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The lack of medical treatments and vaccines upon the arrival of the SARS-CoV-2 virus has made non-
pharmaceutical interventions the best allies in safeguarding human lives in the face of the COVID-19 pandemic.
Here we propose a self-organized epidemic model with multi-scale control policies that are relaxed or strength-
ened depending on the extent of the epidemic outbreak. We show that optimizing the balance between the ef-
fects of epidemic control and the associated socio-economic cost is strongly linked to the stringency of control
measures. We also show that non-pharmaceutical interventions acting at different spatial scales, from creating
social bubbles at the household level to constraining mobility between different cities, are strongly interrelated.
We find that policy functionality changes for better or worse depending on network connectivity, meaning that
some populations may allow for less restrictivemeasures than others if both have the same resources to respond
to the evolving epidemic.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Upon the arrival of any contagious disease, when nothing is known
about the epidemiological features of the new transmissible pathogen
or no drugs or vaccines are available, the authorities must resort to
non-pharmaceutical interventions (NPIs) to keep the epidemic out-
break under control. Such a scenario has been reflected by the irruption
of the COVID-19 pandemicwhere NPIs have been fundamental to shape
the transmission dynamics of the SARS-CoV-2 virus worldwide, helping
to reduce its already elevated impact on thepopulation [1]. Nonetheless,
the specific interventionwas chosen to copewith the pandemic and the
degree of accomplishment of the different measures notoriously varied
from one country to another, depending on different social, economic,
political or geographic features [2,3]. While some countries located in
South-East Asia or Oceania were capable of maintaining low levels of
community transmission via the timely combination of strict border clo-
sure policies, robust contact tracing systems and punctual local lock-
downs to eradicate localized outbreaks, most of the countries
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worldwide reacted with population-wide lockdowns as an urgent solu-
tion to the exponentially growing number of local contagions [4].

However, widespread lockdowns to contain the COVID-19 pan-
demic have disrupted the world economy [5]. School and business clo-
sures, restrictions on international travel, and trade have led to
massive job losses and the worst GDP contraction in decades in most
of these countries [6–8]. Even though vaccines have given some relief
to both health and economic systems relaxing restrictions in some
countries, the unequal distribution and adoption of vaccines worldwide
[9,10], along with their reduced efficiency to the new variants of the
virus [11,12], prevent countries from completely abandoningNPIs as ef-
ficient tools against the ongoing pandemic. Moreover, fearing the ex-
tending human toll with renewed waves caused by new variants of
the virus, policymakers have drawn on lockdowns, stay-at-home and
self-quarantine programs over and over again [13]. The multi-layered
crisis that primarily encompasses the health and economic systems re-
quires joint effective policies to prevent worse outcomes. An optimal
policy response has to face the challenge of reducing the daily incidence
of the disease allowing health care systems to cope while reshaping
their economies by adjusting the mobility restrictions.

Several models have addressed targeted lockdowns to optimize the
economic losses and the epidemic control [14–16]. Others have
attempted to promote sustainable policies alternating [17] or intermit-
tently implementing [18] control measures that allow the economic
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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system to cope while giving relief to the health systems. The different
policy scenarios were simulated to analyze both health and economic
effects [19]. However, these models do not account for the importation
of new cases from other places that may spark a new outbreak or epi-
demic wave, most of them do not include human mobility, and the im-
portant effect of social reactions to the policies implemented [20–22].

Here, we propose a new theoretical framework to explore the inter-
play between the spreadof infectious diseases and closure interventions
promoted to keep the outbreaks under control and their economic con-
sequences. The main novelty of this formalism is that the latter inter-
ventions are strongly coupled with the dynamical state of the system,
being their implementation and strength adapted to the evolution of
an epidemic outbreak. We perform a multiscale approach by acting on
the processes driving the spread of the disease across different spatial
scales, ranging from the spatial diffusion of cases due to commutingmo-
bility between municipalities to the local transmission events fostering
the community transmission of the pathogen. Our results highlight that
these different spatial scales are not independent one from another,
stressing the need to use systemic approaches to achieve an optimal
trade-off between the strength of the control policies, their benefits
for the health system and their associated socioeconomic cost.

