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émanant des établissements d’enseignement et de
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LARGE AND MODERATE DEVIATIONS FOR BOUNDED FUNCTIONS

OF SLOWLY MIXING MARKOV CHAINS

J. DEDECKER, S. GOUËZEL, AND F. MERLEVÈDE

Abstract. We consider Markov chains which are polynomially mixing, in a weak sense
expressed in terms of the space of functions on which the mixing speed is controlled. In
this context, we prove polynomial large and moderate deviations inequalities. These in-
equalities can be applied in various natural situations coming from probability theory or
dynamical systems. Finally, we discuss examples from these various settings showing that
our inequalities are sharp.

1. Introduction and results

For stationary α-mixing sequences in the sense of Rosenblatt (see [Ros56]) a Fuk-Nagaev
type inequality has been proved by Rio (see Theorem 6.2 in [Rio00]). This deviation inequal-
ity is very powerful and gives for instance sharp upper bounds for the deviation of partial
sums when the strong mixing coefficients decrease at a polynomial rate. In particular for
a bounded observable f of a strictly stationary Markov chain (Yi)i∈Z with strong mixing
coefficients of order O(n1−p) for p ≥ 2, Rio’s inequality gives: for any x > 0 and any r ≥ 1,

(1.1) P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣ ≥ x
)

≤ C
{ n

xp
+

nr/2

xr
+

(n log n)r/2

xr
1p=2

}

,

where C depends on ‖f‖∞, on p and on r.
However, many stationary processes are not strong mixing in the sense of Rosenblatt. This

is the case, for instance, of the iterates of an ergodic measure-preserving transformation. In
the recent paper [DM16], the authors proved that, using a weaker version of the α–mixing
coefficients, it is still possible to get the same upper bound as (1.1) but for bounded variation
observables and with the restriction r ∈ (2(p − 1), 2p). This last restriction does not affect
the asymptotic behavior of the probability of large deviations (that is when x = ny in (1.1)
with y fixed) but gives a restriction for the moderate deviation behavior.

The aim of this paper is to obtain upper bounds of the type (1.1) for stationary Markov
chains, when the mixing property of the chain is defined through a subclass of bounded
observables B, but without restriction on r. In that case, the deviation inequality (see our
Theorem 1.4) will be valid for any observable f ∈ B. Maybe the same kind of inequalities
can be proved in a more general (but non α-mixing) context than the Markovian setting,
but the proof we give here uses the Markovian property in a crucial way.

Let us now present more precisely the assumptions on the Markov chains and the main
results of the paper.

Date: July 20, 2016.
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Let (Yi)i∈Z be a homogeneous Markov chain on a state space X , with transition operator
K, admitting a stationary probability measure π. Let ‖·‖ be a norm on a vector space B of
functions from X to R. We always require that the constant function equal to 1 belongs to
B. This norm will be used to express mixing conditions on the Markov chain.

We will need this norm to behave well with respect to products, and to be controlled by
the sup norm, as expressed in the next definition.

Definition 1.1. We say that ‖·‖ is a Banach algebra norm on bounded functions if, for all
f and g in B, one has ‖f‖∞ ≤ ‖f‖ and ‖fg‖ ≤ ‖f‖‖g‖.
Remark 1.2. If a norm ‖·‖ satisfies ‖f‖∞ ≤ C‖f‖ and ‖fg‖ ≤ C‖f‖‖g‖ for some constant

C, then it is equivalent to a Banach algebra norm on bounded functions, namely ‖f‖′ =
C‖f‖.

The main mixing condition we require is that the iterates of functions in B under the
Markov chain converge polynomially to their average. This is expressed in terms of the
following two conditions.

Definition 1.3. Let p > 1. We say that the condition H1(p) is satisfied if there exists a
positive constant C1 such that, for any function f ∈ B and any n ≥ 1,

H1(p) π
(

|Kn(f)− π(f)|
)

≤ C1‖f‖
np−1

.

We say that the condition H2 is satisfied if the space B is invariant under K, i.e., there
exists a positive constant C2 such that, for any function f in B,

H2 ‖Kn(f)‖ ≤ C2‖f‖ .
When both conditions are satisfied, we say that the chain converges polynomially to equilib-
rium for the norm ‖·‖ with exponent p, and we denote this condition by H(p).

Heuristically, partial sums of bounded functions of such a polynomially mixing chain
behave like sums of independent random variables with a weak moment of order p. Indeed,
if one considers a Harris recurrent Markov chain for which the excursion time away from an
atom has a weak moment of order p, then the successive excursions are independent and
have a weak moment of order p, and the mixing rate behaves like in the definition above.
Hence, one expects that one should prove, under H(p), results that are similar to results for
sums of i.i.d. random variables with a weak moment of order p.

In particular, let us consider the question of moderate deviations bounds

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣ ≥ xnα
)

,

where f belongs to B, x > 0. In analogy with the i.i.d. case, one expects that, if p ≥ 2,
then for any α ∈ (1/2, 1] there should exist positive constants C depending only on p and
on ‖f‖, and v(x) depending only on x, such that

(1.2) lim sup
n→∞

nαp−1
P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣
≥ xnα

)

≤ Cv(x) .
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Our main result ensures that this estimate indeed holds, with bounds that are very similar
to the case of the sum of i.i.d. random variables. We also deal with the case p < 2, obtaining
similar estimates.

Theorem 1.4. Let (Yi)i∈Z be a stationary Markov chain with state space X , transition
operator K and stationary measure π. Assume that there exists p > 1 such that H1(p)
holds, for a Banach algebra norm on bounded functions.

(1) If p > 2 and we assume in addition that H2 is satisfied then, for any f ∈ B and any
x > 0,

(1.3) P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣
≥ x

)

≤ κnx−p + κ exp(−κ−1x2/n) ,

where κ is a positive constant depending only on p, ‖f‖, C1, C2.
(2) If p = 2 and we assume in addition that H2 is satisfied then, for any f ∈ B, any

x > 0 and any r ∈ (2, 4),

(1.4) P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣ ≥ x
)

≤ κnx−2 + κ(n log n)r/2x−r ,

where κ is a positive constant depending only on ‖f‖, C1, C2 and r.
(3) If 1 < p < 2 then, for any f ∈ B and any x > 0,

(1.5) P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣
≥ x

)

≤ κnx−p ,

where κ is a positive constant depending only on p, ‖f‖ and C1.

As a consequence of this theorem, we obtain that, if p > 1, then (1.2) holds with v(x) =
x−p for any α > 1/2 such that 1/p ≤ α ≤ 1 provided that H(p) holds.

Remark 1.5. In (1.3), the exponential term κ exp(−κ−1x2/n) is negligible in the regime
x > nα, for any α > 1/2. Hence, the dominating term is κnx−p, as expected. However,

when x is of the order of n1/2, then κnx−p tends to 0, while the probability on the left
of (1.3) typically does not, thanks to the central limit theorem. Thus, there has to be a
remainder term, given here in exponential form κ exp(−κ−1x2/n). For any r > 0, this is for
instance bounded by Cκ,rn

r/x2r.

Remark 1.6. In (1.4), the scaling in x2/n log n in the error term is the right one: in this
setting there is sometimes a central limit theorem with anomalous scaling

√
n log n (see for

instance [Gou04]), meaning that the probability on the left of (1.4) does not tend to 0 when
x is of the order of

√
n log n. While (1.3) is completely satisfactory, we expect that the error

term in (1.4) can be improved, from (n log n)r/2x−r with r ∈ (2, 4) to (n log n)r/2x−r for any
r > 2, or even to exp(−κ−1x2/(n log n)). However, we are not able to prove such a result.

Let us discuss the relevance of the assumption H(p) in different contexts. Some possible
Banach algebra norms on bounded functions that appear in natural examples of Markov
chains are the following:
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(1) ‖f‖ = ‖f‖∞ .
(2) X = R and ‖f‖ is the total variation norm of the bounded variation function f , i.e.,

the sum of ‖f‖∞ and the total variation of the measure df , i.e., ‖f‖ = ‖f‖∞ + |df |.
(3) If (X , d) is a metric space, then one can consider the Lipschitz norm

‖f‖ = ‖f‖∞ + ‖f‖Lip where ‖f‖Lip := sup
y 6=z∈X

|f(y)− f(z)|
d(y, z)

,

or Hölder norms.
(4) X = R and ‖f‖ = ‖f‖∞ + ‖f ′‖Lr(λ) for r ≥ 1, when f is absolutely continuous and

f ′ is its almost sure derivative. One can also consider more general Sobolev spaces,
in dimension 1 or higher.

Here is a more detailed discussion of some corresponding examples:

(1) When H1(p) is satisfied with ‖f‖ = ‖f‖∞, then the chain is said to be strong mixing
in the sense of Rosenblatt with polynomial rate of convergence np−1, and we write
in this case

αn = sup
k≥n

sup
‖f‖

∞
≤1

π
(

|Kk(f)− π(f)|
)

≤ C1

np−1
.

Note that for this norm, H2 is trivially satisfied. In this situation, one can apply the
Fuk-Nagaev type inequality [Rio00, Theorem 6.1] (with q = cx for suitably small
c). If p ≥ 2, this gives the inequality (1.1). Hence, (1.2) follows (although the error
term is worse than in (1.3)).

(2) A lot of Markov chains, even very simple, are known not to be strong mixing whereas
they satisfy the condition H(p) for other classes of functions. For instance,

Xn =

∞
∑

i=0

ξn−i

2i+1
,

where (ξi) is an i.i.d. sequence of r.v.’s ∼ B(1/2) is a Markov chain which is not strong
mixing. Its invariant measure is the Lebesgue measure on [0, 1] and its transition
Markov operator is given by

K(f)(x) =
1

2

(

f
(x

2

)

+ f
(x+ 1

2

))

.

It can been shown that it satisfies the condition H(p) for any p when we consider
X = R and the total variation norm ‖f‖ = ‖f‖BV = ‖f‖∞ + |df |.

When H(p) is satisfied with the total variation norm (i.e., B is the set of functions
of bounded variation), one does not have at our disposal a Fuk-Nagaev type inequal-
ity as in the strong mixing case. If p > 2, an application of the deviation inequality
of [DM16, Proposition 5.1] gives that for any x > 0 and any r ∈ (2(p − 1), 2p),

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣ ≥ x
)

≤ C
{ n

xp
+

nr/2

xr
+

(n log n)r/2

xr
1p=2

}

,

where C is a positive constant depending on p, ‖f‖, C1 and C2 but not on n nor on

x. So, provided that p < 1/(1 − α), one can take 2p > r > 2(αp−1)
2α−1 and it follows
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that (1.2) is satisfied with v(x) = x−p. Our main theorem above shows that this
restriction of α is not necessary, by removing the restriction r ∈ (2(p − 1), 2p) for
p > 2. Our proof follows the same lines as that in [DM16], but we can get a better
bound by taking advantage of the Markovian setting.

