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Abstract

This paper deals with the optimization of industrial asset management strategies,
whose profitability is characterized by the Net Present Value (NPV) indicator which
is assessed by a Monte Carlo simulator. The developed method consists in building
a metamodel of this stochastic simulator, allowing to get, for a given model input,
the NPV probability distribution without running the simulator. The present work is
concentrated on the emulation of the quantile function of the stochastic simulator by
interpolating well chosen basis functions and metamodeling their coefficients (using the
Gaussian process metamodel). This quantile function metamodel is then used to treat
a problem of strategy maintenance optimization (four systems installed on different
plants), in order to optimize an NPV quantile. Using the Gaussian process framework,
an adaptive design method (called QFEI) is defined by extending in our case the well
known EGO algorithm. This allows to obtain an “optimal” solution using a small
number of simulator runs.

Keywords: Adaptive design, Asset management, Computer experiments, Gaussian
process, Stochastic simulator.

1 Introduction
The French company Electricité de France (EDF) looks for assessing and optimizing
its strategic investments decisions for its electricity power plants by using probabilistic
and optimization methods of “cost of maintenance strategies”. In order to quantify the
technical and economic impact of a candidate maintenance strategy, some economic
indicators are evaluated by Monte Carlo simulations using the VME software devel-
oped by EDF R&D (Lonchamp and Fessart [15]). The major output result of the
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Monte Carlo simulation process from VME is the probability distribution of the Net
Present Value (NPV) associated with the maintenance strategy. From this distribu-
tion, some indicators, such as the mean NPV, the standard deviation of NPV or the
regret investment probability (P(NPV < 0)), can easily be derived.

Once these indicators have been obtained, one is interested in optimizing the strat-
egy, for instance by determining the optimal investments dates leading to the highest
mean NPV and the lowest regret investment probability. Due to the discrete nature
of the events to be optimized, the optimization method is actually based on genetic
algorithms. However, during the optimization process, one of the main issues is the
computational cost of the stochastic simulator to optimize (here VME), which leads to
methods requiring a minimal number of simulator runs (Dellino and Meloni [7]). Op-
timization algorithms require often several thousands of simulator runs and, in some
cases, are no more applicable.

The solution investigated in this paper is a first attempt to break this computational
cost by the way of using a metamodel instead of the simulator within the mathemat-
ical optimization algorithm. From a first set of simulator runs (called the learning
sample and coming from a specific design of experiments), a metamodel consists in
approximating the simulator outputs by a mathematical model (Fang et al. [8]). This
metamodel can then be used to predict the simulator outputs for other input config-
urations, that can be served for instance for optimization issues (Forrester et al. [9]),
safety assessment (de Rocquigny et al. [6]) or sensitivity analysis (Iooss and Lemâıtre
[10]).

Many metamodeling techniques are available in the computer experiments literature
(Fang et al. [8]). Formally, the function G representing the computer model is defined
as

G : E → R
x 7→ G(x) (1)

where E ⊂ Rd (d ∈ N \ {0}) is the space of the input variables of the computer
model. Metamodeling consists in the construction of a statistical estimator Ĝ from an
initial sample of G values corresponding to a learning set χ with χ ⊂ E and #χ <∞
(with # the cardinal operator). In this paper, we will use the Gaussian process (also
called Kriging) metamodel (Sacks et al. [23]) which has been shown relevant in many
applicative studies (for example Marrel et al. [18]). Moreover, this metamodel is the
base ingredient of the efficient global Optimization (EGO) algorithm (Jones et al. [11]),
which allows to perform powerful optimization of CPU-time expensive deterministic
computer code (Eq. (1)) as shown in Forrester et al. [9].

However, all these conventional methods are not suitable in our applicative context
because of the stochastic nature of the VME simulator: the output of interest is not a
single scalar variable but a full probability density function (or a cumulative distribu-
tion function, or a quantile function). The computer code G is therefore stochastic:

G : E × Ω → R
(x, ω) 7→ G(x, ω) (2)

where Ω denotes the probability space. In the framework of robust design, robust
optimization and sensitivity analysis, previous works with stochastic simulators consist
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mainly in approximating the mean and variance of the stochastic output (Bursztyn and
Steinberg [5], Kleijnen [12], Ankenman et al. [1], Marrel et al. [16], Dellino and Meloni
[7]). Other specific characteristics of the distribution of the random variable G(x, ·)
(as a quantile) can also be modeled to obtain, in some cases, more efficient algorithms
(Picheny et al. [21]). In the following, G(x), for any x ∈ E, denotes the output random
variable G(x, ·).