2. The model

Metapopulations constitute a natural avenue to simultaneously cap-
ture the community transmission of the virus, as the internal dynamics
of each patch, and its spatial diffusion as a result of themixing events of
the individuals from different subpopulations. Here we consider an ex-
tension of the Movement-Interaction-Return (MIR) model [23] to ac-
commodate household interactions [24] and complex compartmental
dynamics [25]. As such, the MIR model comprises three stages: the
first (M) is associated with mobility flows whereas the last two (I and
R) are associated with possible contagions either at the destination
(I) or at the household (R).

To implement contagion processes occurring at stages I and R we
make use of a tailored model for the spread of SARS-CoV-2. This
model contains the following compartments: Susceptible (S), Exposed
(E), Presymptomatic infectious (P), Asymptomatic infectious (A),
Fig. 1. Scheme of themultiscale reactive controlmodel. A. The compartmentalmodel comprises
tomatic (A), presymptomatic (P) and symptomatic (I) compartments. Once infected, agents pas
atic. In the latter case agents transit first a presymptomatic (P) stage before developing sympto
directly pass to R, which is the final compartment for those asymptomatic. B. In the metapopu
households takes place in the residential patch or in a different one through the movement o
account for the probability that a resident in patch i visits j. C. When the fraction of D in a pa
the mobility and the social contacts of agents.
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symptomatic Infectious (I), Detected (D), and Recovered (R). The tran-
sition probabilities between each of the former compartments are rep-
resented Fig. 1.A and explained in detail below. In its turn stage M of
theMIRmodel assumes that thewhole population ofN individuals is di-
vided into NP subpopulations, each one associated with a specific

geographic location (patch) i and of size ni (N ¼ ∑
NP

j¼1
). The population

ni of each patch i corresponds to the number of residents asscoiated
with the corresponding geographic area as dictated by census
information. To capture the daily mobility patterns of the population,
we assume that the population moves according to the Origin-
Destination (OD) matrix bfR, whose elements Rij reflects the
probability that a resident in patch i moves from patch i to patch j as
shown in Fig. 1.B.

Finally, the main novelty of the model resides in the autonomous
control policies which are either strengthened or relaxed as a function
of the dynamical advance of the outbreak. In particular, at each patch
i, we define a parameter pi(t) that determines the share of the
population working actively and carrying out their usual social life. As
shown in Fig. 1.C this parameter depends on the fraction of detected
residents, hereinafter denoted by ρiD(t). When this fraction is below a
certain tolerance threshold, ε, a patch follows a normal socioeconomic
activity level (pi=1). However, when ρiD(t) > ε different interventions
are activated to reach the desirable control of the disease, being the
extent of the contention measures captured by the value of pi<1.
Mimicking different real policies implemented during the course of
COVID-19 pandemic, we consider the following interventions affecting
different resolution levels:

1. At themetapopulation level, usualmobility patterns, encoded inma-
trix R, are altered to minimize the interactions with the population
from those areas with a high incidence numbers (ρjD > ε). This way
the probability that a patch j with high incidence at time t (and
hence low pj(t)) receives commuters from patch i decreases as pj(t)
Rij.

2. Apart from receiving fewer visitors, the economic activity of a patch j
with a high incidence ismodulated according to the extent of the dis-
ease in its population. This way, a fraction pj(t) of residents in patch j
7 compartments. Susceptible individuals (S) can be infected by infectious agents in asymp-
s to an exposed (E) compartment before passing to either asymptomatic (A) or symptom-
ms (I). A symptomatic agent can be detected (D) before being removed (R) or, otherwise,
lation model individuals interact both inside and outside households. The activity outside
f individuals. Mobility flows between patches are ruled by matrix R whose elements Rij
tch i exceeds some threshold ε the activity level of the patch pi decreases, affecting both
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follows a normal socioeconomic activity while the remaining (1− pj
(t)) fraction are set to inactive and reduce their interactions to those
taking place at the household level.