(3) Several dynamical examples satisfy the assumption H(p) when ‖·‖ is the Lipschitz
norm or the Hölder norm. Indeed, there is a combinatorial model, called Young
tower, that can be used to model wide classes of systems and for which the assump-
tion H(p) is directly related to return time estimates to the basis of the tower (this is
explicitly written, for instance, in (4.3) of [DM15]). We refer the interested readers
for instance to the introduction of [GM14], where motivations, examples and defini-
tions are given. Our theorem applies to such examples, and improves the previous
upper bounds of the literature such as [Mel09] who obtained, when α ∈ (1/2, 1)

and p ≥ 2, a rate of order (lnn)1−pn(p−1)(2α−1) instead of nαp−1 in (1.2). Using
specific properties of such systems established in [GM14], we are also able to extend
Theorem 1.4 to more general functionals than additive functionals, see Theorem 2.1
in Section 2.

In addition, concerning the exponent of n, the bound (1.2) is optimal as we shall show
in Section 4. More precisely, we shall give there three different examples for which the
deviation probabilities of Theorem 1.4 are lower bounded by c nx−p for some c > 0 and
x in an appropriate bandwidth. These three examples are: a discrete Markov chain on N

for which H(p) is satisfied for the sup norm, a class of Young towers with polynomial tails
of the return times for which H(p) is satisfied for a natural Lipschitz norm, and a Harris
recurrent Markov chain with state space [0, 1] for which H(p) is satisfied for both the sup
norm and the total variation norm. For each example, the accurate lower bound is given in
Proposition 4.1, 4.3 and 4.4 respectively.

Before this, Section 2 is devoted to the extension of Theorem 1.4 to more general function-
als in the specific setting of Young towers. The proof of Theorem 1.4 is given in Section 3.

2. Concentration for maps that can be modeled by Young towers

In this section, we extend in the specific setting of Young towers Theorem 1.4 to more
general functionals. As we will not need specifics of Young towers, we refer the reader
to [GM14] for the precise definitions, recalling below only what we need for the current
argument. A Young tower is a dynamical system T preserving a probability measure π, on
a metric space Z, together with a subset Z0 (the basis of the tower) for which the successive
returns to Z0 create some form of decorrelation. Thus, an important feature of the Young
tower is the return time τ from Z0 to itself, and in particular its integrability properties.

Starting from any z ∈ Z, there is a canonical way to choose at random a point among
the preimages of z under T . This defines a Markov chain Yn for which π is stationary, and
which is dual to the dynamics (in the sense that Y0, . . . , Yn−1 is distributed like T n−1z, . . . , z
when z is picked according to π). The decorrelation properties of this Markov chain are
related to the return time function τ . Namely, if τ has a weak moment of order p > 1, then
the Markov chain satisfies H(p) for this p.
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Proving quantitative estimates for the Markov chain or the dynamics is equivalent. In
this section, we will for simplicity formulate the results for the dynamics, as the estimates
of [GM14] we will use are formulated in this context.

The class of functionals for which we will prove moderate deviations is the class of sep-
arately Lipschitz functions: these are the functions K = K(z0, . . . , zn−1) such that, for all
i ∈ [0, n − 1], there exists a constant Li (the Lipschitz constant of K for the i-th variable)
with

|K(z0, . . . , zi−1, zi, zi+1, . . . , zn−1)−K(z0, . . . , zi−1, z
′
i, zi+1, . . . , zn−1)| ≤ Lid(zi, z

′
i)

for all points z0, . . . , zn−1, z
′
i. We will write EK for the average of K with respect to the

natural measure along trajectories coming from the dynamics, i.e.,

EK =

∫

K(z, T z, . . . , T n−1z) dπ(z).

The article [GM14] proves optimal moment estimates for K − EK. We can prove moderate
deviations for this quantity, extending in this context the results of Theorem 1.4 to more
general functionals than additive functionals.

Theorem 2.1. Consider a Young tower T : Z → Z, for which the return time τ to the basis
has a weak moment of order p > 1. Let K be a separately Lipschitz function, with Lipschitz
constants Li. Then

• If p > 2, then for all x > 0 one has

(2.1) π{z : |K(z, . . . , T n−1z)− EK| > x} ≤ κ

∑n−1
i=0 Lp

i

xp
+ κ exp

(

−κ−1 x2
∑

L2
i

)

.

• If p = 2, then for all x > 0

(2.2) π{z : |K(z, . . . , T n−1z)− EK| > x} ≤ κ

∑n−1
i=0 L2

i

x2

+ κ exp

(

−κ−1 x2
(
∑

L2
i

)

· (1 + log(
∑

Li)− log(
∑

L2
i )

1/2)

)

.

• If p < 2, then for all x > 0 one has

(2.3) π{z : |K(z, . . . , T n−1z)− EK| > x} ≤ κ

∑n−1
i=0 Lp

i

xp
.

In all these statements, κ is a positive constant that does not depend on K nor n.

The case p < 2 is already proved in [GM14, Theorem 1.9] and is included only for
completeness. The logarithms in the p = 2 case are not surprising: this expression is
homogeneous in the Li (i.e., if one multiplies all the Li by a constant then the contribution
of the logarithms does not vary), and it reduces to a multiple of log n when all the Li are
equal to 1. The same expression appears in the moment control when p = 2 in [GM14,
Theorem 1.9].

To prove this theorem, we use the following deviation inequality for martingales, [Fuk73,
Corollary 3’] (in which we keep separately the term corresponding to excess probabilities,
as in his Corollary 3).
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Proposition 2.2. Let d1, . . . , dk be a martingale difference sequence with respect to the
non-decreasing σ-fields F0, . . . ,Fk. Let p ≥ 2. Set β = p/(p + 2) and c∗p = (1 − β)2/(2ep).
Then, for all x > 0,

P

(

max
1≤j≤k

∣

∣

∣

j
∑

i=1

di

∣

∣

∣ ≥ x
)

≤
k
∑

i=1

P(|di| ≥ βx) +
2

βpxp

k
∑

i=1

∥

∥E(|di|p1|di|≤βx | Fi−1)
∥

∥

∞

+ 2exp
(

−c∗p
x2

∑‖E(d2i | Fi−1)‖∞

)

.

As
∑k

i=j di =
∑k

i=1 di−
∑j−1

i=1 dk, a similar result follows for reverse martingale difference
sequences, by applying the previous result to the martingale dk−i:

Corollary 2.3. Let d1, . . . , dk be a reverse martingale difference sequence w.r.t. the non-
increasing σ-fields F1, . . . ,Fk+1 (so E(di | Fi+1) = 0 and di is Fi-measurable). Let p ≥ 2.

Set β̃ = p/(p+ 2) and c̃∗p = (1− β)2/(8ep). Then, for all x > 0,

P

(

max
1≤j≤k

∣

∣

∣

j
∑

i=1

di

∣

∣

∣ ≥ x
)

≤
k
∑

i=1

P(|di| ≥ β̃x) +
2p+1

β̃pxp

n
∑

1

∥

∥E(|di|p1|di|≤β̃x | Fi+1)
∥

∥

∞

+ 4exp
(

−c̃∗p
x2

∑‖E(d2i | Fi+1)‖∞

)

.

We will use the following consequence for reverse martingales having a conditional weak
moment of order p, as follows (the same corollary holds as well for martingales). This is a
finer version of [Fuk73, Corollary 3’], replacing the strong norm there with a weak norm.

Corollary 2.4. Let d1, . . . , dk be a reverse martingale difference sequence w.r.t. the non-
increasing σ-fields F1, . . . ,Fk+1 (so E(di | Fi+1) = 0 and di is Fi-measurable). Let p ≥ 2.
Assume that, for all i, di has a conditional weak moment of order p bounded by a constant
Mi, i.e., P(|di| ≥ x | Fi+1) ≤ Mp

i /x
p. Then there exists a constant Cp only depending on p

such that, for all x > 0,

P

(

max
1≤j≤k

∣

∣

∣

j
∑

i=1

di

∣

∣

∣
≥ x

)

≤ Cp

xp

k
∑

i=1

Mp
i + 4exp

(

−C−1
p

x2
∑‖E(d2i | Fi+1)‖∞

)

.

Proof. We apply Corollary 2.3 with any q > p, for instance q = p + 1. Since P(|di| ≥
β̃x) ≤ Mp

i /(β̃x)
p, the first term in the upper bound of this lemma is bounded as de-

sired. The last term is also bounded as desired. It remains to handle the terms involving
x−q

∥

∥E(|di|q1|di|≤β̃x | Fi+1)
∥

∥

∞
. We have

x−q
E(|di|q1|di|≤β̃x | Fi+1) ≤ x−qq

∫ β̃x

u=0
uq−1

P(|di| ≥ u | Fi+1) du

≤ x−qqMp
i

∫ β̃x

u=0
uq−1u−p du = x−qqMp

i

(β̃x)q−p

q − p
≤ CMp

i /x
p.

Summing these terms over i gives a bound as in the statement of the corollary. �
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We can now start the proof of Theorem 2.1. Assume that τ has a weak moment of order
p ≥ 2. Starting from a separately Lipschitz function K, Chazottes and Gouëzel consider
in [CG12] a sequence (dk)k≥0 of reverse martingale differences with respect to the filtration
Fk of functions depending only on coordinates xk, xk+1, . . . , given by

dk = E(K | Fk)− E(K | Fk+1) .

Page 869 in [CG12], it is proved that, if p > 2, then

E(d2k | Fk+1) ≤
∑

j≤k

c
(0)
k−jL

2
j ,

where c
(0)
k denotes a generic summable sequence that does not depend on K nor n. Therefore,

(2.4)
∑

k

‖E(d2k | Fk+1)‖∞ ≤ C
∑

L2
j .

Moreover, if p = 2, [GM14, Section 4.2] shows that

(2.5)
∑

k

‖E(d2k | Fk+1)‖∞ ≤ C
(

∑

L2
i

)

·
[

1 + log
(

∑

Li

)

− log
(

∑

L2
i

)1/2
]

.

Now we use the following modification of [CG12, Lemma 6.2]

Lemma 2.5. For all t > 0 and all integer k,

P
(

|dk| ≥ t | Fk+1

)

≤ Ct−p
k
∑

j=0

Lp
jc

(0)
k−j + Ct−p sup

h>0

(

h−1
k
∑

j=k−h+1

Lj

)p
.

Proof. We just follow the lines of the proof of Lemma 6.2 in [CG12] up to (6.1). Note that
this paper requires the condition p > 2 (for the validity of (4.8) there), but Lemma 4.2
in [GM14] replaces this inequality for p = 2.

For the first sum we have as in [CG12]
∑

A1(zα)≥t/2

g(zα) ≤ Ct−p
∑

j≤k

Lp
jc

(0)
k−j .

