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Abstract: Robot localization inside tunnels is a challenging task due to the special conditions of
these environments. The GPS-denied nature of these scenarios, coupled with the low visibility,
slippery and irregular surfaces, and lack of distinguishable visual and structural features, make
traditional robotics methods based on cameras, lasers, or wheel encoders unreliable. Fortunately,
tunnels provide other types of valuable information that can be used for localization purposes. On
the one hand, radio frequency signal propagation in these types of scenarios shows a predictable
periodic structure (periodic fadings) under certain settings, and on the other hand, tunnels present
structural characteristics (e.g., galleries, emergency shelters) that must comply with safety regulations.
The solution presented in this paper consists of detecting both types of features to be introduced
as discrete sources of information in an alternative graph-based localization approach. The results
obtained from experiments conducted in a real tunnel demonstrate the validity and suitability of the
proposed system for inspection applications.

Keywords: localization; tunnel; pose-graph; inspection; RF propagation; robotics

1. Introduction

Long road and railway tunnels (over 500 m) are important structures that facili-
tate communication and play a decisive role in the functioning and development of re-
gional economies. Such infrastructure requires periodic inspections, repairs, surveillance,
and sometimes rescue missions. The challenging conditions of these types of scenarios (i.e.,
darkness, dust, fluids, and toxic substances) make these tasks unfriendly and even risky for
humans. These situations, combined with the continuous advances in robotic technologies,
make robots the most suitable devices for executing these tasks.

For a robot to autonomously perform these tasks, it is essential to obtain an accurate
localization, not only for the decision-making process but also to unequivocally locate
possible defects detected during inspection works. However, some specific characteristics
of these environments and their GPS-denied nature limit the type of sensors that can be
used to acquire useful information for localization. Moreover, tunnel dimensions (with
more length than width) and smoothness produce continuous growth in the longitudinal
localization uncertainty that cannot easily be reduced.

The most common algorithms for indoor localization are those based on visual odom-
etry (VO) using cameras whose core pipelines consist of the extraction and matching of
features and LiDAR odometry (LO), which estimates the displacement of the vehicle by
scan matching consecutive scans. These techniques can also be used within a simultane-
ous localization and mapping (SLAM) context to reduce localization uncertainty through
loop closing.

However, a lack of visual features and sometimes darkness limit the use of vision
sensors. Additionally, tunnel walls are uniform in long sections. Therefore, although laser
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sensors can be used to localize the robot in the cross-section, they do not provide useful
localization information in the longitudinal dimension. Furthermore, odometers tend
to suffer cumulative errors. Moreover, flying robots (e.g., quadrotors) lack odometers.
The aforementioned issues make tunnel environments challenging for localizing purposes.

In recent years, promising technologies for indoor localization relying on the use of
radio frequency (RF) signals have emerged as alternative methods. From the perspective of
RF signal propagation, tunnel-like environments differ from regular indoor and outdoor
scenarios. On the one hand, if the wavelength of the operating frequency is much smaller
than the tunnel cross-section, the tunnel behaves as an oversized waveguide extending the
communication range. On the other hand, the RF signal suffers from strong attenuations
known as fadings. However, the occurrence of such fadings can be controlled. In [1],
the authors developed an extensive analysis to determine the most adequate transceiver-
receiver configurations (i.e., position in the tunnel cross-section and operating frequency)
to obtain periodic fadings. Reference [2] drafted the first proposal to take advantage of the
useful periodic nature of fadings to develop an RF-based discrete localization method. This
characteristic was also exploited in the localization method described in [3]. In contrast
to the use of ultra-wideband (UWB) or other RF localization techniques (e.g., based on
access points), the generation and detection of periodic fadings do not require any previous
infrastructure installation along the tunnel, which is not always possible.

By considering the aforementioned studies and recent advances in the field of graph
SLAM, our previous work [4] addressed the robot localization problem in tunnels as an
online pose graph localization problem for which we originally introduced the results of
our RF signal minima detection method into a graph optimization framework by taking
advantage of the periodic nature of RF signals within tunnels. Although the results were
very promising, the distance between fadings is usually large (i.e., hundreds of meters),
which causes the error to grow too much between detections.

Accidents can be very serious when they occur in tunnels. Due to the confined
environment of tunnels, accidents—particularly those involving fires—can have dramatic
consequences. As a result of tragic tunnel accidents in the European Union between
1999 and 2001, the European Commission developed a Directive [5] aimed at ensuring a
minimum level of safety in road tunnels within the trans-European network. A total of
515 road tunnels over 500 m in length were identified. The total length of these tunnels is
more than 800 km.

To be compliant with this directive, tunnels must integrate a set of structural elements
to improve safety. Some examples from the European Directive are:

• Emergency exits (e.g., direct exits) from the tunnel to the outside, cross-connections
between tunnel tubes, exits to emergency galleries, and shelters with an escape route
separated from the tunnel tube (Figure 1). The distance between two emergency exits
shall not exceed 500 m.

