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Deficits in synaptic structure and function are likely to underlie cognitive impairments in Alzheimer’s
disease. While synaptic deficits are commonly found in animal models of amyloidosis, it is unclear how
amyloid pathology may impair synaptic functions. In some amyloid mouse models of Alzheimer’s dis-
ease, however, synaptic deficits are preceded by hyperexcitability of glutamate synapses. In the amyloid
transgenic mouse model TgCRND8, we therefore investigated whether early enhancement of gluta-
matergic transmission was responsible for development of later synaptic deficits. Hippocampi from 1-

{ffg\‘;‘glrgz:n month-old TgCRND8 mice revealed increased basal transmission and plasticity of glutamate synapses
s - . that was related to increased levels of tumor necrosis factor o (TNFa). Treating these 1-month-old mice
ynaptic plasticity - o . . :

Hippocampus for 4 weeks with the TNFo inhibitor XPro1595 prevented synaptic deficits otherwise apparent at Fhe age
Prodromal of 6 months. In this mouse model at least, reversing the hyperexcitability of glutamate synapses via TNFo.
XPro1595 blockade before the onset of amyloid plaque formation prevented later synaptic deficits.
Hyperexcitability © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Synaptic loss is the best correlate of cognitive decline in Alz-
heimer’s disease (AD) (Terry et al., 1991). It is commonly shown that
synaptic function becomes impaired and decreased at later stages
of amyloid pathology (Chapman et al., 1999; Nalbantoglu et al.,
1997). Interestingly, an increase in neuronal activity is observed
at early stages of pathology in various forms, such as in amyloid
mouse models that exhibit increased susceptibility to seizures (Del
Vecchio et al., 2004; Minkeviciene et al., 2009) and hyperexcit-
ability of neuronal networks (Jolas et al., 2002; Palop et al., 2007;
Verret et al,, 2012). This increase in activity has also been docu-
mented in individuals with mild cognitive impairment (MCI)
(Dickerson et al., 2005), APOE e4-positive individuals (Bookheimer

* Corresponding author at: Douglas Mental Health University Institute, 6875
LaSalle Blvd., Montreal, Quebec H4H 1R3, Canada. Tel.: 514-761-6131x2929; fax:
514-762-3034.

E-mail address: takpan.wong@mcgill.ca (T.P. Wong).

et al,, 2000), and even in teenagers and young adults carrying an
autosomal-dominant AD gene (Reiman et al., 2012). Furthermore,
this paradoxical increase in activity has been postulated to pre-
cipitate the eventual decline in synaptic and cognitive function.
This early onset and temporal enhancement in glutamate syn-
aptic function could be related to the proinflammatory cytokine
tumor necrosis factor o (TNFa). Although TNFa is present at high
levels in brains of AD patients postmortem (Grammas and Ovase,
2001) and in the peripheral circulation (Fillit et al., 1991), high
levels of this cytokine are detectable even at early stages in both AD
patients (Buchhave et al., 2010) and animal models (Cavanagh et al.,
2013; Ferretti et al., 2012; Wright et al., 2013). The early appearance
of this cytokine suggests that TNFa. may be an upstream factor
contributing to the development of AD pathology. Because AD de-
velops over decades and the advanced stages are difficult to reverse,
identification of early targets may lead to preventive approaches.
A prevalent view of the impact of TNFa on the pathogenesis of
AD is that it exacerbates amyloid pathology. Indeed, TNFo can
stimulate y-secretase cleavage of amyloid precursor protein (APP)

0197-4580/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and expression of B-secretase to increase amyloid  (Ap) production
(Yamamoto et al, 2007). TNFa inhibition has therefore been
examined in various transgenic AD models for its capacities to
improve amyloid pathology (Gabbita et al., 2012; He et al., 2007;
McAlpine et al., 2009; Tweedie et al., 2012). TNFa also modulates
synaptic function, however (Santello and Volterra, 2012; Yirmiya
and Goshen, 2011), and this effect of TNFeo. has not been studied
in the context of AD, especially at early stages before amyloid pla-
que formation.