On the other hand, if h denotes the smallest ℓ such that
∑k

j=k−ℓ+1Lj ≥ t/2, then

∑

A2(zα)≥t/2

g(zα) ≤ Cπ(τ ≥ h) ≤ Ch−p ≤ Ct−p sup
h>0

(

h−1
k
∑

j=k−h+1

Lj

)p
. �

Proof of Theorem 2.1 when p ≥ 2. We apply Lemma 2.4 to dk, with

(2.6) Mp
k = C

k
∑

j=0

Lp
jc

(0)
k−j + C sup

h>0

(

h−1
k
∑

j=k−h+1

Lj

)p

thanks to Lemma 2.5. As c
(0)
k is summable, the sum over k of the first term is bounded by

C ′
∑

Lp
j . An application of the Hardy-Littlewood maximal inequality in ℓp gives

∑

k≥0

sup
h>0

(

h−1
k
∑

j=k−h+1

Lj

)p
≤ C

∑

j

Lp
j .
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Hence, the sum over k of the second term in (2.6) is also bounded by C
∑

j L
p
j . This shows

that the first term in Corollary 2.4 gives rise to a bound C
∑

Lp
i /x

p.
Finally, the second term in Lemma 2.4 gives rise to the exponential error term in the

statement of the theorem, thanks to (2.4) when p > 2 and to (2.5) when p = 2. �

Remark 2.6. Assume that p > 2 and for any i, Li ≤ 1. In this case, integrating Inequal-
ity (2.1) leads to

‖K − EK‖2(p−1)
π,2(p−1) ≪ np−1 .

However, in the case of general Li, we do not recover for this moment the bound C(
∑

L2
i )

p−1

proved in [GM14, Theorem 1.9] (consider for instance the case L0 = 1 and L1 = . . . =
Ln−1 = 1/

√
n). This moment bound, combined with Markov inequality, gives

π{|K − EK| > x} ≤ κ

(

∑

L2
i

)p−1

x2p−2
.

For the case where all Li are of the order of 1, this bound is worse than the bound of
Theorem 2.1. However, surprisingly, it can be better when the Li vary a lot, for instance
when L0 = 1 and L1 = . . . = Ln−1 = 1/

√
n, and x = n1/4.

3. Upper bounds for moderate deviations

In this section, we prove Theorem 1.4. Cases (3) and (2) follow more or less readily from
existing inequalities in the literature, while Case (1) is really new.

3.1. Proof of Item (3) in Theorem 1.4. Item (3) follows directly from an application
of Proposition 4 in [DM07]. Indeed, let M = ‖f‖∞ and

γ(k) = ‖E(f(Yk) | Y0)− π(f)‖1 , for k ≥ 0.

[DM07, Proposition 4] together with stationarity implies that for any integer q in [1, n], and
any x ≥ Mq,

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣
≥ 4x

)

≤ 4nM

x2

q−1
∑

i=0

γ(i) +
2n

xq

2q
∑

i=q+1

γ(i) .

Note that if x ≥ nM/2 the bound is trivial since the probability is equal to zero. It is

also trivial if x ≤ M
√
2n. Therefore we can always assume that M ≤ x ≤ nM and select

q = [x/M ]. Combined with the fact that, by H1(p),

γ(k) ≤ C1‖f‖(k + 1)1−p ,

this gives

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣ ≥ 4x
)

≤
(4nMp−1C1‖f‖

2− p
+ 2pMp−1C1‖f‖

)

nx−p .

This ends the proof of Item (3). �
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3.2. A deviation inequality. For r > 2, the Rosenthal inequality for sums of centered
i.i.d. random variables Zi is the inequality

(3.1) E

(∣

∣

∣

N
∑

i=1

Zi

∣

∣

∣

r)

≪ NE(|Z1|r) +N r/2
E(Z2

1)
r/2 ,

where the implied constant only depends on r. What makes this inequality extremely useful
is that the dominating coefficient N r/2 is multiplied by an L2-norm, which is usually mild
to control, while the larger Lr-norm only has a coefficient N .

We will use repeatedly a Rosenthal-like inequality for weakly dependent sequences, due
to Merlevède and Peligrad, in the following form which is well suited for the applications to
moderate deviations we have in mind. Note that, in the following statement, all conditional
expectations are of the form E(f(Zi) | G0) for some i ≥ 2: this means that suitable mixing
conditions can be used to control such terms. The other two terms are of Rosenthal-type
as in the i.i.d. case, and can thus be controlled using minimal knowledge on Z1.

Theorem 3.1. Let Zi be a strictly stationary sequence of random variables, adapted to a
filtration Gi. Write Si =

∑i
1 Zk. Consider a real number r > 2. Then, for all N and all x,

P(max
i≤N

|Si| ≥ x) ≪ N

x
‖E(Z2 | G0)‖1 +

N

xr
E(|Z1|r) +

N r/2

xr
E(Z2

1 )
r/2

+
N

xr

[

N
∑

k=1

1

k1+2δ/r

( k
∑

i=2

‖E(Z2
i | G0)− E(Z2

i )‖r/2
)δ
]r/(2δ)

,

where δ = min(1, 1/(r − 2)) ∈ (0, 1]. The implied multiplicative constant in the inequality
only depends on r.

Proof. Let Mi = Zi − E(Zi | Gi−2). Then

(3.2) max
i≤N

|Si| ≤ max
2≤2j≤N

∣

∣

∣

j
∑

i=1

M2i

∣

∣

∣
+ max

1≤2j−1≤N

∣

∣

∣

j
∑

i=1

M2i−1

∣

∣

∣
+

N
∑

i=1

|E(Zi | Gi−2)|.

If the maximum of the partial sums Si is at least x, one of these three terms is at least x/3.
First, by Markov inequality and stationarity,

P

(

N
∑

i=1

|E(Zi | Gi−2)| ≥ x/3
)

≤ 3

x
N‖E(Z2 | G0)‖1,

giving a term compatible with the statement of the theorem. The two other terms in (3.2)
are controlled similarly, let us consider for instance the even indices.

We use first Markov inequality with the exponent r, and then the Rosenthal-like inequal-
ity [MP13, Theorem 6], giving

P

(

max
2≤2j≤N

∣

∣

∣

j
∑

i=1

M2i

∣

∣

∣ ≥ x

3

)

≤ C
N

xr



‖M1‖rr +
[N/2
∑

k=1

1

k1+2δ/r

∥

∥

∥E

(

(

k
∑

i=1

M2i

)2 | G0

)∥

∥

∥

δ

r/2

]r/(2δ)


.
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Since ‖M1‖rr ≤ 2rE(|Z1|r), the resulting term is compatible with the statement of the
theorem. As M2i is a sequence of martingale differences with respect to G2i, we have

E

(

(

k
∑

i=1

M2i

)2 | G0

)

=

k
∑

i=1

E(M2
2i | G0) ≤

k
∑

i=1

E(Z2
2i | G0).

Therefore, by stationarity,

∥

∥

∥
E

(

(

k
∑

i=1

M2i

)2 | G0

)∥

∥

∥

r/2
≤

k
∑

i=1

‖E(Z2
2i | G0)− E(Z2

2i)‖r/2 + kE(Z2
1 ).

We plug this estimate into the previous equation. The first term gives a contribution as
in the statement of the theorem. On the other hand, the contribution of the second term
kE(Z2

1 ) is

C
N

xr
E(Z2

1 )
δ·r/(2δ) ·

[N/2
∑

k=1

1

k1+2δ/r
kδ

]r/(2δ)

≤ C
N

xr
E(Z2

1 )
r/2C ′N r/2−1 = C ′′N

r/2

xr
E(Z2

1 )
r/2,

again one of the terms in the statement of the theorem. �

Remark 3.2. Using different Rosenthal inequalities, one can obtain slightly different state-
ments. For instance, using the classical Rosenthal inequality of Burkholder for martingales,
one obtains a statement analogous to Theorem 3.1, where the last term in the upper bound
is replaced by

(3.3)
N r/2

xr
‖E(Z2

2 | G0)− E(Z2
2 )‖r/2r/2

.

This statement uses the decorrelation less strongly than Theorem 3.1: For large i, the
quantity ‖E(Z2

i | G0) − E(Z2
i )‖r/2 is likely much smaller than ‖E(Z2

2 | G0) − E(Z2
2 )‖r/2.

Indeed, it turns out that, for the application below, Theorem 3.1 will succeed while an
estimate using (3.3) fails (compare for instance (3.10) below to what would be obtained
using (3.3)).

3.3. Proof of items (1) and (2) in Theorem 1.4. Item (2) in Theorem 1.4 follows from
an application of [DM16, Proposition 5.1] (while the result there applies directly to bounded
variation functions, the proof works in the full generality of Theorem 1.4). However, as we
shall see it also follows from our proof as a special case.

The strategy of the proof is to apply the Rosenthal bounds of Theorem 3.1 to different

parts of max1≤k≤n

∣

∣

∣

∑k
i=1(f(Yi) − π(f))

∣

∣

∣
. To illustrate why this strategy might work, let

us recall a way to prove moderate deviations bounds for sums of centered i.i.d. random
variables Zi in Lp. Consider an integer n and a real number x > 0. Let Xi = Zi1|Zi|>n1/p −
E(Zi1|Zi|>n1/p) and X ′

i = Zi−Xi. Then Rosenthal inequality (3.1) (for sums of independent

random variables) with the exponent p applied to Xi gives E(|∑Xi|p) ≪ n, while Rosenthal

inequality with some exponent r > p applied to X ′
i gives E(|∑X ′

i|r) ≪ nr/2. Combining
these two inequalities, we deduce the moderate deviations bound

P

(∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣
≥ x

)

≪ n

xp
+

nr/2

xr
.
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We will follow the same strategy in our context: split the sum to be estimated in two
different parts, and apply a Rosenthal inequality (in our case, Theorem 3.1) to each part,
with suitable exponents. Instead of truncating, the splitting will be done by constructing
blocks, and separating a conditional average (which is small in L1, but large in Lp, as Xi

above) from the dominating term.
Here is a high level version of the (rather technical) proof to follow. First, we write

∑

j f(Yj)− π(f) as a sum
∑

Bi, where Bi is a sum of f along a block of length n1/p. Then,

we write Bi as (Bi − E(Bi | GB
i−2)) + E(Bi | GB

i−2), where GB
i is the natural filtration along

which Bi is measurable. Then E(Bi | GB
i−2) is small in L1, but possibly large in L∞. We

control the probability of moderate deviations of
∑

E(Bi | GB
i−2) by grouping these variables

into blocks of size ≍ x, then applying Theorem 3.1: all the terms in the upper bound of this
theorem can be controlled, in a straightforward albeit tedious way, by using the assumption
H1(p). Then, to control the probability of moderate deviations of

∑

(Bi − E(Bi | GB
i−2)),

we consider separately the sums along even and odd indices, use that each such sum is a
martingale, and apply an exponential inequality for martingales (here, Freedman inequality).
It follows that, to control the probability of moderate deviations, it suffices to control the
deviations of the conditional quadratic averages. To handle these, we group them again into
blocks of size ≍ x and apply again Theorem 3.1. All the terms in the upper bound of this
theorem can also be controlled directly from H1(p).

Below are the details of the proof.

Proof of items (1) and (2) in Theorem 1.4. We will use the following notations throughout

the proof. Let f (0) = f − π(f) and M = ‖f‖∞ and Fk = σ(Yi, i ≤ k) and Ek(·) = E(· | Fk)

and E
(0)
k (·) = E(· | Fk)− E(·).

Fix x > 0 and an integer n. It suffices to estimate

(3.4) P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f))
∣

∣

∣
≥ 8x

)

.

