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Highlights: 

 Lagrange’s trigonometric identities were used to simplify an actual and an equivalent 
connecting rod by minimizing the problem to an algebraic form with good accuracy. 

 The largest external forces resultant acting in the x-direction was exerted by the single-
cylinder engine, while the smallest external forces resultant acting in the x-direction was 
exerted by the six-cylinder engine in the studied cases. 

 The largest resultant of torque imbalance acting on the crankshaft was found to be associated 
with two-cylinders engines and was negligible for engines with 5 and 6 cylinders. 

 The external forces resultant acting in the x-direction and the torque imbalance acting on the 
crankshaft can be eliminated by using a seven- or more cylinder engine. 

 The results also revealed that the values of all external forces resultants acting in the y-
direction were equal to zero for multi-cylinder engines. 
 

Abstract: The main objective of this study was to conduct a new and simple but 
accurate analysis of the dynamics of a crankshaft-connecting rod system based on 
Lagrange’s trigonometric identities. Actual and equivalent connecting rod mass 
approximations of single- and multi-cylinder reciprocating engines were studied. 
Several examples were studied to demonstrate the dynamics of the system. Lagrange’s 
trigonometric identities were used to simplify the model, while MATLAB was used 
to obtain the results. For both the proposed reduced model and the full model, the 
resultant forces and torques of an actual and an equivalent connecting rod mass were 
compared. The results showed that the proposed reduced model gives force and torque 
results that match the results of the full model very well. It was shown that the largest 
torque imbalance resultant on the crankshaft was exerted by the two-cylinder engine. 
In addition, it was shown that the largest external forces resultant acting in the x-
direction was exerted by the one-cylinder engine. The results also revealed that the 
resultant of external forces acting in the y-direction was zero for multi-cylinder 
engines. The relative error, which mainly occurred at the points of maximum force 
and torque, ranged from about 1% to about 15%. 

Keywords: crankshaft; dynamics; equivalent mass; internal combustion engine; 
Lagrange’s trigonometric identities; torque imbalance. 
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1 Introduction 

Crankshaft-connection rod mechanisms have many industrial applications, for 
example in internal combustion engines (ICEs). The dynamics of the crankshaft-
connection rod system play a crucial role in the design process of these systems. 
It is necessary for the designer of an ICE to know the values of the resultants of 
the forces and torques acting in the engine and how they affect the cycle of 
operation. Single- and multi-cylinder reciprocating ICEs are widely used to 
generate power in numerous different mechanical applications, such as power 
generation stations and automobiles [1]. Inertia forces that are unbalanced in IC 
engines lead to stresses and torques, which further leads to operation 
complications. For the purpose of unbalance reduction, the inertia forces and 
torques of the multi-cylinder reciprocating engine were analyzed for different 
cylinder configurations.  

As balancing an inline internal combustion engine is a very complex problem, 
these engines have been the subject of a considerable amount of research in the 
past few decades [2-4]. The analysis of the dynamics of a multi-cylinder 
reciprocating engine is difficult due to the presence of two motions of the 
connecting rod mass (translation and rotation). Therefore, most previous works 
on multi-cylinder reciprocating engines used approximations. The inertia forces 
due to the connecting rod mass are divided into two parts, at the crankpin (A) and 
the wrist pin (B), to simplify the analysis [5]. Another simplified method assumes 
the inertia forces due to the crankshaft in the crankpin (A), while the connecting 
rod mass is also divided into two parts: crankpin (A) and wrist pin (B) [6]. These 
methods clearly do not reflect an exact mathematical model of the multi-cylinder 
reciprocating engine.  