TNFa increases the surface expression of the a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of
glutamate receptors (Stellwagen et al., 2005). TNFa also affects
neuronal network development in the visual cortex (Kaneko et al.,
2008) and the formation of long-term potentiation (LTP) (Tancredi
et al., 1992). Using TgeCRND8 mice that express both Swedish and
Indiana mutations of APP (Chishti et al., 2001), we have shown that
TNFa levels are increased in the hippocampus (Cavanagh et al.,
2013) at least 1 month before amyloid plaque formation
(Supplementary Fig. 1). This early onset increase in TNFa may in-
crease glutamatergic transmission and overall excitability of neural
networks in TgCRNDS8 mice.

2. Material and methods
2.1. Materials

Unless stated otherwise, all materials were purchased from
Sigma Aldrich (St. Louis, MO, USA).

2.2. Mice

TgCRNDS8 mice that express both Swedish and Indiana muta-
tions of APP (Chishti et al., 2001) and nontransgenic (NTG) control
littermates were used. Experiments were carried out on both male
and female 1-month-old and 6-month-old mice. TgCRND8 mice
were studied at the age of 1 month because it has previously been
shown that TNFo levels in the hippocampus are significantly
increased at this time point (Cavanagh et al., 2013), and this finding
was also confirmed in the present study (Supplementary Fig. 1). In
addition, 1-month-old TgCRND8 mice are at least 1 month before
amyloid plaque formation (Supplementary Fig. 1) (Goutagny et al.,
2013). The advanced stage of 6 months was chosen because syn-
aptic plasticity deficits have been described in TgCRNDS8 mice at this
age and onward (Kimura et al., 2012). All experiments were per-
formed on independent cohorts of mice except a subset of mice
used in the inhibitory avoidance task that were then trained in the
open field. Mice were housed in a 12-hour light and/or dark cycle
(lights on: 8:00 AM) and had ad libitum access to food and water.
All procedures were performed according to guidelines approved
by the Canadian Council on Animal Care. As previously reported
(Chishti et al., 2001), the mortality rate of TgCRND8 mice by
6 months was high (>50%). Interestingly, none of the XPro1595-
treated NTG or TgeCRND8 mice treated died by this age.

2.3. Immunohistochemistry

Mice were anesthetized by pentobarbital and transcardially
perfused with phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde in PBS. Brains were postfixed overnight in the
same solution, rinsed, and cryoprotected in 10% sucrose over
48 hours. Brain sections (50 pm) containing the dorsal hippocampal
CA1 region were pretreated with formic acid ([90%], for 5 minutes, at
room temperature [RT]). After 3—4 washes with PBS between each
step of staining, the sections were incubated (for 1 hour, at RT) with
PBS containing 1% normal goat serum, 0.25% Triton X-100, and 0.45%

gelatin followed by overnight incubation with rabbit anti-FCA3340
to label A4 (Millipore, Canada; 1:1000; 4 °C). This antibody was
chosen because it does not recognize APP or other APP-related
C-terminal cleavage products. Sections were then incubated with
Alexa 555-conjugated goat anti-rabbit IgG (Invitrogen, Carlsbad, CA,
USA; 1:2000, for 2 hours, at RT). After nuclear labeling by 4/,6-
diamidino-2-phenylindole (DAPI) (1:10,000, for 15 minutes, at RT),
sections were washed and mounted on glass slides with
Fluoromount-G (SouthernBiotech, Birmingham, AL, USA).

2.4. Enzyme-linked immunosorbent assay

Endogenous TNFo, an enzyme-linked immunosorbent assay
(ELISA) directed at mouse TNFa (Biosensis, Temecula, CA, USA) was
performed as previously described (Cavanagh et al, 2013).
XPro1595, at 24 hours after subcutaneous injection of either
10-mg/kg XPro1595 or saline, mice were anesthetized and trans-
cardially perfused with 0.9% saline to remove the blood in the brain.
Dissected hippocampi were snap frozen on dry ice and stored at
—80 °C until proteins were extracted in radioimmunoprecipitation
assay (RIPA) buffer. Since XPro1595 is a mutated version of human
TNFa, an ELISA kit directed at human TNFa (Biosensis) was used per
the manufacturer’s instructions to assess XPro1595 levels in
TgCRND8-hippocampal RIPA extracts (Cavanagh et al., 2013). Pro-
tein concentrations were determined using the bicinchoninic assay
kit (ThermoFisher, Canada).