In this paper, as first proposed by Reich et al. [22] (who used a simple Gaussian
mixture model), we are interested in a metamodel which predicts the full distribution
of the random variable G(x), ∀x ∈ E. We first focus on the output probability density
functions of G (i.e. the densities of G(x) for any input x ∈ E) as they are a natural
way to model a random distribution. Therefore we define the following deterministic
function f :

f : E → F
x 7→ fx density of the r.v. G(x) (3)

with F the family of probability density functions:

F =
{
g ∈ L1(R), positive, measurable,

∫
R
g = 1

}
. (4)

A first idea is to estimate the function f over the input set E. For a point x ∈
E, building fx with a kernel method requires a large number NMC of realizations of
G(x). A recent work (Moutoussamy et al. [19]) has proposed kernel-regression based
algorithms to build an estimator f̂ of the output densities, under the constraint that
each call to f is CPU-time expensive. Their result stands as the starting point for the
work presented in this paper.

The next section presents the optimization industrial issues and our application
case. In the third section, we re-define the functions of interest as the output quantile
functions of G as they come with less constraints. We propose to use the Gaussian
process metamodel and we develop an algorithm to emulate the quantile function
instead of the probability density function. In the fourth section, this framework
is used to develop a new quantile optimization algorithm, called Quantile Function
Expected Improvement criterion and inspired from the EGO algorithm. The normality
assumptions set for the metamodel imply that the function to maximize, a given level
of quantile, is also the realization of a Gaussian process. In the following applicative
section, this adaptive design method allows to obtain an “optimal” solution using a
small number of VME simulator runs. Finally, a conclusion synthesizes the main results
of this paper.

2 Maintenance investments planning issues and
the VME tool
2.1 Engineering asset management
Asset management processes, focused on realizing values from physical industrial assets,
have been developed for years. However, for the last one or two decades, these methods
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have been going from qualitative or semi-qualitative ones to quantitative management
methods that are developed in the field of Engineering Assets Management (EAM).
As a matter of fact, with budget issues becoming more and more constrained, the
idea is not anymore to justify investments for the assets (maintenance, replacement,
spare parts purchases . . . ) but to optimize the entire portfolio of investments made
by a company or an organization. The value of an asset may be captured in its Life
Cycle Cost (LCC) that monetizes all the events that may impact an asset throughout
its useful life in all its dimensions (reliability, maintenance, supply chain . . . ). The
investments that are made for these assets (for example preventive replacements or
spare part purchases) are then valorized by the variation of the LCC created by these
changes in the asset management strategy. This variation is made of positive impacts
(usually avoided losses due to avoided failures or stock shortages) and negative ones
(investments costs). If the cash-flows used to calculate the LCC are discounted to take
into account the time value of money, the value of an investment is then equivalent to
a Net Present Value (NPV) as described in Figure 1.

Figure 1: Net Present Value of an investment in Engineering Asset Management.

EAM is then about evaluating and optimizing the value of the asset management
strategies in order to support investments decision making.
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Input Name min max
System replacement date for plant 1 x1 41 50
System replacement date for plant 2 x2 41 50
System replacement date for plant 3 x3 41 50
System replacement date for plant 4 x4 41 50

System recovering date x5 11 20

Table 1: Minimal and maximal values (in years) of the five inputs used in the VME model.

2.2 VME case study
As some of the cash-flows generated by the asset depend on stochastic events (failures
dates depending on the probabilistic reliability), the NPV of an investment is also a
stochastic variable that needs to be assessed. One of the tools developed by EDF
to do so is a tool called VME that uses Monte Carlo simulation to evaluate various
risk indicators needed to support decision making. The algorithm of VME consists
in replicating the event model shown in Figure 2 with randomized failure dates for
both a reference strategy and the strategy to be evaluated in order to get a good
approximation of the NPV probabilistic distribution. Usually, the NPV takes some
values in dollars or euros; for confidentiality reasons, no real cost is given in this paper
and a fictive monetary unit is used.

One replication of the Monte-Carlo simulation consists in creating random dates for
failures (according to reliability input data) and propagating them to the occurrence
of the various events in the model (maintenance task, spare part purchase or further
failure). The delay between these events may be deterministic (delay between the
purchase of a spare and its delivery) or probabilistic (time to failure after maintenance),
but both of them are defined by input parameters. Each event of the model generates
cash flows (depending on input data such as the cost of a component, the value of
one day of forced outage, . . . ) that pile up to constitute the Life Cycle Cost of the
assets under one asset management strategy. The result of one replication is then the
NPV that is the difference of the two correlated life-cycle costs of the current strategy
and the assessed new strategy. This evaluation is replicated in order to obtain a good
estimation of the probabilistic distribution of the NPV.

The test-case used in this paper is made of four systems installed on different plants,
all these systems being identical (same reliability law) and using the same spare parts
stock. The goal is to find the best replacement dates (in year) of these systems as it
is wanted to prevent any failure event while replacements cannot be carried out too
often. When to purchase a new spare part also needs to be taken into account to secure
the availability of the plants fleet (see Lonchamp and Fessart [14] for more details).
This is given by the date (in year) of recovering a new system. Therefore the whole
strategy relies on these five dates which are taken as inputs for VME. These dates can
take different values (only discrete and integer values), which are described in Table 1,
and which have to be optimized.