In Koizumi, et al. [7], a new analytical model for the purpose of predicting the 
secondary motion of the piston as well as the vibration that results from the slap 
of the piston was derived and different engine models were studied. In Hassan 
[8], the results from numerical investigations of the force of the side thrust, which 
leads to linear wear, as well as the inertial torque imbalance are presented. Four 
cases were studied in the analysis of the dynamics of a multi-cylinder 
reciprocating engine. A design concept that allows for the compensation of the 
force of simultaneous shaking, the moment of shaking balancing, and the inertial 
torque imbalance in internal combustion engines is described in Arakelian & 
Briot [9]. A mathematical model in which the finite element method was used for 
determining the torque imbalance by reducing the maximum change in engine 
speed, which leads to excessive crankshaft torsional vibrations in inline six-piston 
engines, is presented in Gupta, et. al. [10]. A numerical example found out by 
using the ADAMS software was given along with the suggested solution.  
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A complete analysis of the kinematic and combined static and reaction force of 
an inline one-piston in a four-stroke reciprocating engine is presented in Desai 
[11]. The Fortran programing language was used for the analytical approach, as 
it is less time-consuming and has high accuracy. In Essienubong & Bismarck 
[12], the piston assembly of an engine under conditions of a typical IC engine 
was modeled. The finite element method was used and a simulation was 
performed to determine the effects of the heat and forces exerted on the piston 
that result from fuel combustion. The results showed that an increase in piston 
reciprocating leads to an increase in the torque transmitted to the crankshaft. 
Guan, et al. [13] developed nonlinear kinematic constraint equations using a 
generalized computational method for spatial kinematic analysis of a spherical 
pump to investigate the displacement, velocity, and acceleration characteristics. 
The above parameters were investigated for an axial piston pump by Shen, et al. 
[14] using a virtual prototyping approach to analyze both the kinematics and the 
dynamics. Guan, et al. [15] established kinematic constraint models of a robot 
excavator for pile construction, where the model was used to eliminate the contact 
between the robot excavator and the pile shaft. 

In this work, a new and simple but accurate model for crankshaft-connecting rod 
mechanisms that may be used in ICEs was tested. There are three inertia forces 
in the center of the body: the inertia force resulted from the weight of the piston 
assembly, the inertia force due to the connecting rod, and the inertia force due to 
the crank. A new approximation of modeling the inertia forces and torques of 
ICEs by using Lagrange’s trigonometric identities for the cases of actual and 
equivalent mass approximations is proposed. The results of the actual and the 
proposed model were compared. The resulting outcomes can be used as 
guidelines to use Lagrange’s trigonometric identities with equivalent mass to 
model the inertia forces and torques in ICEs. The results for the actual and the 
equivalent mass of the connected rod were in terms of the resultants of all external 
forces applied in the x-direction and y-direction, and the torque exerted on the 
crank.  

2 System Descriptions 

In Figure 1, a schematic of the slider-crankshaft mechanism of an internal 
combustion engine is shown. It is a classical four-bar slider-crankshaft 
mechanism that is used in many engineering applications. In the figure, the 
crankshaft is represented by the symbol r  and its mass center is represented by 

1r . In addition, the symbol R  represents the connecting rod, whose center of mass 

is represented by the symbol 1R . The piston of the IC engine is represented by a 

square box that is allowed to move linearly.  
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The piston center locates the center of mass of the piston relative to the 
connecting rod pin joint. Rotation of the crankshaft in the direction determined 
by angle   leads to a back and forth linear piston movement, which changes the 
piston’s position x . During the motion of the crankshaft, the connecting rod’s 
angular position   keeps changing across the piston centerline for the case where 

R r . The symbol T  in Figure 1 represents the braking torque with respect to 
the z-axis that the crankshaft is subjected to, for a single-piston IC engine. In 
Figure 1, the crankshaft mass, connecting rod mass, and piston mass are 
represented by the symbols rm , dm , and pm  respectively. The crankshaft’s and 

connecting rod’s mass moments-of-inertia about their center of mass are 
represented by the symbols rI  and dI , respectively. 

 

Figure 1  Schematic of the slider-crankshaft mechanism of the actual connecting 
rod. 

3 Modeling and Analysis 

Kinematic and kinetic analysis were used to model the inertia forces and torque 
associated with the operation of the system illustrated in Figure 1. 