2.5. Electrophysiology

Naive mice were used in all electrophysiology experiments, with
the exception of the 6-month-old mice that had received the pump
implant. Slices were prepared as previously published (Tse et al.,
2011). Mice were anesthetized using isoflurane, and brains were
rapidly removed after decapitation. Coronal brain slices (350-um
thick) were cut in hyperosmotic, ice-cold, and carbogenated (5%
CO3, 95% 0O3) slice-cutting solution (in mM: 252 sucrose, 2.5 KCl, 4
MgCly, 0.1 CaCly, 1.25 KHyPO4, 26 NaHCO3, and 10 glucose; 360
mOsmol/L) using a vibratome. Freshly cut slices were incubated
with carbogenated artificial cerebrospinal fluid (aCSF in mM: 125
NaCl, 2.5 KCl, 1 MgCl,, 2 CaCly, 1.25 NaH,PO4, 26 NaHCO3, and 25
glucose; 310 mOsmol/L) at 32 °C for 1 hour and subsequently
maintained at RT. All postsynaptic responses were evoked by
stimulating the Schaffer collateral-commissural pathway (constant
current pulses [0.08 ms] through a tungsten-bipolar electrode [FHC,
Bowdoin, ME, USA]) and recorded in the dorsal hippocampal CA1
stratum radiatum. Evoked field excitatory postsynaptic potentials
(fEPSPs) were detected by aCSF-filled glass electrodes (WP,
Sarasota, FL, USA). All recordings were performed at RT.

2.5.1. Input output

fEPSPs were recorded in the presence of 5-uM bicuculline while
incrementally increasing the fiber volley, which represents activa-
tion of presynaptic fibers, by 0.05 mV from 0 to 0.20 mV.

2.5.2. Long-term potentiation

After a stable recording of fEPSPs (20 minutes), LTP was induced
via 10 stimuli at 100 Hz, 30 minutes later followed by a train of 4
bursts of 10 stimuli at 100 Hz every 20 seconds.

2.5.3. Drug treatment

XPro1595 was obtained by way of a Material Transfer Agree-
ment with David E. Szymkowski from Xencor (Monrovia, CA, USA).
Slices were treated with vehicle (aCSF) or XPro1595 (100 ng/mL) for
at least 1 hour prior to recording. XPro1595-treated slices were
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subsequently perfused with the same concentration of XPro1595
throughout the recording.

2.6. Behavior

2.6.1. Inhibitory avoidance

A plexiglass box with 2 compartments (light and dark) separated
by a trap door was used. Training: mice were placed in the lighted,
safe compartment. The trap door was opened after 10 seconds, and
the animal was allowed to step through at will. The trap door was
then closed and the mouse received a 1-second 0.5-mA scrambled
foot shock via electrified steel rods on the floor. The mouse was
removed immediately after the shock. Mice spending longer than
5 minutes in the light side of the chamber on the day of training
were discarded. Retention: it was performed 24 hours later (day 2)
and then again 1-week post training (day 8) by placing trained mice
back in the lighted compartment and measuring latencies for the
animals to re-enter the dark compartment. No shock was given
during retention trials. The retention trials were ended if the mice
did not cross to the dark compartment after 7 minutes. Genotypes
of mice were unknown to the experimenters. Drug treatment: a 10-
mg/kg XProl1595 or saline subcutaneous injection was given
24 hours before training to allow enough time for the drug to pass
through the blood—brain barrier and reduce stress caused by in-
jection, which may affect the animals’ performance.

2.6.2. Open field

One day after the 1-week retention trial, a subset of mice from
each group were subcutaneously injected with either 10-mg/kg
XPro1595 or saline, as before. The next day, mice were allowed to
explore a 60 cm x 60 cm plexiglass open field (divided into 16 equal
squares with the 4 center squares defined as the “center”) for
5 minutes. The TopScan Behavior Analyzing System (Clever Sys Inc,
Reston, VA, USA) was used to track each animal’s movements.

2.6.3. Fear extinction

Mice were trained in the inhibitory avoidance apparatus as
described so that they all received a foot shock after they crossed to
the dark chamber. Extinction trials without shock were performed
24 hours, 3, 5, and 7 days later, each with a 1-minute “extinction”
period after crossing to the dark chamber where the mouse was
kept in the dark compartment to lessen the association between
this compartment and the shock.

