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Abstract. Climatic conditions and land cover play crucial roles in influencing the 

process of carbon uptake through vegetation. This study aimed to analyze the 

effect of climate variability on carbon uptake of four different land covers in Jambi 

Province, Indonesia. The four land cover types studied were: forest, shrub, grass, 

and irrigated soybean, based on Community Land Model version 5. Forest was 

found to have the highest net primary production (NPP) compared to the other 

land covers. Seasonal climate variability showed no major effect on NPP and gross 

primary production (GPP). However, GPP and NPP experienced significant 

declines during El Niño Southern Oscillation (ENSO), particularly in 2015. 

Carbon use efficiency (CUE = NPP/GPP) was also affected by ENSO, where CUE 

decreased during El Niño, particularly in October and November with an increased 

number of days without rainfall. In addition, the difference between latent (LE) 

and sensible heat (H) flux, denoted as (LE-H), decreased from August to 

November. This difference was highly correlated with NPP. This result indicates 

that when water supply is low, stomata will close, thereby reducing photosynthesis 

and transpiration, and allocating more of the available energy to sensible heat flux 

rather than latent heat flux. 

Keywords: CUEl latent heat; ENSO; land use; NPP; sensible heat. 

1 Introduction 

Vegetation on the land surface influences the absorbance of atmospheric carbon, 

where carbon is fixed by plants into organic compounds through photosynthesis. 

This carbon flux is referred to as gross primary production (GPP) [1]. In terrestrial 

ecosystems, GPP is the largest carbon flux, which activates several ecosystem 

functions, including growth and respiration [2]. The part of GPP used for plant 

respiration is known as autotrophic respiration (Ra), while the part used for the 

formation of the stem, leaf, root, and fruit biomass is referred to as net primary 

production (NPP) [3]. In terrestrial ecosystems, NPP is the main component of 
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energy and mass transformation. In addition, terrestrial NPP provides a major 

portion of the food supply essential for human wellbeing [4]. 

Carbon uptake in terrestrial ecosystems is influenced by land cover type and 

environmental conditions such as climate [5]. Each land cover type has a different 

ability in terms of carbon absorbance [6]. Forests help mitigate climatic change 

by sequestering carbon from the atmosphere and storing it in tree biomass. 

Tropical forests store 212 gigaton carbon per year in their trees alone [7]. 

Furthermore, forests are an important component of the terrestrial carbon cycle, 

as they typically store more carbon than other land cover types [8]. Based on a 

study in China, forest-stored carbon is 32%, 300%, and 150% higher than that of 

grassland, shrubland, and cropland, respectively [9]. An observation from 

tropical Amazon shows that carbon sequestration in tropical forests starts to 

decline because of an increase in tree mortality [10,11]. From 1983 to 2011, 

carbon sequestration in the Amazon tropical forest decreased at a rate of −0.034 

Mg C ha−1 year−2 [11]. Meanwhile, shrubs have been found to grow faster than 

trees and play a strategic role in carbon sequestration [12]. Two hypotheses have 

been formulated to explain the faster growth of shrubs compared to trees. Firstly, 

shrubs with several stems ensure that even if one dies, the plant will continue to 

grow and flourish [12]. Secondly, short shrub stems have three structural 

characteristics that outperform tall tree stems with regard to survivability [12]. 

According to Sha et al. (2020) in [13], grasses are also crucial in the global carbon 

cycle and they also contribute to carbon sequestration. Each land cover type has 

a positive or negative impact on the carbon balance. Therefore, analyzing the 

relationship between land cover type and carbon sequestration is necessary. 

Climatic conditions also affect the process of carbon sequestration in plants, 

particularly temperature and rainfall [14]. This condition is due to different types 

of vegetation showing different growth patterns and differences in the response 

of carbon allocation to water and heat stress [15]. Under unfavorable climatic 

conditions such as drought, plants generally carry out more respiration, whereas 

the allocation of carbon for plant biomass decreases [16]. ‘Unfavorable climatic 

conditions’ refers to a state outside the optimum that causes a decrease in 

productivity. According to Cavaleri et al. (2017) [17], tropical rainforests 

experienced a 7% increase in respiration and a 10% reduction in GPP during El 

Niño in 1998. However, according to Zhang et al. (2016) [18], forests do not 

show a significant change in leaf area index (LAI) under drought. However, non-

forest land covers such as grasses and shrubs show rapid changes in canopy 

characteristics because of water stress [15,19]. 