3.1 Kinematic Modeling and Analysis 

Based on Fig. 1, the loop-closure method can be used for the description of the 
linkage positions, velocity, and acceleration of the piston during its reciprocating 
within the IC engine. The instantaneous positions of the linkage are: 

 cos( ) cos( ) and sin( ) sin( )     
r

x r R
R

  (1) 

where r is the crankshaft length, R is the connecting rod length, α and β are the 
angular positions of the crankshaft and the connecting rod, respectively. 
Assuming angle   is known, Eq. (1) can be solved to determine x  and  . In a 
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similar manner, the velocities of the linkage can be determined from the following 
equations: 

sin( ) sin( ) and 0 cos( ) cos( )x r R r R                  (2) 

Solving the above equations gives the piston velocity, 𝑥̇, and the connecting rod 
angular velocity, 𝛽̇, 

 
sin( ) cos( )

and
cos( ) cos( )

r
x r

R

    
 


      (3) 

The solution for  , upon which the results of Eq. (3) depend, can be determined 

using Eq. (1), assuming that the crankshaft angular position and velocity (  and 
 ) are known. The accelerations of the linkage may be described as follows: 

 
2 2

2 2

sin( ) cos( ) sin( ) cos( )
and

0 cos( ) sin( ) cos( ) sin( )

x r R R

r R R

        

        

    

   

  

  
  (4) 

Solving these equations simultaneously gives the following results for the piston 
linear acceleration, 𝑥̈, and the connecting rod angular acceleration, 𝛽̈, 

 

2 2

2 2
2 2

2 2

cos( ) sin( ) cos( )
cos ( ) sin( )

tan( )
cos ( ) cos( )

x R R
r r

R R

      
    
 

   

 

 

  
  (5) 

These results will be used later in the dynamics analysis of the mechanism. 

3.2 Kinetics Modeling and Analysis 

For the purpose of performing the slider-crankshaft mechanism kinetics analysis, 
the coordinate axes x and y are determined as shown in Figure 1. The resultant of 
all external forces and torques acting on the slider-crankshaft mechanism will be 

completely defined by its components in the x- and y-directions,  xF  and 

 yF , respectively, and the torque, T , with respect to the z-axis. To find these 

forces and torques when the motion of the slider-crankshaft mechanism is known, 
the linear and angular momentum principle is useful. Using the linear and angular 
momentum principle in the x-direction for the slider-crankshaft mechanism 
produces the following equations of motion: 

     1 1sin sinx r d p

d
F m r m R m x

dt
          (6) 

From which, 
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       2 2
1 1 1 1cos sin cos sinx r r d d pF m r m r m R m R m x                (7) 

where r1 is the crankshaft mass center, R1 is the connecting rod center of mass, 
where mr, md, mp are the crankshaft mass, connecting rod mass, and piston mass, 
respectively. Substituting Eqs. (1), (3) and (5) into Eq. (7) gives, 

       
   

2
2

1 1 1 2

2
2 2 2

1

cos sin

cos ( )
1 tan ( ) tan( )sin( )

cos( )

x r p r d p

d p

r
F m r m r m r m R m R

R
r

m R m R
R

   

     


    

  

  

 
  (8)                      

Similarly, the linear and angular momentum principle in the y-axis for the slider-
crankshaft mechanism can be used to produce the following equations of motion: 

     1 1cos cosy r d

d
F m r m R

dt
                            (9)   

From which, 

       2 2
1 1 1 1sin cos sin cosy r r d dF m r m r m R m R             

     
(10) 

Substituting Eqs. (1), (3) and (5) into Eq. (10) gives, 

    21
1 1sin cosy r d r

R r
F m r m m r

R
       

 
  

               
  (11) 

Using the previous equations, the torque may be written as, 

 sin cosx yT F r F r                            (12) 

Substitution of Eqs. 10) and (11) into Eq. (12) gives, 

     

   

3 2
2 21

1 1 2

2
2 2 2 2

1

cos ( )sin( )
cos sin

cos( )

1 tan ( ) tan( )sin ( )

d p r d p

d p

R r
T m m r m r r m R m R

R R
r

m R m R
R

    


    

      
 

  

 

 

    (13) 

3.3 Lagrange’s Trigonometric Identities 

For a multi-piston engine with N piston assemblies, the external forces resultant 
acting on the slider-crankshaft mechanism in the x-direction will be the 
summation of the reaction forces from each piston assembly. Using Eq. (8), it 
may be shown that the resultant of the external forces acting on the slider-
crankshaft mechanism in the x-direction is given by: 
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   

   

2
2

1 1 2
1 1

2
2 2 2

1
1 1

cos( ) sin( )

cos ( )
1 tan ( ) sin( ) tan( )

cos( )

N N

xt r p n n r n n d p
n n

N N
n

n n d p n n n
n nn

r
F m r m r m r m R m R

R
r

m R m R
R

   


