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The REST-for-Physics (Rare Event Searches Toolkit for Physics) framework is a ROOT-based solution 
providing the means to process and analyze experimental or Monte Carlo event data. Special care 
has been taken to the traceability of the code and the validation of the results produced within the 
framework, together with the connectivity between code and stored data, registered through specific 
version metadata members.
The framework development was originally motivated to cover the needs of Rare Event Searches 
experiments (experiments looking for phenomena having extremely low occurrence probability, like dark 
matter or neutrino interactions or rare nuclear decays). The framework components naturally implement 
tools to address the challenges in these kinds of experiments. The integration of a detector physics 
response, the implementation of signal processing routines, or topological algorithms for physical event 
identification are some examples. Despite this specialization, the framework was conceived thinking in 
scalability. Other event-oriented applications could benefit from the data processing routines and/or 
metadata description implemented in REST, being the generic framework tools completely decoupled 
from dedicated libraries.
REST-for-Physics is a consolidated piece of software already serving the needs of different physics 
experiments - using gaseous Time Projection Chambers (TPCs) as detection technology - for detector data 
analysis and characterization, as well as generic R&D. Even though REST has been exploited mainly with 
gaseous TPCs, the code could be easily applied or adapted to other detector technologies. We present 
in this work an overview of REST-for-Physics, providing a broad perspective to the infrastructure and 
organization of the project as a whole. The framework and its different components will be described in 
the text.
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1. Introduction

REST-for-Physics1 (Rare Event Searches Toolkit for Physics) is a 
collaborative software effort providing a common framework and 
tools for acquisition, simulation, generic data analysis, and detec-
tor response in experimental particle physics. An ambitious feature 
of REST-for-Physics is its capability to analyze and compare both 
Monte Carlo and experimental data using the same event process-
ing routines upon a unified event data - metadata architecture. The 
framework was born to bring together different software require-
ments related to gaseous Time Projection Chambers (TPCs) in the 
context of Rare Event Searches, and to unify and coordinate various 
independent developments in a common modular infrastructure 
with potential for scalability and reusability. Special care has been 
taken to ensure the traceability and reproducibility of the results 
obtained after the data processing, linking the code version with 
the metadata version stored on disk, and protecting such relation. 
Any user local changes to the code are identified at compilation 
time. This is used to guarantee that the executed version and the 
results written to disk correspond to an unmodified official public 
release. This fact is extremely relevant when planning to register 
official experimental data and preserve it for historical reasons, 
such as covering the data management plan of scientific collabora-
tions, including the release of data to be publicly exploited outside 
the collaboration domain. The code updates are periodically pub-
lished in the Zenodo citations system, where a reference to the 
latest official release is found [1].

REST-for-Physics is the result of several years of experience on 
detector physics and research, motivated originally to cover the 
software needs of the T-REX project for neutrino and dark matter 
searches [2,3]. The REST-for-Physics code has benefited from sev-
eral academic works, as it becomes apparent in several PhD thesis 
publications [4–10] that have contributed to shape and define the 
final project that is described in this manuscript. This project has 
contributed to the development of different but interconnected re-
search activities in a coherent way, unifying common tools that are 
regularly used today not only in research but also at all the aca-
demic levels, from undergraduate to master students.

Different experimental projects have seen REST-for-Physics 
growing from its preliminary stages to the mature project we 
present in this work. REST-for-Physics has been evolving within, 
and it is being used to produce results at, CAST [11], TREX-
DM [12], PandaX-III [13–15], and IAXO [16]. Those projects have 
benefited from the consolidation of REST as a common tool widely 
used among collaborators to process, register and analyze detector 
data. The use and development of REST in other experiments is en-
couraged in a community effort to maintain appropriate tools for 
related tasks. In addition to sharing the know-how and experience 
in our physics domain, the motivation to release a public common 
framework resides in providing the possibility to distribute the 
experimental data following a unique format readable with REST-
for-Physics, or any other ROOT I/O compatible code, in a future 
open-data program of the experiments. The code is open-source 
and it is distributed under a GNU public license at GitHub [17].

The aim of this document is to give the reader a broad perspec-
tive of the purpose of the software project, its organization and 
contents, and the basic instruments that shape the whole infras-
tructure, giving an idea of its scalability potential, and in addition, 
showing the code validation strategy and continuous integration 
philosophy. For further reference, detailed information is provided, 
including an Application Programming Interface (API) class docu-
mentation for developers [18] synchronized daily with the latest 

1 Along the text we may refer to REST-for-Physics as simply REST. The REST-
for-Physics naming is preferred to avoid naming conflict with other unrelated but 
popular software packages.
2

development version, and a comprehensive guide for first time 
users [19]. An additional communication channel is available in 
the form of a public forum [20] to encourage discussion about top-
ics related to our field, help others on their first steps using REST 
and/or integrate their first routines inside the framework, and dis-
cuss about new or existing feature upgrades.

The REST-for-Physics potential resides on its capability to be 
used with Monte Carlo or experimental data, or a combination 
of both in an event processing chain. REST is used for modeling, 
simulation and/or detector response, but not exclusively. The aim 
of this document is not to provide a detailed description of par-
ticular calculations, but to provide an overall description of the 
existing tools that are used frequently on such duty. This document 
is distributed as follows. In section 2 we provide the framework 
philosophy from a conceptual perspective, the contextualization 
of the environment where REST was born and the scope of the 
project itself. In section 3 we give a broad description of the main 
framework infrastructure, the basic concepts and/or elements that 
shape its behavior, common analysis and visualization tools, and 
job management. In section 4 we introduce the most common li-
braries that implement dedicated algorithms for specific tasks in 
the aforementioned duties.