In Indonesia, extremely dry conditions often occur during El Niño [20]. El Niño 

causes dry seasons to be 1 to 5 months longer than normal, which often leads to 

forest fires [21,22]. Within Indonesia, Jambi Province in Sumatra is one of the 
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regions with a particularly strong decrease in rainfall during El Niño [22]. 

Drought also has a significant impact on carbon sequestration during this period 

in Jambi Province. According to Stiegler et al. (2019) [23], El Niño led to an 86% 

decrease in carbon sequestration of oil palm plantations in 2015. However, the 

impact of climatic variability on carbon sequestration is still unknown for other 

land covers in Jambi Province. 

The expansion of oil palm plantations, rubber plantations, dryland agriculture, 

transmigration, mining activities, and forest fires is the driving factor of 

deforestation in Jambi [24,25]. The conversion of forest to oil palm and rubber 

plantations causes significant losses in plant and animal lives and a significant 

change in microclimate [26]. However, based on remote sensing data in Jambi, 

forests usually do not directly become oil palm and rubber plantations; transition 

plants such as grass, shrub, and dryland agriculture also arise [27]. Therefore, this 

study aimed to analyze the differences between primary production in forests and 

some transition plants, including grasses, shrubs, and soybean plants. It also 

aimed to determine the influence of climatic variability on primary production 

and carbon use efficiency (CUE) of four land covers. CUE is defined as the 

proportion of carbon used for growth with carbon absorbed by vegetation through 

photosynthesis [28]. CUE is an important regulator for carbon sequestration in 

the ecosystem [29]. In the present study, primary productivity was simulated 

using Community Land Model version 5 (CLM5). 

2 Method 

2.1 Model description and setting 

This study used the Community Earth System Model, which is a coupled 

community model that includes ocean, atmosphere, land, rivers, sea ice, and land 

ice [30]. Only the land component, CLM5, was activated in the present study 

[31]. In default CLM5, vegetation characteristics such as LAI are prescribed from 

satellite phenology (SP), while vegetation states are predicted in the 

biogeochemistry (BGC) module [31]. Based on the simulation of biomass, LAI, 

ecosystem carbon pools and fluxes, energy exchange, and terrestrial water 

storage, CLM5 has better performance than previous versions [31]. The present 

study used point simulations at a tropical rain forest site, i.e., the Harapan Forest 

1 (HF1) plot of the Ecological and Socioeconomic Function of Tropical Lowland 

Rainforest Transformation Systems (EFForTS, Figure 1) [26]. Harapan Forest is 

a tropical forest in lowland Jambi that has experienced intensive area loss [32]. 

The simulations were divided into three parts, namely, spin up, historical 

conditions, and current conditions. This study used the CLM5-BGC module, so 

spin up was required. Spin up is a standard procedure used in CLM5 to attain 
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carbon, water, and energy equilibrium [31]. The spin up procedure included 

accelerated spin up as well as normal spin up. In accelerated mode, carbon and 

nitrogen, which decompose slowly, are exposed to acceleration [31,33]. Normal 

spin up used a pre-industrial CO2 concentration (284.7 ppm). During the 

accelerated spin up procedure, meteorological data from 1942 to 1971 were 

repeated for a 300-year simulation to reach equilibrium between the carbon and 

nitrogen pools. This was followed by 300 years of normal spin up.  

The historical simulation covered the period from 1951 to 2000. The current 

simulation covered the period from 2001 to 2015 and used a transient CO2 

concentration and broadleaf evergreen tropical forest plant functional types 

(PFTs). We performed a clear cut [34] in 2000 and replaced forest with shrub, 

grass, and soybean. Then, we performed the current simulation with forest, shrub, 

grass, and soybean. The PFTs of broadleaf evergreen shrub and C3 grass were 

used for shrub and grass, respectively. Soybean was represented by the PFTs of 

irrigated tropical soybean. The planting period of soybean was set from 

November to February. In this simulation, the vegetation state, such as height, 

stem, and LAI, was prognostically computed through the activation of the 

biogeochemistry (BGC) model. The vegetation parameters were not obtained 

from Jambi Province, but the default data from the model were used. 

