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Axions and axionlike particles (ALPs) are some of the most popular candidates for dark matter, with
several viable production scenarios that make different predictions. In the scenario in which the axion is
born after inflation, its field develops significant inhomogeneity and evolves in a highly nonlinear fashion.
Understanding the eventual abundance and distribution of axionic dark matter in this scenario therefore
requires dedicated numerical simulations. So far the community has focused its efforts on simulations of
the QCD axion, a model that predicts a specific temperature dependence for the axion mass. Here, we go
beyond the QCD axion, and perform a suite of simulations on lattice sizes of 30723, over a range of possible
temperature dependencies labeled by a power-law index n ∈ ½0; 6�. We study the complex dynamics of the
axion field, including the scaling of cosmic strings and domain walls, the spectrum of nonrelativistic
axions, the lifetime and internal structure of axitons, and the seeds of miniclusters. In particular, we
quantify how much the string-wall network contributes to the dark matter abundance as a function of how
quickly the axion mass grows. We find that a temperature-independent model produces 25% more dark
matter than the standard misalignment calculation. In contrast to this generic ALP, QCD axion models are
almost six times less efficient at producing dark matter. Given the flourishing experimental campaign to
search for ALPs, these results have potentially wide implications for direct and indirect searches.
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I. INTRODUCTION

Although originally proposed to solve the strong-CP
problem of quantum chromodynamics (QCD) [1–3],
the axion is now currently one of the most compelling
explanations for why the Universe is filled with dark matter
(DM) [4–10]. So popular is the axion as a candidate for DM
that an entire class of related axionlike particles (ALPs) has
also sprung up through the years [11]. These ALPs are
a priori unconnected to QCD, but may nonetheless provide
a window on high-energy physics far beyond the reach of
colliders [12–18]. For this reason, and their potential role as
DM, ALPs are now a subject of growing theoretical [19]
and experimental [20] interest.
The axion or ALP field is produced at an energy scale fa

when a symmetry—of which the axion or the ALP is the

associated pseudo-Goldstone boson—is broken. This scale
is a free parameter, but we can generally classify the
symmetry breaking as having occurred either before or
after inflation—a distinction that has important conse-
quences for the subsequent population of axions.1 In the
so-called preinflationary scenario, inflation blows up a tiny
region of the initially randomized axion field, and for a
sensible range of initial field values, the observed DM
abundance can be straightforwardly matched to theoretical
predictions to identify a range of responsible axion masses.
Conversely, in the NDW ¼ 1 postinflationary scenario,

once the axion has been produced, the Universe is instead
filled with an ensemble of random angular field values
drawn from ½−π; π� that should in principle approach a
predictable average. However, these random angles also
make the axion field highly inhomogeneous and lead to the
emergence of topological defects [21–23]. As the Universe
expands, the defect network relaxes and eventually collap-
ses, but not before leaving a substantial imprint on the
axion population [24–28]. Consequently, the distribution of
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1Unless specifically designated as a QCD axion, we shall use
the terms axions and ALPs interchangeably.
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axions in the postinflationary scenario is rather complex,
and its investigation requires numerical simulations.
Only very recently have simulations been designed with
the sophistication needed to study the cosmological axion
[29–39], or more specifically, to estimate the DM axion
mass from the observed abundance with some certainty
(see, e.g., Ref. [40] for a recent discussion).
But the need for cosmological axion simulations goes

beyond predicting the DM abundance. Simulations are also
crucial for the investigation of the phase-space distribution
of the axions produced. Long after topological defects
have decayed away and the axions have free streamed until
they are nonrelativistic, regions of high density will
eventually collapse under gravity to form structures (see,
e.g., Ref. [41] for a recent review). The overdensities that
seed these structures are remnants of dense field configu-
rations known as axitons—also known as oscillons or
pseudobreathers—which appear briefly while the axion
mass is still growing to its present-day value [33,34]. By
around matter-radiation equality these overdensities will
have collapsed into small gravitationally bound clumps of
axions calledminiclusters [42–49], with masses around that
of small asteroids.
Axion miniclusters are likely to survive to the present

time (see, e.g., Refs. [50–54]), so it is certainly possible that
the majority of the axions making up galactic halos could
still be bound up inside of them. This degree of small-scale
DM substructure is a unique prediction of the postinfla-
tionary axionic DM scenario, and has the potential to both
hinder direct experimental searches [55–59], as well as
facilitate entirely new indirect ones [60–67]. Simulations
are therefore crucial not only for predicting where to find
the axion mass, but also to inform us what kinds of searches
are even possible.
One of the key theoretical inputs to cosmological

axion simulations is the temperature dependence of the
axion mass, usually modeled as m2

a ∝ T−n. In QCD axion
models, this mass originates from the explicit breaking of
the Peccei-Quinn (PQ) symmetry due to its color anomaly,
and as the temperature drops, its dependence on T can be
predicted with reasonable confidence from theoretical
models [68] or lattice calculations [69,70]. However, all
computational methods have inherent uncertainties, and
there could exist alternative axion models that have
altogether different temperature dependencies. It may
therefore be preferable to consider n as a restrained but
ultimately free parameter. Moreover, by treating n as such,
we can gain further physical insight into the role played
by the axion mass growth rate in governing the complex
evolution of the field. One interesting example is the era in
which the field’s energy-density fluctuations are dominated
by axitons—objects that are supported in an expanding
background precisely by the growing axion mass. Since
axitons lay down perturbations on the scales of the resulting
miniclusters [33], we expect any n dependence to leave an

imprint in the axion distribution surviving well beyond the
final times of our simulations.
In this paper, we build upon and extend previous works

by performing a suite of seventy simulations encompassing
n ∈ ½0; 6�, using the public code JAXIONS

2 developed
originally in Ref. [33]. These include the first large-scale
lattice simulations of a generic axionlike particle model
(i.e., the case n ¼ 0). We use these simulations to system-
atically study the role played by the axion mass para-
metrization in dictating the energy spectrum of axions, the
population and properties of axitons and miniclusters, as
well as the eventual abundance of DM. A snapshot of the
projected energy density contained in the axion field for the
case n ¼ 6 can be seen in Fig. 1, where we highlight several
of the important classes of object that much of our
discussion centers around.

FIG. 1. A 3D-to-2D projection of the axion energy density
around the time the string-wall network is almost fully collapsed.
The field is shown here at the dimensionless simulation time
τ≡ R=R1 ¼ 2.6, where R1 is the cosmological scale factor at the
time the axion field begins to oscillate around the minimum of its
potential. We highlight the presence of the three main types of
object to be discussed; cosmic strings, domain walls, and
spherical overdensities called axitons. This particular snapshot
is from a simulation where we have chosen the axion mass to
grow with temperature as m2

a ∝ T−6, and at a time when the
comoving size of the box contains ∼60 comoving axion Compton
wavelengths, defined as τλc ¼ 2π=ma. Additional visualisations
can be found in yt/jaxions.

2https://github.com/veintemillas/jaxions.
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The paper is structured as follows. We begin in Sec. II
with an outline of the simulation setup, including details on
the model, units, and initial conditions. Section III gives a
general description of the main stages of the field’s
evolution seen in our simulations. We then describe and
compare over several sections our various simulation
outputs for different values of n. We present first an
analysis of the properties of axitons in Sec. IV, followed
by the shape of the axion power spectrum in Sec. Vand the
DM yield in Sec. VI, before ending with a discussion on the
seeds of axion miniclusters in Sec. VII. Section VIII
contains our conclusions.

II. THE SIMULATION

The basic scheme of our simulations centers around a
complex scalar field, discretized on a regular lattice and
evolved through cosmic time according to its equation of
motion. We adopt a generic potential that dictates the
evolution of both the radial part of the field—entailing the
breaking of the PQ symmetry and the appearance of cosmic
strings—as well as a term that describes the growth of the
mass of the angular component of the field, and the
subsequent appearance of domain walls and axitons.

A. Model

The action for the complex scalar field ϕ, usually
referred to as the PQ field in the context of axion
physics, is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½j∂ϕj2 − VðϕÞ�; ϕðxÞ ¼ jϕjeiθðxÞ: ð1Þ

Here, g≡ det½gμν�, where gμν is taken to be the flat
Friedmann-Lemaître-Robertson-Walker metric defined
via ds2 ¼ gνμdxμdxν ¼ dt2 − R2ðtÞdxidxi for the cosmic
time t and comoving spatial coordinates xi, with scale
factor R. The axion field aðxÞ≡ θðxÞfa is identified with
the phase of ϕ in units of fa, while the massive radial mode
jϕj is often called the saxion field. The potential VðϕÞ can
be written as the sum of two terms,

V ¼ VsðjϕjÞ þ VaðθÞ ¼
λϕ
8
ðjϕj2 − f2aÞ2 þ χðTÞð1 − cos θÞ:

ð2Þ

The saxion potential VsðjϕjÞ is responsible for the sponta-
neous symmetry breaking and gives the complex field its
vacuum expectation value (VEV) hϕi ¼ fa. The mass of
the saxion field can be simply read off from the potential
as m2

s ¼ λϕf2a.
The second term, VaðθÞ, is the axion potential, whose

temperature dependence is provided by a function called
the topological susceptibility χðTÞ. In QCD axion models
this potential originates from the breaking of the anomalous

PQ symmetry via QCD instantons, and its growth in time is
due to the temperature dependence of those instantons.
We can therefore expect the axion potential to become
important around the QCD scale ΛQCD. At high temper-
atures (T > ΛQCD) the functional dependence of χðTÞ can
be parametrized as

χðTÞ ¼ χ0

�
T

TQCD⋆

�
−n

¼ m2
aðTÞf2a: ð3Þ

The high-temperature lattice QCD simulations of Ref. [69]
found χ1=40 ≃ 75.6 MeV, TQCD⋆ ∼ 150 MeV, and n ≃ 7.
Note however that other values of n have been advocated
in the literature, including n ¼ 8 under the dilute instanton
gas approximation [71], n ¼ 6.7 from the interacting
instanton liquid model [68], and n ∼ 3 from lattice calcu-
lations reported in [70]. It is likely that further studies
on the lattice will be needed to refine estimates of the
axion mass temperature-dependence—another reason to
treat n as a free parameter. The present-day mass of the
QCD axion is [70]

ma ¼
ffiffiffiffiffi
χ0

p
fa

¼ 5.70ð7Þ μeV
�
1012 GeV

fa

�
; ð4Þ

and this is the value to which maðTÞ in Eq. (3) settles when
the temperature drops below TQCD⋆ .
The mass parametrization Eq. (3) can be readily adapted

to describe more generic ALPs. These particles could arise
from the spontaneous breaking of any posited global Uð1Þ
symmetry a priori unrelated to the PQ solution to the
strong-CP problem, see, e.g., Refs. [12–18,72]. Some
small explicit symmetry breaking—for example, in the
tree-level Lagrangian, or arising from quantum effects—
can give the ALP a mass, making it a pseudo-Nambu-
Goldstone boson in direct analogy to the QCD axion. In
keeping with the spirit of ALPs as a purely phenomeno-
logical class of particles, however, we opt in this work to be
agnostic as to their physical origins, and merely take them
in our simulations to be the angular mode of a complex
scalar field with a mass parametrized as

m2
aðTÞ ¼ m2

a

�
T⋆
T

�
n
; T ≥ Tf ≥ T⋆: ð5Þ

Our model then has a generic index n ≥ 0, and another free
parameter ma (in addition to fa) that does not necessarily
coincide with the relationship Eq. (4). We focus in this work
on the range n ∈ ½0; 6�, spanning between a constant-mass
ALP (n ¼ 0) and a model very close to the QCD axion.3

