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fm@liafa.univ-paris-diderot.fr leo planche@liafa.univ-paris-diderot.fr

Abstract. The Minimum Eccentricity Shortest Path (MESP) Problem
consists in determining a shortest path (a path whose length is the dis-
tance between its extremities) of minimum eccentricity in a graph. It
was introduced by Dragan and Leitert [9] who described a linear-time
algorithm which is an 8-approximation of the problem. In this paper, we
study deeper the double-BFS procedure used in that algorithm and ex-
tend it to obtain a linear-time 3-approximation algorithm. We moreover
study the link between the MESP problem and the notion of laminarity,
introduced by Völkel et al [12], corresponding to its restriction to a di-
ameter (i.e. a shortest path of maximum length), and show tight bounds
between MESP and laminarity parameters.

Keywords: Graph search, Graph theory, Eccentricity, Diameter, BFS,
Approximation Algorithms, k-Laminar Graph

1 Introduction

For both graph classification purposes and applications, it is an important issue
to determine to which extent a graph can be summarized by a path. Different
path constructions and metrics to characterize how far the graph is from the
constructed path can be used, for example path-decompositions and path-width
[11] or path-distance-decompositions and path-distance-width [13]. Another ap-
proach, on which we focus in this article, is to characterize the graph by a spine
defined by one of its paths.

This problem was first studied in terms of domination, that is finding a path
such that every vertex in the graph belongs to or has a neighbor in the path.
Several graphs classes were defined in terms of dominating paths. [7] studies the
graphs for which the dominating path is a diameter. [8] introduces dominating
pairs, that is vertices such that every path linking them is dominating. Graphs
such that short dominating paths are present in all induced subgraphs are char-
acterized in [2]. Linear-time algorithms to find dominating paths or dominating
vertex pairs were also developed for AT-free graphs [4, 6].



Dominating paths do not exist however in every graph and have no associated
metric to measure the distance from the graph to the path. A natural extension
of the notion of domination is the notion of k-coverage for a given integer k,
defined by the fact that a path k-covers the graphs if every vertex is at distance
at most k from the path. The smallest k such that a path k-covers the graph is
then a metric as desired.

In the present paper, we study the latter problem in which the covering path
is required to be a shortest path between its end-vertices. It was introduced in
[9] as the Minimum Eccentricity Shortest Path Problem, and shown to be linked
to the minimum line distortion problem [14].

The MESP problem is also closely related to the notion of k-laminar graphs
introduced in [12], in which the covering path is required to be a diameter.

The MESP problem, as well as determining if a graph is k-laminar for a
given k, are NP-hard [9, 12]. However, Dragan and Leitert [9] develop a 2-
approximation algorithm for MESP of time complexityO(n3), a 3-approximation
algorithm in O(nm) and a linear 8-approximation. The latter is extremely simple
as it consists in a double-BFS procedure.

Roadmap

In this paper, we introduce a different analysis of the double-BFS procedure and
prove that it is in fact a 5-approximation algorithm, and that the bound is tight.
We then develop the idea of this algorithm and reach a 3-approximation, which
still runs in linear time. Finally, we establish bounds relating the MESP problem
and the notion of laminarity.

Definitions and Notations

Through this paper G = (V,E) denotes a finite connected undirected graph. A
shortest path between two vertices u and v is a path whose length is minimal
among all u, v-paths. This length (counting edges) is the distance d(u, v). De-
pending on the context, we consider a path either as a sequence, or as a set of
vertices. The distance d(v, S) between a vertex v and a set S is smallest distance
between v and a vertex from S.

The eccentricity ecc(S) of a set S is the largest distance between S and any
vertex of G.

The maximal eccentricity of any singleton {v}, or equivalently the largest
distance between two vertices, denoted here diam(G), is often called the diameter
of the graph, but for clarity in this paper a diameter is always a shortest path
of maximum length, i.e. a shortest path of length diam(G), and not its length.



2 Double-BFS is a 5-Approximation Algorithm

Let us define the problem we are interested in:

Definition 1 (Minimum Eccentricity Shortest Path Problem (MESP)).
Given a graph G, find a shortest path P such that, for every shortest path Q,
ecc(P ) ≤ ecc(Q).

k(G) denotes the eccentricity of a MESP of G.

