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Report

Inhibition of DPP4 activity in humans establishes
its in vivo role in CXCL10 post-translational
modification: prospective placebo-controlled
clinical studies
Jérémie Decalf1,2,†, Kristin V Tarbell3,†, Armanda Casrouge1,2, Jeffrey D Price3, Grace Linder3,

Estelle Mottez4, Philippe Sultanik5, Vincent Mallet5, Stanislas Pol5, Darragh Duffy1,2,4,*,‡ &

Matthew L Albert1,2,4,6,**,‡

Abstract

Biochemical experiments, animal models, and observational stud-
ies in humans all support a role of dipeptidyl peptidase 4 (DPP4) in
the N-terminal truncation of CXCL10, which results in the genera-
tion of an antagonist form of the chemokine that limits T-cell and
NK cell migration. Motivated by the ability to regulate lymphocyte
trafficking in vivo, we conducted two prospective clinical trials to
test the effects of DPP4 inhibition on CXCL10 processing in healthy
donors and in chronic hepatitis C patients, a disease in which DPP4
levels are found to be elevated. Participants were treated daily
with 100 mg sitagliptin, a clinically approved DPP4 inhibitor.
Plasma samples were analyzed using an ultrasensitive single-
molecule assay (Simoa) to distinguish the full-length CXCL101–77
from the NH2-truncated CXCL103–77, as compared to the total
CXCL10 levels. Sitagliptin treatment resulted in a significant
decrease in CXCL103–77 concentration, a reciprocal increase in
CXCL101–77, with only minimal effects on total levels of the chemo-
kine. These data provide the first direct evidence that in vivo DPP4
inhibition in humans can preserve the bioactive form of CXCL10,
offering new therapeutic opportunities for DPP4 inhibitors.
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Introduction

Chemokines play an essential role in cell migration. Regulation of

their activity is particularly important during inflammatory

responses, determining the recruitment of immune cells to lymphoid

organs or targeting them toward injured tissues (Griffith et al,

2014). Post-translational modification of chemokines has been

shown to regulate their activity; however, in vivo evidence remains

limited to observational studies and experimental mouse models

(Moelants et al, 2013). Dipeptidyl peptidase 4 (DPP4, also known as

CD26) is a serine protease capable of removing the first two amino

acids of proteins possessing a proline or alanine in the N�terminal

penultimate position (Bongers et al, 1992). In vitro studies have

shown that DPP4-mediated N-terminal truncation of the pro-

inflammatory chemokine CXCL10 leads to the generation of an

antagonist form (Proost et al, 2001; Casrouge et al, 2011). More-

over, recent in vivo work performed in mice has demonstrated that

this truncation alters lymphocyte migration and limits infiltration of

the tumor parenchyma, a phenomenon that could be reversed using

the DPP4 inhibitor sitagliptin (Barreira da Silva et al, 2015).

A challenge for studying post-translational modifications of

chemokines is the ability to specifically monitor the different protein

forms in biological material. To overcome this, we developed
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immunoassays that discriminate the full-length agonist form of

CXCL10 (referred to as CXCL101–77, or long CXCL10) from the

NH2-truncated form generated by DPP4 cleavage (referred to as

CXCL103–77, or short CXCL10) (Casrouge et al, 2012). Accordingly,

we were able to show that elevated levels of short CXCL10 were

associated with an increased DPP4 activity, both being negative

predictors for viral clearance in chronic and acute hepatitis C (HCV)

patients (Casrouge et al, 2011; Ragab et al, 2013; Riva et al, 2014).

Taking advantage of the Simoa technology (Rissin et al, 2010), we

have now developed ultrasensitive immunoassays with these anti-

bodies, making possible the quantification of functional forms of

CXCL10 in the plasma from healthy individuals.

To provide a proof of concept for DPP4 inhibition as a means to

protect full-length CXCL10, we conducted a randomized placebo-

controlled study in healthy individuals, with the primary scientific

objective being the assessment of DPP4 inhibition on immunological

parameters. A prior report on this cohort demonstrated an effective

DPP4 inhibition and an increased concentration of active glucagon-

like peptide 1, one of the key substrates implicated in insulin

resistance (Price et al, 2013). In parallel, we undertook an investiga-

tional study to explore how sitagliptin treatment affects virus-induced

CXCL10 in chronic HCV patients (cHCV), a clinical setting in which

levels of both DPP4 and CXCL103–77 have been shown to be elevated

(Ragab et al, 2013). The findings from this report establish the basis

for repositioning DPP4 inhibitors as a potential immunotherapy.