2.7. Osmotic pump implants

One-month-old TgCRND8 mice and NTG controls were anes-
thetized with isoflurane throughout the procedure. Mice were
implanted subcutaneously with an Alzet osmotic (Cupertino, CA,
USA) pump model #1004 containing 10 mg/kg/day of XPro1595 or a
saline solution. The pumps were removed 4 weeks later. The ani-
mals were assessed only when they reached 6 months of age. In
order to rule out any effects of the pump implant surgery, the input
and/or output function of saline-treated mice (both NTG and
TgCRNDS8) was compared to that of untreated controls from the
same genotype at 6 months. No significant differences in input and
output were found between pump-implanted and untreated mice
of either of the genotypes (data not shown).

2.8. Data analysis

All data were tested for normality using the Shapiro—Wilks test,
and the appropriate parametric or nonparametric test was subse-
quently used for analysis. All data are represented as mean =+
standard error of the mean.

3. Results

3.1. Preplaque 1-month-old TgCRND8 mice displayed TNFa-
dependent increase in excitatory synaptic function and LTP

Input—output curves of evoked fEPSPs in the hippocampal CA1
region were compared between slices from 1-month-old TeCRND8
mice and NTG littermates. A repeated measures group by fiber volley
size analysis of variance (ANOVA) revealed a significant interaction
(F(12, 224)=10.6, p < 0.001). The ANOVA was decomposed by Tukey’s
post hoc comparisons that revealed significant differences at fiber
volley sizes 0.10, 0.15, and 0.20 mV. The fEPSP slopes recorded from
TgCRNDS8 mice were significantly greater than those from NTG mice,
under control conditions between fiber volley sizes 0.15 and 0.20 mV
(p < 0.05).To examine the contribution of TNFa to enhanced synaptic
function in preplaque TeCRND8 mice, we studied the effect of the
dominant-negative soluble TNFa inhibitor, XPro1595, on synaptic
function. In hippocampal slices from TgCRND8 mice, the slope of
fEPSPs was significantly greater in control slices compared to
XPro1595-treated for fiber volley sizes 0.10—0.20 mV (p < 0.05). No
significant drug effects were observed in slices from NTG mice
(Fig.1A). We also observed a significantly greater percent decrease in
mean fEPSP slope caused by XPro1595 treatment in slices from
TgCRNDS8 mice (48.10 + 1.46%) compared to slices from NTG mice
(38.89 + 1.44%, t(13) = 4.50, p < 0.001). No significant differences
between NTG and TgCRND8 mice were detected in miniature
excitatory postsynaptic currents, paired pulse ratio, or N-methyl-D-
aspartate (NMDA)/AMPA ratio (data not shown).

This increase in input—output function could facilitate hippo-
campal LTP in TgCRND8 mice. We tested this prediction with a
stimulating protocol that was previously used to show enhanced LTP
in 9-week-old TgCRNDS8 mice (Jolas et al., 2002) and comparing
potentiation in vehicle- or XPro1595-treated acute hippocampal
slices from 1-month-old TgCRNDS8 and NTG mice (Fig. 1B). A 2-factor,
between-subjects ANOVA revealed a significant drug by genotype
interaction (F(142) = 5.25, p < 0.05). Simple effects tests indicated
that the percent potentiation of the fEPSP slope in the last 5 minutes
of recording was greater in slices from TgCRND8 mice compared to
NTG under vehicle conditions (p < 0.05), indicating that TgCRND8
mice showed increased LTP. Furthermore, while XPro1595 treat-
ment had no effect in slices from NTG mice, it significantly (p < 0.01)
abolished the increased LTP in slices from TgCRND8 mice.

3.2. Preplaque 1-month-old TgCRND8 mice displayed TNFa-
dependent enhancement in hippocampal cognitive function

Next, we used a hippocampus-dependent inhibitory avoidance
task to determine whether the facilitation of hippocampal synaptic
function and LTP is translated into enhanced cognitive function at
this preplaque stage. To ensure that XPro1595 can cross the
blood—brain barrier, we compared hippocampal levels of XPro1595
in TgCRND8 and NTG mice that were subcutaneously injected
24 hours earlier with either 10-mg/kg XPro1595 or saline. Using a
1-factor, between-subjects ANOVA F12) = 28.80, p < 0.001 fol-
lowed by Tukey’s post hoc test, we found a significantly higher level
of XPro1595 (p < 0.001) in hippocampal tissue of drug-injected
mice than in saline-injected for both NTG and TgCRNDS8 (Fig. 2A).
Importantly, no difference was found in hippocampal XPro1595
levels between NTG and TgCRNDS8 mice, suggesting no differences
in hippocampal delivery of this drug from systemic administration
between these mice.