3. Finally, the reduction of the economic activity of the population has
been usually accompanied bymeasures aimed at creating social bub-
bles preventing the transmission of the disease between members
from different households. Note that this mechanism demands the
creation of a new compartment CH to accommodate those suscepti-
ble individuals without infectious individuals in their social bubbles
and, therefore, protected from the disease. Likewise, to model the ef-
ficiency of thismechanism, we introduce a new parameter, the social
permeability ϕ, denoting the fraction of households whose members
are not efficiently isolated [26], despite being inactive from the socio-
economic point of view.

In the following we describe the equations capturing the three
mechanisms that interplay in the metapopulation model. Namely, the
compartmental dynamics, the mobility of agents, and the reactive con-
tainment policies.

2.1. Coupling contagion and commuting dynamics

As shown in Fig. 1.A the compartmental model at work includes 7
epidemiological compartments in an attempt to capture those epidemi-
ological states that are relevant for addressing SARS-CoV-2 transmission
and the associated non-pharmaceutical interventions. The different
transitions between these 7 compartments are as follows. First, suscep-
tible (S) agents can be infected by contact with presymptomatic (P),
asymptomatic (A) and infected (I) agents with probability βc, c ∈ {bfP,
bfA, bfI}. If infected, susceptible agents turn exposed (E), for an average
period of η−1 days. It is then assumed that a fraction x of the population
becomes symptomatic while the remaining fraction (1 − x) becomes
asymptomatic (A). The former visit the presymptomatic but infectious
stage for an average period of α−1 days before becoming symptomatic
and infectious (I). Symptomatic and asymptomatic infectious individ-
uals are assumed to overcome the disease with probabilities μI and μA

respectively. In the case of symptomatic individuals, we assume that
they can be detected (D) with probability δ and, once identified, de-
tected individuals are perfectly isolated and assumed not to transmit
the disease accordingly. Finally, to control the time one detected indi-
vidual is identified as an active case, we assume that they pass to the
R compartment with probability γ.

The interplay between contagion processes contained in the former
epidemiological dynamics and human mobility is modeled with a Mi-
croscopic Markov Chain Approach [27]. To this aim, we assume that
each time step corresponds to a day and each patch i is characterized
by a set of variables ρim(t) that govern the fraction of the residents in
compartment m at time t. Following the premises of the
compartmental dynamics and the recurrent nature of human mobility
flows, these equations read:

ρS
i t þ 1ð Þ ¼ ρS

i tð Þ þ ρCH
i tð Þ� �

pi tð Þ 1−Πact
i tð Þ� �h

þ 1−pi tð Þð Þ 1−shið Þ 1−Πin
i tð Þ

� �i
,

ð1Þ

ρCH
i t þ 1ð Þ ¼ ρS

i tð Þ þ ρCH
i tð Þ� �

1−pi tð Þð Þshi, ð2Þ

ρE
i t þ 1ð Þ ¼ ρS

i tð Þ þ ρCH
i tð Þ� �

pi tð ÞΠact
i tð Þ þ 1−pi tð Þð Þ 1−shið ÞΠin

i tð Þ
h i

þ 1−ηð ÞρE
i tð Þ,

ð3Þ

ρP
i t þ 1ð Þ ¼ 1−αð ÞρP

i tð Þ þ ηxρE
i tð Þ, ð4Þ

ρA
i t þ 1ð Þ ¼ 1−μA

� �
ρA
i tð Þ þ η 1−xð ÞρE

i tð Þ, ð5Þ
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ρI
i t þ 1ð Þ ¼ 1−δð Þ 1−μ I� �

ρI
i tð Þ þ αρP

i tð Þ, ð6Þ

ρD
i t þ 1ð Þ ¼ 1−γð ÞρD

i tð Þ þ δρI
i tð Þ, ð7Þ

ρR
i t þ 1ð Þ ¼ ρR

i tð Þ þ 1−δð Þμ IρI
i tð Þ þ μAρA

i tð Þ þ γρD
i tð Þ, ð8Þ

where shi represents the probability that a confined susceptible resident
of patch i is isolated in a completely susceptible household. This
happens when all the members of the household are not infectious
and not mixed with the rest of households. Therefore

shi tð Þ ¼ 1−ρE
i tð Þ−ρP

i tð Þ−ρA
i tð Þ−ρI

i tð Þ
� �σ i−1

1−ϕð Þ, ð9Þ

where σi is the average size for the households located inside the
population i.