    



 

 

    

  

  

 

 

 

  (14) 

where n  is the angular crankshaft position of the nth piston assembly. Similarly, 

the external forces resultant exerted on the slider-crankshaft mechanism in the y-
direction is given by: 

    21
1 1

1 1

sin cos
N N

yt r d n n r n n
n n

R r
F m r m m r

R
   

 

    
 

      (15) 

Finally, using Eq. (13), it may be shown that the torque on the crankshaft from a 
single-cylinder engine is given by: 

   

   

2 2 21
1

1 1
23

2 2
1 2

1
2

2 2 2
1 1

1 1

cos( ) sin( ) sin ( )

cos ( )sin( )
1 tan ( )

cos( )

sin ( ) tan( ) cos

N N

t d p n n n r n n
n n

N
n n

d p n n
n n

N N

d p n n n r n n
n n

R
T m m r m rr

R
r

m R m R
R

r
m R m R m rr

R

    

 
 



    

 



 

    
 

  

  

 



 

 



 

   (16) 

The summation terms in these equations are a bit complicated. However, if the 
connecting rods are attached to the crankshaft in an even circular array about the 
centerline of the shaft according to the following rule, 

 1

2
( 1)n n

N

      (17) 

then Lagrange’s trigonometric identities may be used to simplify the previous 
Eqs. (14), (15), and (16). Using these identities with Eq. (17), it may be shown 
that, 

2 2

1 1

2

1 1 1 1

sin ( ) cos ( )
2

sin( ) cos( ) cos( )sin( ) cos ( )sin( ) 0

N N

n n
n n
N N N N

n n n n n n
n n n n

N 

     
 

   

 

   

 

   
  (18) 

Obviously, the convergence of these series provides a tremendous simplification 
of the analysis of the internal combustion engine. Substituting Eq. (18) into the 
foregoing analysis produces the following results for the external forces resultant 
acting on the slider-crankshaft mechanism in the x-direction, 
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   

 

22
2 2

1 2
1

2
1

1

cos ( )
1 tan ( )

cos( )

sin( ) tan( )

N
n

xt d p n
n n

N

d p n n
n

r
F m R m R

R
r

m R m R
R


 



  




  

 

 







  (19) 

Similarly, substituting Eq. (18) into the foregoing analysis yields the following 
results for the external forces resultant acting on the slider-crankshaft mechanism 
in the y-direction: 

 0
yt

F 
                                  

 (20) 

Finally, substituting Eq. (18) into the foregoing analysis yields the following 
results for the torque acting on the slider-crankshaft mechanism: 

   

 

23
2 2

1 1 2
1

2
2 2 2

1
1

cos ( )sin( )
1 tan ( )

cos( )

sin ( ) tan( )

N
n n

t r n d p n n
n n

N

d p n n n
n

r
T m rr N m R m R

R
r

m R m R
R

 
  



   





    

 





 

 

 (21)  

It is clear from these results that Lagrange’s trigonometric identities greatly 
simplify the analysis of the crankshaft-connecting rod dynamics used in ICEs 
with connecting rods that are spaced about the crankshaft centerline evenly, as 
shown in Eq. (17).  

3.4 Dimensionless Analysis 

Dimensionless analysis gives the model generalization to be applied for systems 
with different sizes and characteristics in addition to reducing the number of 
parameters in the analysis, as in Ali, et al. [16] and Ali [17]. In order to express 
the previous equation in dimensionless form, the following definitions should be 
used: 

2
1 1 1 1

2 2 2 2

2 2 2

ˆ ˆ ˆˆ ˆ ˆ, , , , , ,
ˆ ˆ ˆ, , ,
ˆ ˆ,

d P d r P r x p x

y p y p xt p xt

yt p yt t p t

R rR R rR r rr m m m m m m F m r F
F m r F T m r T F m r F

F m r F T m r T


  
 

     
  

 

 
   
 

  (22) 

3.5 Dimensionless Analysis for Single-Cylinder Engine 

Using the definitions given in Eqs. (8), (11), and (13), it may be shown that the 
dimensionless actual external forces resultant and the torque acting on the 
crankshaft are given by Eqs. (23-25), assuming that the angular velocity of the 
crankshaft is constant: 
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       
2