We compared the performance of saline- or XPro1595-treated
1-month-old TgCRND8 and NTG mice in the inhibitory avoidance
test (Fig. 2B). On the training day (day 1), while there was no sig-
nificant difference in the mean latency to enter the dark chamber
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the slope of fEPSPs was also significantly greater in control slices compared to XPro1595-treated for fiber volley sizes 0.10—0.20 mV. (NTG vs. TgCRNDS: *p < 0.05, **p < 0.01; control
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between NTG and TgCRND8 mice, a 2-factor ANOVA revealed a
significant drug treatment effect (F(192) = 15.02, p < 0.001), indi-
cating an increase in latency in all XPro1595-treated mice. Despite
seeing this drug effect on the training day, we saw no effect of
XPro1595 in any of the groups on the 24-hour retention trial (day
2). When retention was tested again the following week (day 8), a
Kruskal—Wallis followed by Mann—Whitney tests revealed a sig-
nificant difference between the groups (H3) = 8.26, p < 0.05),
where TgCRND8 mice displayed a significantly longer latency to
enter the dark chamber than NTG mice (p < 0.05). Furthermore,
TgCRND8 mice treated with XPro1595 had a significantly lower
latency than untreated TgCRND8 mice (p < 0.05), suggesting that
blocking TNFa signaling was sufficient to abolish the enhanced
performance of TgCRND8 mice on the 1-week retention.

3.3. Enhanced performance of TgCRND8 mice in the inhibitory
avoidance is not related to changes in motility, anxiety, or a deficit in
extinction learning

Apart from enhanced cognitive function, the increase in latency
on the inhibitory avoidance task could also be due to decreased
motility or enhanced anxiety-related behavior in TgCRND8 mice.
However, using the open-field task, we found that TgCRND8 mice

traveled a significantly greater total distance in the open field and
thus were more active than NTG mice (a 2-factor, between-subjects
ANOVA, genotype effect: F143) = 6.01, p < 0.05). In addition,
TgCRND8 mice spent more time in the center than NTG mice
regardless of their treatment group as revealed by a 2-factor,
between-subjects ANOVA (genotype effect: F(143) = 4.85, p < 0.05).
Interestingly, XPro1595 may have an anxiogenic effect, since drug
treatment in either genotype led to a decrease in time spent in the
center (drug effect: F143) = 5.11, p < 0.05, Fig. 3A). Finally, since the
retention test of day 2 could serve as extinction training by less-
ening the association between the dark compartment and the
shock on the training day (day 1), another possibility is that the
TgCRNDS8 mice may have impairments in fear extinction. However,
when we compared extinction of fear memory between these 2
groups after multiple extinction trials (1, 3, 5, and 7 days post
training), no significant differences in retention latencies were
found between genotypes (Fig. 3B).

3.4. Early inhibition of TNF« signaling produces lasting effects on
baseline synaptic function

We then set out to determine whether attenuating this early
TNFa-dependent increase in synaptic function could produce
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lasting effects on synaptic pathology at a later time point
(6 months). Chronic 4-week-long XPro1595 treatment from 1 to
2 months was administered through a subcutaneously implanted
osmotic pump. At 6 months, mice were sacrificed for electrophys-
iological assessment of hippocampal synaptic function and plas-
ticity. When comparing input-output curves, a repeated measures
group by fiber volley size ANOVA revealed a significant interaction
(F12, 332) = 8.69, p < 0.001). The ANOVA was decomposed by
Tukey’s post hoc comparisons that revealed significant differences
at fiber volley sizes 0.10, 0.15, and 0.20 mV. Compared to 1-month-
old mice, we observed the opposite phenomena in hippocampal
slices from these older, 6-month-old TgCRND8 mice, such that the
slope of fEPSPs were significantly lower in slices from TgCRND8
mice compared to NTG mice for fiber volley sizes 0.10—0.20 mV (p <
0.05, Fig. 4A). Remarkably, the input-output function in 6-month-
old TgCRNDS8 mice that received XPro1595 treatment at a prodro-
mal age was significantly higher than saline-treated TgCRND8 mice
(p < 0.05) for the same fiber volley sizes and not significantly
different than NTG controls. No significant difference was observed
in NTG saline- and NTG-XPro1595-treated mice. Furthermore, we
did not see differences in LTP between any of the groups (Fig. 4B).
Unfortunately, perhaps due to their C3H hybrid background
(Sidman and Green, 1965; Wong and Brown, 2006), both TgCRND8
mice and NTG littermates exhibited visual impairments at 6 months
so that we were unable to examine their performance in inhibitory
avoidance.