The former set of equations contains the termsΠi
act andΠi

in that ac-
count for the probability of active and inactive individuals with resi-
dence in patch i contracting the disease respectively. Importantly,
these two terms capture the mixing between contagion processes and
recurrent mobility between patches. In the following we describe
their functional form.

The termΠi
act in Eqs. (1) and (3) depends on interactions made both

inside the household and in the usualworkplace of each individual. Taking
into account the modified mobility patterns as a result of the outermost

layer of intervention, hereinafter denoted by eR, this probability reads as

Πact
i ¼ 1−PH,i tð Þ∑

NP

j¼1

eRij tð ÞPO,j tð Þ, ð10Þ

where PH, i(t) and PO, i(t) represent the probability of not contracting the
disease at time t inside a household or a workplace located at patch i
respectively. The former probability reads as

PH,i tð Þ ¼ 1−βI
� �zhσ i ρP

i tð ÞþρI
i tð Þð Þ

1−βA
� �zhσ i ρA

i tð Þð Þ
: ð11Þ

Note that herewe assume thenumber of contacts inside each house-
hold to be proportional to its size σi and we introduce a scaling factor zh
to ensure that the average number of contacts across the
metapopulation matches the estimations obtained from the literature,
denoted by 〈kh〉. Accordingly

zh ¼ N〈kh〉

∑
NP

j¼1
njσ j

: ð12Þ

In its turn, the probability that a susceptible active individual does
not contracts the disease inside the patch i at time t, PO, i(t), is given by

PO,i tð Þ ¼ ∏
NP

j¼1
1−βI

� �zOf
neff
i
ai

� 	
nP
j!i

þnI
j!i

neff
i 1−βA

� �zOf
neff
i
ai

� 	
nA
j!i

neff
i , ð13Þ

where nj→i
P , nj→i

A and nj→i
I are the number of presymptomatic,

asymptomatic and infectious agents going from j to i respectively. The
effective population of patch i after population movements is encoded
as nieff. Taking into account the mobility patterns, these quantities can
be expressed as

nm
j!i ¼ njρm

i tð Þpj tð ÞeRji tð Þ, ð14Þ

neff
i ¼ ∑

NP

j¼1
njpj tð ÞeRji tð Þ: ð15Þ

Note thatwe assume that the contacts of the active population inside
each patch i are governed by a monotonically increasing function fi of



Table 1
Epidemiological parameters and interaction constants. The incubation period is 5.2 days
[30] but half of this time infected individuals are not contagious (E stage). The infectious
window is the same for both asymptomatic and symptomatic infections ∼6.8 days [26].
In the case of the symptomatic individual, this window is divided into P and I stages.

Parameter Value Description Reference

βI 0.07 S !P, ;I E [26]

βA βI/2 S !A E [26]

η 2.6−1 E → A, P [30]
x 0.35 Fraction of symptomatic [31]
α 2.6−1 P → I [26,30]
δ 3−1 I → D Assumed
μA 6.8−1 A → R [26,30]
μI 4.2−1 I → R [26]
γ 14−1 D → R Assumed
〈kH〉 3.2 Average number of contacts at the household [29]
〈kO〉 8.6 Average number of contacts outside the

household
[29]

σ 2.5 Average family members per house [28]
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the effective density of each patch i, dieff = ni
eff/ai, being ai its area. In

particular, the form chosen for this function is

f i xð Þ ¼ 2−e−deffi =〈d〉, ð16Þ

where 〈d〉 is the population density across the entire metapopulation.
Here the scaling factor zO is introduced to set the average number of
contacts of the active population outside the household to 〈kO〉.
Therefore

zO ¼
〈kO〉∑

NP

j¼1
neff
j

∑
NP

j¼1
neff
j f

neffj
aj

� 	 : ð17Þ

Finally, the probability of contracting the disease for the inactive
population must only account for the potential contagions occurring
when interacting with the household members. Consequently