• In twin-tube tunnels where the tubes are at the same (or nearly the same) level, cross-
connections suitable for the use of emergency services shall be provided at least every
1500 m.

• Emergency stations shall be provided near the portals and inside at intervals that shall
not exceed 150 m for new tunnels.
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Figure 1. Example of emergency gallery in a road tunnel. Monrepos tunnel, Spain.

These tunnel safety regulations provide a set of relevant structural characteristics that
can be used for discrete localization inside tunnels. As can be extracted from the Directive,
many of them are pseudo-periodic along the longitudinal dimension.

In view of the latter, we propose the complementary use of structural characteristics
originating from the safety regulations to increase localization accuracy using only fadings.
Thus, the alternative localization approach proposed in this paper builds on our aforemen-
tioned work [4], which is further extended with important new contributions that can be
summarized as follows:

• First, two methods to identify tunnel galleries from onboard LiDAR information as
relevant places for a global robot localization have been implemented and validated
with real data.

• A strategy to introduce the results provided by a gallery detector into a pose graph
has been developed.

• The improvement of localization along the tunnel using several discrete sources of
information (fadings and galleries) is also demonstrated with experiments in a real-
world scenario.

• Lastly, an exhaustive performance evaluation has been achieved to analyze the accu-
racy of the graph under different situations.

Our approach consists of identifying discrete features from RF signals (minima) and
structural characteristics (galleries) during the displacement of the robot along the tunnel.
The resultant absolute positions provided by these detection methods are introduced as
constraints in the pose graph together with the odometry measurements. Each time new
information is incorporated into the graph, it is optimized and the position of the robot
is corrected, which allows it to locate the main characteristics under inspection more
accurately. Figure 2 shows an overall diagram of the proposed method.
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Figure 2. Overall schema of the graph-based localization approach.

The main advantages of adopting a graph-based representation are twofold: it allows
for easier incorporation of delayed measurements into the estimation process and reverting
from wrong decisions (e.g., the integration of incorrect measurements). Moreover, the use
of different sources of information allows the resetting of cumulative localization error not
only in the area of periodic fadings but also each time a gallery is detected.

The principal novelties of our method lie precisely in these advantages. Although graphs
are used in other contexts, such as multi-sensor SLAM, it is not very common to find works
where the graph is modified with past information. The application of the graph approach
to tunnel-like environments is also not very widespread. Exploiting the RF periodic struc-
ture in those scenarios for localization constitutes another novelty of our proposed method.

The paper is structured as follows. The next section describes related work on the
main technologies that our proposal is based on. Section 3 presents the real scenario and the
robotic system used during the experiments. The challenges of the longitudinal localization
in tunnels and how to face them are described in Section 4. Section 5 presents a detailed
description of the methods used to detect discrete features (i.e., galleries and RF signal
minima), while the graph-based localization approach and the mechanisms to introduce
the detection results into the graph are presented in Section 6. Then, Section 7 discusses
the experimental results obtained in a real-world scenario. Finally, the conclusions are
summarized in Section 8.

2. Related Work
2.1. Place Recognition

Place recognition addresses the problem of determining the location of a sensor
(possibly mounted on a mobile robot) by identifying some characteristics of the sensor
reading and comparing it with a database or topological map. This has been widely used in
SLAM to improve the accuracy of robot localization during loop closing. Place recognition
has been an important line of research in the computer vision community (see [6]). This
problem has primarily been tackled by extracting a set of locally-invariant features (e.g.,
SIFT or SURF points) from images. More recently, this problem has been approached by
so-called Convolutional Neural Networks (CNN), or deep learning. However, as previously
stated, the lack of visual features or darkness in tunnels can make these (in some cases
mature) techniques fail.

The use of relevant structural characteristics for localization purposes in tunnel-like
environments was explored in [7]. The authors presented a global localization system for
ground inspection robots in sewer networks. This system takes advantage of the mandatory
existence of manholes with a particular shape at known positions by identifying them
(using machine learning techniques) and resetting the localization error. To achieve this,
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the authors used depth images provided by a camera placed on top of a robot and pointed
toward the ceiling. Although their solution provided very good results, the use of cameras
during the manhole detection process could be problematic in larger environments, as will
be discussed in the following sections.

To overcome the illumination problem in the tunnel context, laser rangefinder sensors
are of great importance. In this case, the sensor output is a point cloud that can be 2D or 3D.
Place recognition can be performed in a similar manner as in vision (i.e., extracting relevant
characteristics or keypoints from the point cloud). One possibility involves extracting
the geometric characteristics (e.g., linearity, flatness, anisotropy) of objects present in the
environment from the point cloud by following, for example, the method proposed in [8,9]
to perform classification. Then, the relative position of objects determines the place. An-
other possibility involves the extraction of segments from the point cloud—as per [10]—for
mapping and localization in the context of an urban environment based on 3D point clouds.
The segments obtained allow the labeling of the scene to discriminate between vehicles and
buildings, adding semantic information to the map. The referenced methods aim to reduce
the uncertainty of localization by closing loops in which previously seen places are recog-
nized by their appearance, without the need for a pre-built map. In [11,12], localization was
performed based on 2D topological-semantic maps by recognizing semantic characteristics
(e.g., crossings, forks, or corners) reflected in an existing topological map. This type of
technique is adapted to 2D-structured underground environments such as mines.