These five dates are the deterministic events displayed in Figure 2 in green. The
random events, that make the NPV random, are the dates of failure of the plants. They
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Figure 2: Event model used in VME.

are illustrated in Figure 2 in red. For a given set of five dates, VME computes a possible
NPV based on a realization of the date of failure, randomly generated, regarding the
different steps of the event model. This input space of dates is denoted E and regroups
the possible years for replacements and the supply:

E =
( 4⊗
i=1
{41, 42, ..., 50}

)
× {11, 12, ..., 20} . (5)

E is therefore a discrete set (#E = 105 ). We have

G : E × Ω → R
(x, ω) = (x1, x2, x3, x4, x5, ω) 7→ NPV(x, ω),

f : E → F
x = (x1, x2, x3, x4, x5) 7→ fx (density of NPV(x)).

(6)

Figure 3 provides examples of the output density of VME. The 10 input values
inside E have been randomly chosen. It shows that there is a small variability between
the curves.

The optimization process consists in finding the point of E which gives the “maximal
NPV” value. As NPV(x) is a random variable, we have to summarize its distribution
by a deterministic operator H, for example:

H(g) = E(Z) , Z ∼ g , ∀g ∈ F (7)
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Figure 3: 10 output probability densities of the VME code (randomly sampled). In abscissa,
the values of NPV are given using a fictive monetary unit.

or
H(g) = qZ(p) , Z ∼ g , ∀g ∈ F (8)

with qZ(p) the p-quantile (0 < p < 1) of g. Our VME-optimization problem turns then
to the determination of

x∗ := arg max
x∈E

H(fx). (9)

However, several difficulties occur:
• VME is a CPU-time costly simulator and the size of the set E is large. Com-

puting (fx)x∈E , needing NMC ×#E simulator calls (where NMC is worth several
thousands), is therefore impossible. Our solution is to restrict the VME calls to
a learning set χ ⊂ E (with #χ = 200 in our application case), randomly chosen
inside E. We will then have (fx)x∈χ.

• Our metamodel, that we will denote
(

ˆ̂
fx

)
x∈E

, cannot be computed on E due
to its large size. A new set E is therefore defined, with #E = 2000. In this
work, we limit our study to this restricted space (also denoted E for simplicity)
instead of the full space. Other work will be performed in the future to extend
our methodology to the study on the full space.

3 Gaussian process regression metamodel of a
stochastic simulator
3.1 Basics on the Gaussian process regression model
The Gaussian process regression model is introduced here in the framework of deter-
ministic scalar computer codes, following closely the explanations of Marrel et al. [18].
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The aim of a metamodel is to build a mathematical approximation of a computer code
denoted by G(x) ∈ R, x = (x1, . . . , xd) ∈ E ⊂ Rd from n of its evaluations. These
evaluations are performed from an experimental design set denoted in this work by
χ = (x(1), . . . , x(n)) where x(i) ∈ E, i = 1, . . . , n. The simulations on χ are denoted by
yn = (y(1), . . . , y(n)) with y(i) = G(x(i)), i = 1, . . . , n.

Gaussian process regression models (Sacks et al. [23]), also called Kriging models
(Stein [24]), suppose that the simulator response G(x) is a realization of a Gaussian
random process Y of the following form:

Y (x) = h(x) + Z(x), (10)

where h(x) is a deterministic function and Z(x) is a centered Gaussian process.
h(x) gives the mean approximation of the computer code. In this work, h(x) is

considered to be a one-degree polynomial model:

h(x) = β0 +
d∑
j=1

βjxj ,

where β = [β0, β1, . . . , βd]t is a regression parameter vector. The stochastic part Z(x)
allows to model the non-linearities that h(x) does not take into account. Furthermore,
the random process Z(x) is considered stationary with a covariance of the following
form:

Cov(Z(x), Z(u)) = σ2Kθ(x− u),

where σ2 is the variance of Z(x), Kθ is a correlation function and θ ∈ Rd is a vector of
hyperparameters. This structure allows to provide interpolation and spatial correlation
properties. Several parametric families of correlation functions can be chosen (Stein
[24]).