2. REST conceptual design and scope

REST-for-Physics defines common data structures for event-
based data processing. As it will be seen later in the general 
description (in section 3), this entails a prototyping of the event 
data holder, the processes that transform or operate those data 
holders, and the description of the metadata information giving 
a meaning to the data being processed: initial data taking condi-
tions, input processing parameters, output results written to disk 
in the form of metadata, etc. The prototypes of event data, pro-
cesses and metadata are complemented with basic analysis tools 
that are frequently used on event-based data analysis. Another im-
portant structure, named tree, is used to gather relevant event 
information during the data processing. This analysis summary tree 
contains a set of variables defined during the event data processing 
to be used in subsequent, higher level analysis.

REST-for-Physics defines a framework, or code development 
space, that centralizes event processing and analysis routines. 
These routines contributed by the same experts that work on the 
analysis of the data. The REST community keeps a strong link be-
tween algorithm design and the framework design, since there is 
an implicit connection between the algorithm development, anal-
ysis interpretation, and framework design requirements. REST pro-
vides already existing processes that can be used directly to define 
a given event processing task. REST has been designed to provide 
the means to be extended with new processes, metadata or event 
data types.

The development of REST emerges in a strong academical en-
vironment. In such context, REST intends to provide the means 
for academic works to materialize in the form of a piece of code 
that can be re-used within an already consolidated software in-
frastructure. A major goal for REST is to make it more accessible to 
non-computing experts that have a high level for algorithm coding 
abstraction and comprehension of the physics context.

REST-for-Physics does not replace nor does it compete with 
other dedicated simulation packages which provide high accuracy 
physics description on dedicated problems; it seeks to integrate 
those packages, such as Geant4 [21] or Garfield++ [22], and ex-
ploit them inside the framework as needed on the processing of 
the event data. In addition, REST-for-Physics includes dedicated 
libraries (described in section 4) that implement specialized algo-
rithms for signal processing or physical track reconstruction. REST 
has its own algorithms for known mathematical problems, e.g. 
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time signal processing, to have full control over those and adapt 
them to our experimental needs, while still linking to consolidated 
libraries when possible, as it is for example the case for high-
precision numbers implementation at the mpfr library [23] or the 
use of graph theory methods [24,25].

3. General description

REST-for-Physics is composed of a set of libraries written in C++ 
and it is fully integrated with ROOT [26–28], i.e. most C++ classes 
inherit from a ROOT TObject and therefore they can be read, ac-
cessed or written using the ROOT I/O interface. The only structural 
dependence is related to ROOT libraries, while other packages, as 
Geant4 [21] or Garfield++ [22], can be optionally integrated and 
used within the REST-for-Physics framework when generating or 
processing Monte Carlo data. Since REST-for-Physics is a natural 
extension of ROOT, the same naming conventions are followed: the 
Taligent rules [29]. On top of those standard naming conventions, 
any REST-for-Physics C++ class will always start with the TRest pre-
fix. In this paper we will highlight the words when they clearly 
make a reference to an existing REST-for-Physics C++ class: a class 
named TRestEvent will be written as event and a class named TRest-
AnalysisTree will be written as analysis tree. Therefore, a highlighted 
word, within context, expresses a deep connection with the exist-
ing C++ classes in the project.

3.1. The REST-for-Physics framework

Inside the REST-for-Physics ecosystem a core library or frame-
work is found. This core library prototypes and fixes the imple-
mentation of most of the REST-for-Physics C++ classes. Those base 
classes serve to define common methods and data members for 
specific2 classes (see Fig. 1). We shall briefly introduce those basic 
elements:

• The event class encapsulates any specific event data inside 
REST. It defines common fields, such as timestamp or event 
id, and it prototypes common methods used for printing or 
drawing event information. A particular specific event imple-
mentation defines a type. Thus it is important to note that 
in what follows we will distinguish between the event data as 
the explicit contents of a particular specific event, and the event
type as the format, or structure, of the specific event. A specific 
event representation is typically a physical quantity that needs 
to be described in a physical coordinate space or physical time, 
as it can be the time signals registered by an electronics acqui-
sition system, or the energy deposits distribution produced by 
a Geant4 simulation.

• A metadata class may be used as a mere information container, 
storing relevant parameters, such as the description of the 
simulation conditions in restG4 (see section 4.3). Or it might 
also adopt the shape of a complex object definition that im-
plements advanced methods, such as the construction of a 
detector readout, or a magnetic field volume including interpo-
lation routines. Those advanced metadata classes will be found 
in specialized libraries. Conceptually we understand by meta-
data any information required to give meaning to any specific 
event data. Therefore, any input or output parameters required 
during the processing or transformation of event data, or type, 

2 The reader should note that when we refer to specific classes, we refer to 
classes which inherit, in the strict sense of C++ class inheritance, from the base 
abstract classes, such as event, metadata and event process classes. In the text, we 
will highlight the keyword specific to refer to those inherited classes in a generic 
way, e.g. specific event will be connected to any TRestSpecificEvent inheriting from 
TRestEvent.
3

Fig. 1. The base REST-for-Physics framework abstract classes, metadata, event process
and event together with few examples of specific class implementations.

using event processes, is also regarded as metadata. Any meta-
data class can be initialized through an Extensible Markup 
Language (XML) configuration file.