3The reason this range does not extend up to some of the
predictions for the QCD axion is a matter of the computational
resources needed to ensure physical behaviors at large n. This
issue will be discussed in Sec. II C.
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In analogy with Eq. (3), the saturation temperature T⋆
corresponds to the point at which the ALP mass growth
stops and ma settles to its present-day value. It is in
principle a model-dependent quantity in generic ALP
models. However, for simplicity we shall use Eq. (5) for
the entire duration of our simulations, i.e., we assume T� to
be smaller than the final simulation temperature Tf. The
latter generally depends on n and corresponds to the time at
which we can consider the axion field to be nonrelativistic.
We refer to Sec. II D for more information on how we
choose Tf.
Lastly, note again that the canonical QCD axion is likely

to be specified by an index in the range n ∈ ½6.68; 8� and
has a zero-temperature massma linked to the PQ symmetry
breaking scale fa via Eq. (4). Thus, strictly speaking all of
our models are ALPs, even though we will use the term
“axion” when discussing our simulations.

B. Equations of motion

There are two equations of motion that we evolve at
different times during the simulation. Variation of the
action in Eq. (1) yields the first equation of motion for
the complex PQ field ϕ,

ϕ̈þ 3H _ϕ −
∇2ϕ

R2
þ ∂V

∂ϕ ¼ 0; ð6Þ

where ·≡ ∂=∂t andH ≡ _R=R is the Hubble expansion rate.
Evolving this equation from random initial conditions leads
to topological defects: cosmic strings that originate from
the VsðjϕjÞ contribution to the potential, and domain walls,
coming from the VaðθÞ contribution, which then attach to
the strings. We must solve this first equation of motion for
as long as these defects are still present. However, after the
network has entirely collapsed, it is convenient to integrate
out the physically heavy radial mode jϕj and instead evolve
the equation of motion for the axion field a only, which is

äþ 3H _a −
∇2a
R2

þ χðTÞ
fa

sinða=faÞ ¼ 0: ð7Þ

The exact condition that flips the switch from tracking ϕ to
tracking a will be discussed shortly in Sec. III C.
After picking up some initial value at the end of the PQ

phase transition, the axion field will roll down the potential
and oscillate around its minimum at θ ¼ 0. A useful
reference point is the time at which the axion’s zero-
momentum mode begins these oscillations—put simply,
when the axion becomes DM. We refer to this as the
characteristic time t1. Since this time depends on the rate of
axion mass growth, our definition of t1 must also be n
dependent. We choose to define it starting from the relation

c1ðnÞH1 ¼ m1; ð8Þ

whereH1 ≡Hðt1Þ,m1 ≡maðt1Þ, and the prefactor c1ðnÞ is
an Oð1Þ correction to ensure that this notion of time is
consistent for different n scenarios.
The chosen values of c1ðnÞ vary in the literature. In this

work, we define t1 to be the time at which the solutions to
the zero-momentum mode of the linearized version
of Eq. (7) in two limiting regimes coincide; the solution
a ¼ const at H ≫ ma, and the approximate, Wentzel-
Kramers-Brillouin (WKB) solution a ∝ R−3=2m−1=2

a at
H ≪ ma. We numerically solve the linearized equation
assuming radiation domination, and find that

c1ðnÞ ¼
8

5

�
1þ n

5

�
ð9Þ

fits the solutions reasonably well in the range n ∈ ½0; 6�.
A similar estimation was carried out in Ref. [73], which
found c1ðnÞ ¼ ð2=5Þðnþ 4Þ. This expression coincides
with Eq. (9) at n ¼ 0, but differs by Oð10%Þ at n ¼ 6.
The characteristic temperature T1 that occurs at t1 can

now be found from Eq. (8) to be

T1ðnÞ ≃ ðmafaÞ1=2
� ffiffiffiffiffi

90
p

MPl

c1ðnÞπ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðT1Þ

p
fa

� 2
nþ4

; ð10Þ

where g�ðTÞ is the effective number of relativistic degrees
of freedom, and MPl ¼ 2.4 × 1018 GeV is the reduced
Planck mass. For the choice n ¼ 0, the fa dependence
cancels and we find numerically

Tn¼0
1 ≃ 40 GeV

�
ma

10−6 eV

�
1=2

�
g�ðT1Þ
70

�
−1=4

: ð11Þ

For the QCD axion, adopting the parameter values from
Ref. [69], this yields

TQCD
1 ≃ 1.694 GeV

�
ma

50 μeV

�
0.16

: ð12Þ

Figure 2 shows typical values of T1 from Eq. (10) as a
function of ma for various values of the index n ∈ ½0; 6�
and fixed fa ¼ 1012 GeV and g�ðT1Þ ¼ 70. Observe how,
for ALPs, T1 can be substantially larger than the reference
QCD axion value, indicated by the dashed line. This
relation will become important when we discuss the DM
yield from our simulations in Sec. VI.

C. Units and physical scales

We use the public code JAXIONS, originally developed in
Ref. [33], to perform our simulations. See additional details
in Appendix A. Following Ref. [33], we work in axion dark
matter (ADM) units. First, we introduce the conformal time
η via dη ¼ dt=R, such that the scale factor R evolves as
R ∝ η during radiation domination, and LðηÞ ¼ η is the
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comoving horizon. The dimensionless simulation (code)
time τ is defined as the conformal time η normalized to its
value at the characteristic time η1 ¼ L1, i.e.,

Simulation time∶ τ ¼ η

L1

¼ R
R1

: ð13Þ

Note that the second equality here holds upon neglecting
the small change in the effective degrees of freedom in
the time frame of interest [33]. We can then express all
spatial and temporal quantities in units of L1 and energies
in units of H1.
In ADM units it is furthermore convenient to rescale

field values ϕ → Φ≡ ϕτ=fa and a → ψ ≡ τa=fa, so that
Eq. (7) can be recast in the linear regime (sin θ ≈ θ) as4

∂2
τψ −∇2ψ þ c21ðnÞm2

ψψ ¼ 0: ð14Þ

The quantity mψ ¼ τðnþ2Þ=2 acts as a “conformal” mass.
Similarly, in ADM units the full equation for the normal-
ized complex field Φ reads

∂2
τΦ −∇2Φþ λ

2
ΦðΦ2 − τ2Þ − τnþ3 ¼ 0; ð15Þ

where we have neglected the ð∂2
τR=RÞΦ term [which in any

case evaluates to zero when the second equality in Eq. (13)
holds]. See Ref. [33] for additional details.

D. Discretization and evolution

The simulation grids consist of a finite periodic box
of comoving side length Lc, populated with N3 homo-
geneously distributed points. We use N ¼ 3072 for all our
simulations.5 The physical box size, however, depends on
the value of n we are simulating (for reasons that will
become clear in the following section). We use Lc ¼ 8L1

for n ≥ 4 and 20L1 for smaller n, which in turn set the
lattice spacing to Δx=L1 ¼ 2.6 × 10−3 and 6.5 × 10−3,
respectively.
We compute spatial derivatives on the lattice using

a finite difference method with ng ¼ 2 neighboring points
(13 stencils), accurate to OðΔ4

xÞ. The time step Δτ is
dynamical, and adjusts to the maximum rate of change in
the grid given by, ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2max þm2

p
, where the maximum

momentum depends on the grid spacing as kmax ¼
2

ffiffiffi
3

p
=Δx. In ADM units this leads to an adaptive time

step defined by

Δτ ¼ ϵðk2max þmax½m2
sðτÞ; m2

aðτÞ�τ2Þ−1=2; ð16Þ

where the parameter ϵ can be further adjusted to improve
convergence. We run our simulations using ϵ ¼ 1, as
convergence has been shown to be achieved for ϵ≲ 1.5
[33]. We evolve the equations of motion in time with a
four-step Runge-Kutta-Nyström (RKN) integrator [74]
that requires evaluations of the complex field and its
derivative at three intermediate steps in order to evolve
the system from a time τ to τ þ Δτ.

6 The additional
iterations lead to higher-order accuracy [to OðΔ4

τÞ] and a
minimization of the error compared to standard leapfrogs.

E. Simulation duration

Evolving the equation of motion (6) as is, one quickly
runs into the problem that the cores of the cosmic strings,
set by the saxion mass ms, remain fixed in size as the space
expands around them. This means that, in the comoving
coordinates used in our simulations, these cores effectively
shrink over time and eventually vanish below the discre-
tization scale Δx. We remedy this issue in the same way
as many before us by implementing Press, Ryden, and
Spergel’s (PRS) trick [75,76] (also referred to as the “fat
string” trick), which is to artificially inflate the string cores
over time, so that their widths—quantified by the inverse
core width value, δ−1core ¼ msΔx—remain at a constant value

FIG. 2. The characteristic temperature T1ðnÞ, defined in
Eq. (10), as a function of the present-day axion mass ma. We
plot values for a range of indices n ∈ ½0; 8�, with fixed fa ¼
1012 GeV and g⋆ ¼ 70. The dashed line represents the QCD
axion case, with numerical values adopted from Ref. [69].

4
JAXIONS’s definition of the characteristic time, t̃1, always

corresponds to the choice of coefficient c1 ¼ 1 [see Eq. (8)].
Consequently, our definition of t1, which uses an n-dependent
c1ðnÞ, needs to be related to the code value. We find this relation
by noting that T ∝ R−1 ∝ η−1 and that T̃1ðnÞ can be established
from Eq. (10) upon replacing c1ðnÞ with 1. It then follows that
α≡ η̃1=η1 ¼ c1ðnÞ−2=ðnþ4Þ.

5With the exception of one, which we will introduce in
Sec. VII.