Now let us suppose that we want to predict the output of G(x) at a new point
x∆ = (x∆

1 , . . . , x
∆
d ) ∈ E. The predictive distribution for G(x∆) is obtained by con-

ditioning Y (x∗) by the known values yn of Y (x) on χ (we use the notation Yn =
Y (χ) = (Y (x(1)), . . . , Y (x(n))). Classical results on Gaussian processes imply that this
distribution is Gaussian:

[Y (x∆)|Yn = yn] = N
(
E[Y (x∆)|Yn = yn],Var[Y (x∆)|Yn]

)
. (11)

Finally, the metamodel is given by the mean of the predictive distribution (also called
kriging mean):

E[Y (x∆)|Yn = yn] = h(x∆) + k(x∆)tΣ−1
n (Yn − h(χ)) (12)

with
k(x∆) = [Cov(Y (x(1)), Y (x∆)), . . . ,Cov(Y (x(n)), Y (x∆))]t

= σ2[Kθ(x(1), x∆), . . . ,Kθ(x(n), x∆))]t

and
Σn = σ2

(
Kθ

(
x(i) − x(j)

))
i,j=1...n

.
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Furthermore, the accuracy of the metamodel can be evaluated by the predictive mean
squared error given by

MSE(x∆) = Var[Y (x∆)|Yn] = σ2 − k(x∆)tΣ−1
n k(x∆) (13)

The conditional mean (12) is used as a predictor and its mean squared error (MSE)
(13) – also called kriging variance – is a local indicator of the prediction accuracy. More
generally, Gaussian process regression model defines a Gaussian predictive distribution
for the output variables at any arbitrary set of new points. This property can be used
for uncertainty and sensitivity analysis (see for instance Le Gratiet et al. [13]).

Regression and correlation parameters β = (β0, β1, . . . , βd), σ2 and θ are generally
estimated with a maximum likelihood procedure (Fang et al. [8]). The maximum
likelihood estimates of β and σ2 are given by the following closed form expressions:

β̂ =
(
h(χ)tΣ−1

n h(χ)
)−1

h(χ)tΣ−1
n yn,

σ̂2 =

(
yn − h(χ)β̂

)t
Σ−1
n

(
yn − h(χ)β̂

)
n− (d+ 1) .

However, such expression does not exist for the estimate of θ and it has to be evaluated
by solving the following problem (see for instance Marrel et al. [18]):

θ̂ = argminθ
[
log(det(Σn)) + n log(σ̂2)

]
.

In practice, we have to rely on the estimators ĥ, β̂ and θ̂. Therefore we introduce
some extra variability in the computation of the Kriging mean and the variance. For
instance, this harms the normality distribution of [Y (x∆)|Yn = yn]. In [25] and [26],
the authors offer an accurate computation of the kriging variance based on a correction
term.

3.2 Emulation of the simulator quantile function
3.2.1 General principles

In our VME-optimization problem, we are especially interested by several quantiles
(for example at the order 1%, 5%, 50%, 95%, 99%) rather than statistical moments. In
Moutoussamy et al. [19] and Browne [4], quantile prediction with a density-based emu-
lator has shown some deficiencies. Mainly, both the positivity and integral constraints
make it impossible to apply the following approach to output densities. Therefore,
instead of studying Eq. (6), we turn our modeling problem to

G : E × Ω → R
(x, ω) = (x1, x2, x3, x4, x5, ω) 7→ NPV(x, ω),

Q : E → Q
x 7→ Qx quantile function of NPV(x)

(14)
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where Q is the space of increasing functions defined on ]0, 1[, with values in [a, b] (which
is the support of the NPV output). For x ∈ E, a quantile function is defined by

∀p ∈]0, 1[, Qx(p) = t ∈ [a, b] such that
∫ t

a
fx(ε)dε = p. (15)

For the same points as in Figure 3, Figure 4 shows the 10 quantile function outputs Q
which present a rather low variability.
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Figure 4: The 10 quantile functions Q of the VME code associated with the 10 VME pdf
given in Figure 3.

We consider the learning set χ (n = #χ) and NMC×n G-simulator calls in order to
obtain

(
Q̃NMC
x

)
x∈χ

, the empirical quantile functions of (NPV(x))x∈χ. In this work, we
will use NMC = 104, which is sufficiently large to obtain a precise estimator of Qx with
Q̃NMC
x . Therefore, we neglect this Monte Carlo error. In the following, we simplify the

notations by replacing Q̃NMC
x by Qx.

The approach we adopt is similar to the one used in metamodeling a functional
output of a deterministic simulator (Bayarri et al., [2], Marrel et. al. [17]). The first
step consists in finding a low-dimensional functional basis in order to reduce the output
dimension by projection, while the second step consists in emulating the coefficients of
the basis functions. However, in our case, due to the nature of the functional outputs
(quantile functions), some particularities will arise.

3.2.2 Projection of Qx by the Modified Magic Points (MMP) algo-
rithm

Adapted from the Magic Points algorithm (Maday et al. [20]) for probability density
functions, the MMP algorithm has been proposed in Moutoussamy et al. [19]. It is a
greedy algorithm that builds an interpolator (as a linear combination of basis functions)
for a set of functions. Its principle is to iteratively pick a basis function in the learning
sample output set and projecting the set of functions on the picked functions. Its
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advantage over a more classical projection method (such as Fourier basis systems) is
that it sequentially builds an optimal basis for this precise projection.