It is also possible to extract a set of keypoints from the point cloud to describe a scene
similarly to SIFT and SURF points extraction in vision. This was the approach followed
in [13] for 2D point clouds, which were subsequently extended to 3D [14]. The authors
proposed techniques for extracting relevant points from a point cloud and then used them
in a database search or global map to identify the place.

In the present work, we must recognize two kinds of relevant features: lateral emer-
gency galleries and RF signal fadings (virtual places). We propose two techniques for
gallery detection: the first is based on keypoints that form a pattern identifying the gallery,
the second is based on the extraction of straight regression lines from the scans fitting
a generic gallery, which must satisfy certain restrictions. The identification of fadings is
accomplished by an ad hoc technique based on the knowledge of the signal model.

2.2. Fundamentals of Electromagnetic Propagation in Tunnels; the Fadings

Previous works [2,15,16] have demonstrated that wireless propagation in tunnels dif-
fers from regular indoor and outdoor scenarios. For sufficiently high operating frequencies
with free space wavelength much smaller than the tunnel cross-section dimensions, tunnels
behave as hollow dielectric waveguides. If an emitting antenna is placed inside a long
tunnel, the spherical radiated wavefronts will be multiply scattered by the surrounding
walls. The superposition of all these scattered waves is itself a wave that propagates in one
dimension—along the tunnel length—with a quasi-standing wave pattern in the transversal
dimension. This allows an extension of the communication range but affects the signal
with the appearance of strong fadings.

There are many different possible transversal standing wave patterns for a given tunnel
shape. Each one is called a mode and has its own wavelength that is close to—but different
from—the free space one, and with its own decay rate (see [17] for a detailed explanation).

The electromagnetic field radiated from the antenna starts propagating along the
tunnel and is distributed via many of the possible propagating modes supported by this
waveguide. Depending on the distance from the transmitter, two regions can be distin-
guished in the signal due to the different attenuation rates of the propagation modes. In the
near sector, all of the propagation modes are present, which provokes rapid fluctuations in
the signal (fast-fadings). After a sufficiently long travel distance, the higher-order modes
(that have a higher attenuation rate) are mitigated and the lowest modes survive, giving rise
to the so-called far sector, where the slow-fadings dominate [18]. Such fadings are caused by
the pairwise interaction between the propagating modes. Therefore, the higher the number
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of modes, the more complex the fading structure. On the transmitter side, the position of
the antenna makes it possible to maximize or minimize the power coupled to a given mode,
thereby favoring the interaction between certain modes and facilitating the production of
a specific fading structure. Therefore, the keypoint consists of attempting to promote the
interaction of just two modes to obtain strictly periodic fadings.

In [1], the authors presented an extensive analysis of the fadings structure in straight
tunnels. These studies demonstrated that, given the tunnel dimensions and the selection
of a proper transmitter-receiver setup, the dominant modes are the first three modes (i.e.,
the ones that survive in the far sector since their attenuation constant is low enough to
ensure coverage along several kilometers inside the tunnel). By placing the transmitter
antenna close to a tunnel wall, it is possible to maximize the power coupled to the first
and second modes while minimizing the excitation of the third one. On the receiving side,
this produces a strictly periodic fading structure. The superposition of the first and second
propagation modes (called EHz

11 and EHz
21, respectively) creates a periodic fading structure

(Figure 3a). In the very center of the tunnel, there is no contribution from the second mode,
and the third mode (EHz

31)—with lower energy—becomes observable, thereby creating
another fading structure with a different period. However, the received power associated
with the fadings maxima is lower compared to the previous fading structure. This situation
is illustrated in Figure 3b, which shows the data collected by having one antenna in each
half of the tunnel and another located in the center. Evidently, there is a spatial phase
difference of 180 degrees between both halves of the tunnel (i.e., a maximum of one fading
matches the minimum of the other) caused by the transversal structure of the second mode.
It is important to highlight that we refer to large-scale fadings in a spatial domain, which
is a standing wave pattern that can be obtained in tunnels under certain configurations,
in contrast to the well-known small-scale fadings, understood as temporal variations in
a channel.
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Figure 3. (a) Measured received power at 2.4 GHz inside the Somport tunnel, from [1]. The trans-
mitter remained fixed and the receiver was displaced 4 km from the transmitter. In (b), the same
experiment was repeated for three different receiver cross-section positions: left half (sector 1), center,
and right half (sector 2). (c) shows the remarkable similarity between the propagation model and
the experimental data. The red line represents the modal theory simulations, while the blue line
represents the experimental results.
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Lastly, in the presented studies, the authors adopted the modal theory approach,
which models the tunnel as a rectangular dielectric waveguide of dimensions a × b using
the expressions for the electromagnetic field modes and the corresponding propagation
constants obtained by [19] for rectangular hollow dielectric waveguides. As previously
mentioned, each mode propagates with its own wavelength λmn (close but not equal to the
free space one), which can be written as:

