype (Fig1A) characterised 

by ezrin depletion from the apical pole and accumulation inside the cell, and completely absent 

signal for P-ezrin (Fig1). PKCζ/ι was also depleted from the most apical parts of enterocytes. 

Par6B staining was negative at the apical membrane but positive inside the cell. Cdc42 staining 

was lost from the apical cortex in all MVID patients. Systematic quantification (see Material and 

Methods) confirmed the relative loss of apical localisation compared to cytoplasmic 

accumulation for each marker in one representative patient (Fig1B). We concluded that the 

abnormal localisation of apical polarity determinants demonstrates that enterocyte polarity is 

severely affected in these patients. We also confirmed a recent report showing that ezrin, P-

ezrin and PKCι were mislocalised in two MVID patients (Dhekne et al., 2014). 

 

Polarity inversion in two MVID patients 

In 3 out of 6 circular folds visible on the tissue sample from MVID patient 3 (Fig2) we observed 

the same staining pattern as described above (not shown). However in the other circular folds, 

up to half villi displayed a different staining pattern: Par6B, PKCζ/ι, Cdc42 as well as ezrin/P-

ezrin were completely depleted from the apical side but were found accumulating at the level of 

the basal cortex (Fig2); a similar observation was made less frequently in patient 4 (Fig2). On 

electron microscopy (EM) analyses in patient 3 (Fig2) we did not find microvillus inclusions but 
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microvilli were partially depleted from the apical pole, consistent with the microvillus atrophy 

systematically found in MVID, while microvilli-like structures were detected at the basal 

membrane. These observations suggested a complete polarity inversion; however nuclei were 

found at their normal position close to the basal pole of the cells and we did not observed a 

pseudostratified epithelium. These two phenotypes were found in patients mutated for TTC7A 

leading to multiple intestinal atresia (MIA) which also display polarity inversion (Bigorgne et al., 

2014). We therefore concluded that MVID can induce a less severe partial polarity inversion 

with respect to the localisation of apical polarity determinants and of the brush border. This 

patient had a MYO5B mutation introducing a stop codon which could generate a potentially 

dominant-negative version of Myo5B. But because this particular phenotype was only observed 

in some villi, such a dominant-negative function is unlikely. To our knowledge concomitant 

formation of ectopic microvilli and localisation of several polarity determinants in vivo has only 

been observed in C. elegans (Shafaq-Zadah et al., 2012; Zhang et al., 2011; Zhang et al., 2012). 

These results support the hypothesis of an essential role for membrane traffic in the localisation 

of polarity determinants and therefore on brush border formation and maintenance in vivo.  

 

Myo5B depletion in 3D-grown Caco2 cells leads to polarity inversion 

To ask whether the defects observed in patients were directly due to Myo5B depletion or 

secondary defects, we used an in vitro system. To mimic enterocytic morphogenesis of the 

intestinal epithelium, Caco2 cells were grown in three dimensions (3D) in Matrigel to provide a 

more physiological growth pattern and the formation of cysts with a central lumen rather than a 

flat epithelium. To knock down MYO5B, an shRNA transduction lentiviral approach was chosen 

which yielded an 78% and 84% decrease in Myo5B expression, respectively with shMyo5B-58 

and shMyo5B-76 (FigS1). In WT Caco2 cells, a strict apical location of ezrin, Par6B, PKCζ/ι and 

of other apical markers such as F-actin and DPPIV was observed (Fig3A-D). However upon 

Myo5B depletion ezrin, P-ezrin, Par6B and aPKCζ/ι were detected on the basal side of the cells 

(Fig3A-D). The persistent apical localisation of all markers is likely due to the incompletely 

penetrant decrease in Myo5B expression. We concluded that this model system can be used to 

mimic the abnormal localisation of polarity determinants observed in some patients. This result 

is different from observations made in 2D-grown Caco2 or Caco2BBE cells by several groups 

including ourselves (Dhekne et al., 2014; Knowles et al., 2014; Kravtsov et al., 2014; Ruemmele 

et al., 2010; Thoeni et al., 2014). Apart from the Myo5B depletion efficiency, one hypothesis to 
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explain this discrepancy is that growing Caco2 cells as a flat epithelium or as a cyst mimicking 

the lumenal structure of the intestine could differentially reveal phenotypes and indeed many 

studies have reported differences in 2D versus 3D grown cells (Yamada and Cukierman, 2007). 