Indeed, if one proves the theorem for this quantity, then the original result follows by letting
x′ = x/8, as polynomial bounds involving x′ or x are equivalent. From this point on, we
concentrate on bounding (3.4).

We first notice that since
∥

∥max1≤k≤n

∣

∣

∑k
i=1 f(Yi) − π(f)

∣

∣

∥

∥

∞
≤ 2‖f‖∞n, we can assume

that

(3.5) x ≤ 4−1‖f‖∞n ,

otherwise the probability under consideration equals zero. In addition, we can also assume
that

(3.6) x ≥ 2‖f‖∞n1/p ,

otherwise what we have to prove is trivial as soon as κ is greater or equal to (16‖f‖∞)p. So
from now on, we assume the two restrictions above on x.

The strategy to prove the desired inequalities is in two steps. First, we split the sum into
blocks of size

t = [n1/p]
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as this is the characteristic size when dealing with mixing bounds of exponent p. Then, we
write these blocks as sums of a martingale difference and a remainder. For each of these two
terms, we will prove the desired estimate on the deviation probability using Theorem 3.1
with a suitable exponent r. While the different sizes of blocks and the filtrations we will
introduce all depend on n, we suppress n from the notations for brevity.

Let

Bi =
it
∑

j=(i−1)t+1

f (0)(Yj) and Xi = E(Bi | F(i−2)t) .

Let nt = [n/t] be the number of size t blocks. The following inequality is then valid:

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f)
∣

∣

∣ ≤ 2t‖f‖∞ + max
1≤j≤nt

∣

∣

∣

j
∑

i=1

(Bi −Xi)
∣

∣

∣+ max
1≤j≤nt

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣ .

Since 2t‖f‖∞ ≤ 2n1/p‖f‖∞ ≤ x, it follows that

P

(

max
1≤k≤n

∣

∣

∣

k
∑

i=1

(f(Yi)− π(f)
∣

∣

∣
≥ 8x

)

≤ P

(

max
1≤j≤nt

∣

∣

∣

j
∑

i=1

(Bi −Xi)
∣

∣

∣
≥ 3x

)

+ P

(

max
1≤j≤nt

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣ ≥ 4x
)

.

(3.7)

We will control separately these two terms.

First step: controlling P

(

max1≤j≤nt

∣

∣

∣

∑j
i=1Xi

∣

∣

∣
≥ 4x

)

.

Consider some r ∈ (2(p − 1), 2p). We will show that

(3.8) P

(

max
1≤j≤nt

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣ ≥ 4x
)

≤
{

κnx−p if p > 2

κ
(

nx−2 + (n log n)r/2x−r
)

if p = 2 ,

where κ is a positive constant depending only on p, r, ‖f‖, C1 and C2 but not on x nor n.
With this aim, we first let

u =
[ x

2‖f‖∞n1/p

]

,

and we notice that, by (3.6), u ≥ 1. We will regroup the Xi into blocks of length u, which
corresponds to blocks of size tu ≍ x for Yj: this is the time scale where the sum over a block
can not exceed x. By (3.5),

(3.9) nt ≥
n

2t
≥ n

2n1/p
≥ 4x

2n1/p‖f‖∞
≥ 4u .

Define

Ui =

iu
∑

j=(i−1)u+1

Xj .
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It is measurable with respect to GU
i = σ(Yi , ℓ ≤ itu − 2t) thanks to the conditional expec-

tation in the definition of Xi. Since ‖Xi‖∞ ≤ 2‖f‖∞t, we have

max
1≤j≤nt

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣
≤ 2‖f‖∞tu+ max

1≤j≤[nt/u]

∣

∣

∣

j
∑

i=1

Ui

∣

∣

∣
.

Since 2‖f‖∞tu ≤ x, it follows that

P

(

max
1≤j≤nt

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣
≥ 4x

)

≤ P

(

max
1≤j≤[nt/u]

∣

∣

∣

j
∑

i=1

Ui

∣

∣

∣
≥ 3x

)

,

which we will control using Theorem 3.1 applied to Zi = Ui and Gi = GU
i and N = [nt/u]

and the exponent r. We should thus show that all the terms in the upper bound of this
theorem are controlled as in (3.8).

By using H1(p),

‖E(U2 | GU
0 )‖1 ≤

2u
∑

i=u+1

it
∑

j=(i−1)t+1

‖E(f (0)(Yj) | F0)‖1 ≤ C1‖f (0)‖ ut

(ut)p−1
.

Note now that ut ≥ x(8‖f‖∞)−1. Therefore,

[nt/u]

x
‖E(U2 | GU

0 )‖1 ≤ C1‖f (0)‖nt/u

x

ut

(ut)p−1
≤ C1‖f (0)‖

(

8‖f‖∞
)p−1

nx−p .

This handles the first term in the upper bound of Theorem 3.1.

To control the term involving E(|U1|r), we recall that U1 is a sum of u random variables
Xi, all bounded in sup norm by 2‖f‖∞t. Any precise inequality for the r norm of a sum
will do here. We use for instance [Rio00, Theorem 2.5] with p = r/2. It gives

E(|U1|r) ≤ (ur)r/2
(

u
∑

i=1

‖X1‖∞‖E0(Xi)‖r/2
)r/2

.

Moreover,

‖E0(Xi)‖r/2 ≤
it
∑

j=(i−1)t+1

‖E0(E(i−2)tf
(0)(Yj))‖r/2 =

it
∑

j=(i−1)t+1

‖E(i−2)t∧0f
(0)(Yj)‖r/2

≤
it
∑

j=(i−1)t+1

[

‖E(i−2)t∧0f
(0)(Yj)‖r/2−1

∞ · ‖E(i−2)t∧0f
(0)(Yj)‖1

]1/(r/2)
.

The first sup norm is bounded by 2‖f‖∞ ≤ 2‖f‖, while the L1 norm is bounded by

C1‖f (0)‖/(t∨(i−1)t)p−1 thanks to H1(p). Hence, ‖E0(Xi)‖r/2 ≤ Ct
t(p−1)/(r/2)

1
(1∨(i−1))(p−1)/(r/2) ,

for some constant C. As r > 2(p − 1), we get a bound

E(|U1|r) ≤ Cur/2
(

u
∑

i=1

t · t

t(p−1)/(r/2)

1

(1 ∨ (i− 1))(p−1)/(r/2)

)r/2
≤ C ′ (t

2u)r/2

t(p−1)
· ur/2−(p−1) .
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Taking into account that ut ≤ x/(2‖f‖∞) and nt = [n/t], we derive

[nt/u]

xr
E(|U1|r) ≤ κnx−p .

This handles the second term in the upper bound of Theorem 3.1.

Let us now control the term involving E(U2
1 ). We have

E
(

U2
1

)

=
u
∑

j=1

u
∑

ℓ=1

E(XjXℓ)

=

u
∑

j=1

u
∑

ℓ=1

jt
∑

k=(j−1)t+1

ℓt
∑

m=(ℓ−1)t+1

E
[

E(j−2)t(f
(0)(Yk)) · E(ℓ−2)t(f

(0)(Ym))
]

.

Each such term is equal to E
[

E(j−2)t∧(ℓ−2)t(f
(0)(Yk)) · E(j−2)t∧(ℓ−2)t(f

(0)(Ym))
]

. We bound
one of the factors (corresponding to the minimal j or ℓ) by 2‖f‖∞, and use H1(p) to bound
the other one in terms of the gap size, which is at least (|ℓ− j|+ 1)t. Hence,

E
(

U2
1

)

≤ 2‖f‖∞
u
∑

j=1

u
∑

ℓ=1

t2
C1‖f‖

tp−1(|j − ℓ|+ 1)p−1
≤ κut2 × 1

tp−1

(

1 + (log n)1p=2

)

as p ≥ 2, where κ is a positive constant. This yields

[nt/u]
r/2

E(U2
1 )

r/2 ≤ κr/2
( n

tu
ut2 × 1

tp−1

)r/2(

1 + (log n)r/21p=2

)

≤ κr/2
(

nt2 × 1

tp

)r/2(

1 + (log n)r/21p=2

)

≤ 2rp/2κr/2nr/p
(

1 + (log n)r/21p=2

)

.

Using (3.6), we note that as r ≥ p we have xr−p ≥ 2r−p‖f‖r−p
∞ nr/p−1. Hence,

[nt/u]
r/2

xr
E(U2

1 )
r/2 ≤ 2rp/2κr/2

(

2p−r‖f‖p−r
∞

n

xp
+

(n log n)r/2

xr
1p=2

)

.

This handles the third term in the upper bound of Theorem 3.1.

We analyze now the last term in the upper bound of Theorem 3.1. With this aim, we
notice that GU

0 = F−2t. Therefore, for any i ≥ 2,

∥

∥

∥E
(

U2
i | GU

0

)

− E
(

U2
i

)

∥

∥

∥

r/2
≤

iu
∑

j=(i−1)u+1

iu
∑

ℓ=(i−1)u+1

∥

∥

∥E
(

XjXℓ | F−2t

)

− E
(

XjXℓ

)

∥

∥

∥

r/2

≤ 2
iu+2
∑

j=(i−1)u+3

iu+2
∑

ℓ=j

∥

∥

∥
E
(0)
0

(

XjXℓ

)

∥

∥

∥

r/2
.

Fix j ∈ [(i− 1)u+3, iu+2] and ℓ ∈ [j, iu+2]. Then XjXℓ is a sum of t2 terms of the form

E(j−2)t(f
(0)(Yk)) · E(ℓ−2)t(f

(0)(Ym)) for k ∈ [(j − 1)t + 1, jt] and m ∈ [(ℓ − 1)t + 1, ℓt]. For
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each such term, writing k′ = k − (j − 2)t and m′ = m− (j − 2)t, we have

∥

∥E
(0)
0

[

E(j−2)t(f
(0)(Yk)) · E(ℓ−2)t(f

(0)(Ym))
]∥

∥

r/2

=
∥

∥

∥K(j−2)t
[

(Kk′f (0)) · (Km′

f (0))
]

− π
[

(Kk′f (0)) · (Km′

f (0))
]

∥

∥

∥

π,r/2
.

Therefore
∥

∥E
(0)
0

[

E(j−2)t(f
(0)(Yk)) · E(ℓ−2)t(f

(0)(Ym))
]∥

∥

r/2

r/2

≤ (8‖f‖2∞)r/2−1
∥

∥

∥
K(j−2)t

[

(Kk′f (0)) · (Km′

f (0))
]

− π
[

(Kk′f (0)) · (Km′

f (0))
]

∥

∥

∥

π,1
.

Both functions Kk′(f (0)) and Km′

(f (0)) belong to B, with a norm bounded by C2‖f (0)‖
thanks to the condition H2. As ‖·‖ is a Banach algebra norm, their product also belongs to
B. Applying the condition H1(p) to this product, we deduce that

∥

∥

∥
K(j−2)t

[

(Kk′f (0)) · (Km′

f (0))
]

− π
[

(Kk′f (0)) · (Km′

f (0))
]

∥

∥

∥

π,1
≤ C3

((j − 2)t)p−1
,

for some constant C3. Combining these inequalities yields
∥

∥

∥
E
(0)
0

(

XjXℓ

)

∥

∥

∥

r/2
≤ t2C4

((j − 2)t)(p−1)/(r/2)
.