• The event process class defines an input/output event protocol 
allowing to interconnect different specific event process imple-
mentations into a sequential processing chain. This object (as 
an instance of a specific class) will be able to perform opera-
tions with the input specific event transforming its type and/or 
its contents; the changes being returned in the output specific 
event. The event process itself inherits from the metadata class, 
since a process usually requires initialization to define input 
parameters that control the behavior of the process.

Other elemental tools are found inside the main framework, 
such as string helper methods, fundamental physics constants and 
units system or other basic mathematical tools useful for the de-
velopment of any specific event process. Any specific metadata or 
specific event process class that does not require specialization will 
likely be hosted inside the framework domain. In addition, the 
framework repository [30] centralizes other REST-for-Physics com-
ponents, such as libraries or packages. Those components will be 
introduced in section 4.

3.2. I/O access and metadata storage

REST-for-Physics uses the ROOT I/O interface to write event and 
metadata objects to disk. A ROOT file generated with REST may 
contain any number of specific event and specific metadata objects, 
including any specific event process (being a metadata object itself). 
Those objects are stored in a unique file, together with the run
metadata object and the analysis tree that are always present in 
any file that has been processed with REST (see Fig. 2). The run
object registers values to identify the data file and the conditions 
the data were registered, such as the start time, duration, run 
number, etc, while the analysis tree collects per-event information, 
named observables, at any stage of the data processing. The run
object takes also an active role when accessing the different ob-
jects stored on disk by implementing helper methods to access the 
data; for example, getting a list of events from the analysis tree ful-
filling particular conditions or retrieving directly the pointer to a 
given event id number updating simultaneously its corresponding 
analysis tree entry.

The framework philosophy is to create specific metadata classes 
with dedicated data members to store any information crucial for 
the final analysis, and/or to fully determine the nature of the data 
being stored. All the metadata inherited objects gain data member 
reflection support, thus creating a relation between the C++ con-
ceptual class members and the text fields used in the configuration 
files. Through the implementation of the metadata object, a dedi-
cated configuration file format for REST has been designed, based 
on Extensible Markup Language (XML). This upgrade allows the 
reading of XML files with additional features, such as system en-
vironment variables, complex programming instructions, including 
if conditions or loops, evaluation of mathematical expressions or 
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Fig. 2. A schematic showing the different components that may be present inside 
a REST data file. The analysis tree and event tree objects are independent objects 
accessed through the run interface which ensures coherent access to a particular 
event entry linked to its corresponding analysis entry.

even support for arbitrary physical units conversion inside any pa-
rameter. A new extension, rml, is assigned to this upgraded XML 
format (see also the TRestMetadata class description in the API 
documentation [18]).

Using the metadata philosophy, a unique relation between the 
configuration files and the C++ objects is created. One XML ele-
ment is identified with one metadata object, with its attributes 
associated to the data members inside the object. If there is an em-
bedded element inside the XML element, it is associated in-chain 
to the corresponding metadata member. In this way, the automatic 
initialization of metadata objects is achieved, without any file read-
ing methods in the class.

3.3. Event data processing and analysis

The framework allows to build an event data processing chain 
in a modular way by interconnecting already existing specific event 
processes, or developing new ones with the potential to plug them 
directly to an existing processing chain. Each event process has ac-
cess to the input specific event, the analysis tree and any metadata
object that is accessible by the run object. Depending on the in-
put/output specific event interaction inside the process, we may 
attempt to classify the event processes into different groups, as il-
lustrated in Fig. 3:

• An external process is a process that reads an external data 
source, usually at the beginning of a REST processing chain. 
It might be binary data generated by an acquisition system, or 
Monte Carlo data generated by an external simulation pack-
age. The process will be in charge of understanding the format 
of that external data serving to initialize a REST specific event.

• An internal transformation process is a process in which the spe-
cific event input is the same type as the specific event output. 
The event data will be transformed but not the event type.

• A pure analysis process accesses the information of a specific 
event type and produces observables that will be added to the 
analysis tree but it will not modify the specific event contents in 
any sense. A pure analysis process might serve, for example, 
to implement a complex physics model that uses the specific 
metadata and specific event information to elaborate some re-
sults that will be exported to the analysis tree, or a specific 
metadata object.

• A general process is a process that does not access the infor-
mation inside the specific event type. It will only need access 
to the basic event information common to all specific events, 
and/or the analysis tree. Therefore, this process may be plugged 
at any point of a data processing chain without restrictions. 
Processes of this kind may have many different purposes, for 
example; to visualize online analysis tree observables on real 
time, implement a summary process to calculate averages (or 
4

any other statistical variable) from the analysis tree, or perform 
a generic fitting of a variable from the analysis tree storing the 
fitting results in a dedicated metadata object, among many 
other basic analysis tasks.

• A transformation process is a process that receives as input a 
specific event and transforms it to a different event type. This 
kind of processes will all be placed at the connectors library, 
described in section 4.5, in order to encapsulate all library 
inter-dependencies in a single entity.

A specific event might be transformed during the event process-
ing and, in that transformation, relevant information might not 
be available anymore in the final transformed output event. The 
reason is that the role of the specific event object is to provide a 
faithful or significant representation of the data at the state of pro-
cessing inside the processing chain. At different processing stages, 
the event data might be made of time signals registered at an 
electronics setup, or it might be in the shape of discrete energy 
deposits in a physical coordinate system. Therefore, the transfor-
mation from one event data representation, or specific event, into 
another, means that a relevant parameter available at a particular 
stage, is not available anymore.