Πin
i tð Þ ¼ 1−PH,i tð Þ: ð18Þ

2.2. Coupling control policies and epidemic dynamics

Mathematically, we couple the socio-economic activity pi(t) with
the fraction of detected residents inside the patch ρiD through a piece-
wise function so that

pi tð Þ ¼ 1 if ρD
i < ε

e−χ ρD
i tð Þ=εð Þ−1ð Þ if ρD

i ≥ε

(
ð19Þ

where χ quantifies the strength of the reaction. Unless specified, we fix
χ=10 ensuring a sharp decrease in the economic activity once the pol-
icy is activated. At the metapopulation level, usual mobility patterns,
encoded in matrix R, are altered to minimize the interactions with the
population from those areas with high incidence numbers (ρjD > ε).
From these assumptions, the elements of the modified mobility matrixeR are given by

~Rij tð Þ ¼
pj tð ÞRij if i≠ j

1−
X
j≠i

p j tð ÞRij if i ¼ j

8<: ð20Þ

3. Results

To run the Markovian equations in a general scenario, information
on the demographic distribution of the population in space, their recur-
rent mobility patterns, and the structure of their contacts in different
contexts is needed to quantify the reduction of sociability as a result of
confinement policies. In our particular case, we focus on addressing
the spread of diseases across Spanish municipalities with a population
of more than 500 individuals. To do so, we extract demographic infor-
mation fromofficial reports published annually by theNational Institute
of Statistics of Spain (INE) whereas mobility patterns are obtained by
INE from surveys conducted in 2011 in which the population indicated
their usual places ofwork [28]. The information about the average num-
ber of contacts a person has per day was obtained from a study
reporting the social mixing patterns in 152 countries [29]. As a result,
we construct a metapopulation with NP=4293 patches and L=59722
weighted links. In addition, the epidemiological parameters governing
the flows between the different compartments are extracted from the
literature and indicated in Table 1.

We first illustrate how the spatiotemporal dynamics of an epidemic
outbreak is shaped by the autonomous multiscale control policies here
implemented. Unless specified, we use ε=7 ⋅ 10−4, ensuring a rapid
4

response of the system when the number of detected symptomatic
cases exceeds 70 individuals per 105 inhabitants (in the Spanish na-
tional health system, the average number of hospital beds per 105 peo-
ple is around 240 [32]). Fig. 2.A represents, for different values of the
permeability ϕ, the time evolution of the detected active cases in the
200 most populous municipalities in Spain (grey lines) and the average
in the whole country (black line), for an outbreak whose initial seed is
placed in the most populous city, Madrid. The emergent self-
regulating system leads to different epidemic waves resulting from
the activation and deactivation of the control policies to respond to
the advance of the outbreak at each municipality. The length and fre-
quency of the epidemic waves are strongly influenced by the social per-
meability allowed ϕ. High permeability values represent the failure of
household isolation, giving rise to a large and long first epidemic wave
followed by smaller secondary waves. Instead, when permeability de-
creases, the creation of social bubbles becomes more successful and
we observe a less severe first epidemicwave followed bymore frequent
and shorter subsequent epidemic outbreaks. In the three scenarios ex-
plored, the green lines represent the evolution of the average socioeco-
nomic activity level allowed, 〈p〉(t), computed across the different
municipalities of the metapopulation. Apart from displaying an anti-
phase oscillation with respect to the epidemic waves, comparing the
patterns of 〈p〉(t) for different values of the permeability ϕ yields a
counter-intuitive result: the more stringent local confinements are
(the smaller ϕ) the larger socioeconomic activity levels reached.

In the scenarios shown in Fig. 2.A the number of active detected
cases falls above the desirable incidence of the disease as a result of
the existence of different infectious compartments inducing a lag be-
tween the deployment of an intervention and its observed outcome.
The creation of social bubbles entails an instantaneous depletion of
the pool of susceptible individuals, making those living in healthy
households unreachable for other infectious peers. This is translated
into an abrupt decrease in the effective reproduction number ℛ,
allowing the suppression of the outbreak. In the absence of social bub-
bles, all the individuals are exposed to the disease, but the outbreak ad-
vances with lower speed due to the reduced sociability, corresponding
to a mitigation strategy.