Therefore, we get that for any i ≥ 2,
∥

∥

∥
E
(

U2
i | G0

)

− E
(

U2
i

)

∥

∥

∥

r/2
≤ C5

(ut)2

(iut)2(p−1)/r
.

As r > 2(p − 1), this implies that

k
∑

i=2

∥

∥

∥E
(

U2
i | G0

)

− E
(

U2
i

)

∥

∥

∥

r/2
≤ C6

(ut)2

(ut)2(p−1)/r
k1−2(p−1)/r .

Hence

[nt/u]





[nt/u]
∑

k=1

1

k1+2δ/r

(

k
∑

i=2

∥

∥

∥
E
(

U2
i | GU

0

)

− E
(

U2
i

)

∥

∥

∥

r/2

)δ





r/(2δ)

≤ C
r/2
6

(ut)r

(ut)p−1

nt

u





[nt/u]
∑

k=1

1

k1+2δ/r

(

k1−2(p−1)/r
)δ





r/(2δ)

.

As r < 2p, the sum over k is uniformly bounded, independently of n or x. Taking into
account that ut ≤ x/(2‖f‖∞), we get that there exists a positive constant κ such that

(3.10)
[nt/u]

xr





[nt/u]
∑

k=1

1

k1+2δ/r

(

k
∑

i=2

∥

∥E
(

U2
i | GU

0

)

− E(U2
i )
∥

∥

r/2

)δ





r/(2δ)

≤ κnx−p .

This handles the last term in the upper bound of Theorem 3.1. Altogether, this proves (3.8)
and concludes the proof of the first step.
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Second step: controlling P

(

max1≤j≤nt

∣

∣

∣

∑j
i=1 Bi −Xi

∣

∣

∣
≥ 4x

)

.

We will prove

(3.11) P

(

max
1≤k≤nt

∣

∣

∣

k
∑

i=1

(Bi −Xi)
∣

∣

∣
≥ 3x

)

≤
{

κnx−p + κ exp(−κ−1x2/n) if p > 2

κnx−2 + κ exp(−κ−1x2/(n log n)) if p = 2 ,

where κ is a positive constant depending only on p, ‖f‖, C1 and C2 but not on x nor n.
Starting from (3.7), this upper bound combined with (3.8) will end the proof of Items 1 and
2 of the theorem.

To prove (3.11), we start by setting

di = Bi −Xi and GB
i = Fit ,

and we write the following decomposition:

(3.12) P

(

max
1≤k≤nt

∣

∣

∣

k
∑

i=1

(Bi −Xi)
∣

∣

∣
≥ 3x

)

≤ P

(

max
1≤2k≤nt

∣

∣

∣

k
∑

i=1

d2i

∣

∣

∣
≥ 3x/2

)

+ P

(

max
1≤2k−1≤nt

∣

∣

∣

k
∑

i=1

d2i−1

∣

∣

∣
≥ 3x/2

)

.

Note that (d2i)i∈Z (resp. (d2i−1)i∈Z) is a strictly stationary sequence of martingale dif-
ferences with respect to the non decreasing filtration (GB

2i)i∈Z (resp. (GB
2i−1)i∈Z). Therefore,

since ‖d2i‖∞ ≤ 2t‖f‖∞ ≤ 2‖f‖∞n1/p a.s., by [Fre75, Proposition 2.1], for any y > 0,

(3.13) P

(

max
2≤2k≤nt

∣

∣

∣

k
∑

i=1

d2i

∣

∣

∣
≥ 3x/2

)

≤ 2 exp
(−9x2

16y

)

+ 2exp
( −9x

16‖f‖∞n1/p

)

+ P

(

[nt/2]
∑

i=1

E
(

d22i | GB
2(i−1)

)

≥ y
)

.

Note now that

E
(

d22i | GB
2(i−1)

)

≤ E
(

B2
2i | GB

2(i−1)

)

.

Moreover, by stationarity, we infer that

[nt/2]
∑

i=1

E(B2
2i) ≤ 2n‖f‖∞

t−1
∑

k=0

‖E0(f
(0)(Yk)‖1 .

Therefore, by H1(p), there exists a positive constant κ depending only on p, ‖f‖ and C1

such that
[nt/2]
∑

i=1

E(B2
2i) ≤ κn(1 + (log n)1p=2)) .

Selecting

y =







max
(

2κn, 16xn1/p‖f‖∞
)

if p > 2

max
(

2κn log n, 16x(n log n)1/2‖f‖∞
)

if p = 2 ,
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and starting from (3.13), we get that, for any r ≥ 1,

(3.14) P

(

max
2≤2k≤nt

∣

∣

∣

k
∑

i=1

d2i

∣

∣

∣ ≥ 3x/2
)

≤ c
n

xp
+ c exp

(

−c′
x2

n+ n log n1p=2

)

+ P

(

[nt/2]
∑

i=1

(

E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i)
)

≥ y/2
)

,

where c and c′ are positive constants.
Let us prove now that

(3.15) P

(∣

∣

∣

[nt/2]
∑

i=1

(

E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i)
)∣

∣

∣
≥ y/2

)

≤ cnx−p ,

where c is a positive constant depending only on p, ‖f‖, C1 and C2 but not on x nor n.
A similar bound will hold for odd indices. Hence, starting from (3.12) and considering the
inequality (3.14), this upper bound will lead to (3.11) and then will end the proof of Items
1 and 2 of the theorem.

It remains then to prove (3.15). With this aim, we do again blocks of size u with as before

u =
[ x

2‖f‖∞n1/p

]

. Let

Wi = E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i) , Vi =

iu
∑

k=(i−1)u+1

Wk

and GV
i = GB

2(iu−1) = F2(iu−1)t. Setting nu =
[ [nt/2]

u

]

(note that, by (3.9), nu ≥ 1), we have

∣

∣

∣

[nt/2]
∑

i=1

(

E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i)
)

∣

∣

∣ =
∣

∣

∣

[nt/2]
∑

i=1

Wi

∣

∣

∣ ≤
∣

∣

∣

nu
∑

i=1

Vi

∣

∣

∣+ 8ut2‖f‖2∞ .

Note that

8ut2‖f‖2∞ ≤ 4xn1/p‖f‖∞ ≤ y/4 .

Therefore

P

(∣

∣

∣

[nt/2]
∑

i=1

(

E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i)
)∣

∣

∣ ≥ y/2
)

≤ P

(∣

∣

∣

nu
∑

i=1

Vi

∣

∣

∣ ≥ y/4
)

.

To prove (3.15), it suffices to show that

(3.16) P

(∣

∣

∣

nu
∑

i=1

Vi

∣

∣

∣ ≥ y/4
)

≤ cnx−p .

We will show this inequality by applying Theorem 3.1 to Zi = Vi and Gi = GV
i and N = nu

and some fixed r ∈ (2p−2, 2p). We should thus show that all the terms in the upper bound
of this theorem are controlled as in (3.16).
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We start with the first term involving ‖E(V2 | GV
0 )‖1. Since y ≥ 16xn1/p‖f‖∞, we have

nu

y
‖E(V2 | GV

0 )‖1 ≤
nu

xn1/p‖f‖∞

2u
∑

k=u+1

‖E(Wk | F−2t)‖1

≤ nu

xn1/p‖f‖∞

2u
∑

k=u+1

‖E(B2
2k | F−2t)− E(B2

2k)‖1

≤ 2nu

xn1/p‖f‖∞

2u
∑

k=u+1

2kt
∑

j=(2k−1)t+1

2kt
∑

ℓ=j

‖E(0)(f (0)(Yj)f
(0)(Yℓ) | F−2t)‖1 .

Using H(p), we infer that there exists a positive constant c depending on C1, C2 and ‖f (0)‖,
such that this quantity is bounded by

c
n

xn1/ptu‖f‖∞
ut2

1

(ut)p−1
≤ c

n

x‖f‖∞
1

(ut)p−1
≤ 8p−1c‖f‖p−2

∞ nx−p ,

thanks to the inequality ut ≥ x(8‖f‖∞)−1. This handles the first term in the upper bound
of Theorem 3.1.

We turn to the second term, involving E(|V1|r). By stationarity and [Rio00, Theorem 2.5],
we have

E(|V1|r)2/r =
∥

∥

∥

u
∑

k=1

Wk

∥

∥

∥

2

r
≤ ur

u−1
∑

k=0

‖W0E(Wk | F−2t)‖r/2

≤ ur‖W 2
0 ‖r/2 + ur‖W0‖∞

u−1
∑

k=1

‖E(Wk | F−2t)‖r/2

≤ ur‖W 2
0 ‖r/2 + ur · 16t2‖f‖2∞

u−1
∑

k=1

‖E(Wk | F−2t)‖r/2 .

Using H(p), we infer that there exists a positive constant c4 depending on C1, C2, ‖f‖ and
r such that

‖W 2
0 ‖r/2 = ‖W0‖2r = ‖E0

(

B2
2

)

− E(B2
2)‖2r

≤
(

2t
∑

j=t+1

2t
∑

i=t+1

‖E(0)
0 (f (0)(Yj)f

(0)(Yi))‖r
)2

≤ c4

(

t2
1

t(p−1)/r

)2
≤ c4

u

u2(p−1)/r
· t4

t2(p−1)/r
,

as r > 2(p − 1). On the other hand, using again H(p), we get that there exists a positive
constant c5 such that for any k ≥ 1,

‖E(Wk | F−2t)‖r/2 ≤
2kt
∑

j=(2k−1)t+1

2kt
∑

i=(2k−1)t+1

‖E(0)
−2t(f

(0)(Yj)f
(0)(Yi)))‖r/2 ≤ c5t

2 1

(kt)2(p−1)/r
.
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The sum of these quantities over k from 1 to u − 1 is bounded by c6
t2

t2(p−1)/r · u
u2(p−1)/r , as

r > 2(p − 1). We infer that there exists a positive constant c7 such that

nuE(|V1|r) ≤ c7nu(u
2t4)r/2

1

(ut)p−1
≤ c7nt

r(ut)r−p .

Hence, using the fact that y ≥ 16xn1/p‖f‖∞ and ut ≤ x(2‖f‖∞)−1 and t ≤ n1/p, we get
that

nu

yr
E(|V1|r) ≤ 8−rc7(2‖f‖∞)p−2r n

xp
.

This handles the second term in the upper bound of Theorem 3.1.

We turn to the third term, involving E(V 2
1 ). By stationarity, we have

E(V 2
1 ) =

∥

∥

∥

2u
∑

k=u+1

Wk

∥

∥

∥

2

2
= u‖W1‖22 + 2

u−1
∑

k=1

u−k
∑

ℓ=1

cov
(

W0,Wℓ

)

.

But, by using H(p), we infer that there exists a positive constant c1 such that

‖W1‖2 = ‖E(0)
0 (B2

2)‖2 ≤
2t
∑

j=t+1

2t
∑

ℓ=t+1

‖E(0)
0 (f (0)(Yj)f

(0)(Yℓ))‖2 ≤ c1
t2

t(p−1)/2
.