6The default propagator in JAXIONS is RKN4. Other symplectic
integrators include Kick-Drift-Kick (KDK) and DKD leapfrogs.
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in comoving coordinates. In practice, this amounts to
replacing the quartic coupling in the saxion potential
VðjϕjÞ with λ → λPRS=τ2. A discussion of the physical
implications of this procedure can be found in
Refs. [33,35]. At face value the trick allows us to extend
the dynamical range of the simulation as much as possible,
once the grid size has been chosen. Additionally, it allows
us to simulate strings that are at all times thinner than
physical (not PRS scaled) strings, therefore with tension
closer to its real value (see e.g., Sec. II F). Nonetheless, we
recall that, despite the improvements of the PRS trick,
physically extrapolated results might differ by Oð1Þ cor-
rections [35]. Demanding that the string cores be resolved
with a few lattice points immediately imposes an Oð1Þ
upper bound on δ−1core. We use values of δ−1core ¼ 1.5 and 1 in
our simulations for n ≥ 3 and n < 3, respectively. An
analysis of the impact of δ−1core on the simulation outcome
can be found in Refs. [31,35].
We choose the initial time of the simulation τi to be the

time at which the string core has a comoving (uninflated)
width comparable to the comoving horizon. This condition
can be written as

log

�
ms

H

�
τi

¼ 0; ð17Þ

in analogy with the time parameter κ ≡ logðms=HÞ used in
previous studies [32,36,77]. It then follows that the initial
time and the value of λPRS (related to string tension;
see Sec. III A) depend only on the choice of the three
simulation parameter values, N;Lc=L1; δ−1core, namely,

τi ¼
ffiffiffi
2

p
Lc=L1

δ−1coreN
; λPRS ¼

1

2

�
δ−1coreN
Lc=L1

�
2

: ð18Þ

Apart from the fact that we use larger boxes to simulate
small-n scenarios (more on this point below), these values
have no explicit dependence on n. We remark however that,
for high-n simulations, the value of λPRS has to be carefully
chosen, taking into consideration the issue of the unphys-
ical destruction of domain walls. This happens if the tilting
of the saxion potential, controlled by n, becomes compa-
rable to the height of the local potential maximum,
determined by the saxion mass. In order to avoid such a
disaster we must ensure that the condition m2

a=m2
s < 1=40

is satisfied by our simulations when topological defects are
present [31]. For n ¼ 6, this means N ¼ 3072 at minimum,
and is also the main reason for our choice of the grid
resolution.
Naively, the finite volume of the simulation box would

dictate that we can simulate only up to τ ¼ ðLc=L1Þ=2, i.e.,
the time it takes for a wave emitted from a point, traveling
at the speed of light, to bump into and interfere with itself.
However, because the axion and saxion fields are both
massive, the simulation time is ultimately not limited by the

speed of light, but by the group velocity of the fastest
modes in the box and their associated free-streaming scales.
For a given mode k, the free-streaming scale λfs in ADM
units can be calculated as7

λfsðk; τ; nÞ=L1 ¼
Z

τ

0

dτ0
�
1þ τ0nþ2

ðkL1Þ2
�−1=2

: ð19Þ

Therefore, if we wish to simulate up to a particular final
time τf, we can adjust the simulation box size and
resolution such that the condition Lc=L1 ≳ 2λfsðk; τfÞ is
satisfied by the bulk of the available modes in the box.
Figure 3 shows an example of λfs for the mode

k ¼ 100=L1 as a function n and the final time τf. Clearly,
there is no substantial free streaming at this k mode for the
larger values of n. Furthermore, it has been argued in
Ref. [33] that finite volume interference effects from
momenta larger than k ∼ 100=L1 do not affect substantially
the output power spectrum, and are suppressed in the
adiabatic (i.e., WKB) approximation that we implement in
Sec. III D. Therefore, for the n ≥ 4 simulations, a box
length of Lc ¼ 8L1 suffices. On the other hand, the free-
streaming lengths for low values of n are substantial, and
larger boxes must be employed to keep the simulation
running for a longer time free of interference effects. Since
we anticipate that, for n≲ 3, a full study of the axion field
dynamics after the network collapse necessitates that we

FIG. 3. Free-streaming length λfs in units of L1, as defined in
Eq. (19), for a mode with momentum k ¼ 100=L1. We show the
free-streaming length as a function of the final simulation time τf
for our range of indices n.

7This formula holds only up until the time the mass growth
saturates, τ⋆. The contribution to the integral at times τ > τ⋆ is the
same, but with n → 0 and τ⋆ as the lower integration bound.
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simulate to τ ≳ 5, we choose a simulation box size of
Lc ¼ 20L1 for these simulations. This gives a Nyquist
momentum of kNy ¼ π=Δx ≃ 483=L1, close to the example
kL1 ¼ 100 shown in Fig. 3.
Having fixed the box size and resolution, we can now

choose the final simulation time τf by ensuring that most of
the modes in the box have transitioned to the nonrelativistic
regime in time. Because for low-n runs the Nyquist
frequencies will undergo this transition at times we cannot
simulate, we set our minimum τf by way of the condition
kNy=y ¼ mψ ðmin τfÞ, where y ∼ 4 [33]; all momenta
smaller than kNy=y can be considered to be nonrelativistic
at τ ¼ min τf. This lower bound can be equivalently
expressed as

min τf ¼ τNy=y ¼
�

π

yΔx

� 2
nþ2

: ð20Þ

Thus, the value of the final simulation time decreases with
n according to this criterion.
Another consideration in setting the final simulation time

relates to a class of structure that we have not yet
introduced, but will come to dominate the power spectrum
at the latest times. These are the axitons, which will be
discussed in detail in Sec. IV. For now it suffices to say
that axitons are very small and dense lumps that require
Δx ≪ π=mψ to resolve. Sincemψ increases with time, there
will be a moment beyond which our choice of Δx is no
longer sufficient to resolve the axitons. This effectively sets

max τf ∼ Δ− 2
nþ2

x ð21Þ

as a maximum that our final simulation time must not
exceed.
It is important to recognize that, by the criteria (20) and

(21), the situation min τf > max τf could arise if y < π, in
which case satisfying one criterion must necessarily violate
the other. Conversely, for the choice of y≳ 4, the minimum
and maximum times are quite close to one another in the
large-n cases. It is therefore a nontrivial task to choose
the final simulation times over our range of n while
satisfying both Eqs. (20) and (21) simultaneously. We find
that τf ∈ ½5; 5.5� for n ≥ 4 and τf ∈ ½8; 12� for n < 4 are
suitable.

F. Initial conditions

The final input to the simulation to be discussed are the
initial conditions. Properly initializing the grid for the
complex field ϕ would require that we include finite-
temperature corrections that dominate the full potential at
T ≫ fa and then slowly disappear after the PQ phase
transition at T ∼ fa; see for example the approach taken in
Refs. [29,34]. However, because our choice of the initial

time [Eq. (18)] corresponds to Ti ≪ fa, these temperature
corrections can be completely neglected.

JAXIONS has a class to generate initial conditions in
several ways. Our simulations are initialized in momentum
space, where the Fourier field ϕ̃ðkÞ ¼ jϕ̃jeiθ has a ran-
domly chosen phase θ in the interval ½−π; π�, hϕ̃i ¼ 0, and
jϕ̃j is drawn from a half-Gaussian that peaks at jϕ̃j ¼ 0 and
has a variance parameter

σ2jϕ̃ðkÞj ¼ expð−k2=k2crÞ: ð22Þ

In other words, ϕ̃ðkÞ has a flat spectrum on large scales but
is cut off at a characteristic length scale corresponding
to the average interstring separation ∼π=kcr. The latter is
closely related to the string density parameter ξ (to be
defined in Sec. III A), whose value follows the attractor
solution [35,36]

ξðκÞ ¼ c−2κ−2 þ c−1κ−1 þ c0 þ c1κ; ð23Þ

where ci are fitting coefficients and κ ≡ logðms=HÞ is the
string tension.
Observe that our choice of the initial conditions does not

strictly mimic the field configuration one would expect at
values of the string tension we are able to simulate with
current computational resources, i.e., κ ≲ 8. However,
because the statistics of the initial power spectrum are
consistent with that of the attractor solution, once the
simulation begins the resulting string density quickly
approaches the attractor solution, independently of the
box size, resolution, or other simulation parameters.
Extrapolating to physical values of the string tension—
e.g., κ ∼ 70 for the QCD axion, but in general for ALPs this
could be substantially different—Refs. [38,39,78] find
ξ ≃ 1.2 for the string density parameter, a value very close
to what we observe in our simulations at τ ≲ 1. We remark
however that there is no numerical evidence of the value of
ξ at large values of the string tension (as for the spectral
index of the axion emission spectrum) and the value of ξ
could be much larger, e.g., Oð15Þ, as supported by the
arguments of Refs. [35,36]. In the following we do not
focus on this important issue, as we compare different n
scenarios, assuming the string tension and density that can
be achieved with our current computational power.

G. Comparison with previous simulations

Before we move to our results, we will briefly comment
here on the differences between our simulation setup and
those found in prior literature. The major distinguishing
factor of our simulations is that we consider a general
parametrization for the axion mass, as opposed to single
power law, however there are several previous works that
share our general goals but differ in their implementation.
As we have already mentioned, our simulations can be
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considered a continuation of Ref. [33] but for a range of n
hence we need not spend time discussing the difference
between this study. However Refs. [29,31,32,34] also
studied the evolution of the axion field through the string
scaling and QCD eras, but with a few important differences
in setup. References. [29,34] do not exploit the PRS trick,
favoring a fixed string width, however this does not eliminate
the issue of the chosen value of λ is still unphysically small.
Finally, the simulations presented in Refs. [35–38,79] are not
directly comparable to ours as they consider only the PQ
string scaling era with a zero axion mass and extrapolate
based on the string emission spectrum.

III. DYNAMICS OF THE FIELD

Now that we have discussed all of the key ingredients to
the simulations we can finally begin to discuss our results.
For reference we have listed all of the key parameters
discussed so far in Table I.

In this section we will outline both qualitatively and
quantitatively the major epochs that the PQ field ϕ
undergoes in chronological order. A rough timeline is
illustrated in Fig. 4 (the values of τ are not precise). In
particular, we will take note of the differences in the way
this evolution proceeds when we change the value of n in
our model. Recall that the case n ¼ 0 can be thought of as
a generic temperature-independent ALP, whereas the
value n ¼ 6 corresponds to a rate of mass growth very
similar to the QCD axion. A complete picture of the
evolution of the axion field over our range of n is given in
Appendix B.