Theorem 1 (Dragan and Leitert [9]). Computing k(G) or finding a MESP
are NP-complete problems.

It is therefore worth using polynomial-time approximation algorithms. We
say that an algorithm is an α-approximation of the MESP if every path output
by this algorithm is a shortest path of eccentricity at most αk(G).

Double-BFS is a widely used tool for approximating diam(G) [3]. It simply
consists in the following procedure:

1. Pick an arbitrary vertex r

2. Perform a BFS (Breadth-First Search) starting at r and ending at x. x is
thus one of the furthest vertices from r.

3. Perform a BFS (Breadth-First Search) starting at x and ending at y.

The output of the algorithm is the path from x to y, called a spread path,
while its extremities (x, y) are called a spread pair. A folklore result is that the
distance between x and y 2-approximates the diameter of G. As noted by Dragan
and Leitert, Double-BFS may also be used for approximating MESP: they have
shown in [9] that any spread path is an 8-approximation of the MESP problem.

The first result of the present paper is that any spread path is in fact a 5-
approximation of the MESP problem and that the bound is tight. But before we
prove this result (Theorem 2), let us give the key lemma used for proving our
three theorems:

Lemma 1. Let G be a graph having a shortest path v0, v1...vt of eccentricity k.
Let P=x0, x1, ...xs be a shortest path of G.
Let iPmin (resp. iPmax) be the smallest (resp. largest) integer such that viP

min

(resp. viPmax
) is at distance at most k of P.

For every integer i such that iPmin ≤ i ≤ iPmax, vi is then at distance at most
2k from P .

Subsequently, every vertex v of G at distance at most k from the subpath
between viP

min
and viPmax

is at distance at most 3k of P .

One may think, at first glance, that this lemma looks similar to the following:



Lemma 2 (from Dragan et al. [9]). If G has a shortest path of eccentricity
at most k from s to t, then every path Q with s in Q and d(s, t) ≤ maxv∈Qd(s, v)
has eccentricity at most 3k.

The difference lies in the fact that the k in Lemma 2 is specific to the given
couple of vertices (s, t) while the k in Lemma 1 is global. On the other hand,
Lemma 2 gives a bound on the eccentricity of a path with respect to the whole
graph, while Lemma 1 only guarantees an eccentricity for a defined subgraph.

Proof (of Lemma 1). The second assertion of the lemma is straightforward given
the first one. To prove the latter, we define, for all l between 0 and s, the subpath
Pl = x0, x1...xl.

Let us show by induction on l that for all i between iPl

min and iPl
max, vi is at

distance at most 2k of Pl.

• l = 0, P0 = x0.
Using the triangle inequality:

d(v
i
P0

min

, v
i
P0
max

) ≤ d(v
i
P0

min

, x0) + d(x0, viP0
max

) ≤ 2k (1)

Hence, for all i between iP0

min and iP0

max,

d(v
i
P0

min

, vi) ≤ k or d(v
i
P0
max

, vi) ≤ k (2)

The result is thus verified for l = 0.

• Let l in (1...s) such that the property if verified for l − 1.

For all i between i
Pl−1

min and i
Pl−1

max , vi is at distance at most 2k of Pl−1 by the
induction hypothesis. Hence, vi is at distance at most 2k of Pl.

Moreover,
d(v

i
Pl−1
max

, v
i
Pl
max

) ≤ d(v
i
xl−1

max
, vixl

max
) (3)

and by the triangle inequality:

d(v
i
xl−1
max

, vixl
max

) ≤ d(v
i
xl−1
max

, xl−1) + d(xl−1, xl) + d(xl, vixl
max

) ≤ 2k + 1 (4)

As the sub-path of P between v
i
Pl−1

max

and v
i
Pl
max

is a shortest path, it follows

that for all i between i
Pl−1

max and iPl
max,

d(v
i
Pl−1
max

, vi) ≤ k or d(v
i
Pl
max

, vi) ≤ k, (5)

meaning that vi is at distance at most 2k of Pl−1 or of xl.

A similar proof shows that for all i between i
Pl

min and i
Pl−1

min , vi is at distance
at most 2k from Pl−1 or from xl.

