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Abstract. In this contribution, we report the preparation of iron thiosulfonato complex CpFe(CO)2SSO2

CH=CHPh (1) and its selenosulfonato analogue CpFe(CO)2SeSO2CH=CHPh (2) featuring styrene moiety. 1
and 2 are obtained by electrophilic attack of (l-Ex)[CpFe(CO)2]2 (E = S; x = 2–4, E = Se; x = 1) on the sulfur

atom of styrene sulfonyl chloride ClSO2CH=CHPh. The new compounds, 1 and 2 have been characterized by

elemental analyses, IR, 1H-, 13C{1H}-NMR, UV–Vis spectroscopy and the structure of 2 is determined by

X-ray crystallography.
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1. Introduction

Iron complexes incorporating sulfur or selenium

ligands stimulate increasing interest due to their

importance in biological systems,1–4 their relevance to

catalytic processes5–9 and in the development of

material science.10–13 Iron-sulfur proteins are required

for many biological processes. They are involved in

numerous cellular processes like respiration, photo-

synthesis, metabolic reactions, nitrogen fixation, DNA

replication and repair, regulation of gene expression or

t-RNA modifications.1–4 The influence of the incor-

poration of sulfur or selenium atoms into the structure

of [FeFe]-hydrogenase models, has been investigated

on their activity for hydrogen production.5–9 Iron

sulfide nanomaterials have been used as electrocata-

lysts for water-splitting leading to hydrogen evolu-

tion.12 Iron selenocarboxylates show antifungal,

antibacterial effects and are active substrates against

cancer cells.14,15

In the past two decades, we have developed a syn-

thetic methodology for iron complexes of the general

formula CpFe(CO)2EQ (E= S, Se, Q= COR,16,17

SO2R,18,19 COCO2R,20 CO2R,21,22 C(S)OR,23,24 C(O)

SR,25,26 CS2R27). This methodology involves the

interaction of iron sulfides or selenide bridged dimers

(l-Ex)[CpFe(CO)2]2 (E = S, x = 2-4; E = Se, x = 1)

with the corresponding chlorides (QCl).16–27 The

dicarbonyl complexes underwent photolytic substitu-

tion with AR3 to give the substituted products

CpFe(CO)(AR3)EQ (A= P; R= OEt, Ph. A= As, Sb;

R= Ph).28–31 For bis(diphenylphosphino)alkanes

(dppa), the photolytic reactions of CpFe(CO)2SCOR

gave the mono-substituted complexes CpFe(CO)(jP-

dppa)SCOR or the disubstituted ones CpFe(j2P,P-

dppa)SCOR depending on the reaction conditions.32,33

Thiosulfonato iron complexes represent an impor-

tant class of complexes that model the Claus process in

which the sulfur-sulfur bond formation is a key step.

To that end, the iron thiosulfonates CpFe(CO)2SSO2R

(R= CF3, CCl3, C6F5)18 and their corresponding

selenosulfonate CpFe(CO)2SeSO2R (R= Me, Ph,

4-C6H4Cl, 4-C6H4Me) have been reported.19 The

analogous heterocyclic complexes CpFe(CO)2ESO2-

het (het= 2-C4H3S, 5-C4H2SCl) are reported from the
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chalcogenide dimers and the heterocyclic sulfonyl

chlorides.34 Monomeric CpFe(CO)2ESO2-1,3-C6H4

SO2Cl and dimeric chalcogenosulfonates CpFe(CO)2

ESO2-1,3-C6H4SO2EFe(CO)2Cp may also be obtained

by varying the chalcogenide to disulfonyl chloride

ratio.34

Thiosulfonato complexes for ruthenium are acces-

sible from the reaction of the hydrogensulfido com-

plexes CpRu(dppa)SH with sulfonyl chlorides.35 In an

analogous synthesis, the reaction of CpW(CO)3SH

with sulfonyl chlorides generated the tungsten thio-

sulfonato complexes CpW(CO)3SSO2R.36 However,

the corresponding tungsten selenosulfonato complexes

are produced from the reaction of the anion

CpW(CO)3Se- with sulfonyl chlorides.37

In continuation of our work on the area of orga-

noiron chalcogen complexes, this paper describes the

synthesis of thio- and selenosulfonates bearing a par-

ticular styrene moiety. The X-ray structure of

CpFe(CO)2SeSO2CH=CHPh is presented.