The analysis tree comes into play as an instrument to collect all 
those parameters extracted or calculated from the specific event in-
formation which will be relevant for the final analysis. Any specific 
event process in the processing chain is allowed to add new ob-
servables to the analysis tree. Once a process adds an observable 
to the analysis tree, this observable will always be available even if 
the event data are transformed or the processing chain happens in 
several steps using different input/output REST data files. The in-
formation in the analysis tree is always accumulative, and therefore 
it will contain a full summary of the observables added by each 
process (see Fig. 4).

In brief, the analysis tree provides a way for specific event pro-
cesses to export an analysis result, extracted from each event, to 
the framework. It must be noted that the processes have two ways 
to export results, an event-per-event based observable inside the 
analysis tree, or a given result common to all the events in a par-
ticular run, that will be exported in the form of a specific metadata
object.

The information extracted by a process and added to the anal-
ysis tree might be as simple as just a registered value available 
at the specific event at a given stage of the processing chain, or 
it might be the result of a complex calculation in the context of 
a physics model, including complicated input metadata objects or 
parameters. Of course, even in the case of basic observables ex-
tracted directly from the specific event, the user might be interested 
to know the evolution of such observable after an intermediate 
processing. In order to do that, it is possible to define the same 
specific event process at different positions in the sequential pro-
cessing chain.

The event process class implements a method to facilitate the 
addition of observables to the analysis tree. This method allows to 
directly create or set the value for an observable from any C++ vari-
able3 (supporting the most common C++ types, from base types 
to proper stl containers, and either global or local variables). This 
method simplifies the coding of REST event processes by avoiding 
users to directly interface the branch and tree ROOT objects, and 
at the same time it is used to encapsulate common naming con-
ventions for observable names, or other analysis REST standard 
definitions.

3 In principle custom data types can be implemented inside the analysis tree, as 
this feature is supported in a standard ROOT tree. However, restricting ourselves to 
the use of standard C++ types is convenient to avoid additional dependencies and 
facilitate exporting the tree data outside of the framework domains.
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Fig. 3. A schematic showing the event data flow for two different data chain implementations in order to illustrate the different processes classification (using a color legend). 
On the top, an experimental detector data processing chain reading a binary file, analyzing, and post-processing the rawdata for event reconstruction. On the bottom, a Monte 
Carlo generated data processing chain, where the data are analyzed and transformed to match the data format in a raw electronics acquisition system, and subsequently the 
data are conditioned using shaping, add noise and fitting internal processes belonging to the raw library. The schematic shows how different libraries (geant4, detector, raw, 
described later on section 4) intervene at different stages, and how those play a role in both, Monte Carlo and experimental data processing. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Two snapshots showing the observables registered at the analysis tree. At the top, the observables are inspected using a ROOT browser object. At the bottom, the 
analysis observables are inspected at a particular event entry using the ROOT command line interface.
Our framework design is completely adapted to the processing 
of experimental data, or Monte Carlo simulated data. The reason 
is that a specific event process implementation may operate on both 
scenarios. The only requirement is that the experimental or sim-
ulated input event must be given to the process in the form of 
a specific event type. If both, simulation or experimental data, are 
conditioned to fit in a common specific event type, it will be pos-
sible to build a processing chain that not only processes simulated 
data or experimental data, but that fully combines both. For exam-
ple, one could integrate a process simulating the signal shaping of 
electronics into experimental data to assess the benefit of applying 
such electronics setup in our experiment. Furthermore, a proper 
conditioning of the generated Monte Carlo event data will allow 
the evaluation of the algorithms for analysis to be used with the 
experimental data even before the start of the physics data taking 
program.
5

Event processes are executed through an efficient engine, or 
process runner, with multi-thread support. The data processing 
chain is cloned into multiple instances and kept in different 
threads respectively. During execution, the input event is in turn 
dispatched to each thread for processing, while the output event 
is redirected to the global output file for writing, leading to an 
increase of processing speed. Fig. 5 summarizes the input/output 
processing logic and the different concepts already described in 
this section.

3.4. Visualization and plotting

REST-for-Physics implements routines for event visualization 
and observable plotting based on ROOT drawing classes and meth-
ods. ROOT graphical interface classes are used to create basic tools, 
such as an event browser with a control panel and a drawing pad 
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Fig. 5. A schematic diagram showing the event data flow inside a REST processing chain. The run object is initialized, and it has access to any specific metadata or event
data available at the input REST file, or any additional objects described through rml. The data are then processed using the implementation inside the process runner object. 
Different event types (A,B,C,D) make reference to different specific event implementations. The resulting output REST file will contain all the metadata information available 
to the chain, including any previously available, together with the transformed output specific event, and the updated analysis tree.

Fig. 6. Two snapshots from the REST event browser where the control panel and the drawing pad showing an event entry for a raw signal event is shown (see section 4.2). On 
the left figure the complete event is presented, while on the right figure the pulses have been filtered using an option passed to draw event method, which is implemented 
at any specific event.
(see Fig. 6). The drawing pad itself is the target of the draw event
method implemented at each specific event. If enabled, different 
output specific event trees - from different stages in the data pro-
cessing - will be stored in the same file. In that case the event 
browser will be able to switch between the different event data 
representations.

The analysis tree class inherits directly from the ROOT tree class, 
and therefore one may exploit all the resources provided by ROOT 
when analyzing the observables that have been added to the anal-
ysis tree by the different specific event processes at the processing 
chain: i.e. one may use a ROOT browser to explore the REST data 
files, and quickly draw and inspect variables from the analysis tree
(as shown previously in Fig. 4).