The property is verified by induction, and the lemma follows for l = s.
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Fig. 1. The bound shown in Theorem 2 is tight. Indeed the graph is such that v0, v1...v6
is a shortest path of eccentricity 1. The vertex z is at distance 5 from the shortest path
(shown by thick edges) between x and y computed by double-BFS starting at r.

Theorem 2. A double-BFS is a linear-time 5-approximation algorithm for the
MESP problem.

Before we prove it, notice that Figure 1 shows that this bound is tight.

Proof. Let k be k(G), P = v0, v1...vt be a MESP (its eccentricity is thus k), and
Q = x, ..., y be the result of a double-BFS starting at some arbitrary vertex r,
then reaching x, then reaching y. We shall prove that Q is a 5k-dominating path
of G.

Let i (resp. j) be such that vi (resp. vj) is at distance at most k of r (resp.
x). The following inequalities are verified:

d(r, x) ≥ d(r, vt) ≥ d(vi, vt)− d(r, vi) ≥ d(vi, vt)− k (6)

d(r, x) ≤ d(r, vi) + d(vi, vj) + d(vj , x) ≤ d(vi, vj) + 2k (7)

Combining those inequalities,

d(vi, vt)− 3k ≤ d(vi, vj) (8)

Similarly:

d(vi, v0)− 3k ≤ d(vi, vj) (9)

Therefore vj is at distance at most 3k of v0 or vt. Without loss of generality,
assume that vj is at distance at most 3k of v0.

Let l be such that vl is at distance at most k of y. We distinguish two cases:

(i) l ≤ j:

Then y is at distance at most 5k of x. As y is a vertex most distant from
x, x is a 5k-dominating vertex of the graph. The lemma is then verified.



(ii) l > j :

Applying to (x, y) the inequalities established at the beginning of the proof:

d(vj , vt)− 3k ≤ d(vj , vl) (10)

As l > j, it follows that:

d(vl, vt) ≤ 3k (11)

Figure 2 shows the configuration of the graph in that case. The vertices
at distance at most k of a vertex vs such that s ≤ j (resp. s ≥ l) are at
distance at most 5k of x (resp. y).

According to Lemma 1, every vertex v of G at distance at most k of a
vertex vs such that s is between j and l is at distance at most 3k of any
shortest path between x and y. The lemma is thus verified.

v0 v1 vj vi vl vt−1 vt

x r y

≤ k ≤ k ≤ k

max
v∈G

d(r, v)

max
v∈G

d(x, v)

Fig. 2. Notations used in the proof of Theorem 2

3 A 3-Approximation Algorithm

We show now that by using more BFS runs we may obtain a 3k-approximation
of MESP, still in linear time.

Let bestPath and bestEcc be global variables used as return values for the
path and its eccentricity. bestPath stores a path and is uninitialized, and bestEcc
is an integer initialized with |V (G)|.



Data: G graph, x,y vertices of G, step integer
1 Compute a shortest path Q between x and y;
2 Select a vertex z of G most distant from Q;
3 if d(Q, z) < bestEcc then
4 bestPath← Q;
5 bestEcc← d(Q, z);

6 end
7 if step < 8 then
8 Algorithm3k(G,x,z,step+ 1);
9 Algorithm3k(G,y,z,step+ 1);

10 end
Algorithm 1: Algorithm3k

Theorem 3. A 3-approximation of the MESP Problem can be computed in lin-
ear time by considering a spread pair (s, l) of G and running Algorithm3k(G,s,l,0).

Proof (Correctness). Let G be a graph admitting a shortest path P = v0, v1...vt
of eccentricity k.

Let x and y be any vertices of G, Qx,y a shortest path between x and y.
Define i

x,y
min (resp. ix,ymax) as the smallest (resp. largest) integer such that vix,y

min

(resp. vix,y
max

) is at distance at most k of x or y. Then, by Lemma 1,

For all j such that ix,ymin − k ≤ j ≤ ix,ymax + k, d(Qx,y, vj) ≤ 2k (12)

Hence, if ix,ymin ≤ k and ix,ymax ≥ t− k, every vertex of P is at distance at most
2k of Qx,y and, as P is of eccentricity k, Qx,y is of eccentricity at most 3k.