CLM5 can simulate biogeophysical and BGC processes in land. The 

biogeophysical process in CLM5 measures the surface energy balance using the 

following equation: 

 S↑ − S↓ + L↑ − L↓ = λE + H + G,  (1) 

where S↑ (S↓) is the upwelling (downwelling) solar radiation; L↑ (L↓) is the 

upwelling (downwelling) longwave radiation; λ is the latent heat of vaporization; 

E is the evaporation; H is the sensible heat flux; and G is the ground heat flux. 

The value of the left-side equation is called net radiation (Rn). Solar radiation 

absorbed by vegetation and ground was calculated based on incident direct beam 

and diffuse solar flux. Sensible heat flux (H) and latent heat flux (LE) were 

processed using the following equations [35]: 

 H = −ρatm Cp ((θatm − θs)/rah),  (2) 

 LE = −ρatm ((qatm − qs)/raw),  (3) 

where ρatm is the density of air (kg m-3); cp is the specific heat capacity of air (J 

kg–1 K–1) ; θatm − θs is the difference between the potential temperature of the 

atmosphere at reference height zatm,x (m) and the surface (K); qatm − qs is the 

difference between the specific humidity of the atmosphere at reference height 

zatm,x (m) and the surface (kg kg−1); rah and raw are the aerodynamic resistance 
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values for sensible heat and water vapor transfer, respectively. In the 

biogeochemical process, CLM5 solves carbon and nitrogen cycling based on the 

natural vegetation, crop, or soil. This cycling varies depending on the specific 

PFT types. GPP, NPP, and respiration were calculated in the biogeochemical 

model of CLM5. The detail process and formula are explained in Lawrence et al. 

(2018) [35]. 

 
Figure 1 Study area for the EFForTS project in the HF1 plot, Jambi Province. 

2.2 Model Evaluation 

The Pearson correlation was used to test the output model [36]: 

 r = 
∑  (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√∑  (𝑥𝑖−�̅�)2 ∑(𝑦𝑖−�̅�)2
,  (4) 

where r is the correlation coefficient; xi is the value from observation; �̅� is the 

mean of the observation values; yi is the value of the model output, and �̅� is the 

mean of the model output values. This study only evaluated two variables, 

namely, net radiation and latent heat flux, because the plot in the study area only 

had a meteorological station. Net radiation was calculated from observation data 

using the following equation: 

 Rn = (1 − α)Rs + σT4 (0.34−0.14√𝑒𝑎) (1.35 
𝑅𝑠

𝑅𝑠𝑜
 − 0.35),  (5) 
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where α is the albedo; T is the hourly air temperature (K); σ is the Stefan–

Boltzmann constant (2.043 × 10−10 MJ K−4 m-2 h−1); Rs is the solar radiation (MJ 

m−2 h−1); Rso is the clear sky radiation (MJ m−2 h−1), and ea is the actual vapor 

pressure (kPa). In addition, the latent heat flux was determined by multiplying 

energy for evaporation (L) with evapotranspiration. Potential evapotranspiration 

(ET0) was defined on the basis of the FAO Penman–Monteith method [37]: 

 𝐸𝑇0 =
0,408 ∆ 𝑅𝑛+ 𝛾

37

(𝑇+273)
𝑈2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑈2)
,  (6) 

 

where es is the saturation vapor pressure (kPa); U2 is the average hourly wind 

speed at 2 m (m s−1); ea is the actual hourly vapor pressure (kPa); γ is the 

psychrometric constant (kPa °C−1), and Δ is the slope curve of vapor-pressure–

air temperature (kPa °C−1). 

2.3 Data 

CRUNCEP atmospheric forcing data for 1951-2015 were used, i.e., solar 

radiation, air temperature, total precipitation rate, wind speed, specific humidity, 

and pressure [38]. The spatial and temporal resolution of the data were 0.5° x 0.5° 

and 6-hourly, respectively. In addition, data on aerosol and concentration of CO2 

were used, which were taken from https://svn-ccsm-

inputdata.cgd.ucar.edu/trunk/inputdata. Soil texture information, i.e., clay and 

sand fraction in the top 200 cm, was obtained from Hassler et al. (2015) [39]. The 

information about El Niño and its intensity was obtained from 

https://ggweather.com/enso/oni.htm. We used data from the 2002, 2006, 2009, 

and 2015 El Niño events for analysis. 