Results

To quantify CXCL10 agonist and antagonist forms in healthy indi-

viduals, we implemented our unique immunoassays on the Simoa

platform (Fig 1A). Using these assays, we determined median levels

of total CXCL10 to be 60 pg/ml in healthy individuals (Fig 1B and

C, SV and D0 time points), within the range of what has been previ-

ously reported using other techniques (Butera et al, 2005; Duffy

et al, 2014). Long CXCL10 remained undetectable in most individu-

als, whereas short CXCL10 was detected in 30 out of 36 subjects

(83%) with concentrations ranging from 2 to 75 pg/ml, suggesting

active in vivo chemokine processing in healthy individuals.

Importantly, all the plasma samples used for the analysis of CXCL10

levels were collected in tubes containing a DPP4 inhibitor to avoid

potential extracorporeal CXCL10 processing.

In order to explore the role of DPP4 in CXCL10 truncation in vivo,

we monitored the levels of short, long, and total CXCL10 in healthy

individuals receiving a 28-day course of placebo or sitagliptin

(Fig 1B and C). DPP4 inhibition in individuals receiving sitagliptin

was confirmed by monitoring plasma DPP4 activity, which was

previously published (Price et al, 2013) and showed an inhibition

ranging from 9 to 80% (Fig EV1). We observed that 3 days after the

onset of sitagliptin treatment, the concentrations of short CXCL10

dropped significantly in individuals receiving sitagliptin, but

remained stable in donors receiving the placebo. Effect size analysis

supported the strong impact of sitagliptin on short CXCL10 when

compared to pre-therapy levels (d = 0.92). As detailed in Fig EV1,

some donors showed sporadic increases in short CXCL10 during sita-

gliptin therapy, possibly reflecting a partial recovery of DPP4 activity

(Herman et al, 2005). Moreover, three of the 27 donors showed

elevated levels of short CXCL10 during sitagliptin treatment,

reflecting natural human variability in response to the treatment. Of

note, despite the presence of short CXCL10, two of these three

donors showed a strong DPP4 inhibition.

Interestingly, the inhibition of DPP4 was associated with

the preservation of long CXCL10, as indicated by an increase in

concentration compared to pre-therapy (d = 0.27), although these

data have to be interpreted cautiously due to a large number of

patients in which long CXCL10 remained undetectable. That said,

this increase was observed at week 2 of treatment, but not at day 3

post-treatment initiation, perhaps reflecting a low level of newly

secreted CXCL10 in healthy individuals. Of note, the levels of total

CXCL10 were found to be slightly decreased during sitagliptin

treatment compared to pre-therapy levels (d = 0.33), suggesting a

limited biological impact of sitagliptin on total CXCL10 levels. That

said, the strong impact of sitagliptin on short CXCL10 indicated that

we selectively altered processing, rather than the production of the

chemokine. Finally, the modulation of short and long CXCL10 was

stable during the 28-day course of sitagliptin, returning to pre-

therapy concentrations once treatment was terminated. These

data provide direct evidence that DPP4 inhibition impacts in vivo

N-terminal truncation of CXCL10.

The data obtained in healthy individuals suggest that CXCL10

processing by DPP4 is a rapid event, as it was strongly affected 72 h

after the onset of sitagliptin therapy. Therefore, we assessed how

sitagliptin might affect higher levels of CXCL10, a hallmark of

inflammatory diseases (Van Raemdonck et al, 2015). To do so, we

monitored CXCL10 forms in three cHCV patients receiving

sitagliptin treatment (Fig 1D). Of note, as detailed in the study

design section, additional patients could not be recruited for ethical

reasons. As previously described (Casrouge et al, 2011), cHCV

patients showed elevated concentrations of short, long, and total

CXCL10 compared to healthy individuals (D0 time points).

Interestingly, sitagliptin treatment led to a decrease in short CXCL10

and an increase in long CXCL10 (Fig 1D), a trend similar to what

we observed in healthy individuals. Although striking, the impact of

sitagliptin on CXCL10 forms did not influence HCV viral loads over

the period monitored (Fig EV2).