More recently MYO5B knock out mice have been generated (Carton-Garcia et al., 2015; 

Schneeberger et al., 2015); it was shown that basolateral markers such as Na/K ATPase and E-

cadherin were found at the apical side and that basolateral polarity was disturbed 

(Schneeberger et al., 2015). This observation could be linked to our finding that apical polarity 

determinants can be lost from the apical membrane and mistargetted to the basal membrane. It 

will be important to confirm this hypothesis by localising Cdc42 and the Par module in MYO5B 

knock out mice or in organoids generated from these mice. 

 

Localisation of apical polarity determinants and ezrin/P-ezrin in other absorption 

disorders: celiac disease and THE syndrome 

We next addressed the question if the mislocalisation of apical polarity determinants in MVID 

patients is specific. We therefore compared these samples to inflammatory duodenal samples 

(celiac disease; OMIM 212750; Table S1) as well as an absorption disorder with marked 

diarrhea and a disorganised intestinal epithelial structure (tricho-hepato-enteric (THE) 

syndrome, also called syndromic diarrhea; OMIM 222470; Table S1). Celiac disease is associated 

with HLA-DQ2/DQ8 in most cases (Sollid, 2002), and THE syndrome is caused by mutations 

affecting TTC37 or SKIV2L, two genes implicated in RNA metabolism (Fabre et al., 2012; Hartley 

et al., 2010). In inflammatory tissue samples of two celiac disease patients, we did not detect 

any change in the location of any polarity determinants studied (Fig4A). On 

immunohistochemical analyses in duodenal tissues of children with THE syndrome the staining 

signals for Par6B, PKCζ/ι, ezrin and P-ezrin were normal at the apical membrane. In contrast a 

consistent and specific loss of Cdc42 was observed (Fig4A) which affected all intestinal cell 

types in samples of all three THE syndrome patients; this phenotype was quantified (Fig4B) and 

confirmed with two different antibodies (FigS2).  

 

These data suggest that we identified a potential biomarker, Cdc42, for THE syndrome. In 

contrast to MVID, THE syndrome has a wide clinical spectrum beyond the small intestine such 

as woolly hair, facial dysmorphism and immunodeficiency (Fabre et al., 2013). Why would 
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Cdc42 be specifically lost in these patients where RNA metabolism is perturbed is not clear at 

that stage but it provides an interesting hypothesis to explain villous atrophy: Cdc42 is essential 

for the correct orientation of cell division in 3D grown Caco2 cells and for the small intestine 

morphogenesis in mouse (Jaffe et al., 2008; Melendez et al., 2013; Sakamori et al., 2012) and 

could therefore control villi morphogenesis in humans. Future work could explore this lead by 

characterising Cdc42 expression in other affected tissues. It is also surprising to find that Cdc42 

can be missing from the apical membrane without affecting the rest of the apical Par module nor 

the localisation of ezrin and P-ezrin, indicating that Cdc42 is not absolutely essential at least for 

polarity maintenance in enterocytes. 

 

It has been suggested that several other rare genetic absorption diseases could be linked either 

to polarity inversion (Bigorgne et al., 2014) or disrupted apical microvilli (Salomon et al., 2014; 

Stepensky et al., 2013). Our results obtained in MVID and THE syndrome suggest that localising 

the apical Par/Cdc42 module could yield clinically relevant results to analyse the severity of 

polarity defects associated with intestinal absorption disorders. Contrary to markers or 

methods often used to characterise the apical membrane of enterocytes, such as PAS staining or 

CD10, localising the apical Par/Cdc42 module brings another level of information which is due 

to the function of these factors in directly establishing and maintaining epithelial polarity. 