Furthermore, REST implements dedicated tools for automatic 
and systematic plot generation, such as the analysis plot or the 
metadata plot classes. The analysis plot will efficiently integrate the 
capability to merge thousands of files through an rml file in which 
the desired plots will be assembled using the combined datasets. 
An analysis plot object allows the creation of systematic plot def-
initions that can be used, for example, to produce quick analysis 
reports in a Portable Document Format (PDF), as the one produced 
in Fig. 7, or to export histogram data in any other file format sup-
ported by ROOT. A metadata plot object allows to read many REST 
generated files and draw any specific metadata member as a func-
tion of another specific metadata member extracted from each of 
6

the REST files provided. This enables the study of the correlation 
between any two metadata parameters, or the evolution of a meta-
data parameter as a function of the run time, or the associated run 
number, for example.

3.5. Execution and job management

Two executables are provided at the top level of the REST-
for-Physics framework and are always available to any REST user, 
restRoot and restManager: the former provides a ROOT interactive 
prompt with REST libraries loaded, and optionally, with all the 
available REST macros preloaded; restManager manages the exe-
cution of jobs. It may launch a processing chain defined through 
the process runner, execute a method defined by any REST object 
available to the run object or launch a ROOT C++ macro file.

ROOT C-macros can be used to execute very specific but com-
mon tasks accessing the information inside REST data files. Official 
REST macros distributed with the framework may have been as-
signed an alias to facilitate its execution at the command line. 
Packages, or applications, that link to REST libraries will also 
provide their own executables, such as restG4 or restFileIndexer
(see Fig. 8). restManager allows the definition of all those ac-
tions through a configurable rml file. The manager class, executed 
through the restManager executable, guarantees that the event 
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Fig. 7. A summary report produced by the quick analysis system integrated at TREX-DM using REST. The plots are generated using analysis tree observables. A panel with run
details and other specific metadata information (top-left), an energy spectrum (bottom-left), an energy spectra evolution along the run duration (top-right) and a distribution 
of the mean positions, or hitmap, where the event interactions took place (bottom-right) are shown. The ThresholdIntegral is an observable produced by the raw library that 
represents the detected energy.

Fig. 8. REST executables running logic. restManager and restRoot work together to provide full access to the REST framework functionalities. Pre-defined ROOT C++ macro files 
are accessible through different interfaces, as it is shown through the REST_ViewEvents.C macro. Applications based on REST framework (green bubbles) extend the scope of 
the framework by providing additional functionalities, such as restG4 or restFileIndexer.
data processing flow follows the standards previously described in 
Fig. 5.

A bash script, rest-config, is generated at each project compi-
lation to provide information on the configuration of a particular 
build and to facilitate the linking of REST with external applica-
tions. It is important to remark that once REST has been compiled 
with a particular version of ROOT, Geant4 or Garfield++, that com-
pilation of REST must only be used with those versions. The shell 
script thisREST.sh will be responsible to load the ROOT, Geant4, 
Garfield++, or any other packages required, so that they match the 
correct versions used to compile REST at runtime.

3.6. Project structure, versioning and code validation

The main framework defines the basic functions, and describes 
the behavior of the main elements of REST. As previously men-
tioned, it also serves to centralize all the REST-for-Physics com-
7

ponents, such as packages or libraries, and eventually dedicated 
projects. We have adopted a git submodule4 strategy to integrate 
those components in a modular way inside the main framework 
repository. This scheme allows to independently monitor the de-
velopment activity at each of those components, to isolate tech-
nical issues, and to focus on their functionality. Each component 
evolves independently with its own version or tracking system. A 
particular state of the code at each of those components is fixed at 
the main framework through a git commit hash, or a unique num-
ber. When that happens, the corresponding git commit becomes the 
official component version of REST.

4 From this point we introduce a few concepts connected with the code version-
ing system, git, that are broadly available online, such as commit or submodule. 
When we refer to those alien concepts we will highlight them using the git key-
word followed by the specific concept name.
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Fig. 9. A snapshot from a validation pipeline at gitlab.cern.ch running different tests triggered by an update to the code at the main framework repository. Different validation 
stages are shown, from the most basic tests on the left, including compilation and installation to complex data chain processing tests on the right.
The framework repository fully centralizes the versioning sys-
tem of REST, understood as the state of the code at a given period 
of time, including the state of the official git submodules attached 
to it. Any REST metadata object written to disk using the ROOT I/O 
scheme will be stamped with metadata values (e.g. the REST re-
lease number, latest commit hash, release date, etc) that ensure 
that the data written to disk has been processed with a given ver-
sion, or state of the code.5 In order to certify that, two of those 
metadata members will be initialized at the code compilation time. 
The first metadata member will guarantee the source code was 
built from a clean, unmodified state with respect to the git re-
mote repository, and the second metadata member will certify that 
the corresponding framework code state is associated with an of-
ficial git tag release,6 where each git tag generated at the main 
framework repository will automatically produce a code release 
referenced and citable at the Zenodo system [1].

On top of that versioning strategy, it is important to men-
tion that REST properly implements the ROOT schema evolution 
and ensures backwards compatibility for objects that have suffered 
changes in their data members.

To ensure the code quality and stability with time, each reposi-
tory integrates a validation pipeline where basic tests on the code 
are performed: some examples are code formatting and style vali-
dation, testing the proper libraries integration and building of ex-
ecutable programs or, even more important, testing basic results 
from complex data processing chains (see Fig. 9). Each modifica-
tion to the code, or git commit, will be verified by running those 
validation pipelines. If a modification to the code produces an un-
expected value on a consolidated data processing routine, the con-
tributor will be notified, and changes will only become official after 
peer reviewing the code. This fact is extremely relevant to guaran-
tee that the algorithms keep producing the expected results, or 
in the undesired case of a bug code identification, promptly iden-
tify the affected routines after its correction. Moreover, validation 
pipelines might serve as running examples to show the integration 
or use of a specific tool or element operating inside the framework.