λmn =
λ

1− 1
2

(
mλ
2a

)2
− 1

2

(
nλ
2b

)2 (1)

where m represents the number of half-waves along the y axis, n the number of half-waves
along the z axis and λ is the free space wavelength that depends on the free space velocity
of the electromagnetic waves c and the operating frequency f :

λ =
c
f

(2)

If two modes with different wavelengths (λ1 and λ2) are present, the phase delay
accumulated by each one will be different for a given travel distance x. The superposition
of the modes will take place with different relative phases in different positions within
the guide, producing constructive interference if both modes are in phase and destructive
interference if the relative phase differs by an odd π multiple. This gives rise to a periodic
fading structure of the RF power inside the waveguide. The period of this fading structure
D is the distance, which creates a relative phase of 2π between the two considered modes.
If λ1 and λ2 are the wavelengths of the two modes, then:

D =
λ1λ2

|λ1 − λ2|
(3)

Using Equation (1), the fading period obtained is:

D =
8

c
f

∣∣∣∣m2
2−m2

1
a2 +

n2
2−n2

1
b2

∣∣∣∣ (4)

As can be deduced from Equation (4), the period of fadings only depends on the
operating frequency and the dimensions of the tunnel. The total electromagnetic field,
which represents the propagation model, will be the superposition of all the propagation
modes (see [1] for a complete 3D fadings structure analysis in tunnels).

With this approximation, the obtained theoretical propagation model closely matches
the experimental data. The similarity between both signals (Figure 3c) in the far sector is
sufficient to make us consider them useful for localization purposes, using the propagation
model as a position reference.

2.3. Graph-Based Localization

The SLAM problem is one of the fundamental challenges of robotics since it deals with
the need to build a map of an unknown environment while simultaneously determining
the robot localization within this map. In the literature, a large variety of solutions to
this problem are available, which are usually classified into filtering and optimization
(graph) approaches. The latter offers improved performance and the capability of incor-
porating information from the past, having memorized all data. Moreover, it facilitates
the incorporation of relative and absolute measurements coming from different sources
of information.

All of these advantages led to the emergence of new localization approaches that
model the localization problem as a pose graph optimization. The pose graph encodes
the robot poses during data acquisition as well as the spatial constraints between them.
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The former are modeled as nodes in a graph and the latter as edges between nodes. These
constraints arise from sensor measurements.

In [20], the authors provided a positioning framework targeted for agricultural ap-
plications. They integrated several heterogeneous sensors into a pose graph in which
the relative constraints between nodes were provided by wheel odometry and VO, while
the global (so-called prior) information was provided by a low-cost GPS and an Inertial
Measurement Unit (IMU). The proposed system also introduces further constraints ex-
ploiting the domain-specific patterns present in these environments. The effectiveness of
incorporating prior information was also demonstrated in [21]. The presented solution
relies on a graph-based formulation of the SLAM problem based on 3D range information
and the use of aerial images as prior information. The latter was introduced to the graph as
global constraints that contain absolute locations obtained by Monte Carlo localization on a
map computed from aerial images. Similarly, Reference [22] also proposed the use of prior
constraints to improve localization in industrial scenarios. In that study, prior information
was provided by a CAD drawing that allowed the robot to estimate its current position
with respect to the global reference frame of a floor plan. Another approach is presented
in [23], where robot localization in water pipes is improved by incorporating acoustic signal
information into a pose graph.

Furthermore, graph-based approaches provide an effective, flexible and robust solu-
tion against wrong measurements and outliers as proved in works such as [24,25], which
allow it to recognize and recover from outliers during the optimization time.

In light of the aforementioned works, our approach consists of addressing the localiza-
tion in tunnels as a pose graph optimization problem, incorporating the data provided by
the detectors of the relevant discrete features.

3. The Canfranc Tunnel and Experiments Setup

The Somport road tunnel is a cross-border monotube tunnel between Spain and
France through the central Pyrenees, situated at an altitude of 1100 m and with a length of
8608 m (two-thirds in Spanish territory and one-third in French territory). The tunnel runs
parallel to the Canfranc railway tunnel, which is currently out of service and acts as the
emergency gallery. Both tunnels are connected by 17 lateral galleries that serve the function
of emergency exits for the road tunnel.

The Canfranc railway tunnel has a length of 7.7 km. The tunnel is straight but suffers
a change in slope at approximately 4 km from the Spanish entrance. It has a horseshoe-
shaped cross-section that is approximately 5 m high and 4.65 m wide. The tunnel has small
emergency shelters every 25 m. The lateral galleries are more than 100 m long and of the
same height as the tunnel. The galleries are numbered from 17 to 1, from Spain to France.