In epidemiological terms, Fig. 2.B shows that the distribution of the
value of the first epidemic peaks of all Spanishmunicipalities is reduced
as the permeabilityϕ decreases, i.e. as the stringency of the local control
policy increases. Obviously, larger values of the first peak result in a
higher contribution to the overall attack rate, which explains the small
amplitude of the subsequent epidemic waves for large values of ϕ as a
result of the reduced susceptible population that remains.

The economic outcome of the different control policies is shown in
Fig. 2.C. Each bar in the histogram represents the share of time during
which the population of each municipality maintains a given level of



Fig. 2. Epidemic evolution & socioeconomic activities. A. Evolution of symptomatic detected individuals (black and grey lines) and the mean value of the socioeconomic activity level 〈p〉
(green line) for three different permeability values. Grey lines represent the evolution for the 200 most populous Spanish cities, whereas the black line shows the average number of de-
tected individuals at the national level. The dashed line represents the value of the tolerance threshold ε. B. Distribution of themaximumvalue of detected individuals in eachmunicipality
for different values of ϕ. C. Distribution of the activity level allowed over 300 days for different permeability values.
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economic activity corresponding to different ranges of p values. This
plot highlights the effect that was observed in the evolution of 〈p〉(t)
in the different panels of Fig. 1.A (green lines): short and strict control
policies are more beneficial in economic terms than long and lax inter-
ventions. This result shows that it is possible to strike a trade-off be-
tween controlling an outbreak while minimizing the economic cost of
the intervention by implementing stringent measures at the local level.

Once shown the role of the stringency of local control policies plays
in the success of multiscale NPIs implemented, we now explore the in-
terplay between a particularmobility network of the population and the
aforementioned local measures. In other words, we aim at answering
the following question: How does the interconnectivity between the
different urban areas affect the outcome of the reactive policies for dif-
ferent permeability values? To do so, we run our model independently
for the different highest administrative divisions of Spain, the autono-
mous communities. Note that, by dividing the national territory, we
do not lose a relevant part of the information, since only the 2% of the
total volume of daily flows involves movementes between different au-
tonomous communities. From a political point of view, this administra-
tive separation is also relevant for the design and planning of
containment policies in Spain, given that health competencies, and
therefore the deployment of control policies and the distribution of
health resources, are in the hands of these territories.

To get some insights into the role of the mobility network, we first
reproduce the analysis shown in Fig. 2A but now focusing on each indi-
vidual autonomous community. Specifically, we set ϕ=0, i.e. perfect
household isolation, place an infectious seed in the most populous city
and represent in Fig. 3A the spatio-temporal distribution of detected
cases in each territory along with the average socio-economic activity
level. Interestingly, we observe important heterogeneities concerning
the shape of the different epidemic waves in each territory: while au-
tonomous communities like Cantabria and the Community of Madrid
are characterized by very synchronized epidemic curves triggering a
sharp coherent collective evolution, the outbreaks in municipalities
5

located in other areas such as Canary Island display important time
lags leading to less coherent epidemic waves. These heterogeneities be-
comemore evident in Fig. 3B, where we represent the time distribution
of the position of the first epidemic peak inside each autonomous com-
munity, finding important differences in terms of their variance.

From a systemic perspective, the synchronization of the individual
epidemic curves has deep implications for the temporal evolution of
the overall number of cases in the entire metapopulation. To check
this hypothesis, we represent in Fig. 4A how the magnitude of the
peak of individuals detected in the first epidemic wave evolves as a
function of the social permeability allowed for each autonomous com-
munity. Interestingly, we observe how this indicator, somehow related
to the highest expected burden to the health system over the course of
the disease, strongly varies between the different territories of Spain.
Specifically, the affordable permeability values to keep the cumulative
incidence over 14 days below 240 cases per 105 inhabitants range
from ϕaff=0.06 for the Community of Madrid to ϕaff=0.67, correspond-
ing to the Balearic Islands.