 



 

 

11 

MATERIALS AND METHODS 

 

Patient Material 

Small bowel biopsies (duodenum) or resections from patients with a molecular or clinical 

diagnosis of MVID (mutation in MYO5B, n=4; mutation unknown, n=1; Table S1) or clinical 

diagnosis of Tricho-Hepato-Enteric THE Syndrome (n=3; Table S1) were used for this study. 

Control samples are derived from normal tissue (n=3; Table S1) or patients with celiac disease 

(n=2; Table S1) of the Necker tissue bank. This study is part of a larger project that was 

approved by our local ethics committee (CPP 2011-01-01 for the AMVILLO project). 

 

Antibodies 

We used anti-Par6B (PARD6B, sc-67393 Santa Cruz, 1/100), anti-Cdc42 (CDC42, ab64533, 

abcam; cdc42, PA1-092, Thermo scientific-Pierce, 1/100), anti-PKCζ (PKCζ, sc-216, Santa Cruz; 

referred to as PKCζ/ι because it also recognises PKCι, 1/200), anti-ezrin (Ezrin C-19, sc-6407, 

Santa Cruz, 1/200), anti-P-ezrin (Anti-Ezrin (phospho T567), ab47293, abcam, 1/1000), anti-

Myosin 5B (provided by L.A. Huber, Medical University Innsbruck, Austria), Phalloidin TexasRed 

(Sigma aldrich) and rat monoclonal anti-DiPeptidyl Peptidase (DPPIV, for details see (Gorvel et 

al., 1991). 

 

Immunohistochemistry (IHC), quantifications and electron microscopy (EM) 

Paraffin-embedded tissue was cut at 4 µm, mounted on positively charged slides and dried at 

58°C for 60 minutes. Immunohistochemical staining was performed on the Discovery 

Automated IHC stainer using the Ventana DABMap and OMNIMap detection kit (Ventana 

Medical Systems, Tucson, Ariz). Antigen retrieval was performed using Ventana proprietary, 

Tris-based buffer solution CC1 at 95°C to 100°C for 48 minutes. Endogen peroxidase was 

blocked with Inhibitor-D 3% H2O2 (Ventana) for 8 minutes at 37°C. After rinsing, slides were 

incubated at 37°C for 60 minutes with primary antibodies. Signal enhancement was performed 

using the Ventana DABMap Kit for PARD6B, PKCζ/ι, P-ezrin or Ventana ChromoMap kit for 
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Ezrin and Cdc42. Slides were then counterstained for 16 minutes with hematoxylin and rinsed. 

After removal from the instrument, slides were manually dehydrated and coverslipped.  

 

The quantification method used in Fig1 and Fig4 is adapted from (Gillard et al., 2015; Shafaq-

Zadah et al., 2012). Using ImageJ 1.43 we quantified the signal along straight lines about 40m 

long and 2.3m large over the apical membrane and the cytoplasm (close to the nuclei); the line 

spanned about 5 cells on average (red line in Fig1). The apical signal was normalised to the 

cytoplasmic signal to measure the relative apical or cytoplasmic enrichment. A ratio of 1 

therefore indicates no specific cortical staining; above 1 indicates an apical enrichment and 

below 1 indicates a cytoplasmic enrichment. Similar measures were performed in 10 different 

villi for controls and patients. 

 

Electron microscopy was performed following standard procedures. Thin sections on grids were 

viewed using a JEM-1400 transmission electron microscope (JEOL, Tokyo, Japan) equipped with a 

Gatan Orius SC 1000 camera. 

 

Myosin 5B knockdown, Caco2 3D cell culture and immunofluorescence 

A Caco2 clone (TC7 cells) was grown as described previously (Chantret et al., 1994; Vacca et al., 

2014) and used to knockdown Myosin 5B by RNA interference with Mission shRNA Lentiviral 

Transduction Particles (SHCLNV-NM_001080467: clone TRCN0000265458 and 

TRCN0000254076, called respectively shMyo5B-58 and shMyo5B-76, Sigma-Aldrich) according 

to the manufacturer’s instructions. Transduction with Lentiviral Transduction Particles 

containing an empty vector (SHC002v, called shMyo5B-Ct, Sigma-Aldrich) were used as control. 