The experiments of the present work were conducted in the Canfranc tunnel.
An instrumented all-terrain vehicle was used as the mobile platform to simulate a

service routine. It was equipped with two SICK DSF60 0.036 deg resolution encoders that
provide the odometry information and a SICK LMS200 LiDAR intended for gallery detection.

The platform was also equipped with two RF ALFA AWUS036NH receivers placed
2.25 m above the ground with the antennas spaced 1.40 m apart. The transmitter, a TPLINK
TL-WN7200MD wireless adapter with Ralink chipset, was placed at approximately 850 m
from the entrance of the tunnel, 3.50 m above the ground, and 1.50 m from the right wall.
Using a 2.412 GHz working frequency under this receiver-transmitter setup, the expected
fadings period is approximately 512 m. The RF data used to validate the proposed method
are the received signal strength indicator (RSSI) values provided by the rightmost antenna.
Figure 4 shows the experimental setup.
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(a) The Somport tunnel

(b) Encoder (c) Laser sensor (d) RF receivers

Figure 4. Experimental setup: Somport tunnel dimensions (a) and instrumented vehicle (b–d).

4. Localization: Problem Formulation

The reference systems involved in the localization procedure are shown in Figure 5
and defined as follows:

ABS_REF (A): Global or absolute reference frame of the tunnel. It is located at the middle
of the tunnel entrance (i.e., over the tunnel axis).
ROB_REF (R): Local reference frame of the mobile robot. It is located at a point on the robot
chassis.
MOB_REF (M): Sliding reference over the tunnel axis. It has the same orientation as the
tunnel axis and the same absolute x position as the ROB_REF.
FEA_REF_i (F): The relevant i-th feature (gallery, fading, or other) is expressed in this
reference. It is located at the tunnel axis in the feature location.

x

y ABS_REF

x

y
x

y
ROB_REF

x

y

MOB_REF

FEA_REF

Figure 5. Involved reference frames in the robot localization problem.

Road and railway tunnels may have curves. However, modern tunnels present curves
with a large bending radius, which allows us to consider them to be rectified as if they
were nearly straight. Thus, we maintain as x coordinate the actual distance on the tunnel
axis line (straight or curved) in the absolute reference A while y and θ coordinates are
represented in the mobile reference M (see Figure 5), centered in the instantaneous axis
of the robot at every moment. In this manner, since the mission is to navigate the robot
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to explore or inspect a tunnel, it is not necessary to compute its curvature with respect to
the initial location. To achieve this, the absolute xr robot coordinate will be recomputed by
matching the absolute location xgi of the detected gallery and its corresponding xA

gi
in the

prior tunnel map.
According to this, in the robot location xr = (xr, yr, θr), xr will be computed in the

A reference and the yr and θr coordinates will be computed in the mobile M reference.
Then, we divide the localization problem into two subproblems: transverse localization
and longitudinal localization. The transverse localization consists of calculating yr and
θr in the M reference while the longitudinal localization involves calculating xr in the A
reference along the central axis of the tunnel.

Transverse localization can be conducted with precision using a laser range sensor,
as will be presented in Section 4.1. However, longitudinal localization is more problematic.
This is introduced in Section 4.2 and developed in the following sections.

Hereafter, in order not to overload the nomenclature, the reference system will only
be indicated in the case of the magnitude being referred to a system other than ABS_REF.
The only exception will be when referring to reference positions provided by maps (e.g.,
the gallery position provided by the map xA

g ).

4.1. Transverse Localization in a Tunnel

To establish the transverse location of the robot, we use a flat beam laser rangefinder
(see Section 3). Since we claim that transverse localization is not a problem, we use one of
many available techniques. Firstly, a filtering of the laser scan points is needed. The terrain
in a tunnel can be uneven, which provokes robot vibrations affecting the onboard laser
rangefinder. As a result, some points in front of the robot belonging to the floor can appear.
These points are filtered to only process those belonging to the walls.

In each control period, the transverse robot localization is computed as follows (see
Figure 6). A regression straight line is computed from the scan points corresponding to the
right and left walls. The line with the smallest fitting error is then selected. Let y = ax + b,
the equation of this line in the ROB_REF. Then, the robot orientation θr is computed as:
θr = − arctan(a), being θr = 0 the orientation parallel to the wall. From the bias b of the
line associated with the wall and the orientation θr, the yr coordinate is computed with
respect to the tunnel central axis: yr = b cos θr − TunnelWidth/2.

(a) (b)

Figure 6. Robot transverse localization inside a tunnel. (a) Localization parameters referred to the
right wall. (b) Regression straight line of the right wall.