The first step of the algorithm consists in selecting in the learning sample output
set the functions which are the most correlated with the other ones. This function
constitutes the first element of the functional basis. Then, at each step j ∈ {2, . . . , k}
of the building procedure, the element of the learning sample output set that maximizes
the L2 distance between itself and the interpolator — using the previous j − 1 basis
functions — is added to the functional basis. The total number k of functions is chosen
with respect to a convergence criterion. Mathematical details about this criterion are
not provided in the present paper.

In this paper, we apply the MMP algorithm on quantile functions. Therefore, any
quantile function (Qx)x∈χ is expressed as follows:

Q̂x =
k∑
j=1

ψj(x)Rj , ∀x ∈ χ,

where R = (R1, ..., Rk) are the quantile basis functions determined by MMP and
ψ = (ψ1, . . . , ψk) are the coefficients obtained by the projection of Qx on R. In order
to ensure the monotonic increase of Q̂x, we can restrict the coefficients to the following
constrained space:

C =
{
ψ ∈ Rk, ψ1, ..., ψk ≥ 0

}
.

However, this restriction is sufficient but not necessary. That is why this con-
straint is not considered in Section 4. Indeed, it allows to preserve usefull properties
of Gaussian process metamodels (such as any linear combinations of Gaussian process
metamodels is Gaussian) for the optimization procedure. In practice, the monotonicity
is verified afterwards.

3.2.3 Gaussian process metamodeling of the basis coefficients

The estimation of the coefficients ψ(x) = (ψ1(x), . . . , ψk(x)) (x ∈ E) is performed
with k independent Gaussian process metamodels. According to (11), each ψj(x),
j = 1, . . . , k, can be modeled by a Gaussian process of the following form:

ψj(x) ∼ N
(
ψ̂j(x),MSEj(x)

)
, ∀j ∈ {1, ..., k} , ∀x ∈ E (16)

where ψ̂j(x) is the kriging mean (12) and MSEj(x) the kriging variance (13) obtained
from the n observations ψj(χ).

Finally, the following metamodel can be used for Q̂x:

ˆ̂
Qx =

k∑
j=1

ψ̂j(x)Rj , ∀x ∈ E, (17)

However, we have to ensure that ψ̂j ∈ C (j = 1 . . . k). The logarithmic transforma-
tion can then be used:

T1 : C → Rk
ψ 7→ (log(ψ1 + 1), ..., log(ψk + 1))

11



and its inverse transformation:

T2 : Rk → C
φ 7→ (exp(φ1)− 1, ..., exp(φk)− 1) .

Then supposing that φ(x) := T1(ψ(x)) , ∀x ∈ E, is a Gaussian process realization with
k independent margins, it can be estimated by:

φ̂(x) = E[φ(x) | φ(χ) = T1(ψ(χ))] , ∀x ∈ E,

with ψ(χ) the learning sample output. The following biased estimates of ψ(x) can then
be considered:

ψ̂(x) = T2(φ̂(x)) , ∀x ∈ E,

and (17) can be applied as our metamodel predictor of the quantile function. However,
the positivity constraint is not necessary and in our application the monotonicity is
respected without considering it. Therefore, these transformations have not be used in
our work.

3.3 Numerical tests on a toy function
3.3.1 Presentation

In order to test the efficiency of the estimator ˆ̂
Q, we first substitute the industrial

stochastic simulator VME by the following toy function G:

G(x) = sin (x1 + U1) + cos (x2 + U2) + x3 × U3, (18)

with x = (x1, x2, x3) ∈ {0.1; 0.2; ...; 1}3, U1 ∼ N (0, 1), U2 ∼ Exp(1) and U3 ∼
U([−0.5, 0.5]), which are all independent. G(x) is a real random variable and we have
#E = 103. The goal is to estimate the output quantile functions:

Q : E → Q
x 7→ Qx quantile function of G(x).

As G is a simple simulator and the input set E has a low dimension (d = 3), we can
afford to compute NMC = 104 runs of G(x) for each input x ∈ E. Hence we can easily
deduce all the output quantile functions (Qx)x∈E .

We display in Figure 5 the output quantile functions (Qx) for 10 different x ∈ E.

3.3.2 Applications to the MMP algorithm

At present, we proceed at the first step for our estimator ˆ̂
Q by using the MMP algo-

rithm. We randomly pick the learning set χ ⊂ E such that #χ = 150.
As a result of the MMP algorithm, we get a basis of functions, (R1, ..., Rk), extracted

from the output quantile functions, (Qx)x∈E , as well as the MMP-projections of the
output quantile functions on χ:

∀x ∈ χ , Q̂x =
k∑
j=1

ψj(x)Rj .