A. τ ≪ 1: Axion strings

The dynamics of the PQ field at early times τ ≪ 1 can be
described entirely by the equation of motion (6) under
the saxion potential VsðjϕjÞ alone. After the spontaneous
breaking of the PQ symmetry at T ∼ fa, a network of
global axion strings appears as described by the Kibble
mechanism [21]. These strings are topological defects on
spatial lines around which the phase of the PQ field,
θ ¼ afa, wraps 2π in field-space. Subsequent evolution
sees these linear defects decay into relativistic modes of the
angular part of the PQ field, i.e., axions, as well as a small
amount (∼15%) in the radial saxion mode [35]. At this
time, the axion mass maðT ≫ T1Þ is small enough so as
not to affect the strings’ evolution and can therefore be
neglected from the equation of motion.
To describe the global properties of the string network, it

is conventional to define the dimensionless string density
parameter ξ ¼ lðtÞt2=V, that represents the number of
strings of physical length t ∼H−1 per causal volume ∼t3,
expressed in terms of their total length lðtÞ over a physical
simulation volume V ¼ ðLcRÞ3. In ADM units this is
equivalently

TABLE I. Summary of the simulation parameters for each of
our simulations covering values of n from 0 to 6. The parameters
are, from left to right, the box size Lc, the inverse string core
width δ−1core, the time at which the strings and domain walls have
equal densities τ2, the final time of the full evolution τf, and the
true final time to which we extend via the adiabatic approxima-
tion τad.

n Lc=L1 δ−1core τ2 τf τad

0 20 1.0 2.4 12.0 50.0
1 20 1.0 2 12.0 30.0
2 20 1.0 1.8 10.0 20.0
3 20 1.5 1.65 8.0 12.0
4 8 1.5 1.55 5.0 10.0
5 8 1.5 1.48 5.5 8.0
6 8 1.5 1.42 5.0 8.0

FIG. 4. General timeline for the evolution of the axion field after PQ symmetry breaking, through the QCD phase transition, until the
eventual gravitational collapse of inhomogeneities into miniclusters. The era studied here is highlighted in orange, whereas the era
requiring devoted N-body simulations is highlighted in blue. We discuss each of these stages in detail in Sec. III.
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ξðτÞ ¼ nplaqsΔxτ
2

6ðLc=L1Þ3
; ð24Þ

where nplaqs denotes the number of plaquettes pierced by a
string. We identify the string locations using the algorithm
of Refs. [31,80]. As explained in detail in Ref. [31], the
numerical factor in Eq. (24) divides nplaqs by the angle-
averaged number of plaquettes per unit length of string, and
as such Eq. (24) represents a statistical estimate of ξ.
The network is expected to follow a scaling solution in

which ξ is a constant Oð1Þ number [81,82]. However, as
observed in many recent simulations [31,33–35], the ξ
parameter exhibits a small logarithmic increase over time,
following the same factor κ ¼ logðms=HÞ that appears in
the string tension and string-axion coupling. As discussed
already in the context of our initial conditions, Ref. [35]
showed that the network of axion strings exhibits an
attractor solution given by the fitting function (23). For
κ ≳ 4, this can be approximated as ξðtÞ ¼ c1κ þ c0, with
Oð1Þ coefficients c0;1. Similarly, the energy density in
strings at this stage of the evolution is expected to scale
with cosmic time t as [77]

ρsðtÞ ¼
ξμeff
t2

≃
ξπf2aκ
t2

; ð25Þ

where μeff ≃ πf2aκ is the effective string tension.
We observe the value of ξ to scale linearly with κ, in

agreement with previous works [31–36]. This holds up
until τ ≳ 1, where the explicit breaking of the PQ symmetry
due to the presence of the axion potential VaðθÞ causes
deviations from the scaling regime, as we will now discuss.

B. τ ≳ 1: Strings and domain walls

Around the characteristic time τ ∼ 1, the axion potential
starts to influence the evolution of the field. Domain
walls—defined as surfaces on which θ ∼ π—form between
strings of different chiralities. The surface tension of the
walls acts to pull the strings together, ultimately causing
the collapse of the entire string-wall network. The faster the
axion mass grows (i.e., the larger n is), the faster the
topological defects can be expected to disappear.
In general, stable domain walls are disastrous for cosmol-

ogy as they would grow to exceed the allowed present-day
energy budget. Fortunately, however, in the postinflationary
scenario the axion string-wall network is unstable if the
domain-wall number is NDW ¼ 1. This is the case for axion
models where only one vacuum is created by the explicit
breaking, i.e., strings attach to the same domain wall.8

We are assuming NDW ¼ 1, which is the case for the
popular hadronic class of QCD axion model [94,95] and
is not an unreasonable assumption for a generic ALP as well.
Like its string counterpart ξ, the cosmological wall

density is observed to be an Oð1Þ number in our simu-
lations. However, the energy density of the domain walls
scales differently,

ρwðtÞ ≃
σðtÞ
t

; σðtÞ ¼ 8maðtÞf2a; ð26Þ

where σ is the wall’s surface tension, i.e., energy per unit
area. Compared with the string energy density ρs ∝ t−2

given in Eq. (25), we see that the wall energy density
ρw ∝ t−1 must eventually dominate. We can therefore define
another useful timescale, t2, as the time at which the wall and
string energy densities are equal, i.e., ρwðt2Þ ¼ ρsðt2Þ.
In ADM units, this timescale is equivalently

τ2 ¼
�
πκ

4

� 2
nþ4

: ð27Þ

As the wall tension begins to dominate, the remaining
lifetime of the strings is limited by the time it takes the
walls to pull them together by a distance rHðτ2Þ. We
therefore expect the string-wall network to have collapsed
by τ ¼ 2τ2 ∈ ½5; 2.8�, where the range corresponds to our
considered range of indices n ∈ ½0; 6� (see Table I).
Equation (27) suggests that models with slower mass growth
will have a delayed network collapse compared to models
with a faster mass growth. Figure 5 confirms this expect-
ation, where we see that the string network disappears
around τ=τ2 ∼ 2 in all cases. Notice also how in the
n ¼ 0 case the collapse begins slightly before τ=τ2 ∼ 1.5,
resulting in a smoother and longer-lasting network destruc-
tion compared with the abrupt turnover observed in the
n ¼ 5 and 6 cases.

C. τ ≳ 3: Axion-only simulation

After the strings and walls have collapsed, the saxion has
fulfilled its role and the field can be suitably described by the
axion oscillating around its minimum at θ ¼ 0. At this point
we only need to keep track of the angular degree of freedom
of ϕ, as done for instance in Refs. [33,34]. In practice, the
switch occurs when no plaquette is tagged as containing
topological defects. After the switch, we solve instead the
equation of motion Eq. (7), with a potential containing
essentially a mass term and an attractive self-interaction.
In order to study large gradients, ∇θ ∼Oðπ=ΔxÞ, we

evolve the equation on the unbounded domain θ ∈
ð−∞;∞Þ. So after the switch from ϕ to θ we add values
of 2π, until a continuous θ field is obtained across the grid.9

8Another way in which the walls can be destabilized is if the
potential contains a bias term—either induced by gravitational
effects or by higher-dimensional operators—that effectively
makes one of the NDW degenerate vacua the true vacuum, see,
e.g., Refs. [83–93].

9In JAXIONS, axion-only evolution can also be performed in a
periodic mode, where θ ∈ ½−π; π�.
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Since the axion mass is still increasing with the time at
this stage of the evolution, modes will gradually transition
from relativistic to nonrelativistic. Once the bulk of the
modes has undergone this transition, we can study the
distribution of overdensities as one would for normal cold
DM. We can estimate the axion energy density ρa at these
times by noting that, once ϕ develops a VEV hϕi, the
massive mode jϕj can be integrated out, so that the energy
left in the ϕ field corresponds to

ρa ¼
1

2
_a2 þ 1

2R2
ð∇aÞ2 þ χð1 − cos a=faÞ: ð28Þ

The axion density contrast can then be defined as

δaðxÞ ¼
ρa
hρai

− 1; ð29Þ

where hρai is the spatial average of the energy density
stored in the axion field.
Figure 6 shows the probability distribution pðδaÞ of the

density contrasts evaluated on the grid sites of one sample
simulation from each of our n ¼ 0, 2, 4, 6 runs at the
normalized simulation time τ=τ2 ≃ 3. We shall defer the
discussion of the spectrum of these energy density fluctua-
tions to Sec. V. But we note here that the n ¼ 0 case clearly
supports far fewer very high density regions (i.e., where
1þ δa ≳ 100) than higher-n cases, and that increasing n
generally leads to larger overdensities. This trend can be
understood as follows.

Around this time, the field in the faster growing axion
mass models (i.e., large n) begins to be dominated by a
new kind of structure with very large overdensities. These
structures are the axitons that we hinted at earlier;
quasistable oscillating configurations of the axion field
[44,96]. They are related to a more generic class of
solutions to the three-dimensional Sine-Gordon equation
with an increasing mass, also known as oscillons or
pseudo-breathers. Axitons have sizes comparable to the
axion’s Compton wavelength ∼1=ma. As they are sup-
ported by the attractive self-interaction, they will persist in
the simulation, shrink, radiate axions, and seed other
axitons for as long as the axion mass continues to grow.
Figure 7 shows several snapshots of a small region of the
projected density in two simulations, each containing a
sample of these axitons. The radiation of axions from the
axitons is particularly clear in the τ ¼ 4.0 snapshot of the
n ¼ 6 case (bottom row, third panel from left), which is
followed at τ ¼ 4.5 and τ ¼ 5.0 by many more axitons
forming around them. In contrast, axitons in the slow mass
growth scenarios are generally isolated from each other
and less plentiful overall (see upper panels of Fig. 7 for the
case of n ¼ 1), in agreement with our density fluctuation
count in Fig. 6.

D. τ ≳ 6: Adiabatic evolution

Once most of the axion modes have become nonrela-
tivistic and θ ≪ 1, we can continue the evolution analyti-
cally by linearizing the equation of motion, i.e.,
approximating sin θ ≈ θ in Eq. (7). Using the conformally

FIG. 5. Scaling of the string density ξðτÞ during the early stages
of the simulations. We normalize the simulation time τ here by τ2
[see Eq. (27)], which is the time at which the energy densities in
the strings and domain walls are equal. At τ=τ2 ≲ 1 the strings
dominate the energy density, whereas at τ=τ2 ≳ 1 the domain
walls begin to dominate, causing the network to collapse. The
value of τ2 depends on n, so that displaying the scaling of ξ as a
function of this rescaled time allows us to confirm our expectation
from geometric arguments that the network should collapse
around τ ¼ 2τ2. The band around each curve is the standard
error collected from ten simulations per choice of n.