The standard deviations σy and σθ are computed from the mean squared error of
the regression line. Let δ be the 95% prediction interval resulting from the regression
computation. The standard deviation of b can be approached by σb = δ/2 and the standard
deviation of a by σa = 2δ/d, where d is the length of the regression line. Then:



Sensors 2022, 22, 1390 11 of 35

σθ =
σa

1 + a2

σy =
√

cos2(θr)σ2
b + b2sin2(θr)σ2

θ

With this simple technique, the following uncertainties in robot location are obtained:

Standard Deviation % of Samplings

σy < 0.02 m 96%

σy < 0.03 m 98%

σθ < 1◦ 96%

σθ < 2◦ 98%

These values have been calculated in a robot trajectory of 4 km long inside the Canfranc
tunnel. As can be seen, uncertainty in the transverse location can be neglected with respect
to uncertainty in the longitudinal location. This will be revealed in the following sections.

4.2. Longitudinal Localization in a Tunnel

Identifying a robot’s position in the cross-section of tunnel-like environments could be
achieved using traditional techniques, such as the one presented in Section 4.1. However,
localization along the longitudinal axis represents a challenge.

Due to the absence of satellite signal in underground scenarios, outdoor methods based
on GPS sensors cannot be used. Additionally, the darkness and lack of distinguishable
features make the most common techniques for indoor localization—based on cameras or
laser sensors—perform erratically. The work in [26] presented an autonomous platform
for exploration and navigation in mines, where localization is based on the detection and
matching of natural landmarks over a 2D survey map using a laser sensor. However, these
methods are inefficient in monotonic geometry scenarios with the absence of landmarks,
as shown in [27]. Recent alternatives based on visual SLAM techniques ([28,29]) rely on
the extraction of visual features using cameras to provide accurate localization. These
methods are highly dependent on proper illumination, which is usually poor in these types
of environments. Moreover, they do not perform well in low-textured scenarios where the
feature extraction process tends to be unstable.

The aforementioned issues have been stated in several works (e.g., [12,30]) using
LiDAR-based systems. This problem has also been studied and formalized in [31], where
a tunnel was considered as a geometrically degenerated case. The authors proposed
fusing LiDAR sensor information with a UWB ranging system to eliminate degeneration.
However, this solution involved the installation of a set of UWB anchors in the tunnel
to act as RF landmarks. That is, the tunnel was modified to introduce artificial features
for localization only. A similar solution was proposed in [32], which presented a robotic
platform capable of autonomous tunnel inspection that was developed under the European
Union-funded ROBO-SPECT research project. The authors stated that robot localization
in underground spaces and on long linear paths is a challenging task. Again, artificial
physical landmarks were also placed within the tunnel infrastructure to solve this problem.

Other localization methods rely on wheel odometers. However, besides suffering from
cumulative errors, these are more unreliable than usual due to uneven surfaces and the
presence of fluids being very common in tunnel environments.

To overcome all of the aforementioned difficulties, we propose an alternative method
that combines different sources of information provided by the environment in a pose graph
framework. For longitudinal robot localization, three types of information are integrated:
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• The odometry or a rangefinder scan matching continuous localization. If the tunnel
walls do not have sufficient roughness (i.e., flat walls), scan matching cannot provide
information to localize the robot in the longitudinal coordinate. Therefore, in this
work we consider odometry as the only available continuous source of information to
make the results more generalizable.

• Geometric relevant features found along the tunnel. In this case, they correspond to
lateral galleries, which are identifiable as discrete features. The absolute locations of
these features are represented in a prior map. Two methods are developed for their
identification and localization.

• Minima in RF communication signal, whose positions along the tunnel are known
from a propagation model.

During motion, continuous localization xr will be maintained for the robot, computing
xr from the odometry and computing yr and θr coordinates as explained in Section 4.1.
The coordinate xr will be updated every time a signal minimum or geometric feature (a
gallery in this case) will be identified. The next section is devoted to the development of
methods for identifying and localizing both types of features.

5. Discrete Features Detection: Galleries and Fadings

We propose the use of sparsely distributed features present in tunnel environments to
improve robot localization. In the present work, two sources of information are selected
to be introduced in the pose graph: the absolute position corresponding to the RF signal
minima and the absolute position of the galleries present in the tunnel. This section
describes the detection methods of both types of features and their outputs, which will be
subsequently added to the localization process.

5.1. Emergency Gallery Detection

We assume that the robot heading and transverse position are calculated with sufficient
precision (Section 4.1) from sensor readings. Since both are known, the problem is addressed
as 1D.

Two techniques are presented for emergency gallery recognition. The first (Pattern)
is based on scan-pattern matching. The main difference with respect to traditional scan
matching processes is that it does not attempt to match single scans, but rather matches
scans with a gallery pattern (set of keypoints) in a prior metric-topological map. This
technique is used when there is detailed prior knowledge of the tunnel galleries. The second
technique (Generic) is developed to recognize generic lateral galleries without previous
knowledge of their specific geometry. Generic can be used when the gallery is explored for
the first time to obtain a geometric map for later use. Once the tunnel has been explored,
Pattern can exploit the prior map to obtain a more precise localization while the robot
is navigating to accomplish a mission inside the tunnel. Generic could be also used as a
complementary to Pattern to increase the robustness of the recognition. Both techniques are
described in the following subsections.