12
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Figure 5: 10 ouput quantile functions of the simulator G (randomly sampled).

In the example, we set k = 4.
Since the metamodel of the stochastic simulator is based on the estimation of the

MMP-projection Q̂, it is necessary to verify its relevance. This is why we compute the
following MMP error rate:

err1 = 1
#χ

∑
x∈χ

‖ Qx − Q̂x ‖L2

‖ Qx ‖L2
= 0.09%.

This result shows that the MMP projection is very close to the real output quantile
functions: if ˆ̂

Q is a good estimator of Q̂, then it is a good estimator of Q.
It is important to recall that the basis (R1, ..., Rk) depends on the choice of χ, and

so does Q̂. It probably approximates Q better on χ than on the whole input set E.
Therefore it is natural to wonder whether the approximation Q̂ is still relevant on E.
Since we could compute all the output quantile functions (Qx)x∈E , we could go further
and compute

err2 = 1
#E

∑
x∈E

‖ Qx − Q̂x ‖L2

‖ Qx ‖L2
= 0.13%.

From this result, we infer that even though the approximation is a little less correct on
E, it is still efficient.

3.3.3 Applications to the Gaussian process regression

We now have the MMP projections
(
Q̂x
)
x∈χ

, as well as the coefficients (ψ1(x), ..., ψk(x))x∈χ.
The Gaussian process regression in this model consists in assuming that the k coor-
dinates (ψ1(x), ..., ψk(x))x∈E are the realizations of k independent Gaussian processes
whose values on χ are already known. From Eq. (17), we have the expression of the
metamodel:

∀x ∈ E ,
ˆ̂
Qx =

k∑
j=1

ψ̂j(x)Rj .

13



We verify the efficiency of the metamodel by computing the following error:

err3 = 1
#E

∑
x∈E

‖ Qx − ˆ̂
Qx ‖L2

‖ Qx ‖L2
= 1.42%.

We conclude from this result, that the metamodel provides a good approximation for
the output quantile functions of the simulator G as runs were performed only on χ.
We display in Figure 6 the output quantile function Qx for a point x ∈ E, with its
successive approximations Q̂x and ˆ̂

Qx.
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Figure 6: For a point x ∈ E, Qx is in black points, Q̂x in red line and ˆ̂
Qx in red dotted line.

Figure 6 confirms that, for this point x ∈ E randomly picked, the MMP projection
is really close to the initial quantile function. As for Q̂x, the error is larger but the
whole distribution of G(x) is well estimated.

4 Application to an optimization problem
4.1 Direct optimization on the metamodel
A first solution would be to apply our quantile function metamodel with a quantile-
based objective function:

H : Q → R
q 7→ q(p) (19)

with p ∈]0, 1[. We look for:
x∗ := arg max

x∈E
Qx(p) (20)

but have only access to:
x̃∗ := arg max

x∈E

ˆ̂
Qx(p). (21)
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We also study the relative error of H( ˆ̂
Q) on E by computing:

err = 1
maxx∈E (Qx(p))−minx∈E (Qx(p)) ×

(∑
x∈E
| Qx(p)− ˆ̂

Qx(p) |
)
. (22)

As an example for p = 0.5 (median estimation), with the toy-function G introduced
in (18), we find

maxx∈E(Qx(p)) = 0.82, maxx∈E( ˆ̂
Qx(p)) = 0.42, err = 5.4%.

As the estimated maximum value (0.42) has a large error with respect to the value of
the exact solution (0.82), we strongly suspect that the quantile function metamodel
cannot be directly applied to solve the optimization problem.

In the next section, we will also see that this strategy does not work either on the
VME application. We then propose an adaptive algorithm which consists in sequen-
tially adding simulation points in order to capture interesting quantile functions to be
added in our functional basis.

4.2 QFEI: an adaptive optimization algorithm
After the choice of χ, E and the families (Qx)x∈χ, (Q̂x)x∈χ and ( ˆ̂

Qx)x∈E , our new
algorithm will propose to perform new interesting (for our specific problem) calls to
the VME simulator on E (outside of χ). With the Gaussian process metamodel,
which provides a predictor and its uncertainty bounds, this is a classical approach
used for example in black-box optimization problem (Jones et al. [11]) and rare event
estimation (Bect et al. [3]). The goal is to provide some algorithms which mix global
space exploration and local optimization.

Our algorithm is based on the so-called EGO (Efficient Global Optimization) al-
gorithm (Jones et al. [11]) which uses the Expected Improvement (EI) criterion to
maximize a deterministic simulator. Our case is different as we want to maximize:

H : E → R
x 7→ Qx(p) p-quantile of NPV(x), (23)

ie the p-quantile function, for p ∈]0, 1[, of the stochastic simulator. We will then pro-
pose a new algorithm called the QFEI (for Quantile Function Expected Improvement)
algorithm.