On the other hand, using again H(p), we get that there exists a positive constant c2 such
that for any ℓ ≥ 1,
∣

∣

∣
cov
(

W0,Wℓ

)

∣

∣

∣
≤ ‖B2

0‖∞‖E−2t(B
2
2ℓ)− E(B2

2ℓ)‖1

≤ (8t‖f‖)2
2ℓt
∑

j=(2ℓ−1)t+1

2ℓt
∑

i=(2ℓ−1)t+1

‖E(0)
0 (f (0)(Yj)f

(0)(Yi))‖1 ≤ c2
t4

(ℓt)p−1
.

So, overall, there exists a positive constant c3 such that

E(V 2
1 ) ≤ c3u

t4

tp−1

(

1 + (log n)1p=2

)

.

This upper bound implies that
(

nuE(V
2
1 )
)r/2

≤ (2pc3)
r/2n2r/p

(

1 + (log n)r/21p=2

)

.

Next using the fact that y ≥ 16xn1/p‖f‖∞ if p > 2 and y ≥ 16x(n log n)1/2‖f‖∞ if p = 2,
we get

n
r/2
u

yr
E(V 2

1 )
r/2 ≤ (2pc3)

r/2 nr/p

16rxr‖f‖r∞
.

By (3.6) and since r ≥ p, we have xr−p ≥ (2‖f‖∞)r−pnr/p−1. Therefore,

n
r/2
u

yr
E(V 2

1 )
r/2 ≤ (2p−6c3)

r/2(2‖f‖∞)p−2r n

xp
.

This handles the third term in the upper bound of Theorem 3.1.
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Finally, we turn to the last term, involving ‖E(V 2
i | GV

0 )− E(V 2
i )‖r/2. For any i ≥ 2, we

have

‖E(V 2
i | GV

0 )−E(V 2
i )‖r/2 ≤

iu
∑

ℓ=(i−1)u+1

iu
∑

m=(i−1)u+1

‖E(0)
−2t(WℓWm)‖r/2

≤
iu
∑

ℓ=(i−1)u+1

iu
∑

m=(i−1)u+1

∥

∥

∥E
(0)
−2t

[

E
(

B2
2ℓ | GB

2(ℓ−1)

)

· E
(

B2
2m | GB

2(m−1)

)

]∥

∥

∥

r/2

+ 2
iu
∑

ℓ=(i−1)u+1

iu
∑

m=(i−1)u+1

E(B2
2ℓ) · ‖E

(0)
−2t(B

2
2m)‖r/2 ,

where this expansion is obtained from the definition Wi = E
(

B2
2i | GB

2(i−1)

)

− E(B2
2i) by

expanding the product WℓWm, using the fact that E
(0)
−2t is linear and vanishes on the constant

E(B2
2ℓ) · E(B2

2m).
For any m ≥ ℓ ≥ 1,

∥

∥

∥
E
(0)
−2t

[

E
(

B2
2ℓ | GB

2(ℓ−1)

)

· E
(

B2
2m | GB

2(m−1)

)

]∥

∥

∥

r/2

=
∥

∥

∥E
(0)
−2t

[

E
(

B2
2ℓ | GB

2(ℓ−1)

)

· E
(

B2
2m | GB

2(ℓ−1)

)

]∥

∥

∥

r/2

≤
2ℓt
∑

a,a′=(2ℓ−1)t+1

2mt
∑

b,b′=(2m−1)t+1

∥

∥

∥E
(0)
−2t

[

E2(ℓ−1)t

(

f (0)(Ya)f
(0)(Ya′)

)

× E2(ℓ−1)t

(

f (0)(Yb)f
(0)(Yb′)

)

]∥

∥

∥

r/2

≤ 2t2 sup
a′,b′≥0

2(ℓ+1)t
∑

a=(2ℓ+1)t+1

2(m+1)t
∑

b=(2m+1)t+1

∥

∥

∥E
(0)
0

[

E2ℓt

(

f (0)(Ya)f
(0)(Ya+a′)

)

× E2ℓt

(

f (0)(Yb)f
(0)(Yb+b′)

)

]∥

∥

∥

r/2
,

where we have used stationarity. But

E2ℓt

(

f (0)(Ya)f
(0)(Ya+a′)

)

= E2ℓt

(

(f (0)Ka′f (0))(Ya)
)

= (Ka−2ℓt(f (0)Ka′f (0)))(Y2ℓt) .

Hence,

E0

[

E2ℓt

(

f (0)(Ya)f
(0)(Ya+a′)

)

· E2ℓt

(

f (0)(Yb)f
(0)(Yb+b′)

)

]

=
(

K2ℓt
[

Ka−2ℓt(f (0)Ka′f (0)) ·Kb−2ℓt(f (0)Kb′f (0))
])

(Y0) .



MODERATE DEVIATIONS FOR SLOWLY MIXING MARKOV CHAINS 22

Therefore, thanks to H(p), we infer that there exists a positive constant c8 such that for
any m ≥ ℓ ≥ (i− 1)u+ 1,

∥

∥

∥E
(0)
−2t

[

E
(

B2
2ℓ | GB

2(ℓ−1)

)

· E
(

B2
2m | GB

2(m−1)

)

]∥

∥

∥

r/2
≤ c8

t4

((i− 1)tu)2(p−1)/r
.

On the other hand, using again H(p), we infer that there exists a positive constant c9 such
that for any ℓ,m ≥ (i− 1)u+ 1,

E(B2
2ℓ) · ‖E

(0)
−2t(B

2
2m)‖r/2 ≤ c9t

2 · t2

((i− 1)tu)2(p−1)/r
.

So, overall, as r > 2(p − 1), there exists a positive constant c10 such that

k
∑

i=1

‖E(V 2
i | GV

0 )− E(V 2
i )‖r/2 ≤ c10

u2t4

(tu)2(p−1)/r

k

k2(p−1)/r
.

Therefore, as in addition r < 2p, there exists a positive constant c11 such that

[

nu
∑

k=1

1

k1+2δ/r

(

k
∑

i=1

‖E(V 2
i | GV

0 )− E(V 2
i )‖r/2

)δ
]r/(2δ)

≤ c11
(ut2)r

(tu)p−1
.

Using, the fact that y ≥ 16xn1/p‖f‖∞, ut ≤ x(2‖f‖∞)−1 and t ≤ n1/p, this implies that

nu

yr

[

nu
∑

k=1

1

k1+2δ/r

(

k
∑

i=1

‖E(V 2
i | GV

0 )− E(V 2
i )‖r/2

)δ
]r/(2δ)

≤ 8−rc11(2‖f‖∞)p−2r n

xp
.

This handles the last term in the upper bound of Theorem 3.1. Altogether, this proves (3.16).
This concludes the second step, and therefore the proof of Items 1 and 2 of the theorem. �

4. Lower bounds in moderate deviations: three examples

In this section, we exhibit several examples of Markov chains satisfying H(p) (for different
norms) for which one can prove a lower bound for the deviation probability of some particular
observables. This shows that the upper bounds given in Theorem 1.4 cannot be essentially
improved.

4.1. Discrete Markov chains. Let p > 1. We consider a simple renewal type Markov
chain on N, jumping from 0 to n > 0 with probability p0,n := 1/(ζ(p + 1)np+1) and from
n > 0 to n− 1 with probability 1. This Markov chain has an invariant probability measure
π given by π{n} =

∑

i≥n d/i
p+1 for n > 0 and π{0} = π{1}, where d > 0 is chosen so that

π is of mass 1.
This Markov chain satisfies H(p) for the norm ‖f‖ = ‖f‖∞. Indeed, in this case,

π
(

sup
‖f‖

∞
≤1
|Kn(f)− π(f)|

)

≤ C1

∑

j≥n

∑

k≥j+1

p0,k ≤ C2n
1−p

(see [Dav73] or Chapter 30 in [Bra07] for more details).
Define a function f by f(n) = π{0} − 1n=0. Its average under π vanishes.
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Proposition 4.1. Let (Yi)i∈N be a stationary Markov chain with transition kernel described
above, for some p > 1. There exists κ > 0 such that, for any n ∈ N

∗ and any x ∈
[κn1/p, κ−1n],

P

(

n−1
∑

i=0

f(Yi) ≥ x

)

≥ κ−1 n

xp
.

This paragraph is devoted to the proof of this proposition. Since we are looking for lower
bound, it suffices to consider trajectories starting from 0. Denote by τ0, τ1, . . . the lengths
of the successive excursions outside of 0. This is a sequence of i.i.d. random variables with
a weak moment of order p, namely: P(τ0 > n | Y0 = 0) =

∑

i≥n 1/(ζ(p + 1)ip+1). We first
consider the case p > 2, and indicate then the modifications to be done when p = 2 and
when p ∈ (1, 2).

First, we study the probability that the lengths of excursions differ much from their
average.

Lemma 4.2. Assume p > 2. There exists C1 > 0 such that, for any n ≥ 1 and any
x ≥ n1/p, one has

P

(

n−1
∑

i=0

τi ≥ nE(τ) + x
)

≥ C−1
1

n

xp
.

Proof. Write τ̄i = τi − E(τi). There exists σ2 > 0 such that
∑n−1

i=0 τ̄i/
√
n converges to

N (0, σ2). It follows that, for x ∈ [n1/p, n1/2], the left hand side in the statement of the
lemma converges to a quantity which is bounded from below by P(N (0, σ2) ≥ 1) > 0, while
the right hand side is bounded from above by C−1

1 . Taking C1 large enough, the conclusion
of the lemma follows in this range of x.

Let us now assume x ≥ √
n. For i < n, let

Ai = {τ̄i ≥ 3x} ∩
{

i−1
∑

j=0

τ̄j ≤ x
}

∩
{

n−1
∑

j=i+1

τ̄j ≤ x
}

.

This decomposition is the intersection of three independent sets. The first one has proba-
bility at least c/xp as τ has polynomial tails of order p, while the measure of the other ones
is bounded from below thanks to the central limit theorem for τ̄ , as we assume x ≥ √

n.
Hence, for some constant c1, we obtain

P(Ai) ≥ c1/x
p.

Moreover, Ai ∩ Aj is contained in {τ̄i ≥ 3x} ∩ {τ̄j ≥ 3x}. By independence, this set has
probability at most c2/x

2p for some c2 > 0.

On the set
⋃

Ai, one has
∑n−1

i=0 τi ≥ nE(τ) + x by construction. To conclude, we should
bound from below the measure of this set. We have

P

(

⋃

Ai

)

≥
n−1
∑

i=0

P(Ai)−
n−1
∑

i 6=j=0

P(Ai ∩Aj) ≥ c1
n

xp
− c2

n2

x2p
.

If n is large enough, one has c2n
2/x2p ≤ c1n/(2x

p) when x ≥ √
n. Therefore, we get

P(
⋃

Ai) ≥ (c1/2)n/x
p, proving the desired result. As the estimate is trivial for bounded n,

the result follows. �
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Proof of Proposition 4.1 for p > 2. Fix some n ∈ N. Let N denote the number of visits to
0 of the Markov chain Yi starting from 0 strictly before time n. Then, given the definition
of f , one has

n−1
∑

i=0

f(Yi) = nπ{0} −N.

