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Restricted Size Ramsey Number for Matching
versus Tree and Triangle Unicyclic Graphs of Order

Six
Elda Safitri, Peter John, and Denny Riama Silaban

Abstract—Let F , G, and H be simple graphs. The graph F
arrows (G,H) if for any red-blue coloring on the edge of F ,
we find either a red-colored graph G or a blue-colored graph
H in F . The Ramsey number r(G,H) is the smallest positive
integer r such that a complete graph Kr arrows (G,H). The
restricted size Ramsey number r∗(G,H) is the smallest positive
integer r∗ such that there is a graph F , of order r(G,H) and
with the size r∗, satisfying F arrows (G,H). In this paper we
give the restricted size Ramsey number for a matching of two
edges versus tree and triangle unicyclic graphs of order six.

Index Terms—Restricted size Ramsey number, matching
graph, tree graph, triangle unicyclic graph.

I. INTRODUCTION

G IVEN simple graphs F , G and H . We say F → (G,H),
if for any red-blue coloring on the edge of F , we found

either a red-colored graph G or a blue-colored graph H . A red-
blue coloring of F is called (G,H)− good if in the coloring
neither a red-colored graph G nor a blue-colored graph H is
found. If there is at least one (G,H) − good coloring in F ,
then we write F ̸→ (G,H).

For a graph F = (V,E), we denote the order and the size
of F as v(F ) and e(F ) respectively. A degree of a vertex v,
denoted by d(v), is the number of edges incident to vertex v.
The minimum degree of a graph F , denoted by δ(F ), is the
smallest degree of the vertices in F . The maximum degree of
a graph F , denoted by ∆(F ), is the greatest degree of the
vertices in F . A complete graph Kn is graph of order n that
any pair of vertices is adjacent. A matching graph tK2 is a t
disjoint union of K2. A cycle Cn is a connected graph of order
n that all vertices have degree 2. A tree graph is a connected
graph that do not contain any cycle. A triangle unicyclic graph
is a connected graph that contain exactly one triangle C3.

Let F and H be graphs. If H is a subgraph of F , then
F − H is the resulting graph by removing all edges of H
from F . For a vertex v ∈ V (F ), F − v is the resulting graph
by removing v and all its incident edges from F .

Given graph G and H with no isolates. The Ramsey number
of G and H , r(G,H), is the smallest positive integer r such
that a complete graph Kr satisfies Kr → (G,H). The size
Ramsey number of G and H , r̂(G,H), is the smallest positive
integer r̂ such that a graph F with the size of r̂ satisfies
F → (G,H). The restricted size Ramsey number of G and H ,
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Fig. 1. Lists of all tree graphs and triangle unicyclic graphs of order six.

r∗(G,H), is the smallest positive integer r∗ such that a graph
F with order of r(G,H) and size of r∗ satisfies F → (G,H).

The (restricted) size Ramsey numbers for small graphs
initially found by Harary and Miller in [1]. The research
is continued by Faudree and Sheehan [2]. They give the
(restricted) size Ramsey number for any pair of graphs of order
at most four. In 1998, Lortz and Mengersen [3] gave the size
Ramsey number and the restricted size Ramsey number for a
pair of forest graphs of order at most five. Until now, there
are many studies regarding the size Ramsey and restricted size
Ramsey numbers of graphs. Some results on the restricted size
Ramsey numbers of graph can be found in [4], [5], [6].

Silaban et al. [7] have given the restricted size Ramsey num-
ber for 2K2 versus dense connected graphs of order six. The
restricted size Ramsey number for 2K2 versus disconnected
graphs of order six are also given in [8]. We continue this
research by investigating the restricted size Ramsey number
for 2K2 versus tree and triangle unicyclic graphs of order six.

II. PRELIMINARIES

There are 112 non-isomorphic connected graphs of order
six. In Figure 1 we give all tree graphs and triangle unicyclic
graphs of order six.

Theorem 1 by Chvatal and Harary [9] gives the Ramsey
number for a pair of 2K2 versus any graph with no isolates.
This Ramsey number gives the order of a graph F that satisfies
F → (2K2, H), where H is any tree graphs or triangle
unicyclic graphs of order six.

Theorem 1 ([9]): For any graphs H with no isolates,

r(2K2, H) =

{
v(H) + 2, H is complete
v(H) + 1, otherwise

Silaban, Baskoro, and Uttunggadewa in [10], [11] gave
some Lemmas as a tool to prove if a graph F satisfies
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Fig. 2. Graph F with v(F ) = 7 and e(F ) = 10 such that F → (2K2, H1).