As previously, we use a restricted set E with #E = 5000 (E is a random sample in
the full set), the initial learning set χ ⊂ E with #χ = 200 (initial design of experiment),
(Qx)x∈χ, (Q̂x)x∈χ and ( ˆ̂

Qx)x∈E . We denote the current learning set by D (the initial
learning set increased with additional points coming from QFEI). The Gaussianity on
the components of ψ is needed for the EGO algorithm, that is why we do not perform
the logarithmic transformation presented in Section 3.2.3. In our case, it has not
implied negative consequences.
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We apply the Gaussian process metamodeling on the k independent components
ψ1, ..., ψk (see Equation (16)). As Q̂x(p) =

∑k
j=1 ψj(x)Rj(p), we have

Q̂x(p) ∼ N

 ˆ̂
Qx(p),

k∑
j=1

Rj(p)2MSEj(x)

 , ∀x ∈ E. (24)

Then Q̂x(p) is a realization of the underlying Gaussian process Ux =
∑k
j=1 ψj(x)Rj(p)

with
UD := (Ux)x∈D ,

Ûx := E[Ux | UD], ∀x ∈ E,
σ2
U |D(x) := Var[Ux | UD], ∀x ∈ E.

(25)

The conditional mean and variance of Ux are directly obtained from the k Gaussian
process metamodels of the ψ coefficients (16).

At present, we propose to use the following improvement random function:

I : E → R
x 7→ (Ux −max (UD))+ ,

(26)

where
(
x 7→ (x)+ = x.1x>0

)
is the positive part function. In our adaptive design,

finding a new point consists in solving:

xnew := arg max
x∈E

E[I(x)]. (27)

Added points are those which have more chance to improve the current optimum. The
expectation of the improvement function writes (the simple proof is given in Browne
[4]):

E[I(x)] = σU |D(x) (u(x)φ(u(x)) + ϕ(u(x))) , ∀x ∈ E, with u(x) = Ûx −max(UD)
σU |D(x)

(28)
where ϕ and φ correspond respectively to the density and distribution functions of the
reduced centered Gaussian law.

In practice, several iterations of this algorithm are performed, allowing to complete
the experimental design D. At each iteration, a new projection functional basis is
computed and the k Gaussian process metamodels are re-estimated. The stopping
criterion of the QFEI algorithm can be a maximal number of iterations or a stabilization
criterion on the obtained solutions. No guarantee on convergence of the algorithm can
be given. In conclusion, this algorithm provides the following estimation of the optimal
point x∗:

x̂∗ := arg max
x∈D

(UD). (29)

4.3 Validation of the QFEI algorithm on the toy function
We get back to the toy-function G introduced in (18). The goal is to determine x∗ ∈ E
such that:

x∗ = arg max
x∈E

Qx(p)
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with p = 0.4. In other words, we try to find the input x ∈ E whose output distribution
has the highest 40%-quantile. In this very case, we have:

x∗ = (1, 0, 1, 0.5) with Qx∗(p) = 0.884.

We have also computed

1
#E

∑
x∈E

Qx(p) = −0.277, Var
[
(Qx(p))x∈E

]
= 0.071.

Let us first remember that we set an efficient metamodel ˆ̂
Q for Q in the section 3.3.3.

Indeed, we had err3 = 1.42%.
As before, we test the natural way to get an estimation for x∗, by determining

x̃∗ = arg max
x∈E

ˆ̂
Qx(p).

Unfortunately, still in our previous example, we get

x̃∗ = (0.9, 0, 2, 0.8)

which is far from being satisfying. Besides, when we compute the real output distri-
bution for x̃∗, we have

Qx̃∗(p) = 0.739.

Therefore only relying on ˆ̂
Q to estimate x∗ would lead to an important error. This

is due to the high smoothness of the function x −→ Qx(p): even a small error in the
estimator Q·(p) completely upsets the order of the family (Qx(p))x∈E .

At present, we use the QFEI algorithm (Eq. (29)) in order to estimate x∗ by x̂∗,
with 20 iterations. At the end of the experiments, the design D is the learning set χ
to which we have consecutively added 20 points of E.

With QFEI, we finally get

x̂∗ = (1, 0, 1, 0.2) with Qx̂∗(p) = 0.878.

It is important to mention that x̂∗ has the second highest output 40%-quantile.
Overall we tested the whole procedure 30 times with, in each case, a new learning

set χ. In the 30 trials, we made sure that the maximizer x∗ was not already in χ.
In 22 cases, we obtain x̂∗ = x∗, which is the best result that we could expect. For
the remaining 8 times, we obtain x̂∗ = (1, 0, 1, 0.2). We can conclude that the QFEI
algorithm is really efficient for this optimization problem.