4. Discussion

In this study, we show increased glutamatergic function and LTP
in 1-month-old TgCRND8 mice, months before amyloid plaque
formation (Chishti et al., 2001). TgCRND8 mice also exhibited
enhanced hippocampal cognitive function in the inhibitory-
avoidance task at the preplaque stage. These enhancements in
hippocampal synaptic and cognitive functions could be reversed by
inhibiting TNFa using the dominant-negative biologic, XPro1595.
Furthermore, inhibiting TNFa in 1-month-old TgCRND8 mice for
4 weeks prevented deficits in synaptic function otherwise apparent
at 6 months. To our knowledge, these data provide evidence for the
first time that the preplaque increase in TNFa enhances hippo-
campal synaptic and cognitive function and precipitates later stage
synaptic impairments in TgCRNDS8 mice.

In addition to its implicated immune function, the increased
TNFao in 1-month-old TgCRND8 mice (Supplementary Fig. 1) could
have collateral effects on enhancing baseline glutamatergic trans-
mission in the hippocampus. Because TNFa increases the surface
expression of calcium-permeable, GluA2-subunit-containing AMPA
receptors (Ogoshi et al., 2005; Stellwagen et al., 2005), this cytokine
has been linked to excitotoxicity (Leonoudakis et al., 2004) and the
pathophysiology of seizures (Li et al., 2011). Accordingly, genetic
deletion of TNFR1, the preferential binding site of soluble TNFa, can
decrease excitatory synaptic transmission (He et al., 2012). This
synaptic effect of TNFa may underlie the enhancement of gluta-
matergic transmission and LTP in 1-month-old TgCRND8 mice,
since XPro1595 could reverse these enhancements (Fig. 1). Inter-
estingly, similar to Jolas et al., (2002), we failed to observe a parallel
increase in basal miniature synaptic function in TgCRND8 mice.
These findings suggest that alterations at the network level could be
responsible for the enhancement of excitatory synaptic trans-
mission in these mice and have also been documented in 1-
month-old TgCRNDS8 mice (Goutagny et al., 2013).

XPro1595 inhibits soluble TNFa signaling while sparing trans-
membrane TNFa signal transduction (McCoy and Tansey, 2008).
XPro1595 works by forming inactive heterotrimers with soluble
TNFo. monomers, thereby sequestering the endogenous protein and
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Fig. 3. Motility, anxiety, and extinction learning are not linked to inhibitory avoidance
performance. (A) Schematic representation of drug injection and testing schedule.
TgCRNDS8 mice travel a significantly greater distance in the open field. Analysis of the
time spent in the center indicated that TSCRND8 mice spend more time in the center of
an open field and XPro1595-treated mice of either genotype spend more time in the
periphery (*p < 0.05). (B) Schematic representation of drug injection and testing
schedule. Histogram shows performances of mice in fear extinction trials, which are
not significantly different between groups. Abbreviation: NTG, nontransgenic.

preventing downstream signaling through the receptor. This
mechanism of action is of therapeutic interest because the trans-
membrane form of TNFa is involved in innate immunity and de-
fense against infection, whereas the soluble form of TNFa is
involved in AMPA receptor insertion (Stellwagen et al., 2005) and
cell death (McCoy and Tansey, 2008). Not surprisingly, XPro1595
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Fig. 4. Early TNFa inhibition prevents synaptic deficits in 6-month-old TgCRND8 mice.
(A) Upper: representative fEPSP traces. Lower: slope of evoked fEPSP represented as a
function of fiber volley amplitude. The fEPSP slopes recorded from TgCRND8 mice were
significantly lower than those from NTG mice, under control conditions. The slope of
fEPSPs in 6-month-old TgCRND8 mice was also significantly lower under control
conditions compared to XPro1595-treated for fiber volley sizes 0.10—0.20 mV. (NTG vs.
TgCRNDS: *p < 0.05, **p < 0.01; control vs. XPro1595 treated: #p < 0.05). (B) Bars
represent percent potentiation over the last 5 minutes of the recording. No significant
differences were detected between any of the groups. Abbreviations: fEPSP, field
excitatory postsynaptic potential; NTG, nontransgenic, TNFo, tumor necrosis factor o.