2.4 Data Analysis 

Climatic variability analysis was conducted to reveal seasonal and annual 

variations. These seasonal and annual variations focused on the dry and wet 

seasons and El Niño years, respectively. Furthermore, the dry and wet seasons 

were determined based on the climatological data of precipitation. The dry/wet 

season was defined by monthly rainfall below/above 150 mm/month [40]. The 

average data within the period of 2001-2015 were also compared with those of 

El Niño years to understand the impact of El Niño on carbon uptake. The 

difference between latent and sensible heat fluxes (LE-H) represented climatic 

condition, while NPP, GPP, and Ra indicated that these fluxes were related to the 

carbon cycle. Moreover, the carbon uptake of different land-use cover types was 

analyzed using CUE: 

 CUE = NPP/GPP (7) 
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3 Result  

3.1 Model Evaluation 

The model was evaluated to analyze its performance in capturing real conditions. 

CLM5 was evaluated based on two output data, i.e., net radiation and latent heat 

flux. The plot in the study area only had a meteorological station, which did not 

measure carbon flux. Thus, the output model was only evaluated based on net 

radiation and latent heat flux. The FAO Penman–Monteith method was used to 

compute the LE observations. With a p-value below 0.05, the coefficients of 

correlation between the model output and the observation data for net radiation 

and latent heat flux were 0.89 and 0.87, respectively (Figure 2), indicating that 

the CLM5 output almost matched the observation data. Therefore, based on the 

coefficient correlation value, CLM5 performed well in simulating the 

biogeophysical process in land. 

 

Figure 2 Coefficient correlation between the hourly model output and the 

observational data for net radiation (a) and latent heat fluxes (b). 

3.2 Climate Variables in Jambi 

Rainfall in Jambi Province varies seasonally. According to Aldrian & Dwi 

Susanto (2003) [41], Jambi has an equatorial type of rainfall, where the peak of 

the rainy season occurs twice per year, in the periods March-April and November-

December. The dry season in Jambi Province occurs from June to September 

(Figure 3a). This season is characterized by monthly rainfall below 150 

mm/month [40]. The mean air temperature in Jambi is approximately 27.2 °C to 

28.5 °C (Figure 3b). Air temperatures rise in May and October. Solar radiation 

also has two peaks, which occur in the periods March-April and September-

October (Figure 3c). Jambi is located near the equator, so the sun is above the 

area twice. When the sun is above the equator, incoming solar radiation in Jambi 

increases. 
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Figure 3 Left side is climatological and El Niño data of CRUNCEP consisting 

of rainfall (a), temperature (b), and incoming solar radiation (c) at the HF1. The 

right side is the anomaly of rainfall (d), temperature (e), and incoming solar 

radiation (f) at the HF1 during weak (2006), moderate (2002), and strong (2015) 

El Niño. The shaded area shows the dry season.  

Jambi Province is an area that is strongly influenced by El Niño, where the dry 

season becomes drier than in normal conditions [22]. The average annual rainfall 

in Jambi is 2,183 mm, which decreases to 1,658 mm during El Niño. During El 

Niño, rainfall in Jambi decreases from May to October (Figures 3a and 3d). The 

impact of El Niño on rainfall in Jambi depends on its strength (Figure 3d). Strong 

El Niño events as occurred in 2015 have a more pronounced impact than weak 

and moderate El Niño. Rainfall in Jambi can reduce up to 200 mm/month during 

El Niño.  
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El Niño affects not only rainfall but also other climate variables such as 

temperature and solar radiation. The mean temperature increased during El Niño 

by up to 0.25 °C, particularly in the dry season (Figure 3b). The increasing 

temperature during strong El Niño is greater than that during weak and moderate 

El Niño. Sometimes it can create hotspots that trigger forest fires in parts of Jambi 

Province [42]. Solar radiation increases during El Niño up to 30 W/m2, 

particularly during moderate El Niño (Figure 3c). However, solar radiation during 

strong El Niño has a smaller increase than during medium and weak El Niño, and 

sometimes the value also decreases (Figure 3f). During the strong El Niño event 

in 2015, a forest fire occurred that caused Jambi to be covered by smoke [42]. 