2. Experimental

2.1 Materials and methods

Synthesis and manipulations were performed under an

atmosphere of nitrogen using standard Schlenk tech-

niques. Diethyl ether and hexane were dried over

sodium/benzophenone and CH2Cl2 was dried over P2O5

following standard procedures. The reagents

[CpFe(CO)2]2, sulfur, selenium, styrene sulfonyl chlo-

ride (Aldrich) were used as received. The complexes (l-

Se)[CpFe(CO)2]2 and (l-Sx)[CpFe(CO)2]2 (x= 2-4)

were prepared by literature methods.38,39 Bruker-

Avance 400 MHz spectrometer was used to measure the

nuclear magnetic resonance (NMR) spectra of the syn-

thesized complexes. Chemical shifts are in ppm relative

to TMS at 0 ppm (1H) and to CDCl3 peak (13C). Melting

points were measured on an electrothermal melting

point apparatus and are uncorrected. Elemental analyses

were performed using a vairo EL III CHNS (Elemental

analyse GmbH Hanau) as single determination. The

UV-Vis and IR spectra were recorded with a Shimadzu

240-UV–Vis and a Bruker alpha FT-IR spectrometer

equipped with ATR unit, respectively.

2.2 General procedure for the preparation
of CpFe(CO)2ESO2CH=CHPh (E= S (1), Se (2))

A Schlenk flask was charged with the iron chalco-

genides (l-Ex)[CpFe(CO)2]2 (2.83 mmol) in 100 mL

of diethyl ether. Styrene sulfonyl chloride (0.59 g,

2.90 mmol) dissolved in 20 mL of diethyl ether was

added dropwise to the iron chalcogenide solution. The

resulting mixture was stirred at room temperature until

the reaction is complete as shown by TLC (* 48 h).

The volatiles were removed under vacuum and the

remaining solid was dissolved in 2 mL of CH2Cl2 and

was introduced to a silica gel column made up of

hexane. Elution with a mixture of dichloromethane

and hexane (1:1 volume ratio) gave an orange band

which was collected and identified as CpFe(CO)2

ESO2CH=CHPh followed by a red band which was

also collected and identified as CpFe(CO)2Cl with

about 40% isolated yield. The products CpFe(CO)2

ESO2CH=CHPh were recrystallized from CH2Cl2/

hexane at -4 �C.

2.2.1. CpFe(CO)2SSO2CH=CHPh (1) Orange

(75%). M.p.: 146-147 �C. IR (cm-1): mC:O 2030 (s),

1972 (s); mC=C 1656 (m), mSO2 1273 (s), 1100 (s).
1H-NMR (CDCl3) d: 5.23 (s, 5H, Cp); 7.01 (d, 1H,

SO2CH); 7.37 (m, 5H, Ph); 7.46 (d, 1H, CH-Ph).
13C{1H}-NMR (CDCl3) d: 85.81 (Cp), 129.16, 129.50,

130.71 (Ph), 134.71, 137.26 (C=C), 211.74 (CO). UV–

Vis (CH2Cl2: kmax (nm): 293, 330. Anal. Calc. for

C15H12FeO4S2: C, 47.88; H, 3.20; S, 17.04%. Found:

C, 47.43; H, 3.10; S, 16.42%.

2.2.2. CpFe(CO)2SeSO2CH=CHPh (2) Dark brown

(80%). M.p.: 140-141 �C. IR (cm-1): mC:O 2046 (s),

1996 (s); mC=C 1660 (m); mSO2 1263 (s), 1098 (s).
1H-NMR (CDCl3) d: 5.28 (s, 5H, Cp); 7.06 (d, 1H,

SO2CH); 7.38 (m, 5H, Ph); 7.46 (d, 1H, CH-Ph).
13C{1H}-NMR (CDCl3) d:86.21 (Cp), 128.55, 129.24,

130.51 (Ph), 133.98, 137.76 (C=C), 210.82 (CO).
77Se{1H}-NMR (CDCl3) d: 429.91. UV–Vis (CH2Cl2:

kmax (nm): 286, 337. Anal. Calc. for C15H12FeO4SSe:

C, 42.58; H, 2.86%. Found: C, 42.17; H, 2.74 %.