2
1 1 2

1 cos ( )ˆ ˆ ˆˆ ˆ ˆ1 cos 1 tan ( )
ˆ cos( )x r dF m r m R R
R

 


      

(23) 

        1
ˆ

ˆ 1 tan( )sin( )
ˆd

R
m

R
 

 
   
 

 

  1
1

ˆ
ˆ ˆ ˆ ˆ sin

ˆy r d

R
F m r m

R


 
   
 

                           (24)  

     

 

2
21

1 2

2
1 2

ˆ 1 cos ( )sin( )ˆ ˆ ˆˆ ˆ1 cos sin( ) 1 tan ( )
ˆ ˆ cos( )

1ˆ ˆˆ tan( )sin ( )
ˆ

d d

d

R
T m m R R

R R

m R R
R

   


 

 
      
 
 

  (25) 

3.6 Dimensionless Analysis for Multi-Cylinder Engines 

Using the definitions with Eq. (19), it may be shown that the dimensionless actual 
external forces resultant acting in the x-direction is given by, 

   
2

2
1 2

1

1

1

cos ( )1ˆ ˆ ˆˆ 1 tan ( )
ˆ cos( )

ˆ
ˆ 1 sin( ) tan( )

ˆ

N
n

xt d n
n n

N

d n n
n

F m R R
R

R
m

R






 





  

 
   
 

 


  (26) 

Similarly, using the definitions in Eq. (21), it may be shown that the 
dimensionless actual torque acting on the slider-crankshaft mechanism is given 
by: 
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1 2
1
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1
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d n n
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T m R R
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m R R
R

  


 





   

 




                

(27) 

4 Equivalent Masses of Connecting Rod          

In this case, equivalent masses were used to reduce the problem to an algebraic 
form. The slider-crankshaft mechanism replaces the connecting rod by two 
equivalent masses, Am  and Bm , at its ends, A  and B , as shown in Figure 2. 
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Figure 2 Schematic of the slider-crankshaft mechanism for equivalent masses of 
the connecting rod. 

The summation of these two masses should equal the actual connecting rod mass 
. 

 d A Bm m m                                    (28) 

In addition, their mass centers should coincide with that of the connecting rod, 

  1 1A Bm R R m R 
                               

(29) 

From Eqs. (28) and (29), 

 1 1and 1
        
   

A d B d

R R
m m m m

R R                         
 (30) 

At the piston pin, mB is added to the mass of piston pm  to determine the total 

joint mass, 

  p Bm m m                                    (31) 

Applying the linear and angular momentum principle in the x-direction to the 
slider-crankshaft mechanism for equivalent masses of the connecting rod gives 
the equations of motion defined in Eq. (32), 

     1 sin sin        xe r A

d
F m r m r mx

dt  
  (32) 

From which, 

       2 2
1 1cos sin cos sin                xe r r A AF m r m r m r m r mx

  
(33) 

Substituting Eq. (5) into Eq. (29) gives, 
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Similarly, the linear and angular momentum principle can be used in the y-
direction for the slider-crankshaft mechanism for equivalent connecting rod 
masses, yielding the following equations of motion:  

     1 cos cos       
ye r A

d
F m r m r

dt
    (35) 

From which, 

       2
1 sin cos       

ye r AF m r m r                   (36) 

Finally, the equivalent torque exerted on the crankshaft may be determined using 
the previous equations. The result is given by 

 sin cos    e xe yeT F r F r                          (37)   

Substituting Eqs. (34) and (36) into Eq. (37) yields 
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   (38)  

4.1 Lagrange’s Trigonometric Identities 

Similar to the development of Eqs. (34), (36), and (38), the equivalent total 
resultant of all external forces acting in the x-direction and y-direction and the 
equivalent torque on the slider-crankshaft mechanism with a multi-cylinder 

engine can be computed by setting n   and n   in Eqs. (34), (36), and 

(38), where n  and n  are defined by Eq. (16). Using these equations, the 

equivalent total external forces resultant acting in the x-direction and y-direction 
and the torque on the slider-crankshaft mechanism may be computed as, 

 
22

2 2 2

1 1
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(38) 

and 

 0 yetF                                                     (39) 
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4.2 Dimensionless Analysis 