The heterogeneity between different territories observed in the for-
mer analysis reveals that the different scales governing the reaction-
diffusion processes that cause the spatial diffusion of an epidemic out-
break are highly intertwined. As a result, the outcome of the local poli-
cies, such as the modulation of the economic activity regulated by p(t)
or the social bubbles mechanism governed by ϕ, are highly influenced
by global aspects such as the demographic distribution of the popula-
tion or how they move across a given territory. Qualitatively, we ob-
serve a coherent epidemic wave inside those territories requiring
more strict policies (smaller ϕaff values). In contrast, the municipalities
located in those autonomous communities for which loose policies are
affordable exhibit an asynchronous evolution. As a consequence, the in-
ternal policies are activated at different times across the territory,
allowing a progressive control of the outbreak, which results in the flat-
tening of the aggregated epidemic curve and explains the lower magni-
tude of the peak.



Fig. 3. Epidemic wave synchronization for different metapopulation structures. A. The violin plots represent the time variance of the subpopulations (municipalities) reaching the peak of
the epidemic wave for each autonomous communities of Spain. The colors represent from red to purple from the worst to the best relative epidemic outcome respectively for all Spanish
autonomous communities for null permeability value. B. Epidemic time evolution of the infected and detected for ϕ=0, the grey lines are the 50 most populous municipalities of each
autonomous community and in black the average. The green lines represent the average mobility in the autonomous community.
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Finally, we aim at finding a heuristic argument to connect the
features of the underlying metapopulation with the affordable
permeability values for each territory. Providing an initial infectious
individual is seeded in a single patch, the degree of coherence
observed for the time evolution of the ensemble of municipalities
in each territory has to be related to the communication of the source
of infection with the rest of the network through the population
movements. To find such a relation, we first define a new matrix
M whose elements Mij determines the expected number of
interactions of one individual placed in patch i with the population
living in patch j. Specifically, under the model assumptions, these
elements read [33]
Fig. 4. Permeability, saturation of the health system & structural correlations. A. Maximum num
permeability ϕ allowed for each autonomous region. The dashed line indicates the threshold u
relation between the affordable permeability of each communityϕaff and the average shortest c
Solid red line shows the LOESS regression of the data whereas the shadowed region showed t
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Mij ¼ ∑
NP

l¼1
Rilf l

njRjlenl
: ð21Þ

In dynamical terms, it seems logical to assume that a strong interac-
tion between two patches, as dictated by thematrixM, boosts the diffu-
sion of infectious individuals across them. Therefore, we can define a
proximity measure dij between two patches i and j as

dij ¼ M−1
ij : ð22Þ

Note that the elements dij somehow reflect the time taken by an
epidemic outbreak, seeded in patch i, to invade patch j. Our
ber of detected individuals during the first epidemic wave ρDmax as a function of the social
sed, 2.4 × 10−3, to calculate the permeability that can be afforded by each territory. B. Cor-
ontagion path connecting a random individual with the infection source in each territory l0.
he 95% confidence interval obtained by bootstrapping 1000 samples.
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hypothesis is that the degree of synchronization of the epidemic curves
from the different autonomous communities, and consequently their
affordable permeability, can be inferred from the structural features of
the matrix d. Namely, shorter effective distances from every single
node of the metapopulation to the source of the outbreak should give
rise to a higher degree of synchronization. Following this rationale, we
define our structural metric l0 as the average shortest path length
connecting a randomly picked individual with the source of an
outbreak over the proximity matrix d. Accordingly:

l0 ¼
∑
NP

i¼1
nili0

∑
NP

i¼1
ni

, ð23Þ

where li0 constitutes the shortest path length connecting the location i
with the source of the outbreak in the proximity matrix d. We
represent in Fig. 4B the affordable permeability ϕaff as a function of the
value of this metric for each autonomous community, finding a strong
positive correlation between both indicators. Moreover, the LOESS re-
gression of the data yields a monotonically increasing function relating
ϕaff and l0. Taken together, these results indicate that regions with
dispersed mobility networks may not require local control policies as
strict as densely communicated territories.