FIG. 6. Distribution of the axion density contrast δa at the
simulation time τ=τ2ðnÞ ≃ 3 for four of the seven values of n that
we simulate. The cases n ¼ 1, 3, 5 have been removed for
legibility. We observe that the temperature-independent ALP case
(n ¼ 0) peaks at slightly larger values of δa. However, the
distribution is quickly suppressed away at values of δa beyond
the peak. In general, we observe the trend that faster growing
axion masses lead to significantly more instances of high density
fluctuations, i.e., 1þ δa ≳ 100, due to the appearance of axitons
in these cases.
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rescaled field ψ ¼ τθ, each of its Fourier modes ψ̃k evolves
independently by the equation of motion [33],

∂2
τ ψ̃k þ w2

kψ̃k ¼ 0; w2
k ¼ k2L2

1 þ c21τ
nþ2: ð30Þ

In the so-called WKB approximation or, equivalently, the
adiabatic limit ∂τwk=w2

k ≪ 1 (which is satisfied in all our
runs at τ ≳ 6), the solution can be written as

ψ̃kðτÞ ¼
X
�
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðτ0Þ
wkðτÞ

s
e�iφðτÞ; φðτÞ ¼

Z
τ

τ0

wkðτ0Þdτ0;

ð31Þ

where the constants c� are fixed by initial conditions.
Identifying τ0 with the final simulation time τf (see
Table I), the phase integral has an analytical solution,

φðτÞ¼
�
2wkτ

4þn

�
1þ2þn

2

k2

w2
k
2F1ð1=2;1;a1;a2Þ

��
; ð32Þ

where 2F1 is the hypergeometric function, with arguments

a1 ¼ 1þ 1

2þ n
; a2 ¼ m2

ψ=w2
k: ð33Þ

We use the WKB solution (31) to extend the simulation
outcome to τad ∈ ½5; 50�, where the larger value corre-
sponds to the n ¼ 0 case.

Since the WKB approximation switches off the axion
self-interactions, it removes the axitons (see Sec. IV) that
usually survive past τf, as well as power in very high k
modes [33]. The disappearance of axitons is expected in the
QCD axion case once the axion mass—or more precisely
topological susceptibility—approaches the zero-T values.
This was confirmed by the simulations of Ref. [34], where
the authors explicitly implemented a cutoff in the axion
mass growth within the simulation. For a general choice
of n, we interpret the disappearance of axitons from our
WKB result to be analogous to the QCD case. Then, in the
absence of self-interaction, only free-streaming takes place
until gravitational effects come into play. Section VII
describes in more detail how to further evolve the system
at late times, including the gravitational collapse of the
minicluster seeds into compact objects. We remark,
however, that a full treatment of late-time evolution and
gravitational effects is left for a future work.

IV. AXITONS

As discussed in Sec. III, towards the end of the domain
wall collapse and the subsequent switch to our axion-only
simulations, the field develops very small-scale and highly
overdense (δa ≳ 100) configurations called axitons. The
conditions leading to the formation of these objects
have been described in Ref. [33]. A Gaussian lump of
nonrelativistic axions has a critical amplitude a�0 above
which self-interaction dominates the gradient pressure.

FIG. 7. Evolution of a 150Δx × 150Δx region of the projected axion density as a function of time (τ running from left to right). The
upper panels show a zoom-in of a solitary axiton in an n ¼ 1 simulation, whereas the lower panels show the formation of a large cluster
of axitons in an n ¼ 6 simulation. Above each 2D density projection, we also show a 1D projection of the density to further highlight the
profiles of the axitons. In particular, in the upper panels where the axiton is large relative toΔx, we see that its shape varies with time as it
shrinks whilst also radiating axions radially.
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When self-interactions dominates, the pressure is not
enough to withstand the pull from self-interactions. The
lump therefore collapses until potential saturation, happen-
ing at θ ∼ π, when the region has a size similar tom−1

a . This
is followed by a violent burst of relativistic axions (see
Fig. 7). Interestingly, a similar collapse behavior has also
been observed in the formation of a different but related
class of object, the axion stars [97]. Axitons might there-
fore be thought of as transition regime between the so-
called stable “dilute” branch of axion stars (which are
supported by gravity) and the unstable “dense” branch (see,
e.g., Fig. 1 of Ref. [96] as well as Ref. [98]). In particular,
models where n > 2 are most likely to develop the
aforementioned instability [33].
It is not our goal to conduct an exhaustive study of

axitons. But since we have a decent sample of them in some
of our simulations, we can draw some rough quantitative
conclusions about their abundance and properties for
different values of n. We do so by post-processing the
simulated axion energy density contrast projected onto a
two-dimensional plane,

δxy ≡ 1

hρai
Z

dzρa: ð34Þ

While this means we are missing one dimension to the
axitons, we find that they are nevertheless extremely
spherical in shape and sparsely distributed enough to be
identified even in a projection. Our search algorithm looks
for closed constant density contours in the δxy field with the
expected typical size m−1

a , that contain densities exceeding
some threshold δxy > δth. As an additional cross check, we
also demand that the density contours surrounding the
axitons are smooth and circular, i.e., variations in the radial
extent of the contour are no larger than the mean radius. We
find that thresholds of log10ðδthÞ ¼ 1.5–2 are optimal
for n ∈ ½1; 6�.
Figure 8 shows the number of axitons found in our

simulations as a function of the normalized simulation time
τ=τ2 for different cases of n. When n is large, e.g., n ¼ 5, 6,
several regions of the field satisfy the instability condition
quite early on. Many axitons quickly form, sometimes even
before the final domain walls have collapsed. In these
cases, the regions close to the first-formed axitons may
subsequently satisfy the instability condition as well,
leading to the rapid multiplication of many axitons towards
the end of the simulation. Mostly this multiplication entails
axitons seeding new axitons nearby. But occasionally a
single axiton can appear to divide itself, forming two or
more axitons in the process. As a result, the number
of axitons in the n ¼ 5, 6 cases grows rapidly (∝ τ8; τ9

respectively), reaching in excess of 100–200 by τ ≃ 4τ2.
These axitons are also small (relative to L1) and have
high density contrasts. We remark, however, that the axiton
radii approach Δx towards the final simulation time,

so discretization effects might come into play for the large
n cases when close to τf.
Far fewer regions of the field satisfy the instability

condition in the slow mass growth cases, e.g., n ¼ 1, 2, and
the observed numbers of axitons is and remains low. For
n ¼ 1, for example, typically only a handful of axitons
appear, and this number plateaus and does not increase
further at late times. Lastly, in the n ¼ 0 simulations we
almost never observe any axiton at all.
Having extracted the axitons from the field, we can now

analyse their profiles. Qualitative treatments of axitons
have previously been presented the literature, using an
exponential [96–98] or Gaussian [33] ansatz for their
profiles under the assumption of spherical symmetry. We
have checked several profiles on our simulations and find
that the Gaussian, exponential, and logistic (sech2) profiles
are all reasonable fits. An attempt to find an optimal profile
is however inconclusive for two reasons. On the one hand,
at high values of nwhere we have good statistics (i.e., many
axitons), the sizes of the axitons are also very close to the
discretization scale: only a few grid points cover each
structure, making the subtle differences in the fits to
different profiles less meaningful. On the other hand, the
small-n axitons are larger and thus can be fitted more
accurately to a profile. But, at the same time, they are far
less plentiful. As shown in the upper panels of Fig. 7,
the profile of an individual axiton in the n ¼ 1 case
actually varies significantly with time because of the fact
that they are quasi-stable and radiate axions. In particular,
the central regions wobble between having flat peaks
and sharp ones.
Focusing on the n ¼ 5, 6 cases, we show in Fig. 9 the 1D

profiles of all of our detected axitons at three different
times. As expected, the axitons all have comparable shapes

FIG. 8. Number density of observed axitons as a function of
time in one simulation per value of n. To put each value of n on a
roughly equal footing, we again rescale the time by τ2ðnÞ, i.e., the
time when the energy densities in the strings and walls coincide
[see Eq. (27)]. Recall that we expect the walls to have collapsed
by τ=τ2 ≃ 2.
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with radial widths that are generally around half of the
axion’s Compton wavelength. We further quantity the sizes
of the axitons as functions of time by fitting a two-
dimensional Gaussian to the δxy profile with a width in

each direction, σx;y. We then define σaxiton ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ σ2y

q
,

which we plot as a function of the normalized simulation
time τ=τ2 in Fig. 10. We observe that this measure of the
axiton width is quite well fit by the value 0.64=ma in units
of Δx over the range of times shown.

V. THE AXION ENERGY SPECTRUM

In Sec. III we described qualitatively the dynamics and
evolution of the axion field chronologically through our
simulations. We will now move to a more quantitative
discussion of the resulting distribution of axions. Following
the extensive discussions in Ref. [33] for the case of n ¼ 7,
we report in this section the features of the axion’s
dimensionless power spectrum, Δ2

a. This quantity essen-
tially measures the variance of the axion energy density
contrast per logarithmic interval in k, i.e.,

hδ2aðxÞi ¼
Z

d ln kΔ2
a; ð35Þ

and can be computed from the Fourier transform of the
density contrast10

δ̃aðkÞ ¼
Z

d3xeik·xδaðxÞ ð36Þ

via an ensemble average

FIG. 9. Profiles of the ∼100 axitons observed in an n ¼ 5 (left panels) and n ¼ 6 (right panels) simulation, at three different simulation
times (increasing from top to bottom). We indicate the size of the axion Compton wavelengthm−1

a at each time, highlighting the fact that
the axitons have widths comparable to this scale. Observe particularly in the two latest times (lowest panels) that there are sizeable
fluctuations at the edges of some of the profiles. These are caused by neighboring axitons, whose typical separations are a fraction of the
axion’s Compton wavelength. As discussed in Sec. IV, this happens when the axitons are rapidly multiplying near one another at late
times in the n ¼ 5, 6 cases.

FIG. 10. Axiton widths σaxiton in units of the discretisation scale
Δx as a function of the normalized simulation time τ=τ2 for
n ¼ 5, 6. These widths are determined from fitting a two-
dimensional Gaussian profile to the 2D projected density contrast
δxy. Observe that the width decays with the inverse axion mass as
expected. More precisely, we find σaxiton=Δx ∼ 0.64m−1

a ðTÞ to fit
the simulation output quite well. Notice that at late times in the
simulation the error bars become substantially larger. This is
because many of the axitons that appear at these late times emerge
extremely close to one another—sometimes only a few grid
points away—which distorts the fit for a subset of the population.

10We remark here that in the code we take the Fourier
transform of the energy density Eq. (28) and not the density
contrast δa.
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Δ2
aðkÞ ¼

k3

2π2
hjδ̃ðkÞj2i: ð37Þ

In the following, we use Δ2
a to quantify the axion

distribution, and pick out some key contributors to the
axion abundance during different stages of the evolution.