After 18h post infection, shRNA-containing cells were selected with 12g/ml puromycin and 

Myo5B expression was monitored by western blot analysis as described (Lemmers et al., 2002) 

(Fig S2). To produce cysts, cells were trypsinized and resuspended in media containing 4% 

Matrigel (BD Biosciences) and 105 cells of this suspension was plated on Matrigel precoated 

coverslips in a 4-well plate (NuncTM, Thermo scientific). Three-dimensional cysts were grown on 

top of Matrigel and maintained for 8-10 days in culture. The medium with 4% matrigel was 

changed every 4 days. Although cholera toxin can be added to induce the expansion of a large 
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central lumen (Jaffe et al., 2008) we decided not to use it to prevent any effect on polarity 

potentially induced by the toxin binding to lipid rafts (Danielsen and Hansen, 2006). 

 

Caco2 cysts on coverslips were fixed in 3% paraformaldehyde/PBS for 15 minutes, 

permeabilized in 0.5% Triton X-100/PBS (phosphate buffered saline) for 10 minutes then 

treated with glycine 100mM/PBS for 20 minutes and then incubated in 10% calf fetal 

serum/PBS for 1 hour. Next, Caco2 cysts were incubated in 10% calf fetal serum/PBS, 0.2% 

Triton X-100, 0.05% Tween 20 supplemented with primary antibodies overnight at 4°C and 

washed extensively. Then coverslips were incubated with the appropriate fluorochrome-

conjugated secondary antibodies during one hour at room temperature and again rinsed 

extensively with PBS. Finally, cysts on coverslips were mounted using ProLong antifade reagent 

(Molecular Probes) and visualized using an inverted ZEISS LSM510 Meta confocal microscope 

(Zeiss, Le Pecq, France). The quantification of cysts with central or partial-inverted (basal) 

location of polarity determinants were performed in three independent experiments and in 

addition the cysts were classified according to lumen number into two major classes with single 

or multiple lumens. Per condition >100 cysts/experiment were analyzed and standard deviation 

calculated. 
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FIGURE LEGENDS 

 

 

Figure 1: Loss of apical localisation of polarity determinants in MVID patients 

A) Ezrin, P-ezrin, Par6B, Cdc42 and PKCζ/ι staining in control and MVID enterocytes. All these 

markers are concentrated at the apical membrane (arrows) in control enterocytes (left panels) 

but are depleted from the apical membrane and accumulate intracellularly (arrowheads) except 

P-ezrin which is lost in MVID enterocytes (two typical patients, middle and right panels). 

B) Quantification of the apical/cytoplasmic ratio for each marker in control 1 and MVID patient 

1. The signal was measured along a straight line as shown for PKCζ/ι staining (red lines). Similar 

measures were performed in ten different villi and the average ratio is shown. Ratios < 1 

indicate a cytoplasmic enrichment relative to apical localisation. Error bars are S.E.M. 
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Figure 2: Localisation of polarity determinants and microvilli-like structures at the basal 

membrane in MVID patients 

Ezrin, P-ezrin, Par6B, Cdc42 and PKCζ/ι staining in control and MVID patient 3. In some villi of 

this patient apical markers are depleted from the apical membrane (arrows) but are found at 

the basal membrane (arrowheads) rather than intracellularly (middle panels); similar 

observations were made in patient 4; other markers showed the same pattern as P-Ezrin (not 

shown). Electron microscopy of patient 3 revealed less dense and disorganised microvilli at the 

apical membrane and microvilli-like structures (arrowheads) at the basal membrane (right 

panels); boxed areas are enlarged in the insets.  

Scale bar is 50μm in the left and middle panels, 1μm in the right panels. 
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Figure 3: Polarity inversion following MYO5B depletion in 3D grown Caco2 cells 

A-D) Control and MYO5B (shMyo5B58) knock-down Caco2 cells plated as single-cell suspension 

on top Matrigel were fixed and stained after 10 days. Single confocal sections through the lumen 

of cysts stained for Ezrin (green; A), phospho-ezrin (green; B), Par6B (green; C), PKCζ/ι (green; 
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D), DPP IV (red; A-D), F actin (cyan; A-D), Dapi (blue in merged). All revealed markers (Ezrin, P-

Ezrin, Par6B, PKCζ/ι, F actin, DPPIV) were concentrated at the apical surface (lumen indicated 

by an arrow) in control cysts while in MYO5B knock-down cysts, Ezrin (A), P-Ezrin (B), Par6B 

(C) and PKCζ/ι (D) were accumulated in basal localisation (cyst limits indicated by an 

arrowhead). F actin and DPPIV were less frequently visible at the basal membrane (C). See also 

Fig S1 for shMyo5B76. 