According to Stiegler et al. (2019) [41], during El Niño in 2015, incoming solar 

radiation decreased by 35% compared to normal conditions. Diffuse radiation 

became primary shortwave radiation for almost two months, from mid-September 

to mid-November, with a fraction increase from 0.21 in normal conditions to 0.99 

during the haze period. 

3.3 Differences in Primary Production in Forest, Grass, Shrub, 

and Soybean Land Cover 

The four land cover types differ in their ability to absorb carbon, with GPP being 

larger in forest, grass, and shrub compared to soybean (Figure 4). This because 

forests, grasses, and shrubs are evergreen plants. The C-uptake or GPP from these 

three land covers is high, i.e. approximately 2.7 kgC/m2/year. However, most of 

the carbon absorbed is used for plant respiration. Meanwhile, only a small amount 

of carbon is stored in the form of plant biomass. Forest stores 1.04 kgC/m2/year 

as biomass, while the remaining 1.65 kgC/m2/year is used for respiration. Grass 

and shrub store 1.08 and 0.73 kgC/m2/year as biomass, while the remaining 1.6 

and 2.03 kgC/m2/year are used for respiration, respectively. The respiration of 

shrub was found to be 0.38 kgC/m2/year higher than that of forest because of its 

faster growth than trees [12]. In the case of soybean, the carbon produced by 

photosynthesis is mostly stored in the form of plant and fruit biomass. Moreover, 

the carbon sequestration in soybean was 0.03-0.37 kgC/m2/year lower than that 

in the other three land covers over 15 years. In seasonal crops, a non-planting 

period from March to September was identified, during which the land is open 

with no carbon absorption by plants. 
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Figure 4 Estimated yearly average carbon flux from CLM5 output in forest, 

grass, shrub, and soybean from 2001-2015.  

3.4 Effect of Climate Variability on Surface Energy Balance 

Water availability in land can be identified based on biogeophysical processes, 

particularly from the partition of net radiation into sensible heat flux and latent 

heat flux. Sensible heat flux is energy for heating up air, whereas latent heat flux 

is energy for evapotranspiration. The amount of allocation energy in these two 

components is complementary, which indicates that biogeophysically, the 

allocation of energy will be prioritized for latent heat flux in areas with sufficient 

water. Therefore, latent heat flux is always greater than sensible heat flux when 

water is available. 

The difference between latent heat flux and sensible heat flux (LE-H) in forest, 

shrub, grass, and soybean (during planting periods) is high, i.e., approximately 

90-120 W/m2 during normal conditions (Figure 5a). This occurs because Jambi 

has high annual rainfall [25,26], therefore, water is always available throughout 

the year. However, LE-H declines during El Niño. The decline of LE-H in forest, 

shrub, grass, and soybean was approximately 20-50 W/m2, and occurred 

particularly from September to October (Figure 5). Among the land covers, the 

decline of LE-H in forest was the lowest. During September to November, LE-H 

in forest decreased by approximately 21 W/m2, followed by grass, shrub, and 

soybean by approximately 29, 36, and 44 W/m2, respectively. 
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Figure 5 Difference between latent heat flux and sensible heat flux (LE-H) 

estimated from CLM5 output for forest, grass, shrub, and soybean (a) and its 

anomaly during El Niño (b). The solid line represents the average monthly data 

from 2001-2015, while the dashed line represents the average of El Niño. The 

shaded area shows the dry season. 