A. Spectra at early times

In the early stages, i.e., τ ≲ τ2, we expect the power
spectrum to be completely dominated by scaling axions—
axions produced by string decay during the scaling regime.
Such axions, being relativistic, will have a momentum
distribution between some UV cutoff corresponding to
the string width ∼ms ∼ Δ−1

x , and an IR cutoff related to the
interstring separation kIR ≃ τH=

ffiffiffi
ξ

p
.11 The expectation

is that the energy spectrum of scaling axions is UV-
dominated, as most of the axions take a large amount of
energy from the strings [31,33,35]. This can be seen in
Fig. 11, where we show the power spectra for several n
cases at a time τ < 2τ2 ∼ 1.5, i.e., moments before the
string-wall network begins to collapse. The spectra all peak
at k ∼ms=2 ∼ Δx=2, and drop off again at larger k values
due to the UV cutoff. Note that in the smaller-n cases, these
features tend to occur at smaller k values. This is an artefact
of our choice of a larger box size Lc and hence discretiza-
tion scale Δx for these simulations (see Table I).

At the lowest momenta where large patches of the axion
field are essentially uncorrelated, the dimensionless
power spectra follow the expectation Δ2

a ∝ ðkL1Þ3, up to
kL1 ∼ 2–3. These modes represent mostly misalignment-
produced axions, and their power decreases over time at a
rate that depends on n, because of free streaming. Axions
that have significant free-streaming velocities act to sup-
press the uncorrelated part of the power spectrum. The
larger the k mode relative to the axion mass under
consideration, the more strongly free streaming acts to
remove power. In the deeply nonrelativistic region, i.e., for
small velocities k=mψ ≪ 1, the power spectrum freezes,
as is evident by the minimal variations in Δ2

a between
τ=τ2 ∼ 1.5 and τ=τ2 ∼ 2.5 at the lowest values of k.
We generally find that the timescale τ ≃ 1.5τ2 provides

an upper bound on the powerΔ2
a at the IR cutoff in all cases

except n ¼ 0. For n ≥ 6, the IR cutoff does not change
considerably with time, as can be seen in Fig. 11, where
Δ2

aðkIRÞ ∼ 10−1 throughout most of the evolution. This is
not surprising, as such low momentum modes are frozen
right after the collapse. For n ¼ 0 on the other hand, the
largest value of Δ2

aðkIRÞ is achieved at a later stage in
the evolution, at τ=τ2 ∼ 2, due to the increased amount of
the free streaming of relativistic axions.
The story at high momenta is very different. After the

collapse of the network begins τ=τ2 ≳ 1, the spectrum loses
power as the mildly relativistic axions emitted can free
stream and wash out perturbations at the very small scales.
This can been seen in Fig. 11, where the broad high-k peak
in the spectrum has disappeared completely by τ ∼ 2.5τ2.
This is the case for all values of n with the exception
of n ¼ 0, which maintains a broad high-k peak even
at τ=τ2 > 2.5.
We observe also in Fig. 11 that in the n > 0 cases, the

spectrum changes shape and develops a new peak on scales
k ∼m−1

a , a phenomenon that can quite clearly be attributed
to the decay of the domain walls and the subsequent
appearance of axitons; since the axion Compton wave-
length λc ∼ π=ma sets the domain wall width [99] [see
Eq. (26)], we generally should expect to see nonlinear
features in the power spectrum around the corresponding
momentum. This remnant peak from the wall collapse is
shifted towards higher k as we increase n, since for larger
values of n the axion mass grows faster and is therefore
larger at the times shown. As we move forward in time all
of these peaks will move gradually to the right as the axion
mass grows, and for the large n cases in particular, the peak
will grow substantially in amplitude as more and more
axitons are produced. See, e.g., Fig. 9 of Ref. [33].

B. Spectra at late times

Figure 12 shows the power spectra Δ2
aðkÞ for all n

scenarios at τadðnÞ, after applying the WKB approximation
as described in Sec. III D. Qualitatively, between τf and τad

FIG. 11. Dimensionless axion power spectrum Δ2
a [see

Eq. (37)] as a function of the comoving momentum in ADM
units for n ¼ 0, 2, 4, 6 at two different times. In each case, the
spectrum shown has been constructed from averaging over ten
runs. We display each spectrum at the rescaled times τ=τ2 ∼ 1.5,
2.5, corresponding approximately to the beginning of the network
collapse and the postcollapse dynamics, respectively (see Fig. 5).
Observe how the dynamics in the different n scenarios are
comparable when discussed in terms of τ2. For n ¼ 2, 4, 6 the
central peak at the later time is related to the conformal axion
mass, k ¼ mψ , while for n ¼ 0 the large-k peak is still dominated
by relativistic axions emitted by strings.

11Note that a large ξ can lead to interstring separations
considerably smaller than the Hubble scale.
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the high-k part of the spectrum gets significantly reduced
because of the absence of self-interactions and the dis-
appearance of the axitons. Quantitatively, however, we
caution that the adiabatic approximation may not be
reliable at the highest-k end of the spectrum, i.e., kL1 ≳
30–100 depending on the value of n, where the modes
have large velocities k=mψ ≳ 0.1.12 It is clear that even a
small change to the axion mass growth rate index leads
to substantial and nontrivial changes to the spectrum.
Our largest n simulation shows a peculiar shape with a
maximum value at kL1 ∼ 20–40, quite close to the n ¼ 7
result of Ref. [33], plus a smaller, second peak at larger
scales kL1 ∼ 4. The main peak height decreases with
decreasing n, and its location also appears to shift to larger
scales; for n ¼ 3, 4 we find the main peak at kL1 ∼ 10.
On the other hand, the n ≤ 2 scenarios produce power
spectra that are much smoother in shape, with a broad
peaks and generally much less power at large scales. Note
that all spectra maintain a k3 slope in the low-k region, and
we find Δ2 ¼ CðkL1Þ3 with C ≃ 0.03–0.05 to provide a
good description.

VI. DARK MATTER

Having applied the adiabatic approximation once the
bulk of the axions are deep in the nonrelativistic regime, we
can now proceed to calculate their abundance. To do this
we assume no additional entropy injection at later times, so

that the number of axions per comoving volume is
conserved, na=s ¼ const, where s is the entropy density.
Assuming entropy conservation, this fact allows us to
estimate the total relic abundance of DM, and therefore
predict windows of ALP parameter space that are consis-
tent with observed cosmology.
Our goal here is to compare the efficiency of

axion production relative to the yield from the standard
analytic calculation for the zero-momentum mode mis-
alignment, with a particular focus on the n-dependence.
Additionally, given that we have performed simulations
for n up to 6, we may be able to extrapolate our
results to estimate the QCD axion abundance
without the costly grid sizes needed to simulate large
n physically.
A similar estimate of the axion production efficiency

was carried out by Ref. [32] for the QCD axion
(n ∈ ½6; 8�), and for n ¼ 2. They found that when
n ¼ 2, axions are produced in greater abundance thanks
to the slow decay of the topological defects. Recently,
Ref. [100] confirmed this observation by comparing the
n ¼ 0 and n ¼ 7 scenarios in an OðNdÞ theory with
Nd ≥ 3. Despite the fact that the physical case should
correspond to Nd ¼ 2, this result confirms the intuition
that models with slow mass growth are generally
more efficient at producing axions. In the following,
we present our estimation of the axion production
efficiency for the Uð1Þ model, including for the first
time the case n ¼ 0.

A. Number density

Naively, we expect the number of axions produced
per unit comoving volume via misalignment to be na ∼
H1f2aR3

1, although the precise numbers cannot be estimated
easily analytically. In our simulations, however, we can
just count the number of axions per comoving volume, and
this number will include contributions from topological
defects as well as nonlinearities [31]. To do this, we
compute [33]

na
m1f2aR3

1

¼ 1

c1ðnÞ
Z

k2dk
2π2

N ðkÞ; ð38Þ

where the integrand is the angle-averaged occupation
number, an adiabatic invariant that can be written as

N ðkÞ ¼
�

1

2wk
j∂τψ̃ j2 þ

wk

2
jψ̃ j2

�
jkj¼k

: ð39Þ

Note that we have also used the relation (8) to ensure that
we keep track of the different t1 criteria for different n
scenarios.
When we track the axion number density over time

we find that it reaches a peak value at an equivalent point in

FIG. 12. Dimensionless power spectrum of the axion energy
density contrast Δ2

a, defined in Eq. (37), as a function of the
axion’s momentum in units of 1=L1. We show seven power
spectra, one for each value of n considered in this work, ranging
from the generic ALP case (lowest, blue line), to a case close to
the canonical QCD axion (highest, red line). The band around
each spectrum encodes the standard error collected from ten
simulations per value of n.

12We stress that in the n ¼ 0 scenario, only modes up to
kL1 ∼ 50 have transitioned to nonrelativistic regime, and that
only modes kL1 ≲ 10 have small velocities k=mψ .
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the evolution for each n simulation at around τ=τ2 ∼ 1.25,
followed by a steep decrease to a constant value.
This plateauing of the number density occurs after around
Nosc ∼ 10 background (zero-mode) field oscillations
around the potential minimum, with lower values of n
plateauing at higher number densities. Our final number
density as a function of n is shown in the upper panel of
Fig. 13. We see that it is well fit by the function

na
m1f2aR3

1

¼ að1þ be−cnÞ þ d; ð40Þ

with a ¼ 4.03, b ¼ 0.83, c ¼ 0.50, and d ¼ −1.96.