2.3 Crystal structure determination of 2

Single crystal X-ray diffraction data were collected on

a Smart Apex Bruker diffractometer, using graphite-

monochromated Mo-Ka radiation. The selected crystal

was mounted on a fibre, coated with protecting per-

fluoropolyether oil and cooled to 100(2) K with an

open-flow nitrogen gas chiller. Data were collected

using x scans with narrow oscillation frame strategy

(Dx= 0.3�), at several u angles. Data were integrated

and corrected for Lorentz, polarization and absorption

effects with SAINT40 and SADABS41 programs,

integrated in APEX3 package. The structure was
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solved by direct methods (SHELXS)42 and refined by

full-matrix least squares techniques against F2

(SHELXL),43 included in WingX package.44 All

hydrogen atoms were found in difference Fourier

maps, included in the model at observed positions and

freely refined.

2.3.1 Crystallographic Data for 2: C15H12FeO4SSe,

Mr 423.12 g mol-1, intense orange prism, size 0.080 9

0.110 9 0.230 mm3, monoclinic, space group P21/c,

a = 15.9886(10), b = 5.9217(4), c = 17.0603(10) Å, b
= 103.89(10), V = 1568.03(17) Å3 , T = 100(2) K , Z =

4, l = 3.429 mm-1, min and max transmission factors:

0.6067 and 0.7565; F(000)= 840, 24537 reflections

measured in the range 2.460 \ h \ 28.3828 (com-

pleteness to hmax 98.4%), 24537/3855 collected/inde-

pendent reflections, Rint= 0.0365, number of data/

restraint/parameters 3855/0/247, R1= 0.0307, wR2=

0.0679 [3379 reflections, I[2r(I)], R1= 0.0388, wR2 =

0.0720, GOOF= 1.041 (all reflections), largest differ-

ence peak and hole: 1.071 / -0.555 (e/Å3).

3. Results and Discussion

3.1 Synthesis

The iron chalcogenosulfonato complexes {CpFe(CO)2

SSO2CH=CHPh (1) or CpFe(CO)2SeSO2CH=CHPh (2)}

were produced by the reaction of the iron sulfides or

selenide with the styrene sulfonyl chloride in diethyl ether

at room temperature as shown in Scheme 1.

A plausible mechanism for the reaction of the iron

trisulfide dimer (as an example) with the sulfonyl chloride

is shown in Scheme 2. The reactivity of the sulfide dimer

towards sulfonyl chloride as electrophile is attributed to the

presence of electron pairs on the bridging sulfur atoms.

The two new complexes (1 and 2) are air-

stable as solids and air-sensitive in solution. These

complexes are soluble in THF, diethyl ether and

CH2Cl2 but insoluble in hydrocarbons. They have

been characterized based on their IR, 1H-, 13C{1H}-

NMR spectroscopy and by a single-crystal X-ray

structure determination of 2. Their IR spectra

exhibited two strong bands of the terminal carbonyls

(1: 1972, 2030 and 2: 1996, 2046 cm-1). The bands

of 2 are found at higher frequency compared to

those of 1 due to stronger r–donor ability of the

selenosulfonate group compared to the thiosulfonate.

A similar shift has been observed for the analogous

thio-/selenosulfonato systems.18,19 The sulfonato

group displayed its presence by the symmetric and

asymmetric stretching frequencies (1: 1100, 1273, 2:
1098, 1263 cm-1). These bands are within the same

range observed for alkyl or aryl thio- or selenosul-

fonato analogs.18,19,36–38 The C=C frequency of

these complexes (1656, 1660 cm-1) is higher than

the corresponding frequency of CpFe(CO)2

SCOCH=CR2 (1619-1622 cm-1)45 and that for

CpFe(CO)2SeCOCH=CR2 (1637-1649 cm-1).17 This

difference may be attributed to more resonance

between the C=O and C=C bonds in the latter

complexes. The 1H NMR spectra of 1 and 2
exhibited singlet peak at 5.20 and 5.28 ppm for the