5 Application to the VME case study
We return to our VME application (cf Section 2). For the projection of Qx by the
Modified Magic Points (MMP) algorithm, the choice k = 5 has shown sufficient ap-
proximation capabilities. For one example of quantile function output, a small relative
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Figure 7: For one point x ∈ χ, Q̂x (red line) and Qx (black points).

L2-error (0.2%) between the observed quantile function and the projected quantile
function is obtained. Figure 7 confirms also the relevance of the MMP method.

We build the Gaussian process metamodel on the set E (with the choice k = 5).
For one example of quantile function output, a small relative L2-error (2.8%) between
the observed quantile function and the emulated quantile function is obtained. Figure
8 confirms also the relevance of the metamodeling method.
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Figure 8: For one point x ∈ χ, ˆ̂
Qx (red line) and Qx (black points).

As for the toy function, our optimization exercise is to determine x∗ ∈ E such that

x∗ = arg max
x∈E

Qx(p)

with p = 0.5. We first try to directly apply an optimization algorithm on the previously
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obtained metamodel. As an example, for p = 0.5 (median estimation), we find:

maxx∈E(Qx(p)) = 0.82, maxx∈E( ˆ̂
Qx(p)) = 0.42, err = 5.4%. (30)

If we define y = arg maxx∈E [ ˆ̂
Qx(p)] the best point from the metamodel, we obtain

Qy(p) = 0.29 while maxx∈χQx(p) = 0.35. The exploration of E by our metamodel
does not bring any information. We have observed the same result by repeating the
experiments 100 times (changing the initial design each time). It means that the
punctual errors on the quantile function metamodel are too large for this optimization
algorithm. In fact, the basis functions R1, ..., R5 that the MMP algorithm has chosen
on χ are not able to represent the extreme parts of the quantile functions of E. As a
conclusion of this test, the quantile function metamodel cannot be directly applied to
solve the optimization problem.

We now apply the QFEI algorithm. In our application case, we have performed all
the simulations in order to know (Qx)x∈E , therefore the solution x∗. Our first objective
is to test our proposed algorithm for p = 0.4 which has the following solution:{

x∗ = (41, 47, 48, 45, 18)
Qx∗(p) = −1.72. (31)

We have also computed

1
#E

∑
x∈E

Qx(p) = −3.15, Var
(
(Qx(p))x∈E

)
= 0.59. (32)

We start with D := χ and we obtain

max
x∈χ

(Qx) = −1.95. (33)

After 50 iterations of the QFEI algorithm, we obtain:{
x̂∗ = (41, 47, 45, 46, 19)
Qx̂∗(p) = −1.74. (34)

We observe that x̂∗ and Qx̂∗(p) are close to x∗ and ' Qx∗(p). This is a first confirmation
of the relevance of our method. With respect to the initial design solution, the QFEI
has allowed to obtain a strong improvement of the proposed solution. 50 repetitions of
this experiment (changing the initial design) has also proved the robustness of QFEI.
The obtained solution is always one of the five best points on E.

QFEI algorithm seems promising but a lot of tests remain to perform and will be
pursued in future works: changing p (in particular testing extremal cases), increasing
the size of E, increasing the dimension d of the inputs, . . .

6 Conclusion
In this paper, we have proposed to build a metamodel of a stochastic simulator using
the following key points:
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1. Emulation of the quantile function which proves better efficiency for our problem
than the emulation of the probability density function;

2. Decomposition of the quantile function in a sum of the quantile functions coming
from the learning sample outputs;

3. Selection of the most representative quantile functions of this decomposition using
an adaptive choice algorithm (called the MMP algorithm) in order to have a small
number of terms in the decomposition;

4. Emulation of each coefficient of this decomposition by a Gaussian process meta-
model, by taking into account constraints ensuring that a quantile function is
built.

The metamodel is then used to treat a simple optimization strategy maintenance
problem using a stochastic simulator (VME), in order to optimize an output (NPV)
quantile. Using the Gaussian process metamodel framework and extending the EI
criterion to quantile function, the adaptive QFEI algorithm has been proposed. In
our example, it allows to obtain an “optimal” solution using a small number of VME
simulator runs.

This work is just a first attempt and needs to be continued in several directions:
• Consideration of a variable NMC whose decrease could help to fight against the

computational cost of the stochastic simulator,
• Improvement of the initial learning sample choice by replacing the random sample

by a space filling design (Fang et al. [8]),
• Algorithmic improvements to counter the cost of the metamodel evaluations and

to increase the size of the study set E,
• Multi-objective optimization (several quantiles to be optimized) in order to take

advantage of our powerful quantile function emulator,
• Including the estimation error induced in practice by ĥ, β̂ and θ̂ to define a more

precise version of the QFEI algorithm,
• Application to more complex real cases,
• Consideration of a robust optimization problem where environmental input vari-

ables of the simulator has not to be optimized but just create an additional
uncertainty on the output.
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