B. Nonlinear misalignment and efficiency

Now that we know the total number density of axions
at the end of our simulations, we can compare this with
the number density expected from the standard zero-mode
misalignment calculation. We treat the full nonlinear
misalignment in a way consistent with our t1 criterion,
by numerically solving the n-dependent equation

∂2
t̂ θ þ

3

2t̂
∂ t̂θ þ

�
c1ðnÞ
2

�
2

t̂n=2 sinðθÞ ¼ 0; ð41Þ

which has the Laplacian term set to zero. Observe that the
time derivatives are with respect to t̂ ¼ t=t1, and conse-
quently the c1ðnÞ coefficient enters the equation with a
different prefactor compared to Eq. (14). We solve Eq. (41)
from t̂i to t̂f, given respectively by

t̂i ¼ 10−3; t̂f ¼ ðNoscπðnþ 4Þ=2Þ4=ðnþ4Þ; ð42Þ

where the final time tf corresponds toNosc field oscillations
around the potential. We choose Nosc ¼ 8 and solve for a
range of initial angles θi ≡ θðt̂iÞ ∈ ½0; πÞ. The misalign-
ment number density can then be calculated from this
solution via

nmis
a

m1f2aR3
1

¼ 4

πc1ðnÞ2
Z

π

0

dθ
θ2ðt̂fÞ
θ2i

ρθðt̂fÞ
mðt̂fÞ

Rðt̂fÞ3; ð43Þ

where

ρθðt̂Þ ¼
1

2

��
dθ
dt̂

�
2

þ
�
c1ðnÞt̂n=4

2

�
2

ð1 − cos θÞ
�

ð44Þ

represents the energy density stored in the θ field at time t̂.
The value of nmis

a , in units of m1f2aR3
1, as a function of n

is shown alongside our simulation results in Fig. 13.
We also calculate the efficiency by taking the ratio of
these two results, na=nmis

a , shown in the lower panel of
Fig. 13. We see that the most efficient case is n ¼ 0, where
the decay of the strings and walls produces an additional
25% more axions over the misalignment-only scenario.
On the other hand, the case of n ¼ 6 reveals a low
efficiency at only na=nmis

a ≃ 0.68� 0.07.
The general trend that lower values of n results in

more axions is in broad agreement with the findings of
Refs. [32,100]. However, quantitatively, our results at small
string tensions κ ≲ 8, show that only in the n ¼ 0, 1 cases is
it possible to obtain yields higher than the misalignment
estimation. On the other hand, Ref. [32] performed sim-
ulations adding string tension and computing the abun-
dance for QCD axion physical values κ ∼ 60–70. While for
large n the effect of added string tension is modest, of order
30% in the DM density, for small n cases it is dramatic: for
added-tension simulations the efficiency is a few times
higher than the misalignment estimation.13

FIG. 13. Comoving axion number density in the adiabatic
regime as a function of n. In the upper panel, the orange points
with error bars represent our simulation results, which are well
fitted by Eq. (40), indicated by the orange line. The red line
denotes the average number density from nonlinear misalign-
ment, constructed from the solution of Eq. (41). For additional
clarity we compare these results with the statistical prediction
from the linear misalignment calculation (gray dashed line), that
is based on an averaged initial angle of hθ2i i ¼ π2=3. The bottom
panel displays the production efficiency, i.e., the number density
obtained from our simulations relative to that from the nonlinear
misalignment calculation, na=nmis

a .

13G. Moore, private communication.
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C. Relic abundance and outlook

With an estimate of the number density of axions in
hand, we can now fix some physical parameters for the
axion and finally estimate the present-day relic abundance.
Using entropy conservation and Eq. (38), we find the
present-day energy density in axions to be

ρa;0ðnÞ ≃ 0.15
eV
cm3

θ2effðnÞF 70ðT1Þ
�
c1ðnÞ
1.6

�
3=2

�
ma

m1

�
1=2

×

�
ma

μeV

�
1=2

�
fa

1012 GeV

�
2

; ð45Þ

with F 70ðT1Þ ¼ ðg�ðT1Þ=70Þ3=4ðg�sðT1Þ=70Þ−1. The result
of our simulations is encapsulated in the effective initial
angle, θ2eff ≡ na=m1f2aR3

1, i.e., the angle one would need to
choose in order to correct the naive abundance estimate to
reproduce the result that includes topological defects. The
numerical values we obtain for n ∈ ½0; 6� are

θeff ¼ f2.33; 2.02; 1.81; 1.69; 1.59; 1.56; 1.48g; ð46Þ

taken from an average over 10 simulations per value of n,
and with roughly 5% uncertainties.
The simplest case to estimate is the n ¼ 0 scenario, since

the characteristic temperature T1 and hence m1 ≡maðT1Þ
depends only on the massma, which stays constant in time.
Then, evaluating Eq. (45) for m1 ¼ ma we find

Ωn¼0
a h2 ≃ 0.019F 70ðT1Þ

�
ma

μeV

�
1=2

�
fa

1012 GeV

�
2

ð47Þ

for the axion energy density relative to the critical density,
Ωa;0 ≡ ρa;0=ρcrit. If we further assume all DM to be made of
cold axions and fix Ωn¼0

a h2 to the observed DM density, a
simple relation betweenma and fa can be straightforwardly
established from Eq. (47). A conservative lower bound on
the abundance in this case was calculated in Ref. [101],
from the high resolution simulations of [36] and under the
assumption that the axion spectrum becomes IR dominated
at κ ≫ 1.
In order to obtain a similar relation for the n > 0

scenarios, we need to make an additional assumption about
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma=m1

p
in Eq. (45). In other words, how long

should the axion mass continue to grow? For a generic
ALP model, the mass growth could be attributed to a
hidden SUðNÞ group that condenses at some scale Λ. In
this case, the enhancement factor could be simply estimated
as [72,73]

ffiffiffiffiffiffi
ma

m1

r
∼
�
T1

Λ

�
1=2

; ð48Þ

with T1 given by Eq. (10) and Λ ¼ ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
. We will adopt

this assumption when showing results for our n > 0
scenarios, but emphasise that this is just one possible
choice. Alternatively, we could simply choose some arbi-
trary time to saturate the axion-mass growth. We observe in
our simulations that the comoving axion number density na
tends to a constant value towards the end of our simu-
lations. So as far as the DM abundance is concerned we
should be free to identify any time after the final simulation
time τf to be the saturation time τ� [see Eq. (5)], as long as
we can continue to assume naðτÞ ¼ naðτfÞ for all τ ≥ τf.
This option clearly comes with a lot more freedom though,
hence why we choose the simpler and more restrictive case
described above.
We can now derive windows of viable ALP models by

fixing Ωa;0h2 to the DM density measured by the Planck
mission, ΩPlanck

DM h2 ¼ 0.12 [102], and rearranging Eq. (45)
for the axion decay constant fa under the assumptions
discussed above. The right panel of Fig. 14 shows the decay
constant fa versus the axion mass ma for all n ∈ ½0; 6�
considered in this work, keeping in mind that only the
generic temperature-independent ALP (n ¼ 0) is free from
the assumption (48) for the axion mass growth enhance-
ment. We display also in the left-hand panel of Fig. 14
the n ¼ 0 prediction in terms of the ALP-photon coupling,
defined in analogy to the QCD axion as gaγ≡αCaγ=ð2πfaÞ.
Note that some degree of model dependence remains, as
the dimensionless coupling constant Caγ is arbitrary for
ALP models; the blue band indicates a range of possible
values Caγ ∈ ½0.1; 10�.
The intention behind the left panel of Fig. 14 is to give

the expected range of parameters for postinflationary ALPs
in a familiar context, and to show the relationship between
our prediction and the broader landscape of searches (see
figure caption). The right panel, on the other hand, high-
lights some experiments that might be able to probe the
various models in the future. Taking the (arguably opti-
mistic) projections set by these collaborations at face value,
we can expect CASPEr-electric and DM-Radio to cover
everything below ∼μeV, and CASPEr-gradient to reach
only the very lightest masses if the mass-growth enhance-
ment factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma=m1

p
is large enough.14 Unfortunately, the

high-mass end of our predicted ALP DM band implies
significantly weaker couplings than the QCD axion, which
would make the search for these models considerably more
challenging. It is possible that for large enough values
of Caγ some future telescope-based searches similar to
Refs. [132,133] looking for heavy ALPs decaying inside
galactic halos may reach these models, though this is not
clear at present. In contrast, the low-mass end will be

14We define the axion-EDM coupling to be ganγ ¼ eCEDM=fa
with CEDM ¼ 2.4 × 10−16 cm [143], and the axion-nucleon
coupling as gan ¼ Cnmn=fa, with an arbitrary Cn.
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readily probed as experiments continue to make progress
towards their primary goal: the QCD axion.

VII. MINICLUSTERS

As we approach matter-radiation equality, the small-
scale power in the axion field seen at the end of our
simulations will start to form the first gravitationally
bound structures of DM called axion miniclusters. We
remark that, although the appearance of this structures is
seeded by large Oð1Þ overdensities in the axion energy
field, they are not directly related to the presence of axitons
(the latter are expected to disappear way before any
gravitational collapse). In this final section we would like
to predict the properties of the eventual miniclusters, using
only the information we possess about the spatial clustering
of their early seeds and the power spectrum Δ2

a after the
WKB approximation, while without performing any N-body
simulations.
As pointed out in Ref. [33], and confirmed by the spectra

shown in Fig. 12, the presence of strings and domain walls
in the initial conditions leads to substantial power on scales
much smaller than L1. This modifies somewhat the conven-
tional wisdom that miniclusters form as a result of spatial
fluctuations on the typical scale L1, corresponding to

an average mass M1 ¼ 4π=3hρaiL3
1—about 10−12 M⊙

for typical QCD axion scenarios, but potentially much
smaller for general ALPs. Rather, the power spectrum
suggests we should expect a substantial population of
collapsed objects with masses much smaller than M1. To
estimate the mass distribution of these objects, or the
minicluster halo mass function (HMF), we follow the
arguments of Ref. [46], who first studied the formation
of miniclusters by numerically computing the nonlinear
spherical collapse of large overdensities in a radiation
background. We also apply a modified version of the
Press-Schechter (PS) formalism, wherein the gravitational
collapse of some substructure can take place before matter-
radiation equality.
In the standard PS prescription, the amount of cold

matter in gravitationally bound objects of a particular size
σs at a given time can be read off the cumulative probability
distribution of smoothed density fluctuations δaðσsÞ larger
than some threshold value δc. Here, the smoothed density
contrast δaðσsÞ is constructed by filtering a linearly-evolved
(under gravity) density field over σs, which we call the
smoothing length. The collapse threshold δc is usually
established from the spherical collapse model, and has the
well-known value δc ¼ δ�c ≃ 1.686 for standard cold DM
during matter domination. Here, we use [46,52]

FIG. 14. Range of temperature-dependent ALP masses and couplings that can comprise the totality of the observed cosmological DM
abundance. In the left panel we display the familiar photon-coupling parameter space, where the blue band indicates a possible window
of DMALP couplings for a range of arbitrary dimensionless photon couplings, Caγ ∈ ½0.1; 10�, in the n ¼ 0 case. We also show existing
constraints from DM haloscopes [103–125], astrophysical photon-axion oscillation [126–131], telescope searches for DM ALPs in
galaxies [132,133], the horizontal branch (HB) star cooling [134], and the bound on solar axions from CAST [135,136]. In the right
panel we show the window in the (ma,f−1a )-parameter space for all n values [assuming the mass growth enhancement factor (48)], as
well as projections for three possible future experiments: CASPEr-electric [137,138] (via the electric dipole moment coupling),
CASPEr-wind [139] (via the ALP-nucleon coupling), and DM-Radio [140] (via the photon coupling). We also show the bounds from
black hole superradiance [141]. Data and references for all of the limits shown here can be found in Ref. [142].
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δcðRÞ ¼
1.686
3

2þ 3R=Req

R=Req
; ð49Þ

in order to include collapses before matter-radiation equality.
We implement a real-space top-hat filter to smooth our

simulated density contrast field δaðxÞ, after applying the
adiabatic approximation, for a set of Nσ ¼ 4 log2ðNÞ
different values of σs spanning the grid spacing Δx and
the box size Lc. From this we build the functional integral
for the cumulative mass, defined as