4. Conclusions

The rapid spread of COVID-19 during the early months of 2020
caused the world to face a recession on a scale not seen since the
Great Depression [7,8]. Despite the vaccination breakthrough achieved
during 2021, its uneven global coverage and the emergence of new var-
iants have prolonged the health and economic crisis to date, succes-
sively producing epidemic waves that have continued to overwhelm
healthcare systems with the resulting loss of millions of lives. Through-
out this time, governments have tried to control the spread of SARS-
CoV-2 with various contention measures such as mass testing and con-
tact tracing, reinforcement of prophylactic measures such as social dis-
tancing and face mask use [2], and of course vaccination [9]. Despite
the success of the former policies, many countries have been forced to
implement againmassive confinements of the populationwhen the ep-
idemiological situation has escaped their control [4]. Therefore, main-
taining the difficult trade-off between the social functioning of a
country and the relief of the overwhelmed health systems requires a
structured policy that adapts to the population's needs at any givenmo-
ment.

In this paper, we have analyzed the control capacity of reactive pol-
icies that implement containment measures when the epidemiological
situation exceeds a certain tolerance threshold. The different measures
implemented act at multiple scales: at the global level, mobility de-
creases to and from high-incidence areas, at each patch the economic
activity decreases and, at the household level, social bubbles are created,
shielding the susceptible living with non-infectious individuals.

The effectiveness of the former measures depends on the degree of
severity of the measures adopted and the social adhesion to them.
This way, our analyses have focused on how the severity of measures
at the local level influences the ability to control epidemic waves. In
this regard, our work yields three main results. First, as expected, a
higher stringency of local measures facilitates the control provided by
thepolicies implemented at larger scales, resulting in a train of epidemic
waves manageable from a health point of view rather than a huge first
epidemic outbreak. Secondly, we note how, in addition to serving better
outbreak management, the implementation of stringent measures
counter-intuitively provides less disruption to the socio-economic fab-
ric as societies can afford more periods of normal activity than in the
case of lax implementation of local measures.
7

Finally, the most interesting result has been obtained when analyz-
ing how the social architecture, here represented by the demographic
spatial distribution and the humanmobility network, influences the se-
verity of local rules needed to achieve a given control of the epidemic. By
focusing on the different autonomous communities of Spain, we have
shown that their different architectures are determining (decisive) for
the outcome of the spreading behavior and its control. In particular,
while some autonomous communities should be more aggressive
with local restrictions, forcing household isolation to more than 95% of
the population, others may allow a certain degree of local activity as
they only need that around 35% of individuals are inside safe social bub-
bles. To explain the heterogeneity in the stringency of local restrictions
needed, we have relied on a newmetric that combines the different as-
pects of social mixing that interplay in a metapopulation. In particular,
by computing the average contagion distance between the infected
seed and any potential susceptible individual, we have shown that
those autonomous communities for which this distance is small are
the ones that needmore stringentmeasures at the local level to achieve
the desired epidemic control. Naturally, this result is manifested in the
synchronous epidemic dynamics observed for territories with a small
contagion distance: the more synchronized epidemic waves of individ-
ual patches are, the more restrictive local measures should be.

To round off, our analysis of independentmultiscale reactive policies
has highlighted that the social structure underlying the mixing of indi-
viduals greatly influences the stringency of local measures needed to
tackle the control of epidemic waves. Our analysis has focused on the
case of Spain where, since August 2020, the government left the imple-
mentation of controlmeasures in the hands of the autonomous commu-
nities. This delegation of functions to the autonomous communities has
given rise to different ways of managing the four epidemic waves that
have emerged since that date, these being strongly influenced by the
particular ideology of the party governing each community. Although
our framework constitutes a first approximation to more refined
models of epidemic containment, the heterogeneity found for the strin-
gency required for containment in the different autonomous communi-
ties shows that control policies should be carefully devised taking into
account the social architecture of each territory.
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