4. REST-for-Physics libraries

The main framework contains common tools required for cen-
tralized data access, visualization, and basic analysis routines, in-
cluding generic REST-for-Physics metadata classes and processes
that do not require event specialization, i.e. they only need to 

5 It is important to note that any new metadata inheriting class, created in an ex-
isting or a new library, will contain these official version members. Therefore, a new 
REST library must integrate metadata classes that define the relevant information.

6 Therefore, to become official, a new library needs to be integrated as a git sub-
module inside the main repository. Otherwise, the metadata member stating that it 
is an official release will not be activated.
8

access information at the analysis tree level. More specialized rou-
tines, requiring a dedicated event data type, such as time signal 
processing or detector event reconstruction, are organized into li-
braries; all classes belonging to the library keep a closer relation 
and therefore enhanced connectivity.

A library is usually associated only with one or two specific 
event types, increasing the connectivity between different specific 
event processes inside the same library. In this way, any combi-
nation of processes belonging to a particular library can be con-
nected inside a data processing chain within its library domain. A 
dedicated library, the connectors library, hosts those specific event 
processes or specific metadata objects that need to interconnect dif-
ferent libraries, keeping all inter-library dependencies bound to-
gether into a single entity and allowing each library to be fully 
operational in stand-alone mode.

A class belonging to a particular library will have its library 
name as a prefix at the class name. Therefore, the TRest naming 
convention is extended in the case of the libraries to TRestLibName, 
enabling the prompt identification of the library an object belongs 
to.7

Even though new libraries might be added in the future to 
the framework, this section briefly describes those fundamental 
libraries that gave REST-for-Physics enough functionality and ver-
satility to be used in different aspects of rare event searches ex-
periments.

4.1. The detector library

The detector library [31] has been designed to be used for 
event reconstruction inside a Time Projection Chamber (TPC) filled 
with a gaseous medium.8 This library contains metadata class def-
initions that allow to describe the detector configuration: these 
can be drift volume description, the detector readout topology, the 
particular gas properties (extracted using the Magboltz interface 
implemented by Garfield++) or others. It also integrates processes 
implementing routines for event reconstruction from real detector 
data and/or emulation of different physical response effects, e.g. 
including electron diffusion, or artificially introducing the detector 
energy resolution by means of a smearing process.

The readout construction (see Fig. 10) is a crucial element of 
the detector library. This element permits the definition of an 
arbitrary number of readout planes, containing an arbitrary num-

7 In this context, we will continue highlighting the words that make reference 
to C++ objects using that pattern, such as TRestDetectorReadout being written as 
detector readout, or even omitting the library keyword, writing, for example, TRest-
DetectorGas simply as gas.

8 The currrent version of REST-for-Physics has only been exploited with gaseous 
TPCs. However, a liquid TPC or even other detector technologies will probably share 
common detection elements, like the generic detector readout implementation, or 
several detector physics processes.
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Fig. 10. Basic readout topologies that can be found at the basic-readouts repository [32]. (a) A stripped readout channel layout. (b) A pixel layout. (c) A more complex layout 
where each channel is composed of a few interconnected readout pixels that create a stripped pattern. The red lines represent the boundaries of the readout pixels, while the 
black dots are produced by launching a randomly spatial distribution and drawing only those points that fall inside dummy user-enabled channels, serving for readout design 
validation.
ber of readout modules, composed of physical readout channels that 
identify unambiguously with the acquisition channels of an elec-
tronics setup. The readout channels are at the same time built with 
readout pixels, the most basic element of a detector readout. Such 
scheme allows to create any arbitrary and complex topology, with 
the capability to efficiently translate - back and forward - physical 
coordinates and electronic channels for readouts containing a few 
millions of pixels.

As any other library, the detector library provides an event type 
to encapsulate the detector data. Currently, and for convenience, it 
is the only library that defines two event types. The detector hits 
event type, and the detector signal event type. The hits event defines 
a physical quantity, the energy deposits at the detector physical 
volume, using a 3-dimensional spatial coordinate representation. 
The signal event describes the energy deposits as a function of the 
arrival time to the readout plane associated to each detector elec-
tronics channel. The readout implementation works as a dictionary 
between those two types; it is used to translate one event type 
into another by projecting the energy deposits into the readout 
channels, or by recovering back the physical coordinate description 
from the readout channels information.

This library plays a central role in the characterization of the 
detector data and thus naturally includes connections to REST li-
braries related to raw electronics data processing (section 4.2), par-
ticle physics Monte Carlo event processing (section 4.3) or physical 
track identification and pattern recognition routines (section 4.4). 
The processes responsible for such library inter-connectivity are 
hosted on an independent library, the connectors library (see sec-
tion 4.5).

4.2. The raw library

The raw library [33] implements a raw signal event type that 
is suited to describe the time evolution of physical quantities that 
have been acquired with a fixed sampling rate. Inside this event 
type one may find an arbitrary number of raw signals that, in 
the case of TPC technology, are identified with the induced cur-
rents in the electronic channels. Each raw signal inside the event 
definition contains usually the same number of samples, a value 
which is fixed during the raw signal initialization. The data depth 
of the physical quantity described inside the raw signal is 16-bits 
precision, which is enough to fit the typical values of electronic 
acquisition systems.