Mðσs; RÞ ¼ L3
chρai

Z
δcðRÞ

pðδa; σsÞð1þ δaÞδa: ð50Þ

To convert this to an HMF, we note that the smoothing
length σs can be related to the mass of the eventual
minicluster viaM ¼ 4π=3hρaiσ3s ¼ M1ðσs=L1Þ3. This then
allows us to define the HMF as

dn
d logM

¼ 1

L3
c

dM
dM

; ð51Þ

which represents the comoving number density of mini-
clusters per logarithmic mass interval.
In this section we implement the process described above

on a n ¼ 0 simulation, as well as a QCD axion simulation
with n ¼ 6.7. The latter entails performing a new simu-
lation on a larger grid of N ¼ 40963 points in order to
avoid excessive tilting of the saxion potential. The other
simulation parameters set to Lc ¼ 6L1, δ−1core ¼ 1.25, and
τf ¼ 4.5 following the same arguments presented in Sec. II.
Then, we fix ma ¼ 10−4 eV, and in the case of n ¼ 0, we
additionally fix the value of fa via Eq. (45) by demanding
that the axion abundance matches the Planck DM density
measurement. These assumptions in turn fix the character-
istic temperature T1 and consequently the characteristic
scale L1 to be

Lðn¼0Þ
1 ≃ 1.6 × 10−4 pc; ð52Þ

Lðn¼6.7Þ
1 ≃ 3.9 × 10−2 pc: ð53Þ

Notice how, for the same value of ma, the characteristic
scale is considerably smaller in the ALP case.
Having fixed the physical scales, we can now take

the density contrasts on the simulation grid at τf and
evolve them analytically using the WKB approximation
until a redshift z ¼ 105, or, equivalently, a code time of
τ ¼ 4 × 1010 and τ ¼ 2 × 108 for n ¼ 0 and n ¼ 6.7
respectively. Figure 15 shows the resulting HMF in
ADM units for the n ¼ 0 (solid lines) and n ¼ 6.7

(dotted lines) scenarios at several different times.
Comparing the two scenarios, we see that the minicluster
population is larger in the QCD axion case near the large
mass cutoff as well as in the small mass limit, whereas the
n ¼ 0 HMF exceeds the QCD case over intermediate
masses. In addition, while the QCD axion HMFs resem-
ble those found in detailed N-body simulations of a
similar scenario [50] in terms of the slopes and cutoffs,
the n ¼ 0 HMFs show a smoother dependence on the
minicluster mass. The implication of this results, through
a more accurate study of the density profiles, is remark-
able for axionlike dark matter searches. Indeed, if a
sizeable portion of the Milky Way’s dark matter is bound
on miniclusters, the actual signal of axion dark matter
detectable by Earth-bound axion search experiments will
be substantially different from conventional expectations.
Furthermore, these miniclusters will likely collide with
other compact objects such as white dwarfs and neutron
stars, potentially leading to observable astrophysical
signature, see e.g., Refs. [59,67].
Before closing this section, we would like to emphasise

that strictly speaking our method of evolving the simulation
grid using the WKB approximation does not capture the
full dynamics of the system between τf and the time around
matter-radiation equality. This is especially so for the small-
n scenarios, where the group velocities of the high-kmodes
cannot be neglected and a full treatment including the

FIG. 15. Comparison of the minicluster HMF at several times
specified by R=Req, where Req is the scale factor at matter-
radiation equality. Solid lines correspond to the result for an
n ¼ 0 simulation and the dotted lines to an n ¼ 6.7 simulation.
We also label the characteristic mass scale of the miniclusters,
M1, for the two scenarios, noting that it is considerably small for
the ALP case (n ¼ 0) even while the axion mass is assumed to be
the same for the two simulations at ma ¼ 10−4 eV.
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additional effects of gravitational velocities sourced by
density perturbations is needed. Therefore, our conclusions
on the minicluster HMF for n ¼ 0, or for any small-n
scenario, should be revisited in a dedicated gravitational
analysis.

VIII. CONCLUSIONS

The search for the axion is ramping up: new experiments
aimed at detecting these elusive particles as DM are
coming online, and increasingly diverse methods to look
for axionic DM indirectly are being put forward as well.
Soon we will be finally probing well-motivated parameter
space that has laid unexplored for decades. In order to take
full advantage of this accelerating interest, it is crucial that
we understand which models of axions and ALPs are
consistent with our cosmological understanding of DM,
and what are the present day implications of their asso-
ciated production scenarios.
In this article we have presented the results from a suite

of simulations for axionlike particles in the so-called
postinflationary scenario, focusing our attention on the
dynamics of the axion field around the time where its
mass becomes cosmologically relevant. We have placed a
particular emphasis in this study on understanding how
the rate at which this mass grows influences the ensuing
dynamics, as well as the ultimate abundance and dis-
tribution of DM. Adopting the common mass-temper-
ature parametrization of m2

a ∝ T−n, we have performed
simulations across the range n ∈ ½0; 6�, approaching the
QCD axion scenarios with n ∼ 6–8. To our knowledge,
this work includes the very first large-scale simulations of
a temperature-independent ALP model (n ¼ 0). As can be
seen from our results, the qualitative picture of the
evolution in the field—in terms of the resulting cosmic
strings, domain walls, and axitons—is strongly depen-
dent on n. In general, the faster the axion mass grows, the
faster the topological defect network is destroyed, but the
more small-scale structures emerge (see Fig. 16 for a
complete visualization).
While the overall trends we observe in the field’s

evolution as we change n confirm our general expect-
ations, the key results we have presented here are
quantitative. Upon a careful inspection of the axion
energy density power spectrum at the end of our simu-
lations (see Fig. 12), we find that it peaks at momenta
kL1 ∈ ½10; 50� corresponding to length scales much
smaller than the reference value L1, and the peak height
increases significantly as we increase n. This observation
modifies the naive assumption that spatial fluctuations—
and subsequently the seeds of miniclusters—occur on
scales ∼L1.
This tendency for there to be more small-scale power

in cases with faster mass growth also manifests at earlier

times in the population of axitons. These are small and
highly dense field configurations that appear after the
destruction of the string-wall network, but before the
axion mass saturates to its present day value. We find that
the density profiles of these axitons are well described by
spherical Gaussian distributions of widths ∼1=ma, even
for the more unstable axitons that appear in scenarios of
slow axion mass growth. However, their population
statistics are strongly n-dependent: large values of
n ∼ 5, 6 lead to huge populations of axitons that are still
rapidly growing at our final simulation times (see Fig. 8),
whereas small values of n result in low numbers that
stabilize as the axitons emit relativistic axions. In the case
of a temperature-independent axion mass (n ¼ 0), we
find that axitons almost never form.
We then calculated the axion number density so as to

estimate the present-day energy density in axion DM.
To quantify the efficiency of the string-wall network in
producing axions, we have compared the number density of
axions observed in our simulations, with the density
derived from an analytic nonlinear misalignment calcula-
tion (see the lower panel of Fig. 13). We find that the
smaller-n cases are the most efficient at producing axions,
in agreement with the conclusions of Refs. [32,100]. The
temperature-independent case is the most efficient of all;
the presence of topological defects leads to 25% more DM
than the misalignment calculation. Somewhat counterin-
tuitively, for the largest-n simulations we have performed
here, which are close to predicted QCD axion values, the
number density of axions is actually almost 25% smaller
than the analytic misalignment abundance. We also realize
that the estimation of the production efficiency has a
substantial κ dependence for small n scenarios, as opposed
to a smaller uncertainty for QCD axion models [32].
Finally, we discussed the formation of axionlike

miniclusters: gravitationally bound objects formed from
the density seeds left at the end of our simulation that
begin to collapse before matter-radiation equality. Using
the density contrast field from our simulations, we have
estimated the minicluster halo mass function following a
modified Press-Schechter treatment (see Fig. 15). We
emphasise that this is only a projected result and likely
reliable only for large values of n as argued in Sec. VII.
A full analysis of the gravitational evolution of these
scenarios, also as a function of n, will be the focus of our
next investigations. A number of terrestrial experiments
under preparation right now will be well positioned to
probe ALP DMmodels in the near future (see Fig. 14). So
these followup gravitational studies will be essential if we
are to understand how much the axion distribution these
experiments will attempt to observe might be impacted by
the presence of DM substructure predicted in the post-
inflationary scenario.
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APPENDIX A: INFORMATION ON THE CODE

JAXIONS is a recently developed high-level numerical
library that tracks the evolution of the axion field in the
early Universe. The code is written in C++, and includes an
additional PYTHON library (pyaxions) for efficient data
analysis and visualization. The library embodies massive

hybrid parallelization (MPIþ openMP), to optimise the
use of typical HPC infrastructures, especially for CPU
clusters. A GPU version is currently under development.
Running on the CPU, processors also make use of
advanced vector extensions (AVX/AVX2/AVX512) and
loops that evolve the grid in time have a cache tuner
functionality to optimise the openMP chunks.
We have tested JAXIONS on the UNSW cluster Katana

and the larger NCI cluster Gadi, comparing pure MPI runs
(one CPU core per MPI process) with hybrid runs, the latter
utilizing the openMP multithreading as well. For large
simulations an optimized parallel scaling and large-scale
systems are required, since huge amounts of memory
(> 200 GB) force us to split the simulation across multiple
compute nodes. A typical simulation with 30723 lattice
points requires ∼700 GB and ∼4000 CPU hours. Hence, in
the running of our main simulations and tests we have used
in total close to one million CPU hours.

APPENDIX B: ADDITIONAL VISUALIZATIONS

Figure 16 shows six snapshots of the projected axion
density at different stages of evolution, including at the
final time after we have applied the WKB approximation,
for four values of n. In each panel we include also a zoom-
in of a 250Δx × 250Δx region of the box to give a closeup
of the structure of the strings, walls, and axitons.
Figure 17, on the other hand, shows the evolution of a

150Δx × 150Δx region of the projected axion density as a
function of time for the cases n ¼ 2, 3, 4, 5, and has been
provided here to supplement Fig. 7, which shows the same
evolution but only for the n ¼ 1 and n ¼ 6 cases.
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FIG. 16. Evolution of the projected density contrast ρa=hρai as a function of simulation time τ, for four values of n ¼ 0,2,4,6. The final
row also shows the projected density after the WKB approximation has been applied. The difference in timescales for the collapse of the
string-wall network is apparent by comparing the panels of different n at the same τ. By comparing the appearance of the field at the
penultimate time τ ¼ 5, we can also appreciate the difference in the axiton population that appears as a function of n, where faster mass
growth leads to more plentiful axitons.
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