E) Quantification of phenotypes observed in control and Myo5B (shMyo5B58 and shMyo5B76) 

depleted cysts. The number of lumens and cyst polarity was quantified in three independent 

experiments (n>100 cysts/condition/experiment). About 60% of Myo5B depleted cysts 

displayed a single lumen and an inverted polarity. Error bars are S.E.M. 
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Figure 4: Localisation of polarity determinants in celiac disease and THE syndrome 

A) Ezrin, P-ezrin, Par6B, Cdc42 and PKCζ/ι staining in control (left panels), celiac disease 

(middle panels) and THE syndrome (right panels) enterocytes. All these markers are 

concentrated at the apical membrane (arrows) in control and affected enterocytes except Cdc42 

which cannot be detected in THE syndrome patients (see also FigS2). The signal visible inside 

the epithelial layer in celiac disease patients is due to infiltrated lymphocytes. 

B) Quantification of the apical/cytoplasmic ratio for each marker in control 2 and THE patient 1. 

The signal was measured along the apical membrane and in the cytoplasm as in Fig1. Measures 

were performed in ten different villi and the average ratio is shown. Error bars are S.E.M. 

Statistics: unpaired Student T-test. Only Cdc42 shows a significant difference. n.s.: not 

significant (p>0.05); *** p<1x10-7. 
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SUPPLEMENTAL DATA  

 

 

Figure S1: Myosin 5B depletion in Caco2 cells 

A) Cell extracts (50μg) from control and Myosin 5B knock down Caco2 cells were analyzed by 

SDS-PAGE and western blotting with antibodies against Myosin 5B or tubulin (Tub). Tubulin 

was used as an internal control for protein loading. 

B) MYO5B (shMyo5B76) knock-down Caco2 cells plated as single-cell suspension on top 

Matrigel were fixed and stained after 10 days. Single confocal sections through the lumen of 

cysts stained for Ezrin, phospho-Ezrin, Par6B, PKCζ/ι (green), DPP IV (red), F actin (cyan), Dapi 

(blue in merged). In MYO5B knock-down cysts, Ezrin, P-Ezrin, Par6B and PKCζ/ι were 

accumulated in basal localisation (cyst limits indicated by an arrowhead). See also Fig3. 

 

Figure S2: Localisation of Cdc42 in THE syndrome 

Cdc42 staining in THE syndrome and celiac disease; the apical membrane is shown by an arrow. 

The top row shows tissues from two THE syndrome and one celiac disease patients on a single 

slide to illustrate the efficiency of the 64533 Abcam anti-Cdc42 antibody. Boxed areas are 

enlarged in the second row. To confirm these observations we also stained all THE syndrome 

patients with the PA1-092 Thermo Fisher Pierce anti-Cdc42 antibody; the bottom row shows 

the comparative staining with the two anti-Cdc42 antibodies in one THE syndrome patient.  

 

Table S1: References of intestinal tissues 

MVID: Microvillus inclusion disease 

SD/THE: Syndromic diarrhea / Tricho-hepato-enteric syndrome 

The nature of the mutation is indicated when available. 
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GRAPHICAL ABSTRACT  

 

Myo5B is required for the correct localisation of the apical Par/Cdc42 module in intestinal cells. 

The loss of Myo5B in Microvillus Inclusion Disease (MVID) or in cultured cells induces the 

conversion of intracellular or basal membranes into apical-like membranes forming microvilli 

while the apical membrane presents a microvillus atrophy. The localisation of the apical 

Par/Cdc42 module is strictly correlated with the formation and maintenance of microvilli. 

 

 