5.1.1. Pattern Matching Gallery Detection

The following points summarize the steps of this gallery detection approach:

1. A unique pattern is extracted from the whole scanned tunnel that represents each of
the galleries. The pattern is composed of a set of relevant points (keypoints) extracted
from the metric-topological map of the tunnel: ({pj}F

g , j ∈ [1 . . . m], pj = (px, py)) in
the FEA_REF feature reference.

2. All information regarding the galleries is saved in a database that contains the follow-
ing for each gallery gi: the pattern points ({pj}F

gi
)), the global localization of the gallery

(xA
gi

), and a sequential unique identification along the tunnel (idg). This information is
available in advance.
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3. A scan-pattern matching process takes place to identify the gallery that has been
traversed by the robot in real-time.

4. The gallery is detected from several robot positions as it passes by (before and after the
reference position of the gallery defined by the pattern). The relative distance between
each of the robot positions and the gallery, and the uncertainty of the detection are
provided during the matching process.

5. Once a gallery is detected and knowing the current localization and movement
direction of the robot, the next pattern is extracted from the database and the scan-
pattern matching process starts again.

As previously stated, the pattern must unequivocally identify each gallery. It consists
of a set of m relevant points {(px1 , py1), . . . , (pxm , pym)}F extracted from the geometric map,
which represents the contour of the gallery.

The global localization of a gallery (xA
gi

) usually corresponds to a relevant feature of
the gallery (e.g., the right or left corner or the axis). This question must be determined
in the topographic work of the tunnel. In the present work, the localization of a gallery
corresponds (without the loss of generality) to the intersection of the gallery axis and tunnel
axis. The origin of the FEA_REF refers to this point (Figure 7a) and thus to this known
gallery position (xA

gi
). The (px, py) values for each point of the pattern are calculated with

respect to this reference system.

x

y
FEA_REF_i

(px,py)

(a)

di

(b)

Figure 7. Pattern matching gallery detection (gallery 17 of the Canfranc tunnel). (a) Pattern extraction.
The origin of the pattern reference system FEA_REF_i corresponds to the intersection of two lines:
the axis of the tunnel and the axis of the gallery (in the present example). (b) NNS method applied
between the laser and pattern points.

For scan-pattern matching to work correctly, the laser data referenced with respect
to the ROB_REF frame must be aligned with the pattern, which is defined with respect
to the FEA_REF frame. This is performed by converting the laser points (lpR) to the
MOB_REF frame (lpM) by means of applying a rotation and translation corresponding to
the robot orientation θr and yr position, which are calculated using the method described
in Section 4.1. In this manner, both the pattern scan points representing the gallery in
the metric-topological map and the ones corresponding to the gallery and detected dur-
ing motion are aligned in MOB_REF. Thus, there is only a need to compute the relative
displacement in the matching process.

Once the laser points and the pattern are aligned, the matching process takes place.
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Metrics definition
The first step in scan-pattern matching is the definition of a metric to measure the

distance between the pattern and the scan reading. For this work, we have selected the
nearest point-to-point metric. However, one can easily use any other type of metric (e.g.,
point-to-line metrics).

The nearest neighbor search (NNS) method is widely used for pattern recognition
applications. The NNS problem in multiple dimensions is stated as follows: given a set S
of n points and a novel query point q in a d-dimensional space, find the closest point in the
set S to q. In this particular case, it consists of finding the nearest point from the laser data
{(lx1 , ly1), . . . , (lxn , lyn)}M to each point of the pattern {(px1 , py1), . . . , (pxm , pym)}F comput-
ing the corresponding distances. This method provides a distance vector (d1, d2, . . . , dm) of
size m, with m being the number of points of the pattern (Figure 7b). The position error
between the pattern and the scan reading is calculated as the mean quadratic error of the
distance vector using Equation (5).

errx =

√
1
m

m

∑
i=1

d2
i (5)

For each iteration, the matching process between the laser data and the gallery pattern
using the NNS algorithm is applied for a range of [−r,+r] meters around the reference
position of the pattern (FEA_REF). The distance in that range for which the matching
process provides the least position error is obtained. This distance will correspond to
the relative position between the robot and the reference position from where the pattern
is captured (i.e., the relative distance between the robot position and the gallery (drg)).
A gallery is considered detected if the corresponding position error is lower than a defined
threshold (th).

Once the gallery is considered detected using the position error criteria, the next step
is to unequivocally identify the gallery the robot is passing by, avoiding false positives.
For this purpose, knowing the estimated position of the robot xr at this time and the
absolute position of the gallery provided by the metric-topological map xA

gi
, both values

should be close enough to consider that gallery i has been identified:

xr ∈ [(xA
gi
− H), (xA

gi
+ H)] (6)

where H is a safety margin distance and it is proportional to the odometry error accumu-
lated since the last identified feature.