F → (2K2, H). Lemma 1 gives the conditions when F →
(2K2, H) for any simple graph H . Lemma 2 gives the property
of F that satisfies F → (2K2, H) for any simple graphs H
with no isolates. Lemma 3 gives the property of F that satisfies
F → (2K2, H) for H graphs that contains a cycle.

Lemma 1 ([10]): Let H be a graph. F → (2K2, H) holds
if and only if the following conditions are satisfied:

1) H ⊆ F − v for every v in F and
2) H ⊆ F − C3 for every C3 in F .
Lemma 2 ([11]): Let H be a graph with no isolates. If

F → (2K2, H) and v(F ) = r(2K2, H), then δ(F ) ≥ 2.
Lemma 3 ([11]): For n ≥ 4, let H be a graph with v(H) =

n and H contains a cycle of length t, Ct, for 3 ≤ t ≤ n. If
F → (2K2, H), then F contains at least two Ct which do not
share a vertex nor incident to a C3.

III. MAIN RESULTS

Observe that H1, H2, H3, and H4 are all tree graphs of
order six. We give the restricted size Ramsey numbers for 2K2

versus each of these graphs in separate theorems as follows.
Theorem 2: r∗(2K2, H1) = 10.

Proof: By Theorem 1, we know that r(2K2, H1) = 7. To
show the upper bound, let F be a graph with v(F ) = 7 and
e(F ) = 10 as shown in Figure 2. We can see that for vertex
v1 in F with d(v1) = 5 and vertex v2 in F with d(v2) = 4,
satisfy H1 ⊆ F − v1 ⊆ F − v2, and for vertex v3 in F
with d(v3) = 3 and vertex v4 in F with d(v4) = 2, satisfy
H1 ⊆ F − v3 ⊆ F − v2. Graph F only have one triangle C3

that is induced by vertices of degree 2, 3, and 5, and we can
show that H1 ⊆ F − C3. So, by Lemma 1, F → (2K2, H1),
thus r∗(2K2, H1) ≤ 10.

Next, we show the lower bound. Let F all graphs with
v(F ) = 7, e(F ) = 9, and because there is a K1,4 in H11,
F must have at least two vertices of degree 4 that are not
adjacent and do not incident to a C3. Since there is no graph
satisfying this condition, we have r∗(2K2, H1) ≥ 10.

Theorem 3: r∗(2K2, H2) = 9.
Proof: By Theorem 1, r(2K2, H2) = 7. Let a graph F

with v(F ) = 7 and e(F ) = 9 as shown in Figure 3. We see
that the vertices in F are of degree 2 and 3. For vertex v1 with
d(v1) = 3, we can show that H2 ⊆ F − v1 and for vertex v2
with d(v2) = 2, we see that H2 ⊆ F − v2. Thus, we have
H2 ⊆ F − v for all vertex v in F . Graph F contains a pair of
isomorphic triangles C3 and it shows that H2 ⊆ F−C3. So, by
Lemma 1 we have F → (2K2, H2). Thus, r∗(2K2, H2) ≤ 9.

Next we show the lower bound for r∗(2K2, H2). Let F a
graph with v(F ) = 7 and e(F ) = 8. Graph F must satisfy
2 ≤ δ(F ) ≤ ∆(F ) ≤ 3, since e(H2) = 5 and if there is one
vertex v in F where d(v) ≥ 4, then e(F − v) ≤ 4 so we will

Fig. 3. Graph F with v(F ) = 7 and e(F ) = 9 such that F → (2K2, H2).

Fig. 4. (2K2, H2)-good coloring of F .

Fig. 5. Graph F with v(F ) = 7 and e(F ) = 10 that satisfy F →
(2K2, H3).

Fig. 6. (2K2, H3)-good coloring of F .

not find H2 in F − v, or H2 ̸⊆ F − v. Observe that there is
one vertex in H2 of degree 3, then there has to be at least two
vertices in F of degree 3 that are not adjacent. Figure 4 shows
all graph F satisfying the condition above with (2K2, H2)-
good coloring. By Lemma 1, we have F ̸→ (2K2, H2) for all
F . Thus, r∗(2K2, H2) ≥ 9.