This library includes processes related to signal conditioning, 
such as signal shaping, de-convolution, pulse fitting, de-noising, 
Fast Fourier Transform operations, common noise reduction and 
other signal manipulation routines in the time domain (see 
Fig. 11).

In addition, the raw library includes processes, belonging to 
the external process type, that allow to import into the frame-
9

work the binary data generated by different electronics acquisition 
cards used in our field, such as AGET [34] and AFTER [35] chips, or 
DREAM [36] electronics, among others.

4.3. The geant4 library

The geant49 library [37] defines a geant4 event type that reg-
isters the energy deposits, or hits, resulting from a Geant4 simu-
lation. A Geant4 simulation performs the physics particle tracking 
including the interaction probability with the materials defined for 
a given detector geometry. The energy deposits are similar to those 
found at a detector hits event, although the geant4 event hits con-
tain additional information, like the physical interaction process, 
the geometrical volume where the interaction took place or the re-
maining available kinetic energy of the particle that produced the 
energy deposit. The energy deposits are encapsulated into geant4 
tracks that describe properties common to a particular group of 
hits, such as the particle name producing the energy deposits, 
the position where the particle was originated, the track and par-
ent ids, and in general, any relevant information directly extracted 
from the tracks produced by the Geant4 simulation package.

It is important to mention that this library is not directly linked 
to the official Geant4 libraries. Its purpose is to store the event in-
formation generated by a Geant4 simulation, but once a simulation 
package has registered the information inside the geant4 event data 
holder, the connection to Geant4 libraries is not required anymore. 
Therefore, a user would be able to access a Monte Carlo database 
of previously Geant4-generated files in REST format without the 
need to perform a system Geant4 installation.

Inside the REST-for-Physics ecosystem we have developed an 
independent package, restG4 [38], which is a particular Geant4 
code implementation taking advantage of the geant4 event type and 
all the definitions available at the library to describe the simula-
tion conditions. For example, the geant4 metadata class defines the 
number of primaries to be generated, together with their energy 
and angular distributions, or the generator type, in order to deter-
mine how the primaries will be launched or initialized. There are 
many other options that allow to produce datasets in different ex-
perimental conditions and apply specific storage instructions. The 
library implements another relevant metadata object, the geant4 
physics list, in which the particle physics processes to be consid-
ered in the simulation can be customized. restG4 will register those 
metadata structures and the geant4 event tree, together with a run

9 We will use the lowercase version of the geant4 word when we refer to our 
own REST-for-Physics code implementation, while we will use the upper-case ver-
sion, Geant4, to refer to the official CERN software package [21]. As a reminder, 
highlighted words provide a connection with the code objects, as geant4 event be-
ing linked to the object TRestGeant4Event.
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Fig. 11. (a) An artificially-generated noise-raw signal event with a common sinusoidal pattern. (b) The result after applying the common noise reduction process to the event 
shown in (a), where only randomly added noise remains. (c) An idealized raw signal composed of two point-like deposits (in red) is conditioned by the shaping process using 
a Gaussian (in black) and an AGET electronics response (in blue) convolutions. (d) An artificially-generated noise-raw signal (in black), together with the original pulse used 
to generate it (in red), and the recovered raw signal after applying the fitting process (in green).

Fig. 12. Left, a visualization of the GDML geometry for the Baby-IAXO detector [40]. Right, a simulated cosmic neutron event in the same geometry visualized using the ROOT 
TEve viewer libraries.
metadata object complying with the REST data format conventions 
so that the resulting data are ready to be further processed with 
this or other libraries available in REST. A simulation with restG4
requires as input the description of those three objects, the run, 
the geant4 metadata and the geant4 physics list, through an rml file, 
and a description of the geometry through a GDML [39] file (see 
Fig. 12).

Once a first Monte Carlo dataset has been generated using 
restG4 it can be processed using the existing routines in this li-
brary. These routines, or processes, can be used to extract the 
Monte Carlo truth at an early processing stage. One example is the 
blob analysis process, aiming to extract the real electron track-ends 
in a 0νββ event: another is the neutron tagging process allowing to 
produce elaborated observables (e.g. the mean position of energy 
deposits found at a particular volume in the geometry) to perform 
a detailed analysis of the interaction of neutrons with an active 
cosmic veto system. Therefore, some processes at this library in-
troduce sophisticated physics models producing results that will 
be exported to the analysis tree in the form of observables, to be 
accessed at a later stage of data treatment. The main idea, or phi-
losophy, is that restG4 is simply used to generate a first dataset, 
while the geant4 library will be used to introduce models that 
need to know about the nature of the particles or the interactions 
10
that produced the energy deposits inside the detector geometry. 
Once all the relevant information has been extracted and placed 
in the form of observables in the analysis tree it can be migrated 
to other REST libraries (see section 4.5) in order to include a de-
tailed detector response, condition the data to mimic raw detector 
data, and perform the same data processing and analysis applied 
to experimental data.