Discussion

Overall, the finding that the agonist form CXCL101–77 was unde-

tectable in the majority of healthy individuals indicates that CXCL10

and likely other chemokines are rapidly catabolized by DPP4. The

corollary to this observation is that long CXCL10 may be considered

as a marker of recently produced CXCL10. Moreover, the lower

levels of long and short forms compared to the total plasma

concentration of CXCL10 indicate that additional processing of the

protein is probably occurring in vivo. Other proteases, such as

matrix metalloproteinases (Van den Steen et al, 2003), have been

shown to target CXCL10, but their activity in vivo and the impact on

chemokine function remain unknown (see Mortier et al (2008) for

review of subject). Action of other N-terminal aminoproteases could

also explain the trimming of CXCL103–77, acting after DPP4 removes

the penultimate proline residue, as shown in in vitro biochemical

studies using CXCL11 (Proost et al, 2007).

Our findings expose a broader putative in vivo role of DPP4 in the

regulation of cell trafficking. Notably, other chemokine substrates of
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DPP4 have been defined as key mediators of stem cell migration. In

mouse studies, DPP4 inhibition has been shown to improve the

engraftment of CD34+ stem cells following umbilical cord blood

transplantation, with the mechanism of action being the protection

of agonist forms of CXCL12 (Farag et al, 2013). While our study does

not directly test a role for altered post-translational modification of

CXCL12, the similar biological processes would suggest a direct

impact on CXCR4-mediated leukocyte migration.

From a therapeutic perspective, our results establish a path

toward the secondary use of DPP4 inhibitors. Indeed, our recent
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Figure 1. Sitagliptin treatment limits DPP4-mediated N-terminal truncation of CXCL10.

A CXCL10 assay characteristics. Standard curves of the short, long, and total CXCL10 Simoa assays are shown. For each curve, the limit of detection (LOD) defined as
blank+3SD is shown as horizontal lines. The LOD was 1.7 pg/ml for long and short CXCL10 assays and 0.22 pg/ml for total CXCL10. Standard curves were fitted
using the 4-parameter logistic nonlinear regression model. Samples reporting a signal below the LOD were replaced with 1 pg/ml for short and long CXCL10.

B–D Plasma from healthy individuals receiving (B) placebo (n = 9) or (C) sitagliptin (n = 27) was analyzed by Simoa. Blood samples were collected at screening visit (SV)
and day 0 (D0) before treatment; at day 3 (D3), day 14 (W2), and day 28 (W4) under treatment; and 5 weeks after treatment interruption (W9). (D) Plasma from
chronic HCV patients receiving sitagliptin (n = 3) was collected before (D0) and weekly during sitagliptin treatment (W1 & W3). Antagonist CXCL103–77 (short
CXCL10, in blue), agonist CXCL101–77 (long CXCL10, in red), and total CXCL10 (in black) levels are shown. Each dot represents a donor, and bars are at the median.
Gray areas highlight the period under placebo or sitagliptin treatment. Statistical analysis of (B) and (C) was performed using nonparametric Friedman’s test, ns:
nonsignificant, **P < 0.01, ****P < 0.001. For (C), additional size effect analysis was performed and Cohen’s d values are reported. No statistical analysis was
performed in (D) due to sample size, nd: nondetermined.

Table 1. Clinical information.

Category Treatment Number of subjects Gender (F/M) Age - median (range) HCV genotype

Healthy Placebo 9 6/3 27 (20–61) –

Healthy Sitagliptin 27 16/11 36 (19–53) –

cHCV Sitagliptin 3 2/1 41 (38–55) 4
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mouse studies have shown that preserving agonist CXCL101–77
increases lymphocyte infiltration into tumor parenchyma and results

in an enhanced tumor immunity (Barreira da Silva et al, 2015).

Thus, these drugs may offer an opportunity to increase the

lymphocyte migration in settings such as chronic infection and

cancer. As DPP4 inhibitors are a class of widely used therapeutics

for the management of type II diabetes, they are considered to be

safe and well tolerated.