Theorem 4: r∗(2K2, H3) = 10.
Proof: By Theorem 1 we know that r(2K2, H3) = 7,

then to show the upper bound let F a graph with v(F ) = 7
and e(F ) = 10 as shown in Figure 5. For v1, v2, v3 in F
with d(v1) = 4, d(v2) = 3, and d(v3) = 2, we have H3 ⊆
F −v1 ⊆ F −v2 ⊆ F −v3. Graph F contains one triangle C3

induced by one vertex of degree 2 and two vertices of degree
4. We can show that H3 ⊆ F − C3. Therefore, by Lemma 1,
we have F → (2K2, H3) and r∗(2K2, H3) ≤ 10.

To show the lower bound, let F all graph with v(F ) = 7
and e(F ) = 9. We know that e(H3) = 5, then F must satisfy
2 ≤ δ(F ) ≤ ∆(F ) ≤ 4, because if there is one vertex v in F
with d(v) ≥ 5, then e(F−v) ≤ 4 hence H3 will not be found.
We see that H3 contains two vertices of degree 3, then F must
contain at least three vertices of degree 3. Figure 6 shows all F
satisfying this condition with (2K2, H3)-good coloring. From
Lemma 1, we have F ̸→ (2K2, H3) and r∗(2K2, H3) ≥ 10.

Theorem 5: r∗(2K2, H4) = 9.
Proof: According to Theorem 1, let F a graph with

v(F ) = r(2K2, H4) = 7 and e(F ) = 9 as shown in Figure
7. We can see that all vertices in F is of degree 2 and 3
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Fig. 7. Graph F with v(F ) = 7 and e(F ) = 9 sehingga F → (2K2, H4).

Fig. 8. (2K2, H14)-good coloring of F .

Fig. 9. Graph F with v(F ) = 7 and e(F ) = 12 such that F → (2K2, H).

and F does not contain a triangle C3. For a vertex v1 in F
with d(v1) = 3, H4 ⊆ F − v1 and for a vertex v2 in F with
d(v2) = 2, H4 ⊆ F − v2. So we have, H4 ⊆ F − v for
all vertex v in F . Then, by Lemma 1, F → (2K2, H4) and
r∗(2K2, H4) ≤ 9.

Next, we will show the lower bound for r∗(2K2, H4). Let
F all graphs with v(F ) = 7, e(F ) = 8, and 2 ≤ δ(F ) ≤
∆(F ) ≤ 3 because e(H4) = 5 and if there is a vertex v in
F with d(v) ≥ 4, then e(F − v) ≤ 4 hence H4 ̸⊆ F − v.
Since H4 contains one vertex of degree 3, then there must be
at least two vertices of degree 3 in F that are not adjacent.
In Figure 8 we have all graphs F that satisfy this condition
with (2K2, H4)-good coloring. Thus, according to Lemma 1
we have, F ̸→ (2K2, H4) and r∗(2K2, H4) ≥ 10.

Now, we will give the restricted size Ramsey numbers for
a pair of 2K2 with H5, H6, H7, H8, H9, and H10 which are
triangle unicyclic graphs of order six. First, we give Lemma
4 that shows the upper bound for r∗(2K2, H) where H are
graphs H5, H6, and H7.

Lemma 4: Let H be graph H5, H6, and H7, then we have
r∗(2K2, H) ≤ 12.

Proof: Graph H is of order six and based on Theorem
1, we choose F with v(F ) = 7 and e(F ) = 12 as shown in
Figure 9. The vertices on graph F are of degree 2, 3, 4, and
5. For vertices v1, v2, v3 in F with d(v1) = 5, d(v2) = 3, and
d(v3) = 2, we have F−v1 ⊆ F−v2 ⊆ F−v3 and H ⊆ F−v1,
so it is clear that H ⊆ F − v1 ⊆ F − v2 ⊆ F − v3. We can
see that for vertex v4 in F with d(v4) = 4, H ⊆ F − v4.
Therefore, we have H ⊆ F − v, for all v in F .

Next, notice all triangles C3 in F . Graph F contains five
non-isomorphic C3, namely C3 induced by vertices of degree
2, 4, and 5 (denoted by C1

3 ), C3 induced by one vertex of
degree 3 and two vertices of degree 4 (denoted by C2

3 ), C3

induced by two vertices of degree 3 and one vertex of degree
4 (denoted by C3

3 ), C3 induced by vertices of degree 3, 4, and
5 (denoted by C4

3 ), and C3 induced by two vertices of degree

Fig. 10. (2K2, H)-good coloring of F .