Cp-protons, respectively. This resonance is within

the same range reported for thio- and selenosul-

fonates (5.19–5.28).18,19 The 13C{1H} NMR spectra

of complexes 1 and 2 showed a downfield peak at

210.82 or 211.74 ppm for the carbonyl carbons and

the peak at 85.81 or 86.21 ppm is due to the car-

bons of the Cp rings, respectively. The phenyl

protons for both complexes are found in the range

of 128.55-130.71 ppm while the peaks in range of

133.98-137.76 ppm are due to the vinylic carbon

atoms These ranges are similar to those observed for

vinylic thio- and selenocarboxylato analogues.17,40

The 77Se-NMR spectrum of CpFe(CO)2SeSO2

CH=CHC6H5 has a singlet peak at 492.91 ppm for

the Se atom present in this complex. This peak is

higher than that reported for CpFe(CO)2SeCOCH=

CR2 (188.70-190.01 ppm).17

3.2 Crystal structure
of CpFe(CO)2SeSO2CH=CHPh (2)

The molecular structure of complex 2, determined by

X-ray crystallography, is depicted in Figure 1. Selec-

ted geometrical parameters are reported in Table 1.

The complex adopts a three-legged piano-stool
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Scheme 1. Synthesis of iron chalcogenosulfonato com-
plexes 1 and 2.
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geometry with iron coordinated to an g5-C5H5 group,

to the two carbons of the carbonyl groups and to the

selenium atom. The Fe-C(Cp) distances (2.091(3)-

2.128(3) Å) and the Fe-C(CO) bond lengths (1.785(3),

1.774(3) Å) are identical to those of the closely related

selenosulfonato complex CpFe(CO)2SeSO2Ph19 and

comparable to those of the selenocarboxylato complex

CpFe(CO)2SeCOCH=CMe2 (mean values Fe-C(Cp)

2.091 Å, and Fe-C(CO) 1.771(2) Å)17 indicating a

similar electron density around the iron center. Com-

pared to other CpFe(CO)2SeQ complexes, the Fe-Se

bond length of 2.3926(4) Å nicely agrees with that of

CpFe(CO)2SeSO2Ph (2.394(3) Å)19 and it is slightly

longer than that of selenocarboxylato related complex,

CpFe(CO)2SeCOCH=CMe2 (2.3844(4)) Å).17

The iron coordination sphere adopts a pseudo-oc-

tahedral environment with the Cp-ligand formally

occupying three coordination sites. The structure may

be described as pseudo-octahedral rather than pseudo-

tetrahedral, as the bond angles between monodentate

ligands (Se-Fe-C angles: 86.96 and 93.70(8)�, and

C-Fe-C angle of 93.13(12)̊) are close to 908, whereas

the bond angles defined by the ring centroid, the Fe

atom and the other ligands are ca. 1248. The S-Se

(2.2094(6) Å) and S-O (1.442 and 1.444(3) Å) bond

lengths of the selenosulfonato group are comparable to

those reported for a similar system.17,19,40 The Se and

S atoms are both sp3 hybridized as proved by the Fe-

Se-S (107.04(2) �) and the S bond angles (mean value:

109.40(4) �).
It is noteworthy that the selenium atom is involved

in a quite directional hydrogen bond interaction along

the b axis. Selenium (or sulfur) atoms have lower

electronegativity than oxygen, nitrogen or halogen

atoms, and therefore they have been considered as

poor H-bond acceptors. However, recent results

pointed out their versatility in molecular assemblies,

structural biology and functional materials.46 Geo-

metrical parameters describing this interaction of

complex 2 (Figure 2), together with those of two

classical C-H���O hydrogen bonds are reported in

Table 2.

Scheme 2. A possible mechanism for the reaction of iron sulfide dimer with styrene sulfonyl chloride.

Figure 1. Molecular structure of CpFe(CO)2SeSO2-

CH=CHPh (2).