In order to express Eq. (34) and (36) in dimensionless form, the following 
definitions are used: 

 
1 1 1 1

2 2 2 2

2 2 2 2
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R rR R rR r rr m m m m m m

F mr F F m r F T mr T

F mr F F m r F T mr T

     (42)          

4.3 Dimensionless Analysis for Single-Cylinder Engine 

Using the definitions with Eq. (34), (36), and (38), it may be shown that the 
dimensionless equivalent external forces resultant and the torque exerted on the 
crankshaft are given by assuming that the angular velocity of the crankshaft is 
constant: 

     
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  (43)             
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ˆ ˆ ˆ ˆ sin   ye r AF m r m        (44)  
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Eqs. (43), (44), and (45) are the reduced forms of Eqs. (23), (24), and (25), 

respectively. 

4.4 Dimensionless Analysis for Multi-Cylinder Engine 

Using the definitions given in Eqs. (39) and (41), it may be shown that the 
dimensionless equivalent external forces resultant and the torque exerted on the 
crankshaft are given by 
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Eqs. (46) and (47) are the reduced forms of Eqs. (26) and (27), respectively. 
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5 Results and Discussion 

5.1 Resultants of All External Forces Exerted in the X-Direction 

The results of the external forces resultant acting in the x-direction of the actual 
and the equivalent connecting rod are shown below. Lagrange’s trigonometric 
identities were used to simplify the analysis that is presented in this paper for the 
actual and the equivalent connecting rod mass. Eq. (23) was used to calculate the 
dimensionless external forces resultant acting in the x-direction of a single-piston 
engine. The design parameters were assumed for calculation purposes. The 
results are indicated by the solid line in Figure 3 for one revolution of a one-piston 
ICE. The equivalent result of Eq. (43) is shown by the dashed line, which matches 
the results of the actual mass very well.  

In many applications, multiple pistons are used in the same ICE. The resultant of 
external forces acting in the x-direction for these IC engines can be determined 
using Eq. (26) for the actual connecting rod, while Eq. (46) is used for the 
equivalent mass connecting rod.  

 

Figure 3 Dimensionless external forces resultant acting in the x-direction of a 
single-piston engine. 

Figure 4 show the results for multi-cylinder engines (N = 2, 3, 4, 5, and 6, 
respectively). From these figures, it can be seen that the comparison between the 
actual and the equivalent resultant of all external forces acting in the x-direction 
during one revolution of the engine have good agreement. It can be seen that the 
deviation of the results of the equivalent mass approximation from the actual 
results increases as the number of pistons increases. However, the difference is 
seen only in the maximum values of the resultant forces and it is less than 10% 
in the worst case, which confirms that the model simplification does not affect 
the accuracy of the model in representing the resultants. In addition, it can be seen 
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that the largest external forces resultant acting in the x-direction was exerted by 
the single-cylinder engine. 

 
 

(a) (b) 

(c) (d) 

 
(c) 

Figure 4 Dimensionless external forces resultant acting in the x-direction of a (a) 
two-, (b) three-, (c) four-, (d) five-, and (e) six-piston engine. 
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5.2 External Forces Resultant Acting in the Y-Direction 

Figure 5 represents the external forces resultant acting in the y-direction for the 
actual and the equivalent connecting rod mass calculated by Eq. (24) and Eq. 
(44). Eq. (24) was used to calculate the dimensionless external forces resultant 
acting in the y-direction of a single-piston engine, which is indicated by the solid 
line in Figure 5 for one revolution of a one-piston IC engine. The equivalent result 
of Eq. (44) is shown by the dashed line. As shown in the figure, the external forces 
resultant acting in the y-direction for the actual and the equivalent connecting rod 
have good agreement. The external forces resultant acting in the y-direction for 
the actual and the equivalent connecting rod for multi-cylinder engines is 
essentially zero. 

 

Figure 5 Dimensionless external forces resultant acting in the y-direction of a 
single-piston engine. 