Fig. 11. (2K2, H7)-good coloring of F .

3 and one vertex of degree 5 (denoted by C5
3 ). We can see that

H ⊆ F −C1
3 , H ⊆ F −C2

3 , H ⊆ F −C3
3 , H ⊆ F −C4

3 , and
H ⊆ F −C5

3 . Therefore we have H ⊆ F −C3, for all C3 in
F . Based on Lemma 1, since H ⊆ F − v, for all v in F and
H ⊆ F − C3, for all C3 in F , then we have F → (2K2, H)
and r∗(2K2, H) ≤ 12.

Theorem 6: For H graph H5, H6, r∗(2K2, H) = 12.
Proof: Based on Lemma 4, we have the upper bound for

2K2 versus H5 and H6, that is r∗(2K2, H) ≤ 12. Now we
will show the lower bound. Let F all graphs with v(F ) = 7,
e(F ) = 11, and by Lemma 2, graph F satisfies δ(F ) ≥ 2.
The graph H has one vertex of degree 4, then F must contain
at least two vertices of degree 4 that are not adjacent. By
Lemma 3, since H consist of one triangle C3, then F must
have at least two triangles C3 that do not have the same vertex.
In Figure 10 we give all graphs F that satisfy this condition
with (2K2, H)-good coloring. We can see that there is one
vertex v on each F such that H ̸⊆ F − v, for all F . Thus,
according to Lemma 1, it is found that F ̸→ (2K2, H) and
we have the lower bound r∗(2K2, H) ≥ 12.

Theorem 7: r∗(2K2, H7) = 12.
Proof: From Lemma 4 we have the upper bound

r∗(2K2, H7) ≤ 12. Next, we will show the lower bound. Let
F be all graphs with v(F ) = 7 and e(F ) = 11. Since e(H7) =
6 and according to Lemma 2, then 2 ≤ δ(F ) ≤ ∆(F ) ≤ 5.
Graph H7 contains one triangle C3, then by Lemma 3, graph
F must have at least two triangles C3 which do not share a
vertex. Graph H7 has two vertices of degree 3, then graph F
must have at least three vertices of degree 3. Figure 11 shows
all graphs F that satisfy this condition with (2K2, H7)-good
coloring. We can see that for every F , there exists one vertex
v such that H7 ̸⊆ F − v. Then, according to Lemma 1, we
have F ̸→ (2K2, H). Therefore, r∗(2K2, H7) ≥ 12.

Theorem 8: r∗(2K2, H8) = 12.
Proof: From Theorem 1 we know that r(2K2, H8) = 7.

Let F be a graph with v(F ) = 7 and e(F ) = 12 as shown in
Figure 12. We can see that all vertices in F are of degree 2,
3, 4, and 5 and for vertices v1, v2, v3 in F with d(v1) = 5,
d(v2) = 3, and d(v3) = 2, H8 ⊆ F − v1 ⊆ F − v2 ⊆ F − v3.
Then, for vertex v4 in F with d(v4) = 4, H8 ⊆ F − v4.
Therefore, we have H8 ⊆ F − v, for every v in F .

Observe that the graph F contains four non-isomorphic
triangles C3, namely C3 induced by two vertices of degree
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Fig. 12. Graph F with v(F ) = 7 and e(F ) = 12 such that F →
(2K2, H18).

Fig. 13. Graph F with v(F ) = 7 and e(F ) = 10 such that F → (2K2, H9).

3 and one vertex of degree 5 (denoted by C1
3 ), C3 induced by

one vertex of degree 3 and two vertices of degree 4 (denoted
by C2

3 ), C3 induced by vertices of degree 3, 4, and 5 (denoted
by C3

3 ), and C3 induced by two vertices of degree 4 and
one vertex of degree 5 (denoted by C4

3 ). We can see that
H8 ⊆ F−C1

3 , H8 ⊆ F−C2
3 , H8 ⊆ F−C3

3 , and H8 ⊆ F−C4
3 .

In other words, H8 ⊆ F − C3 for every C3 in F . Based
on Lemma 1, it is shown that F → (2K2, H8). Therefore,
r∗(2K2, H8) ≤ 12.

To show the lower bound, let F be all graphs with v(F ) =
7, e(F ) = 11 and by Lemma 2, δ(F ) ≥ 2. Observe that
the graph H8 has size 6, then F must satisfy 2 ≤ δ(F ) ≤
∆(F ) ≤ 5. Graph H8 contains one triangle C3 and three
vertices of degree 3. By Lemma 3, graph F must consist of
at least two triangles C3 which do not share a vertex and at
least four vertices of degree 3. Considering there is no graph
F satisfying this condition, then we have r∗(2K2, H8) ≥ 12.