Table 1. Selected bond lengths (Å) and angles (�) for
complex 2.

Fe-Se 2.3926(4) Se-Fe-Cta 123.85(4)
Fe-Cta 1.7215(13) Se-Fe- C6 86.96(8)
Fe-Se 2.3926(4) Se-Fe- C7 93.70(8)
Fe-Cta 1.7215(13) Cta -Fe- C6 124.99(10)
Fe-C6 1.785(3) Cta -Fe- C7 124.12(9)
Fe-C7 1.774(3) C6 -Fe- C7 93.13(12)
Fe-C1 2.128(3) Fe-Se-S 107.04(2)
Fe-C2 2.105(3) Se-S-3O 111.46(8)
Fe-C3 2.091(3) Se-S-4O 105.27(9)
Fe-C4 2.098(3) Se-S-13C 107.31(9)
Fe-C5 2.105(3) 3O-S-4O 118.38(13)
Se-S 2.2094(6) O3-S-13C 104.77(14)
S-3O 1.444(2) 4O-S-13C 109.23(13)
S-4O 1,442(2)
S-C13 1.764(3)
C13-C14 1.321(4)

aCt represents the centroid of the Cp ligand.
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3.3 UV-Vis spectra of complexes 1 and 2

The absorption spectra of complexes 1 and 2 were

recorded in dichloromethane. UV-Vis spectrascopy is

mesaered to show the types of electronic transtions

occur within complexes 1 and 2. A change in electron

distribution between the metal and the ligand gives

rise to charge transfer (CT) bands. For ligands having

(r, r*, p, p*, n) molecular orbitals, charge transfer

may occurs from the ligand molecular orbitals to the

metal d-orbitals (LMCT). However, if the metal is in a

low oxidation state and the ligand has low-lying empty

orbitals then a metal-to-ligand charge transfer (MLCT)

may occur.47 The spectrum of each complex showed

two absorption bands; the high energy bands at 293 (1)

and 286 (2) nm have been assigned as ligand–ligand

charge transfer (LLCT) type, while the second bands

(1: 330, 2: 337 nm) were attributed to the Fe-Cp

MLCT. Another very weak band around 450 nm is

observed and may attributed to an iron d-d transition.

These bands have been assigned relative to/in agree-

ment with analogous reported systems.17,18,25,26

4. Conclusions

In conclusion, we have presented the synthesis and char-

acterization of two iron chalcogenosulfonato complexes

bearing styrene moiety in order to understand the role of the

carbon-carbon double bond on the reactivity of the styrene

sulfonyl chloride. We found that the reactions occurred on

the sulfur atom keeping the C=C bond intact. The identity

and properties of these complexes have been determined

by spectroscopic methods and were compared to analo-

gous systems. The X-ray crystal structure of 2 confirmed

the atom connectivity of the Fe-Se-S-C=C moiety in which

the alkene substituents are in a trans position.

Supplementary Information (SI)

Crystallographic data for the structural analyses of complex

2 have been deposited with the Cambridge Crystallographic

Data Centre bearing the CCDC No. 2072989. Copies of this

information are available on request free of charge from

CCDC, Union Road, Cambridge, CB21EZ, UK (fax: ?44-

1223- 336-033; e-mail: deposit@ccdc.ac.uk or http://www.

ccdc.cam.ac.uk). All spectra of complexes 1 and 2
(Figures S1–S7) and full bond lengths and angles of 2
(Tables S1) are available at www.ias.ac.in/chemsci.
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3. Nie X, Jäger A, Börner J and Klug G 2021 Interplay
between formation of photosynthetic complexes and
expression of genes for iron–sulfur cluster assembly in
Rhodobacter sphaeroides? Photosyn. Res. 147 39

4. Deane C 2020 An iron-sulfur grip Nature Chem. Bio. 16
481

5. Buratto W R, Ferreira R B, Catalano V J, Garcı́a-Serres
R and Murray L J 2021 Cleavage of cluster iron–sulfide
bonds in cyclophane-coordinated FenSm complexes
Dalton Trans. 50 816

6. Kertess L, Wittkamp F, Sommer C, Esselborn J,
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