has been found to be therapeutically beneficial in models of Par-
kinson’s disease (Barnum et al., 2014), Huntington’s disease (Hsiao
et al., 2014), and multiple sclerosis (Yang et al., 2013). Using ELISA,
we found that the XPro1595 biologic was present in perfused hip-
pocampal tissue 24 hours after a single subcutaneous injection.
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Peripheral injections of XPro1595 have been used in other studies
that produced central effects (Barnum et al., 2014; Lewitus et al.,
2014; Yang et al., 2013). Subcutaneous injections of 10-mg/kg
XPro1595, the dosage used in the present study, could reduce
microglial activation and rescue nigral—neuronal death caused by
6-hydroxydopamine (6-OHDA) in rats (Barnum et al., 2014). A
30-mg/kg intraperitoneal injection could also produce electro-
physiologically measurable effects after 2 days in the striatum
(Lewitus et al., 2014). Our ELISA data confirm the presence of
XPro1595 in the hippocampus after a single subcutaneous injection
during inhibitory avoidance training.

Our findings suggest that TgCRND8 mice displayed enhanced
hippocampus-dependent memory formation at 1 month of age.
First, we saw a facilitation of hippocampal LTP, which has been
associated with memory formation in the inhibitory avoidance task
by causing an increase in fEPSP slopes, which subsequently
occluded LTP formation in vivo (Whitlock et al., 2006). Second, we
found that TeCRND8 mice traveled a significantly greater distance
in the open field compared to controls, which rules out any debil-
itating deficits in motility that would prevent the mice from being
able to cross to the dark compartment on the inhibitory avoidance
task. Notably, this increase in motility supports previous findings
that several AD transgenic mouse models display increased loco-
motor function (Ambree et al, 2009; Ma and McLaurin, 2014).
Third, in parallel with previous findings at a later age (Ma and
McLaurin, 2014), we found that TgCRND8 mice spent a signifi-
cantly greater amount of time in the center compared to controls,
indicating that these mice displayed less anxiety-related behavior
and suggesting that anxiety induced by the shock is not the cause of
the animals’ increased latency. Reduced anxiety has also been
previously reported in TgCRND8 mice using the elevated plus maze
after environmental enrichment (Gortz et al., 2008). Finally, we
observed similar extinction learning between TgCRND8 and NTG
mice. Taken together, with the increase in LTP, these behavioral
findings suggest that TgCRND8 mice displayed enhanced
hippocampus-dependent memory formation at 1 month of age.
Similarly, Espana et al., (2010) found enhanced fear memory in the
contextual fear conditioning task in the APPpg, APPswe/ind, and
3xTgAD mouse models and suggested that these enhancements are
related to increased consolidation. Nonetheless, the decline in
performance of TgCRND8 mice on various behavioral tasks (Chishti
et al., 2001), including the step-down passive avoidance task in 7-
month-old animals (Bellucci et al., 2006), suggests that the
enhancement of hippocampal synaptic and cognitive functions as
shown in the inhibitory avoidance task is transient.

The TNFa-dependent increase in hippocampal synaptic and
cognitive functions could have pathological outcomes. Indeed,
increased activity has been detected in various forms in early stages
of pathology in humans as well as mouse models. For instance,
increased hippocampal activation has been detected by functional
magnetic resonance imaging in patients with MCI (Dickerson et al.,
2005) as well as in cognitively normal, older AB-positive individuals
(Elman et al., 2014). Carriers of the APOE &4 allele, the main genetic
risk factor for AD, have also shown greater activation while per-
forming memory-activation tasks in brain regions affected in AD
(Bookheimer et al., 2000). Findings from mouse models suggest
that this increased synaptic function could precipitate hyper-
synchronous activity (Verret et al., 2012), seizures (Del Vecchio
et al, 2004; Palop and Mucke, 2009), or excitotoxicity
(Leonoudakis et al., 2008) later on. Our findings strongly suggest
that the preplaque increase in TNFoa could be responsible for
enhancing brain excitability by increasing glutamate synaptic
function. Notably, evidence from a mouse model of AD as well as in
AD patients suggests that this hyperactivity may also be due to
decreased y-aminobutyric acid (GABA)ergic transmission (Verret