5.3 Torque Acting on the Crankshaft 

Figure 6 shows the torque imbalance acting on the crankshaft calculated from 
Eqs. (25) and (45) for the actual and the equivalent mass connecting rod, 
respectively, plotted versus crankshaft angle. The result for the actual connecting 
rod mass is shown by the solid line in Figure 6, while the result for the equivalent 
mass is illustrated by the dashed line for one revolution of a one-cylinder IC 
engine. As shown in Figure 6, the actual torque imbalance acting on the 
crankshaft is very close in magnitude to the equivalent torque acting on the 
crankshaft, which proves the validity of the simplified model.  
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Figure 6 Dimensionless torque exerted on the crankshaft in a one-cylinder 
engine. 

While the one-cylinder engine is of great interest, many engines with a slider-
crankshaft mechanism use multiple cylinders in the same engine. The total actual 
torque exerted on the crankshaft for those engines may be computed using Eq. 
(27), while the total equivalent torque applied on the crankshaft for these engines 
may be evaluted using Eq. (47).  

Figure 7 shows the results for multi-cylinder engines for the actual and the 
equivalent connecting rod mass. It can also be seen that the maximum torque 
imbalance was exerted by the engine with two cylinders. It can be seen that the 
deviation of the results of the equivalent mass approximation from the actual 
results increases as the number of pistons increases. However, the difference is 
seen only in the maximum values of the resultant forces and it is less than 10% 
in the worst case, which confirms that the model simplification does not affect 
the accuracy of the model in the representation of those torques. It is worth 
mentioning that since each engine has cylinder assemblies with the same size, the 
scale factor which the amplitude requires to be multiplied by for the purpose of 
determining dimensional torque will not change and is always 𝑚𝑟ଶ𝛼ଶ. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure 7 Dimensionless torque applied on the crankshaft in a (a) two-, (b) three-
, (c), four-, (d) five-, and (e) six-cylinder IC engine. 

6 Conclusions 

This paper presented a new way of analyzing and modeling the dynamics of a 
crankshaft-connecting rod system, which may be used for single- and multi-
cylinder reciprocating engines. The ultimate goal of multi-cylinder reciprocating 
engine analysis is to find an easy procedure that gives accurate solutions because 
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certain simplifications are used to minimize the problem to an algebraic form for 
the cases of the actual and the equivalent connecting rod mass. Lagrange’s 
trigonometric identities were used in order to simplify the two cases. The 
conclusions supported by the results of this paper are: 

1. The proposed model based on Lagrange’s trigonometric identities provides 
great simplification to the dynamics of the crankshaft-connecting rod system 
while keeping good accuracy for actual and equivalent connecting rods by 
minimizing the problem to an algebraic form.  

2. The largest external forces resultant acting in the x-direction is exerted by the 
single-cylinder engine. The next largest external forces resultant acting in the 
x-direction is exerted by the two-cylinder engine, followed by the three-
cylinder engine, the four-cylinder engine, the five-cylinder engine, and the 
six-cylinder engine, as shown in Figure 4. 

3. The largest resultant of torque imbalance acting on the crankshaft was exerted 
by the two-cylinder engine. The next largest resultant of torque acting on the 
crankshaft was exerted by the one-cylinder engine, followed by the three-
cylinder engine, the four-cylinder engine, and it is negligible in five- and six-
cylinders engines, as shown in Figure 7. 

4. The external forces resultant exerted in the x-direction and the torque 
imbalance exerted on the crankshaft can be eliminated by using seven or more 
cylinders. 

5. The analysis also revealed that the values of all external forces resultants 
exerted in the y-direction are equal to zero for multi-cylinder engines. 

Nomenclature 

x   Instantaneous system velocity in the x-direction 
y   Instantaneous system velocity in the y-direction 

xF  The external forces resultant acting in the x-direction 

yF  The external forces resultant acting in the y-direction 

xeF  The resultant of all external forces acting in the x-direction 

yeF  The resultant of all external forces acting in the y-direction 

rI   The crankshaft mass moment of inertia about its mass center 

dI   The connecting rod mass moment of inertia about its mass center 

r   Crankshaft length  
R   Connecting rod length  

rm   Crankshaft mass  
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dm   Connecting rod mass  

pm   Piston mass  

1r  Crankshaft mass center location  

1R   Connecting rod mass center location  

Tz
 Torque exerted on the crankshaft 

x   Instantaneous displacement of the piston 
   Crankshaft angular displacement  
   Crankshaft angular velocity  
   Connecting rod angular displacement of the  

   Connecting rod angular velocity  
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