Therefore, for any x ≥ 0,

{

n−1
∑

i=0

f(Yi) ≥ x

}

= {N ≤ nπ{0} − x} =







[nπ{0}−x]−1
∑

j=0

τj ≥ n







.

Let m = [nπ{0} − x]. It is positive when x ≤ κ−1n, if κ is large enough. We write n as
mE(τ) + y for some y. As E(τ) = 1/π{0} by Kac formula, we have

y = n− [nπ{0} − x]/π{0} ≥ x/π{0}.

If x ≥ κn1/p with large enough κ, then y ≥ n1/p. Hence, we can apply Lemma 4.2 to obtain

P0

(

n−1
∑

i=0

f(Yi) ≥ x

)

≥ C−1
1

m

yp
≥ C−1

2

n

xp
.

We obtain the same lower bound for the random walk started from π, with an additional
multiplicative factor π{0}. �

Proof of Proposition 4.1 for p = 2. In this case,
∑n−1

j=0 τ̄j/
√
n log n converges to a gaussian

(see for instance [Fel66]). Following the proof of Lemma 4.2, one deduces first that this

lemma holds trivially for any x ∈ [n1/p,
√
n log n], and also that it holds for any x ≥ √

n log n.
It follows then from the same proof as in the p > 2 case that the proposition holds for all
x ∈ [κn1/p, κ−1n]. �

Proof of Proposition 4.1 for p < 2. In this case,
∑n−1

j=0 τ̄j/n
1/p converges to a stable law

(which is totally asymmetric of index p, see [Fel66]). Hence, Lemma 4.2 holds for any

x ≥ n1/p. It follows then from the same proof as in the p > 2 case that the proposition
holds for all x ∈ [κn1/p, κ−1n]. �

4.2. Young towers. Consider now a Young tower T : Z → Z with invariant measure π
for which the return time τ to the basis Z0 of the tower satisfies π{τ = n} ∼ c/np+1 on Z0,
for some p > 1. In perfect analogy with the previous paragraph, we define a function f by
f = π(Z0) − 1Z0 . Its average under π vanishes. The corresponding Markov chain satisfies
H(p) for the Hölder norm on the tower, see for instance [GM14] and references therein.

Starting from Y0 distributed according to π, we can consider Y0, T (Y0), . . . , T
n−1(Y0), or

the dual Markov chain Y0, . . . , Yn−1. Then Y0, . . . , Yn−1 is distributed as T n−1(Y0), . . . , Y0,
as explained at the beginning of Section 2. It follows that moderate deviations controls for
one process or the other are equivalent. We will state the lower bound statement for the
Markov chain, but we will prove it using the dynamical time direction.
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Proposition 4.3. In this context, assume p > 2. There exists κ > 0 such that, for any
n ∈ N

∗ and any x ∈ [κn1/p, κ−1n],

P

(

n−1
∑

i=0

f(Yi) ≥ x

)

≥ κ−1 n

xp
.

Proof. We work using the dynamical time direction. Starting from a point in the basis Z0

of the tower, let τ0, τ1, . . . denote the lengths of the successive excursions out of Z0. The
proof will be the same as for Proposition 4.1 (notice that the statement is exactly the same).
The only difference is that the successive returns to the basis are not independent, which
means that the proof of Lemma 4.2 has to be amended. We only give the proof for p > 2,
as the other cases are virtually identical.

Let T0 : Z0 → Z0 be the map induced by T on the basis. It preserves the probability
π0 induced by π on Z0. By definition, T0 is a Gibbs-Markov map with onto branches, i.e.,
there is a partition α0 of Z0 into positive measure subsets, such that T0 maps bijectively
each a ∈ α0 to Z0, with the following bounded distortion property. A length k cylinder is
a set of the form [a0, . . . , ak−1] =

⋂

i<k T
−i
0 ai for some a0, . . . , ak−1 ∈ α0. Then there exists

a constant C such that, for any k > 0, for any length k cylinder A and for any measurable
set B,

(4.1) C−1π0(A)π0(B) ≤ π0(A ∩ T−k
0 B) ≤ Cπ0(A)π0(B).

(See for instance the last line in Section 1 of [AD01b].) This estimate readily extends if A
is a union of length k cylinders.

We can now prove the analogue of Lemma 4.2 in our situation. Let τ̄i = τi−E(τi). Define

Ai = {τ̄i ≥ 3x} ∩
{

i−1
∑

j=0

τ̄j ≤ x
}

∩
{

n−1
∑

j=i+1

τ̄j ≤ x
}

= A1
i ∩A2

i ∩A3
i .

We should show that, if x ≥ √
n, then π0(Ai) ≥ c1/x

p for some c1 > 0 independent of
i or n, and that π0(Ai ∩ Aj) ≤ c2/x

2p for i < j. Then, the proof of Lemma 4.2 applies.
In this lemma, the inequality P(Ai) ≥ c1/x

p follows from independence and the fact that
P(A2

i ) ≥ c and P(A3
i ) ≥ c and P(A1

i ) ≥ c/xp. In our context, these three inequalities still
hold (the first two ones follow from the fact that the Birkhoff sums of τ satisfy the central
limit theorem or converge to a stable law, see [AD01a] and [AD01b], and the last one from
the assumptions on the tails of τ), but independence fails. It will be replaced by (4.1). Let
us give the details. Recall that τ̄i = τ(T i

0z)− π(τ) := τ̄(T i
0z). Define

B1 = {y : τ̄(y) ≥ 3x} , B2 =
{

y :
i−1
∑

j=0

τ̄(T j
0 y) ≤ x

}

and B3 =
{

y :

n−1−(i+1)
∑

j=0

τ̄ (T j
0 y) ≤ x

}

.

We have A1
i = T−i

0 (B1), A
2
i = B2 and A3

i = T
−(i+1)
0 B3. Therefore,

π0(Ai) = π0
(

B2 ∩ T−i
0 (B1 ∩ T−1

0 (B3))
)

.

Applying inequality (4.1) with k = i, A = B2 and B = B1 ∩ T−1
0 (B3) (which is possible

since B2 is a union of length i cylinders since τ is constant on elements of α0), we get
π0(Ai) ≥ C−1π0(B2)π0(B1 ∩ T−1

0 (B3)). Next, applying again (4.1) this time with k = 1,
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A = B1 and B = B3 (which is possible since B1 is a union of length 1 cylinders), we have
π0(B1 ∩ T−1

0 (B3)) ≥ C−1π0(B1)π0(B3). So overall,

π0(Ai) ≥ C−2π0(A
2
i )π0(A

1
i )π0(A

3
i ) .

This inequality replaces the independence assumption and implies that π0(Ai) ≥ c1/x
p.

The inequality π0(Ai ∩ Aj) ≤ c2/x
2p is proved in the same way, using the upper bound

in (4.1). �

4.3. Harris Markov chains with state space [0, 1]. Let a = p − 1 with p > 1. Let λ
denote the Lebesgue measure on [0, 1]. Define the probability laws ν and π by

ν = (1 + a)xaλ and π = axa−1λ .

We define now a strictly stationary Markov chain by specifying its transition probabilities
K(x,A) as follows:

K(x,A) = (1− x)δx(A) + xν(A) ,

where δx denotes the Dirac measure. Then π is the unique invariant probability measure of
the chain with transition probabilities K(x, ·). Let (Yi)i∈Z be the stationary Markov chain
on [0, 1] with transition probabilities K(x, ·) and law π. For γ > 0, we set

ca,γ =
a

a+ γ
, Xi = fγ(Yi)− E(fγ(Yi)) := Y γ

i − ca,γ and Sn =

n−1
∑

i=0

Xi .

Denote by

βn :=
1

2
π
(

sup
‖f‖

∞
≤1

|Kn(f)− π(f)|
)

,

and set T (x) = 1− x. According to Lemma 2 in Doukhan, Massart and Rio (1994),

βn ≤ 3Eπ(T
[n/2]) .

Note now that for any b > −1,
∫ 1

0
(1− x)kxb dx = k−(b+1)

∫ k

0
(1− x/k)kxb dx .

Since for any x ∈ [0, 1], log(1− x) ≤ −x, it follows that

(4.2)

∫ 1

0
(1− x)kxb dx ≤ k−(b+1)

∫ k

0
e−xxb dx ≤ k−(b+1)Γ(b+ 1) ,

implying that

Eπ(T
k) ≤ aΓ(a)k−a .

Therefore
sup

‖f‖
∞
≤1

π
(

|Kn(f)− π(f)|
)

≤ 2βn ≤ Cn−a ,

which shows that the condition H1(p) is satisfied for the two norms ‖f‖∞ and ‖f‖BV . For
the norm ‖f‖∞, the condition H2 is trivially satisfied with C2 = 1. Hence, Theorem 1.4
applies to (fγ(Yi))i∈Z. We shall verify that the condition H2 also holds for the norm ‖f‖BV =
‖f‖∞+|df | at the end of this section. Concerning the lower bound, the following proposition
holds:
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Proposition 4.4. Let (Yi)i∈N be a stationary Markov chain with transition kernel described
above. Assume p > 1 and γ > 0. There exists κ > 0 such that, for any n ∈ N

∗ and any
x ∈ [κn1/p, κ−1n],

P

(

max
1≤k≤n

∣

∣

∣

k−1
∑

i=0

(Y γ
i − E(Y γ

i ))
∣

∣

∣ ≥ x

)

≥ κ−1 n

xp
.

Proof. We first define a sequence (Tk)k≥0 of stopping time as follows:

T0 = inf{i > 0 : Yi 6= Yi−1} and Tk = inf{i > Tk−1 : Yi 6= Yi−1} for k > 0 .

Let τk = Tk+1 − Tk. The r.v.’s (YTk
, τk)k≥0 are i.i.d., YTk

has law ν and the conditional
distribution of τk given YTk

= y is the geometric distribution G(1−y). We have in particular
that τ0 is integrable. The key inequality for proving the lower bound is the following one:

(4.3) P

(

max
0≤k≤n−1

τk|XTk
| ≥ 24x

)

≤ 9P
(

max
1≤k≤[nE(τ1)]+1

|Sk| ≥ x
)

+ 3P(Tn ≥ 2[nE(τ1)] + 1) .

Before proving it, let us show how it will entail the lower bound.
Using the fact the r.v.’s (YTk

, τk)k≥0 are i.i.d., YTk
has law ν and the conditional distribu-

tion of τk given YTk
= y is the geometric distribution G(1−y), straightforward computations

imply that for x ≥ κn1/p with κ large enough,

(4.4) P
(

max
0≤k≤n−1

τk|XTk
| ≥ 24x

)

≥ Cp,γ
n

xp
,

where

Cp,γ =
1

4

(ca,γη

48

)p
pΓ(p) , with η = 1− (ca,γ/2)

1/γ .

On the other hand,

P(Tn ≥ 2[nE(τ1)] + 1) ≤ P

(

T0 +
n−1
∑

i=0

(τi − E(τi)) ≥ [nE(τ1)]
)

.