et al., 2012) or GABAergic loss (Baglietto-Vargas et al., 2010;
Krantic et al., 2012; Ramos et al.,, 2006; Takahashi et al., 2010).
Incidentally, TNFa can cause endocytosis of GABA receptors and
lead to a decrease in inhibitory synaptic function (Stellwagen et al.,
2005). Whether this cytokine is involved in decreasing the strength
of inhibitory synapses in AD-like models remains to be tested.

Findings from 6-month-old saline-treated TgCRND8 mice show
that these mice had decreased glutamatergic function compared to
saline-treated, age-matched controls (Fig. 4). These data are
consistent with the idea that the early increase in synaptic plasticity
is short lasting and dissipated with advancing amyloid pathology.
The early increase in TNFo. was targeted to study the possible long-
term therapeutic effects of inhibiting TNFo and the associated
increase in synaptic function. Remarkably, just 4 weeks of TNFa
inhibition by XPro1595 at a preplaque age was enough to rescue the
decrease in input-output function in 6-month-old mice. Similarly,
normalizing proinflammatory cytokine production in 6-month-old
APP/PS1 mice improved synaptic protein loss in 11-month-old
mice; however, synaptic function was not assessed under this
intervention paradigm (Bachstetter et al., 2012). Further experi-
ments will be needed to assess whether inhibiting TNFa at a pro-
dromal stage can rescue cognitive impairments at a later time point.
Importantly, nonvisual behavioral tasks should be used since visual
impairments are well documented in C3H strains (www.jax.org/
strain/000659). These impairments may not have been previously
reported since TgCRND8 mice are bred on a hybrid background,
which may induce variability in data both within and across labo-
ratories. Nonetheless, targeting hippocampal hyperactivity with the
antiepileptic drug, levetiracetam, reduced cognitive impairments in
patients with amnestic MCI (Bakker et al., 2012) and also reversed
synaptic and cognitive deficits in a mouse model of the disease
(Sanchez et al., 2012). Accordingly, normalizing excess neural ac-
tivity through overexpression of the inhibitory neuropeptide Y
13—36 (Koh et al.,, 2010) as well as through positive allosteric
modulation of the GABAa @5 receptor subunit (Koh et al., 2013)
improved hippocampal-dependent memory in cognitively
impaired aged rats. Treatment with levetiracetam or sodium val-
proate also dose dependently improved memory impairments in
aged rats (Koh et al.,, 2010). Furthermore, modulating neuronal
activity through a chemogenetic approach decreased AP aggrega-
tion and the loss of synaptic structures near plaques (Yuan and
Grutzendler, 2016). To our knowledge, our study is the first to
identify that increased TNFo. may be the mechanism underlying
enhanced glutamatergic transmission in TgCRND8 mice.

5. Conclusions

A wealth of literature suggests that neuroinflammation can be a
“double-edged sword” (Aggarwal, 2003; Santello and Volterra,
2012; Wyss-Coray and Mucke, 2002) so that low-level inflamma-
tory mediators that may be beneficial can become neurotoxic when
chronically increased. Indeed, TNFa levels are likely chronically
elevated, since they are high even in 7-month-old TgCRND8 mice
(Cavanagh et al., 2013). Given the importance of synaptic pathology
to cognitive deficits in AD, a chronic increase in TNFa starting at
preplaque stages could precipitate the deleterious symptoms at
later stages. Our findings in the early intervention paradigm suggest
that inhibiting TNFa. could be considered a prodromal treatment for
correcting certain aspects of synaptic pathology in AD. Indeed,
several studies have reported a reduced risk of AD when treating
individuals with nonsteroidal anti-inflammatory drugs well before
the onset of overt cognitive symptoms (Breitner et al., 2011; Hayden
et al., 2007). Targeting TNFo. may be a treatment for preventing
synaptic deficits of AD.
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