4.4. The track library

The track library [41] implements a track event type that de-
fines inheritance relations between a set of tracks stored inside the 
event. A track itself contains a group of hits (or cluster) that define 
a discrete energy distribution in a 3-dimensional coordinate space. 
In order to produce or initialize a first track event, a process in the 
connectors library (section 4.5) makes use of the detector hits event
as input to identify groups of hits, or energy deposits, that have 
a proximity relation, in order to create tracks. It is important to 
remark that the track event is an abstract object10 that allows to 

10 Not to be confused with an abstract C++ class (it would have been highlighted 
otherwise). We want to emphasize that it is an object that does not have a strict or 
fixed scope.
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Fig. 13. A track event representation of a simulated 0νββ decay after the treatment with different track processes used for physical track identification. Left, an image of the 
hit reduction produced by the track reduction process. The red circles represent the final position of reduced hits, whose size is weighted with their energy value. The small 
grey circles on the background represent the hits of the parent track used as input. Middle, a polyline is added to this representation to visualize the hits inter-connectivity 
after the track path minimization process. If path minimization works on the whole, it produces at times obviously unphysical connections, as our example illustrates. Right, 
the unphysical connections are corrected using a track reconnection process. Figure extracted from reference [15].
define groups of hits, clusters, with an inheritance relation, i.e. one 
may develop track levels by generating new daughter tracks from 
the original ones. This could be exploited in different contexts: it 
could serve to describe isolated clusters (or group of hits) in a sin-
gle physical volume, or it could serve to describe correlated tracks
from independent physical volumes by creating a new track that 
incorporates all those mother tracks into one.

This library contains, on one hand, graph theory algorithms 
helping to identify and reconstruct physical tracks by finding the 
shortest path that interconnects energy deposits within a track, 
and on the other, processes that allow to extract topological infor-
mation from a track event. Since graph theory algorithms are com-
putationally expensive when dealing with a large number of nodes, 
a reduction process can be used to decrease the effective number 
of hits, so that Traveling Sales Problem (TSP) algorithms can be 
applied in an acceptable computation time [24,25]. TSP methods 
help to find a reasonable solution for the physical track identifi-
cation, although further reconnection algorithms may be needed to 
improve the result (see Fig. 13). An important application of these 
algorithms is the identification of neutrinoless double beta decays, 
as it has been shown in the context of the PandaX-III experiment 
[15].

4.5. The connectors library

The connectors library [42] contains class definitions that need 
to combine the features from classes residing in different REST-for-
Physics libraries. This includes processes that transform the event
type from one library specific event type into another library event
type, or it includes complex metadata object descriptions that re-
quire combining specific metadata descriptions from different li-
braries. The main mission of this library is to keep inter-library 
dependencies isolated or encapsulated in a single entity. In this 
way the fundamental libraries described in previous sections will 
be operative in a stand-alone mode philosophy (see Fig. 14). The 
REST-for-Physics building system will compile only those connec-
tors library classes related to libraries that were marked for com-
pilation: in the extraordinary case that only a single library was 
marked, then the connectors library will not be compiled at all. 
This library differentiation helps the coherent development of in-
dependent libraries. Using this design any library may be enabled 
or disabled at will, avoiding unnecessary dependencies on dedi-
cated systems.

The main functionality of this library is to allow moving from 
one fundamental library domain into another, e.g. transforming a 
raw signal event into a detector signal event by using data reduction 
techniques, or grouping hits inside a detector hits event to produce 
a track event. However, the connectors library must not be under-
stood as a simple event data type transformation, since the specific 
11
Fig. 14. REST-for-Physics libraries hierarchy and connectivity to the framework. The 
connectors library depends on the other fundamental libraries, providing class def-
initions that help inter-library communication. On the other hand, fundamental 
libraries with a direct connection to the framework are capable to operate in a 
stand-alone mode, without any other REST-for-Physics libraries requirements.

event data usually requires sophisticated routines that include the 
detector physics involved for the event reconstruction, data reduc-
tion inside signal processing algorithms or graph theory for the 
clustering of hits. This library will play a crucial role to define how 
different library domains inter-connect.

5. Summary

In this work we have given a broad overview of the REST-for-
Physics framework and components. Our aim was to provide the 
reader with a general idea of the philosophy, structure and orga-
nization of the software project. And, without entering into great 
detail, provide an overview of the present use and functionality of 
REST-for-Physics.

The REST-for-Physics framework and libraries are a natural ex-
tension of ROOT, since the most basic elements inherit directly 
from TObject. The ROOT I/O serialization is exploited to manage 
the data storage while focusing on the development of physical 
processes that provide to REST its functionality. The motivation for 
this choice is the experience acquired with the ROOT framework, 
and the benefit of using the analysis tools it provides. ROOT was 
born already more than 25 years ago and it is still strongly sup-
ported and actively maintained by the CERN community which 
counts thousands of users. ROOT is exhaustively used in particle 
physics today, and its continuity in the long term seems to be 
guaranteed by CERN.

The REST-for-Physics framework fully exploits the schema evo-
lution from ROOT in order to minimize the impact on data mem-
ber changes in specific event or metadata objects, thus making files 
written with REST to be backward- and forward-compatible. One 
of the key aspects of the REST-for-Physics code, crucial for the 
storage and processing of experimental data, is its versioning strat-
egy that it was carefully described in this paper. Such versioning 
strategy provides a unique relation between the code and the reg-
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istered data, ensuring data and code traceability, leading to repro-
ducible results.

One of the main motivations of the development of REST-
for-Physics is to collect and centralize the software efforts and 
progress on detector physics for the construction of low-back-
ground detection technologies. As such, REST-for-Physics aims to 
serve as a platform to support future contributions in the field, 
consolidating common processing routines on event reconstruc-
tion, signal conditioning or pattern recognition. REST has been 
widely tested using gaseous TPCs, although its routines share many 
aspects with other detector technologies: some of the routines 
could be directly exploited by other technologies, while others 
would require minor changes to be useful for other detection se-
tups.
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