In general, forest had higher LE-H than shrub, grass, and soybean in normal 

conditions and during El Niño. Forest has higher surface roughness than shrub, 

grass, and soybean. Given their rough surface, forest canopies are better at 

dissipating heat than aerodynamically smooth land covers [43] such as grass, 

shrub, and soybean. Therefore, sensible heat flux for forest is lower and LE-H is 

higher than for smooth land covers. Forests with a dense canopy can reduce run-

off. In addition, forest trees can improve soil infiltration and groundwater 

recharge [44]. Therefore, forests can conserve water and will not immediately 

experience a water shortage in the case of rainfall deficiency. During drought, 

forests with deep roots can take water from deeper soil layers [45], so the LE-H 

decrease is low. In contrast, grass, shrub, and soybean cannot conserve water. In 

addition, these three land-use types have shorter roots than forests. Therefore, the 

LE-H decrease for grass, shrub, and soybean was greater than for forest. Soybean 

showed the highest decrease in LE-H from September to October. During this 

period, the land becomes bare, so more of the available energy will be used for 

warming up the surface, and LE-H will decline significantly. 

3.5 Effect of Climate Variability on Primary Productivity 

Carbon sequestration that occurs terrestrially is influenced by several factors, 

some of which are climate variables such as temperature, rainfall, and radiation 

[46,47]. Solar radiation decreases, temperature increases, and rainfall decreases 

can reduce carbon sequestration [48]. In addition, LE-H has an impact on carbon 

sequestration. Changes in LE-H are correlated with NPP for all land cover types 

during El Niño (Table 1), indicating the close control of water and CO2 fluxes. 
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Table 1 Correlation between NPP and LE-H from CLM5 output during El Niño. 

No Land cover 
Correlation between 

NPP and LE-H 

1 Forest 0.76 

2 Grass 0.60 

3 Shrub 0.89 

4 Soybean 0.89 

In general, carbon sequestration in forest, shrub, and grass was not significantly 

affected by seasonal climatic variability (Figure 6). The dry season did not 

significantly impact the decrease in carbon absorption, as GPP, NPP, and Ra were 

relatively constant throughout the year. The monthly average GPP, NPP, and Ra 

values for forest were approximately 222.2, 86.2, and 135.9 gC/m2/month, 

respectively. Meanwhile, the monthly average GPP, NPP, and Ra values for grass 

(shrub) were approximately 222.5 (216.5), 88.9 (60.8), and 133.5 (155.7) 

gC/m2/month, respectively. However, for soybean, the GPP, NPP, and Ra values 

were high during the growing season in October-February. The monthly average 

GPP, NPP, and Ra values during the growing season were approximately 218.4, 

139, and 79.1 gC/m2/month, respectively. In contrast, during the non-planting 

period from March to August, the GPP, NPP, and Ra values became zero. 

 

Figure 6  Carbon flux from CLM5 output for forest, grass, shrub, and soybean. 

The solid line represents the average of the monthly data from 2001 to 2015, while 

the dashed line represents the average for El Niño. The shaded area shows the dry 

season. 

During El Niño, carbon sequestration in forest, grass, and shrub significantly 

decreased from August to November (Figure 6). Meanwhile, the peak of the 

decrease occurred in October and November. Therefore, further analysis of the 

impact of El Niño on primary production focused on October to November. 
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Between 2001 and 2015, the average net carbon flux, or NPP, in October-

November for forest, grass, shrub, and soybean land cover was 82, 77, 61, and 96 

gC/m2/month, respectively. During El Niño, the average net carbon flux, or NPP, 

in October-November for forest, grass, and shrub decreased to 51, 22, and 27 

gC/m2/month, respectively. 

The net carbon flux for forest decreased by 38%, followed by shrub (55%) and 

grass (71%). Grass had a higher decrease in net carbon uptake than forest and 

shrub. According to Breshears et al. (2016) [49], drought conditions that are drier 

and hotter reduce water availability in grassland systems and trigger grass 

mortality. Shrub is more adaptive than grass in drought conditions [49], although 

the decrease in carbon flux is also high. Under dry conditions and high 

temperatures, the physiological condition of grass and shrub will deteriorate. 

Stomatal conductance will decrease to suppress the transpiration rate of the plants 

[50,51]. In addition, the decrease in stomatal conductance decreases 

photosynthesis, as indicated by a reduction in GPP. Forest had the lowest 

decrease in net carbon flux. This could be influenced by the availability of water 

in this ecosystem. Based on the LE-H value, the decrease in water availability for 

forest during El Niño was lower than for grass and shrub. Therefore, stomatal 

conductance for forest, which affects photosynthesis, will remain higher than for 

grass and shrub. In soybean, the net carbon flux did not decrease because it used 

an irrigation system, so water was always supplied. Thus, a rainfall deficit over a 

longer period will not significantly affect carbon absorption through 

photosynthesis. 