Theorem 9: r∗(2K2, H9) = 10.
Proof: First, we will show the upper bound for

r∗(2K2, H9). By Theorem 1, let F be a graph of order 7
with size 10 as shown in Figure 13. Observe for vertices v1,
v2 in F with d(v1) = 3 and d(v2) = 2, H9 ⊆ F − v1 and
H9 ⊆ F − v2. The graph F contains two isomorphic triangles
C3, namely C3 induced by three vertices of degree 3. We
have that H9 ⊆ F − C3. Based on Lemma 1, since we have
H9 ⊆ F − v for every v in F and H9 ⊆ F −C3 for every C3

in F , then F → (2K2, H9). Therefore, r∗(2K2, H9) ≤ 10.
Next, we will show the lower bound of r∗(2K2, H9). Let

F be a graph with v(F ) = 7 and e(F ) = 9. According to
Lemma 2, the graph F must satisfy δ(F ) ≥ 2. Observe that
H9 has size 6 then the F must have maximum degree of 3,
or ∆(F ) ≤ 3 because if there exists one vertex v in F with
d(v) ≥ 4, then e(F − v) ≤ 5 so H9 will not be found in
F−v. Graph H9 has two vertices of degree 3 and contains one
triangle C3, then F must have at least three vertices of degree 3
and, based on Lemma 3, contains at least two triangles C3 that
do not share the same vertex. We have the graph F as shown
in Figure 14. We can see that there is one vertex v in F such
that H9 ̸⊆ F − v. According to Lemma 1, F ̸→ (2K2, H9).
Therefore, r∗(2K2, H9) ≥ 10.

Theorem 10: r∗(2K2, H10) = 11.

Fig. 14. (2K2, H9)-good coloring of F .

Fig. 15. Graph F with v(F ) = 7 and e(F ) = 11 such that F →
(2K2, H10).

Proof: To show the upper bound, by Theorem 1, we
choose a graph F with v(F ) = 7. Figure 15 shows the graph F
with v(F ) = 7 and e(F ) = 11 that satisfy F → (2K2, H10).
Observe that all vertices in F are of degree 2, 3, and 4.
For the vertex v1 in F with d(v1) = 4, H10 ⊆ F − v1.
For vertices v2, v3 in F with d(v2) = 3 and d(v3) = 2,
H10 ⊆ F − v2 ⊆ F − v3. So we have that H10 ⊆ F − v for
every vertex v ∈ F . Moreover, the graph F contains three non-
isomorphic triangles C3, namely C3 induced by three vertices
of degree 4 (denoted by C1

3 ), C3 induced by two vertices of
degree 4 and one vertex of degree 3 (denoted by C2

3 ), and
C3 induced by vertices of degree 2, 3, and 4 (denoted by
C3

3 ). We can show that H10 ⊆ F − C1
3 , H10 ⊆ F − C2

3 ,
and H10 ⊆ F − C3

3 . Then, we have H10 ⊆ F − C3 for
every C3 ∈ F . Thus, by Lemma 1, F → (2K2, H10) and
r∗(2K2, H10) ≤ 11.

To show the lower bound, let F be all graphs with v(F ) = 7
and e(F ) = 10. Graph H10 has size 6, then F must satisfy
∆(F ) ≤ 4 and by Lemma 2, δ(F ) ≥ 2, or 2 ≤ δ(F ) ≤
∆(F ) ≤ 4. Observe that graph H10 has one vertex of degree
3 and contains one triangle C3. Then F must have at least two
vertices of degree 3 that do not adjacent and based on Lemma
3 contains at least two triangles C3 that do not share a vertex.
Since there is no graph F with v(F ) = 7 and e(F ) = 10 that
satisfy the conditions above, we have that r∗(2K2, H10) ≥ 11.

IV. CONCLUSION

Out of 112 non-isomorphic connected graphs of order six,
there are 10 tree and triangle unicyclic graphs. In this paper
we give the restricted size Ramsey numbers for 2K2 versus
these 10 graphs of order six. For further research, the restricted
size Ramsey numbers for 2K2 versus the remaining non-
isomorphic connected graphs of order six that have not yet
been found in [5] can be investigated.
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