Since E(τ1) ≥ 1, this gives

P(Tn ≥ 2[nE(τ1)] + 1) ≤ P
(

T0 ≥ n/2
)

+ P

(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

.

Since P
(

T0 ≥ n/2
)

≤
∫ 1
0 (1− x)n/2dπ(x), according to (4.2)

P
(

T0 ≥ n/2
)

≤ 2aan−aΓ(a) .

Assume from now that p ≥ 2. Since the (τk)k≥0 are i.i.d., the Fuk-Nagaev inequality for
independent random variables (see for instance Theorem B.3 in Rio (2000) and its proof)

gives that, for any u > 0 and any v2n(u) ≥
∑n−1

i=0 E((τi ∧ u)2),

(4.5) P

(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ nP(τ1 ≥ u) + exp
(

− n

4u
log
(

1 +
nu

2v2n(u)

)

)

.

We shall apply this inequality with the following choice of u:

u =
n

8(p− 1)
.
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The selection of v2n(u) will be different if p > 2 or if p = 2. Assume first that p > 2. In this
case, we take v2n(u) = nE(τ21 ). Since YTk

has law ν and the conditional distribution of τk
given YTk

= y is the geometric distribution G(1 − y), simple computations give

E(τ21 ) =
p2

(p− 1)(p − 2)
:= cp and then v2n(u) = cpn .

On another hand, if p = 2, we first note that

E((τ1 ∧ u)2) = E(τ211τ1≤u) + u2P(τ1 ≥ u) ≤
[u−1]
∑

ℓ=0

(2ℓ+ 1)P(τ1 ≥ ℓ) + u2P(τ1 ≥ u) .

Now (4.2) implies that P(τ1 ≥ ℓ) ≤ 2ℓ−2 . Therefore, if n ≥ 8,

E((τ1 ∧ u)2) ≤ log(u) + 5 ≤ 3 log(n) .

So, in case p = 2, we take v2n(u) = 3n log n.
If p > 2, then (4.5) together with the fact that, by (4.2), P(τ1 ≥ ℓ) ≤ pΓ(p)ℓ−p imply

that

(4.6) P

(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ pΓ(p)× (8(p− 1))pn−p+1 + (16(p− 1)cp)
2(p−1)n−2(p−1) .

So, overall, starting from (4.3) and taking account (4.4) and (4.6), we get that for κ large
enough

P

(

max
1≤k≤[nE(τ1)]+1

|Sk| ≥ x
)

≥ 9−1pΓ(p)
{

4−1
(ca,γη

48

)p
nx−p − 6(8(p − 1))pn−p+1

}

− 3−1(16(p − 1)cp)
2(p−1)n−2(p−1) .

Since n−p ≤ (xκ)−p and E(τ1) =
p

p−1 ≤ 2, it follows that for κ large enough

P

(

max
1≤k≤2n+1

|Sk| ≥ x
)

≥ 2n

κxp
,

giving the lower bound when p > 2.
We turn now to the case when p = 2, we derive this time

P

(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ 2× 82n−1 + (3× 16)2(log n)2n−2 .

Proceeding as before, the lower bound follows.
We end the proof by considering the case 1 < p < 2. Let u be a positive real and set

τ̄i = (τi ∧ u). Note that

n−1
∑

i=0

(τi − E(τi)) =

n−1
∑

i=0

(τ̄i − E(τ̄i)) +

n−1
∑

i=0

((τi − u)+ − E((τi − u)+))

≤
n−1
∑

i=0

(τ̄i − E(τ̄i)) +

n−1
∑

i=0

(τi − u)+ ,
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which implies that

P
(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ P
(

(τ̄i − E(τ̄i)) ≥ n/2
)

+
n−1
∑

i=0

P(τi ≥ u) .

Next, by Markov inequality, we get that for any u > 0,

P
(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ 4n−1
E((τ1 ∧ u)2) + nP(τ1 ≥ u)

≤ 4n−1
E(τ211τ1≤u) + 4n−1u2P(τ1 ≥ u) + nP(τ1 ≥ u) .

We have

E(τ211τ1≤u) ≤ 2

∫ u

0
tP(τ1 ≥ t) dt ≤ 1 + 2pΓ(p)

∫ u

1

t

[t]p
dt ≤ 1 +

2p+1pΓ(p)

2− p
u2−p .

Therefore, choosing u = n, we get overall that, in the case 1 < p < 2,

P
(

n−1
∑

i=0

(τi − E(τi)) ≥ n/2
)

≤ 4n−1 + n1−ppΓ(p)
(

5 +
2p+3

2− p

)

.

Proceeding as before, the lower bound follows.

To end the proof of the lower bound, it remains to prove inequality (4.3). With this aim,
setting

Z0 = T0X0 and Zk = τk−1XTk−1
for k ≥ 1

we note that

max
0≤k≤n−1

τk|XTk
| ≤ max

0≤k≤n
|Zk| .

But for any k ≥ 1, Zk =
∑k

i=0 Zi −
∑k−1

i=0 Zi. Therefore

max
0≤k≤n

|Zk| ≤ 2 max
0≤k≤n

∣

∣

∣

k
∑

i=0

Zi

∣

∣

∣ .

The above considerations imply that

P

(

max
0≤k≤n−1

τk|XTk
| ≥ 24x

)

≤ P

(

max
0≤k≤n

∣

∣

∣

k
∑

i=0

Zi

∣

∣

∣
≥ 12x

)

.

(Zk)k≥0 being a sequence of independent random variables, Etemadi’s inequality entails that

P

(

max
0≤k≤n

∣

∣

∣

k
∑

i=0

Zi

∣

∣

∣ ≥ 12x
)

≤ 3P
(∣

∣

∣

n
∑

i=0

Zi

∣

∣

∣ ≥ 4x
)

.

Note now that

n
∑

i=0

Zi =

T0−1
∑

k=0

X0 +

n
∑

i=1

(Ti − Ti−1)XTi−1 =

T0−1
∑

k=0

Xk +

n
∑

i=1

Ti−1
∑

j=Ti−1

Xj =

Tn−1
∑

k=0

Xk .
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Therefore

P

(∣

∣

∣

n
∑

i=0

Zi

∣

∣

∣
≥ 4x

)

≤ P

(∣

∣

∣

[nE(τ1)]−1
∑

i=0

Xi

∣

∣

∣
≥ 2x

)

+ P

(

|STn − S[nE(τ1)]| ≥ 2x
)

.

Inequality (4.3) follows from all the considerations above, together with the fact that

P

(

|STn − S[nE(τ1)]| ≥ 2x
)

≤ 2P
(

max
1≤k≤[nE(τ1)]+1

|Sk| ≥ x
)

+ P(Tn ≥ 2[nE(τ1)] + 1) . �

To complete this section, it remains to show that the transition operator K of the Markov
chain satisfies condition H2 for the semi norm |df |. With this aim, we first note that

K(f)(x) = (1− x)f(x) + xν(f) .

So iterating, we get for any positive integer n,

Knf(x) = (1− x)nf(x) +
n−1
∑

k=0

x(1− x)kν(Kn−1−k(f)) .

Therefore, we infer that

Knf(x) = (1− x)n(f(x)− ν(f)) + ν(Kn−1(f))

+

n−1
∑

k=1

(1− x)n−k
(

ν(Kk−1(f))− ν(Kk(f))
)

.

It follows that

(4.7) |dKn(f)| ≤ 3|df |+
n−1
∑

k=1

|ν(Kk−1(f))− ν(Kk(f))| .

Setting g0 = f − f(0), note now that, for any positive integer k,

|ν(Kk−1(f))− ν(Kk(f))| = |ν(Kk−1(g0))− ν(Kk(g0))| .
Therefore

n−1
∑

k=1

|ν(Kk−1(f))− ν(Kk(f))| ≤
n−1
∑

k=1

∫ 1

0
|Kk−1(g0)(x)−Kk(g0)(x)| dν(x) .

But supx∈[0,1]|g0(x)| ≤ |df |. Hence
∫ 1

0
|Kk−1(g0)(x)−Kk(g0)(x)| dν(x) =

∫ 1

0
|(δxKk−1 − δxK

k)(g0)| dν(x)

≤ |df |
∫ 1

0
|δxKk−1 − δxK

k| dν(x) .
(4.8)

From (4.7) and (4.8), to complete the proof of the fact that K satisfies H2, it remains to
show that

(4.9)
∑

k≥1

∫ 1

0
|δxKk−1 − δxK

k|dν(x) < ∞ .
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Set T (x) = 1− x. According to the computations leading to the first inequality on page 76
of [DMR94], we have, for any integer k ≥ 2

|δxKk−1 − δxK
k| ≤ 2(T (x))k−1 +

k−1
∑

i=1

(1− T (x))(T (x))i−1|νKk−1−i − νKk−i| ,

implying that

(4.10)

∫ 1

0
|δxKk−1 − δxK

k|dν(x) ≤ 2Eν(T
k−1) +

k−1
∑

i=1

Eν((1− T )T i−1)|νKk−1−i − νKk−i| .

But, by taking into account (4.2), we get

(4.11) Eν(T
k) = (1 + a)

∫ 1

0
(1− x)kxa dx ≤ k−(a+1)(a+ 1)Γ(a+ 1)

and, for any integer i ≥ 2,

(4.12) Eν((1 − T )T i−1) = (1 + a)

∫ 1

0
(1− x)i−1xa+1 dx ≤ (i− 1)−(a+2)(a+ 1)Γ(a+ 2) .

We need now to give an upper bound of |νKj−νKj+1| for any non negative integer j. With
this aim, we first notice that

Kj(f)−Kj+1(f) = sKj(f)− sν(Kj(f))

where s(x) = x. Therefore setting µ =
s(x)

ν(s)
ν, we have

νKj − νKj+1 = ν(s)
(

µKj − νKj
)

.

Taking into account the relation (9.11) in [Rio00], this gives

(4.13) (ν(s))−1(νKj − νKj+1) =

j
∑

ℓ=1

aℓνQ
j−ℓ + µQj − νQj .

where

Q(x,A) = K(x,A)− s(x)ν(A) = T (x)δx(A) and aℓ = µKℓ−1(s)− νKℓ−1(s) .

If we can prove that for any positive integer ℓ, aℓ is non negative, the relation (4.13) will
imply that the signed measures νKj−νKj+1 of null mass can be rewritten as the differences
of two positive measures with finite mass (the second one being equal to νQj), and therefore
we will have

(4.14) |νKj − νKj+1| ≤ 2ν(s)νQj(1) = 2ν(s)Eν(T
j) .

Hence, starting from (4.10) and taking into account (4.11), (4.12) and (4.14), we will get
that for any integer k ≥ 2,

(4.15)

∫ 1

0
|δxKk−1 − δxK

k| dν(x) ≤ Ca

( 1

ka+1
+

k−1
∑

i=1

1

ia+2
× 1

(k − i)a+1

)

≤ C̃a
1

ka+1
,
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provided that one can prove that, for any positive integer ℓ, aℓ is non negative. This can been
proved by using (4.13) and the arguments developed in the proof of Lemma 9.3 in [Rio00].
We complete the proof by noticing that (4.15) implies (4.9) since a > 0.
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