Moderate (2002), weak (2006), and strong (2015) El Niño events had different 

impacts on carbon sequestration in terms of GPP, NPP, and Ra (Figure 7). Carbon 

sequestration experienced a significant decline during the strong El Niño event in 

2015 in all vegetation (Figure 7), as Jambi Province experienced extreme drought 

within this period [52,53]. Extreme drought indicates dry conditions caused by a 

long period of rainfall deficit. According to Ma’rufah et al. (2017) in [52], most 

regions in Indonesia, including Jambi, experienced extreme drought in 2015 

based on the standardized precipitation index and vegetation health index. As 

mentioned above, during the strong El Niño event, a fire occurred that caused 

Jambi to be covered by smoke. This caused direct radiation entering the land 

surface to decrease and diffused radiation [23]. The decrease in radiation reaching 

the surface also inhibited photosynthesis, as carbon absorption was reduced [51]. 
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Figure 7 Average carbon flux from CLM5 output in October-November based 

on the 2001-2015 data, and moderate (2002), weak (2006), and strong (2015) El 

Niño. 

3.6 CUE in Forest, Grass, Shrub, and Soybean Land Covers 

Carbon use efficiency (CUE) is the ratio between NPP and GPP, which describes 

the proportion of assimilated carbon that is used for growth [28]. Among the four 

land covers, soybean had the highest CUE value during the planting period 

(Figure 8). The average CUE for soybean in the planting period was 0.77. This 

result indicates that most of the atmospheric carbon uptake was converted to plant 

biomass. Based on agricultural crop, a large amount of carbon is allocated to the 

harvested organ of the soybean during the reproduction phase [54]. CUE values 

were high in February, ahead of the harvest period. Forest, grass, and shrub had 

constant CUE values of 0.38, 0.39, and 0.29, respectively. This was due to the 

composition of plant biomass, which does not change as in agricultural crops 

[54]. 
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Figure 8 The carbon use efficiency (CUE = NPP/GPP) from the CLM5 output 

for forest, grass, shrub, and soybean. The solid line represents the average of the 

monthly data from 2001-2015, and the dashed line represents the average for El 

Niño. The shaded area shows the dry season. 

 

Figure 9 Average carbon use efficiency of the CLM5 output in October-

November from the 2001-2015 and moderate (2002), weak (2006), and strong 

(2015) El Niño.  

CUE is sensitive to changes in the environment such as temperature and water 

availability [28]. Seasonal climatic variability did not have a significant effect on 

CUE. Seasonal variability only caused a slight change in carbon sequestration 

[55]. This result indicates that no significant differences were observed in 
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environmental conditions between the dry and rainy seasons. However, CUE 

experienced a significant decline during El Niño. In general, the decline in CUE 

also occurred in October and November based on GPP and NPP. 

During moderate and weak El Niño, the decline in CUE for forest and shrub was 

lower compared to that during strong El Niño (Figure 9). In forest (shrub), during 

moderate and weak El Niño, CUE was 0.33 and 0.31 (0.28 and 0.39), 

respectively, whereas during strong El Niño, CUE became 0.07 (−1.08). For grass 

and soybean, no significant difference was observed among weak, moderate, and 

strong El Niño. During El Niño, the CUE of grass and soybean was approximately 

0.26 and 0.7, respectively. 

Extreme drought decreased water availability during the strong El Niño event in 

2015. This caused the GPP of plants to decrease. Among the four land covers, 

forest had the lowest CUE in 2015, even though it is better at conserving water 

(Figure 5). In addition, forests have greater biomass than grasses, shrubs, and 

soybean plants. Thus, the large decrease in CUE for forests during strong El Niño 

was due to high plant respiration, which led to low carbon allocation for biomass 

growth. Moreover, the negative CUE for shrub was due to a significant decrease 

in photosynthesis caused by stomatal closure, while plant respiration remained 

high.  