Algorithm3k uses this implication to exhibit a pair x, y such that Qx,y is of
eccentricity at most 3k. Indeed, in each recursive call, one of the following cases
holds:

1. the vertex z selected at line 3 is at distance at most 3k from Qx,y. In that
case, bestPath will be set to Qx,y unless it already contains a path of even
better eccentricity. In any case, the result of the algorithm is a path of
eccentricity at most 3k.

2. the vertex z is at a distance greater than 3k of Qx,y. Let iz be such that viz
is at distance at most k of z. Then, according to Equation (12),

iz ≤ i
x,y
min − k or iz ≥ ix,ymax + k (13)

(a) Suppose that iz ≥ ix,ymax + k. Then, in the case d(vix,y

min
, x) = k, we get

i
x,z
min ≤ i

x,y
min and ix,zmax ≥ ix,ymax+ k. And in the case d(vix,y

min
, y) = k we get

i
x,z
min ≤ i

x,y
min − k and ix,zmax ≥ ix,ymax.

(b) A similar reasoning can be applied if iz ≤ i
x,y
min − k, also yielding to

i
x,z
min ≤ i

x,y
min and ix,zmax ≥ ix,ymax + k or ix,zmin ≤ i

x,y
min − k and ix,zmax ≥ ix,ymax.



Therefore, either the algorithm already found a path of eccentricity at most
3k, or it makes one of its two new calls with a couple (x′, y′) such that the

interval [ix
′,y′

min , ix
′,y′

max ] contains [i
x,y
min, i

x,y
max] but has length increased by at least k.

Consider now a spread pair (s, l) for which Algorithm3k(G,s,l,0) is run. It
follows from case (i) and (ii) of the proof of Theorem 2 that

i
s,l
min ≤ 5k and is,lmax ≥ t− 5k (14)

At each of the recursive calls, if no path of eccentricity at most 3k has already
been discovered, one of the new calls expands the interval [ix,ymin, i

x,y
max] length by

at least k, while containing the previous interval. As the recursive calls are made
until step = 8, it follows that either a path of eccentricity 3k has been discovered,
or one of the explored possibilities corresponds to eight extensions of size at least
k starting from [is,lmin, i

s,l
max].

In the latter case, Equation (14) implies that the final couple of vertices (x, y)
fulfills ix,ymin ≤ k and ix,ymax ≥ t− k. Every vertex of P is then of distance at most
2k of Qx,y and thus Qx,y is of eccentricity at most 3k.

Proof (Complexity). The algorithm computes two BFS trees at line 1 and 2,
taking O(n+m) time. The rest of the operations is computed in constant time.

The recursivity width is 2 and, since it is first called with step = 0, the
recursivity length is 8. The algorithm is thus called 255 times. Therefore the
total runtime of the algorithm is O(n+m).

Proof (Tightness of the approximation). Figure 3 shows a graph for which the
algorithm may produce a path of eccentricity 3k(G) (see caption).

v0
v1 v2

v3

v4 v5 v6

v7 v8 v9 v10 v11

v12

Fig. 3. Tightness of the bound shown in Theorem 3. The algo-
rithm may indeed loop between the following couples of vertices :
(v0, v6), (v0, v12), (v6, v12), (v0, v11), (v11, v12), (v6, v7), (v7, v12), (v11, v7). Each time, it
may choose a shortest path of eccentricity 3 (passing through v8 v9 and v10 whenever
v12 is not an endvertex of the path) while v0..v3..v6 has eccentricity 1.



4 Bounds between MESP and Laminarity

In this section, we investigate the link between the MESP problem and the notion
of laminarity introduced by Völkel et al. in [12]. The study of the k-laminar graph
class finds motivation both from a theoretical and practical point of view. On
the theoretical side, AT-free graphs form a well known graph class introduced
half a century ago by Lekkerkerker and Boland [10], which contains many graph
classes like co-comparability graphs. An AT-free graph admits a diameter all
other vertices are adjacent with [5]. It is then natural to extend this notion of
dominating diameter. On the practical side, some large graphs constructed from
reads similarity networks of genomic or metagenomic data appear to have a very
long diameter and all vertices at short distance from it [12], and exhibiting the
”best” diameter allows to better understand their structure.