In sum, our work provides the first in vivo experimental evidence

of CXCL10 processing in humans and supports the clinical testing of

sitagliptin as either an antitumor or autoimmune therapy. Further

work will be required to better understand the impact of DPP4

inhibition in vivo and to evaluate how other forms of chemokine

post-translational modifications could influence inflammatory

responses.

Materials and Methods

Study design and protocols

The cohort of healthy individuals receiving sitagliptin or placebo

(NCT00813228) has been previously described. This study was a

double-blind, randomized trial approved by the institutional review

board of NIDDK (Price et al, 2013). Participants received 100 mg of

sitagliptin (n = 27) or placebo (n = 9) once daily for 28 days, and

the blood samples were collected longitudinally. Chronic HCV

patients receiving sitagliptin (n = 3) were recruited as part of the

INSERM-sponsored C10-54 trial (NCT01567540). The three patients

were chronically infected with HCV genotype 4 and were receiving

pegylated-interferon alpha + ribavirin therapy when they enrolled

in the study. These patients were considered difficult to treat, as

they had previously failed to achieve early virological response

(EVR) as defined by a two-log reduction in virus at 12 weeks

post-treatment. Sitagliptin treatment (100 mg daily) was given for

3 weeks and the blood samples were collected longitudinally. Of

note, the C10-54 trial was terminated prematurely due to the

approval of sofosbuvir in France for HCV genotype 4-infected

patients. The ethical implications that arose from the availability of

this novel highly efficacious antiviral therapy prevented the

continued recruitment of additional cHCV patients in our

experimental clinical study. The respective studies were approved

by the institutional review boards of the NIH and INSERM. All

participants gave written informed consent prior to inclusion in the

study, conformed to the principles set out in the WMA Declaration

of Helsinki and the Department of Health and Human Services

Belmont Report. Clinical characteristics are summarized in Table 1.

Plasma was collected in BD P700 tubes, containing ethylenediamine

tetraacetic acid (EDTA) and a DPP4 inhibitor to prevent

extracorporeal cleavage of CXCL10. Plasma collected in sodium

heparin tubes was used for monitoring DPP4 activity. Samples were

stored at �80°C until analysis.

CXCL10 quantification

Plasma concentration of total (R&D clone 33036), long (CXCL101–77),

and short (CXCL103–77) CXCL10 was measured using Simoa

technology (Quanterix). Simoa assays were carried out as

previously described (Meissner et al, 2015), and additional

optimization was conducted for this study; standard curves are

presented in Fig 1A.

Statistical analysis

Differences in CXCL10 forms in healthy donors receiving either

sitagliptin or placebo were assessed by nonparametric Friedman’s

test. No statistical analysis was performed on HCV patients due to

the available sample size (n = 3). For healthy donors receiving sita-

gliptin, size effect analysis using Cohen’s d was performed to assess

the biological significance of modified CXCL10 levels. Three groups

of samples were compared; the values were obtained pre-therapy

(SV, D0), during therapy (D3, W2, and W4), and post-therapy (W9).

Cohen’s d estimates the biological significance of statistically signifi-

cant differences to be small (d � 0.2), medium (d � 0.5), or large

(d � 1).

Expanded View for this article is available online.
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The paper explained

Problem
The N-terminal truncation of CXCL10 by DPP4 results in the genera-
tion of an antagonist form of the chemokine that limits T-cell and NK
cell migration toward infectious or tumor sites. In this work, we stud-
ied whether DPP4 inhibition in vivo by sitagliptin could limit the
generation of the antagonist form of CXCL10 in humans, which could
have the potential to boost T-cell and NK cell migration in certain
pathological contexts.

Results
Participants were treated daily with 100 mg sitagliptin, and plasma
samples were analyzed using an ultrasensitive single-molecule assay
(Simoa) to distinguish levels of the agonist (CXCL101–77), antagonist
(CXCL103–77), and total CXCL10 forms. Sitagliptin treatment resulted in
a significant decrease in antagonist CXCL10 concentration and a
reciprocal increase in the agonist form CXCL101–77 compared to
placebo controls.

Impact
Our data provide the first in vivo evidence that DPP4 inhibition in
humans can preserve the bioactive form of CXCL10. This offers new
therapeutic opportunities for DPP4 inhibitors, which could be relevant
for the development of novel cancer immunotherapies aiming at
restoring immune cell migration.
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