This result led to a negative NPP and a significant decrease in CUE. In grass, 

extreme drought only slightly decreased CUE because grass does not have high 

biomass. Thus, decreasing photosynthesis is not followed by high respiration in 

grass. In soybean, CUE remained high during strong El Niño because water was 

always available because of irrigation. Based on this result, shrub is most affected 

by strong El Niño because it will serve as a carbon emitter in extreme drought 

conditions. 

4 Discussion 

Climate variability has a considerable impact on climate variables in Jambi 

Province. During El Niño, the dry conditions cause an increased air temperature 

(Figure 3e). In addition, there is more incoming solar radiation due to less cloud 

cover, except during forest fires, which cause atmosphere closure by smoke 

(Figure 3f). El Niño also significantly reduces rainfall from May to October 

(Figure 3d). Changes in climatic variables can affect the water balance (shown 

by LE-H) and carbon sequestration. LE-H, GPP and NPP decreased from August 

to November during El Niño. There was a time lag between reduction of rainfall 

and reduction of LE-H, GPP, and NPP. The overall amount of rainfall does not 

provide an appropriate indication of the water available to affect carbon flux 

[56,57]. Soil moisture is a better indicator for the water available to affect carbon 
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flux than rainfall [58]. In this study, water availability is indicated by LE-H as a 

partition of the surface energy balance depending on soil moisture [59,60]. LE-H 

has a high correlation with the net carbon flux and is a better indicator of the 

water available to affect carbon flux than rainfall.  

Every land-use type responds differently to unfavorable climate conditions, as 

occur during El Niño. Forest is more tolerant to drought than grass and shrub. 

Forest can conserve water, so LE-H is still high in dry conditions. As a result, the 

net carbon flux does not decrease significantly during El Niño. In contrast, grass 

and shrub have low LE-H during the dry season, leading to a significant decrease 

in net carbon flux. During El Niño, LE-H for shrub is lower than for grass. 

However, grass has lower net carbon flux than shrub because low LE-H in grass 

occurs over a more extended period than in shrub. Soybean uses irrigation, so 

carbon flux for this land-use type is not affected by El Niño. Soybean has a higher 

CUE than the other land-use types because crop plants use most carbon 

absorption for plant biomass rather than for plant respiration. Based on carbon 

flux and CUE, forest is a land-use type that can adapt better to unfavorable 

climate conditions. Finally, it is crucial to protect forests from being degraded 

because, in the study area, the forests mostly turn to shrubs after fires, whereas 

shrubs are vulnerable to dry conditions. 

The carbon flux analyzed in this study was simulation model output, which was 

not validated with data from measurements. Further, we used global data for 

atmospheric forcing in CLM5, because meteorological measurements in the study 

area only started in 2014. Therefore, it should be noted that the data presented in 

this study are estimates of actual values. However, this estimation of actual values 

can be used for preliminary analysis. 

5 Conclusion 

Carbon sequestration was strongly affected by climatic conditions, including 

rainfall, solar radiation, and temperature. These meteorological parameters varied 

seasonally, although the seasonal climatic variability did not have a major effect 

on GPP and NPP. During El Niño, the mean temperature increased by up to 

0.25 °C, while the decrease in rainfall reached 200 mm/month. Incoming solar 

radiation can either increase or decrease. During El Niño, incoming solar 

radiation was high because of the absence of clouds in the sky. However, 

incoming solar radiation will decrease when forest fires occur, causing the 

atmosphere to be covered with smoke. This changing meteorological parameter 

could affect carbon flux. GPP and NPP significantly decreased during El Niño 

periods, which showed vulnerability to unfavorable climate conditions (long 

periods without rainfall, atmosphere covered with smog, and reduction of direct 

incoming radiation). Forest is more tolerant to drought compared to grass and 



 Vulnerability of Primary Productivity and Its Carbon Use 71 

 

shrub. Meanwhile, soybean has more stable carbon absorption because water 

availability on the land was maintained through irrigation. Based on all four land 

cover types, GPP and NPP decreased during weak and moderate El Niño. 

Furthermore, the CUE was significantly affected by El Niño, particularly during 

the strong El Niño event in 2015. The CUE also experienced a decline during 

October and November. Based on energy partition, the difference between latent 

and sensible heat fluxes (LE-H) decreased between August and November. In 

addition, NPP and LE-H were positively correlated, indicating the close coupling 

of the water and carbon fluxes.  
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