Definition 2 (laminarity). A graph G is

– l-laminar if G has a diameter of eccentricity at most l.
– s-strongly laminar if every diameter has eccentricity at most s.

l(G) and s(G) denote the minimal values of l and s such that G is respectively
l-laminar and s-strongly laminar.

A natural question about laminarity and MESP is to ask what link exists
between them.

Theorem 4. For every graph G,

k(G) ≤ l(G) ≤ 4k(G)− 2

k(G) ≤ s(G) ≤ 4k(G)

Moreover, there exist three graph sequences (Gk)k≥1, (Hk)k≥1 and (Jk)k≥1

such that, for every k,

– k(Gk) = l(Gk) = s(Gk) = k;
– k(Hk) = k and l(Hk) = 4k − 2;
– k(Jk) = k and s(Jk) = 4k;

The bounds given by the inequalities are therefore tight.

Proof (k(G) ≤ l(G) and k(G) ≤ s(G)).
Those inequalities are straightforward as every diameter is by definition a

shortest path. The eccentricity of every diameter is therefore always greater
than k(G).

Proof (s(G) ≤ 4k(G)).
Let D = x0, x1, ...xs be a diameter of G and P = v0, v1...vt a shortest path

of eccentricity k. We shall show ecc(D) ≤ 4k. Let z be any vertex of G. Since
ecc(P ) = k there exists a vertex vi of P such that d(z, vi) ≤ k. Let us distinguish



three cases:

• Case 1: there exists vertices xa, xb of D and va, vb of P such that a ≤ i ≤ b

and d(va, xa) ≤ k and d(vb, xb) ≤ k. Then by Lemma 1, z is at distance at most
3k from any shortest path between xa and xb, and thus at distance at most 3k
of D.

• Case 2: there exists no vertex va of P with a ≤ i and d(va, D) ≤ k

• Case 3: there exists no vertex va of P with i ≤ a and d(va, D) ≤ k.

Without loss of generality we focus on Case 2 (illustrated in Figure 4), which
is symmetric with Case 3. Let l (resp. m) be such that vl (resp. vm) is at distance
at most k of x0 (resp. xs), assume l ≤ m:

d(vl, vm) ≥ d(x0, xs)− 2k (15)

D being a diameter,
d(x0, xs) ≥ d(v0, vt) (16)

By combining those inequalities,

d(vl, vm) ≥ d(v0, vt)− 2k (17)

d(vl, vm) ≥ d(v0, vi) + d(vi, vl) + d(vl, vm) + d(vm, vt)− 2k (18)

2k ≥ d(vi, vl) (19)

It follows that z is at distance at most 4k of x0.

Proof (l(G) ≤ 4k(G)− 2).
Let D = x0, x1, ...xs be a diameter of G and P = v0, v1...vt a shortest path

of eccentricity k. We shall show that either ecc(D) ≤ 4k − 2 or G contains a
diameter D′ of eccentricity 3k. If P is a diameter we are done. Let us suppose
from now it is of length at most |D| − 1.

Let z be any vertex of G and vi a vertex of P such that d(z, vi) ≤ k. Let
us distinguish the same three cases than in the proof that s(G) ≤ 4k(G). The
first case also leads to d(z,D) ≤ 3k. The second and third being symmetric, let
us suppose there exists no vertex vj of P at distance at most k of D such that
j ≤ i.

Let vl (resp. vm) be a vertex of P at distance at most k from x0 (resp. xs),
clearly,

d(vl, vm) ≥ |D| − 2k. (20)

Let us distinguish two subcases:

• Case 2.1: d(vl, vm) > |D| − 2k,

d(vi, vl) ≤ d(v0, vt)− d(vl, vm) ≤ (|D| − 1)− (|D| − 2k + 1) ≤ 2k − 2 (21)



It follows that z is at distance at most 4k − 2 of D.
• Case 2.2: d(vl, vm) = |D| − 2k
In this case, a path D′ = x0, ..vl, vl+1, ..vm, ..xs is a diameter. Assuming

l ≤ m, Equation 19 in previous proof shows that:

d(vi, vl) ≤ 2k (22)

and with a symmetrical reasoning,

d(vm, vt) ≤ 2k (23)

It follows that any vertex v of G at distance at most k of a vertex va with
a ≤ l (resp. a ≥ m) is at distance at most 3k of vl (resp. vm). Hence at distance
at most 3k of D′. vl, vl+1, ..vm being a subpath of D′, any vertex v of G at
distance at most k of a vertex va with a between m and t is at distance at most
k of D′. Finally, any vertex of G is at distance at most 3k of D′.

v0

vi

vl vm vt

z

x0 xs

≤ 2k ≥ diam(G)− 2k

≤ k

≤ k ≤ k

diam(G)

Fig. 4. Notations used in Case 2 of the proof of Theorem 4

Proof (Tightness of the bounds).
Consider the graph Gk reduced to a path P of length 4k to which a second

path of length k is attached in the middle. P is then simultaneously the only
diameter and the MESP, and it k-covers Gk but doesn’t (k − 1)-cover it. Hence
the inequalities k(G) ≤ l(G) and k(G) ≤ s(G) are tight.

Figure 5 shows how to build the graph sequence (Jk)k≥1 (only J1 and J6 are
drawn). Jk is a graph with a shortest path of eccentricity k and a diameter of
eccenticity 4k. The inequality s(G) ≤ 4k(G) is thus tight.

Figure 6 shows how to build the graph sequence (Hk)k≥1 (only H1, H2 and
andH6 are drawn).Hk is a graph with a shortest path of eccentricity k, while the
unique diameter has eccenticity 4k−2 (H1 is a special case with two diameters).
The inequality l(G) ≤ 4k(G)− 2 is therefore tight.



x0 v0
v2k

v4k

z

xk+1

x2k x3k x4k

vk

v3k

k

k

k

k

Fig. 5. Proof that s(G) ≥ 4k(G). The red path x0, x1, ...x4k is a diameter of length 4k
and at distance 4k of z; while the green path v0, v1, ...v4k is a shortest path (another
diameter indeed) of eccentricity k. The large graph is J6 (using the graph sequence
(Jk)k from Theorem 4) and the small one on the bottom left is J1. The other members
of the sequence car easily be derived.

.

5 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for gen-
eral graphs and proposed a linear time algorithm computing a 3-approximation.
The algorithm is a 2-recursive function with constant recursivity depth, launch-
ing two BFSs each time, thus taking linear time. Additionally, we’ve established
some tight bounds linking the MESP parameter k(G) and the k-laminarity pa-
rameters s(G) and l(G).

On improving the current approximation algorithms, the following remark
should be noted. Our algorithm is confined in finding a good pair of vertices in
the graph, and the shortest path between them is then picked arbitrarily. By
doing so, we are unlikely to get a better result than a 3-approximation. Indeed
as shown by [9] there exist graphs for which the MESP solution is a path of



eccentricity k between two vertices s and t such that some other shortest paths
between s and t have an eccentricity of exactly 3k.

About laminarity parameters, computing l(G) is NP-complete, while com-
puting s(G) can be done in O(n2m logn) time [12]. It may be interesting to
design an approximation algorithm, i.e producing a diameter of eccentricity at
most αs(G) or βl(G). Linear-time algorithms like BFS cannot be used however,
since we do not know how to compute diam(G) faster than a matrix product,

x0 v0
v2k+1

v4k−1

z

xk+1

x2k+1 x3k+1 x4k

vk+1

v3k+1

k

k + 1

k

k − 2

H6

H1

H2

Fig. 6. Proof that l(G) ≥ 4k(G)− 2. It is a graph sequence (Hk)k, using the notation
from Theorem 4. For k ≥ 2, the red path x0, x1, ...x4k is the unique diameter. Its length
is 4k and it is at distance 4k− 2 of z. The green path v0, v1, ...v4k−1 is a shortest path
of length 4k−1 and of eccentricity k. Graphs H2 and H6 are drawn but all graphs Hk,
k ≥ 2 can be derived from the pattern of H6. The small graph on the bottom left is
the special case H1 who do not follow this pattern. It admits exactly two diameters,
both of eccentricity 2 (red), and a shortest path of eccentricity 1 (green).

.



and even surlinear approximation are studied [1]. Different techniques than the
ones used here must therefore be employed.
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