It should be noted that the starting position of the robot is known, and therefore, the
data corresponding to the first gallery to be identified (pattern, global position, and identifi-
cation) can be extracted from the database. Once the gallery is detected, and knowing the
direction of movement, the next gallery information is loaded into the matching process
for subsequent identification. This strategy avoids attempting to match the current laser
readings with all available patterns, improving the efficiency of the detection process.

In summary, the results of the emergency gallery detection algorithm at each times-
tamp are, on the one hand, the relative distance (drg) between the current position of the
robot (xr) and the gallery position (defined by the pattern reference system), and on the
other hand, the gallery detection uncertainty (σrg). A gallery is considered detected from
the robot if the uncertainty value is below a certain threshold (th). The absolute real position
of each gallery is also known from the map of the tunnel (xA

gi
). It is worth noting that each

gallery will be detected from different robot positions in the defined search area around the
pattern reference position [−r,+r].
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5.1.2. Generic Gallery Detection

The technique described above can only be used when a map has been constructed.
However, no map is available the first time a new scenario is explored, and therefore, a
technique not based on previous dense geometric maps is required. It should be enough to
have the location of a representative point of each gallery (xA

gi
) and a sequential identification

along the tunnel (idg) included in a topological map.
This method can recognize right and left lateral galleries along a principal long tunnel.

The galleries can be of any shape, length, width, and inclination with respect to the principal
corridor. To make this method generic for the identification of galleries in any tunnel, only
a set of ranges for these generic parameters defining the features (lateral galleries in this
case) from prior knowledge of the tunnel must be provided to the algorithm: width of
the tunnel and galleries, number of supporting points of a gallery and distance between
galleries. The galleries are recognized by using angular and distance constraints between
the lines delimiting these features, obtained from a regression technique (as explained
in Section 4.1). Therefore, it is not necessary to maintain a dense geometric map of the
galleries. In this case, only the location of the representative point of each gallery in the
global reference (xA

gi
) is required.

The method evolves as follows:

1. A topological map including the ordered global localization of the galleries
([xA

g1
, . . . , xA

gi
, . . . , xA

gn ]) is available. No geometric or scan information are required.
2. The robot autonomously moves or is driven along the main corridor, detecting and

recognizing the correspondent gallery in the prior topological map using the afore-
mentioned geometric constraints.

3. When a potential gallery gi is detected from the scans taken from the successive robot
positions, a recognition process is launched. In this process, the geometric constraints
defining a generic gallery—invariant to its relative robot pose—are tested from several
sequential scans taken while the robot is moving. If the constraints are met, the gallery
is validated. In this manner, other features in the tunnel (e.g., shelters, holes, or wall
irregularities) are filtered out.

4. The localization of the validated gallery gi is computed. The global location of the
gallery in the topological map is assigned to the representative point with lowest
uncertainty, G1 or G2 in Figure 8. The new robot absolute coordinate xr is obtained
from the corresponding G1 or G2 computed from the LIDAR sensor points when a
gallery is identified. Finally, the complete robot location xr is computed by using the
transverse localization method detailed in Section 4.1.

5. The number and localization of the next gallery gi+1 is extracted from the topological
map and the recognition process starts again.

As per the Pattern matching method, the laser data are expressed in the MOB_REF.
Then, the scan points are segmented, computing the associated regression straight lines,
which delimit the area around the tunnel gallery and constitute the main information for
the gallery detector. To make the process robust, a minimum number of supporting points
are needed to compute the lines and recognize a gallery. As the detected points change as
the robot moves forward, the gallery is only validated when it is identified from several
consecutive positions. False positives are this way avoided.

When a gallery is recognized, the robot localization uncertainty is computed from
the intersection point G1 (see Figure 8) between the regression lines rlg : y = agx + bg
and rlp : y = apx + bp of the corner, respectively. Another possibility involves computing
the point G2, which is the intersection between a virtual line parallel to the opposite
wall in the robot, which is computed in the robot reference R, rl′p : y = apx, being
ap = tan(−θr). The computation leading to the lowest uncertainty is used. The x coordinate

of the intersection point in R is computed as xg =
bp−bg
ag−ap

. Let xA
g be the x coordinate of the

G point representative of the gallery location in the global reference A (ABS_REF, Figure 5)
obtained from the topological map.
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Figure 8. Computation of the representative point G of a generic gallery. The point G1 or G2 having
the lower location uncertainty is chosen as the representative point of the gallery.

The coordinate xr of the robot in A can be computed as:

xr = xA
g − ρcos(θr + α) (7)

where ρ and α are the distance and angle measured from the G point to the origin of the R
reference, respectively, and θr is the robot orientation computed as explained in Section 4.1.

The variance of this estimation is obtained from the variance of the x coordinate of
the G point and the variance of the robot orientation θr. The variance σ2

xg of G is computed
from the variances of the parameters of both regression lines. Therefore, the variance σ2

xr is
computed as:

σ2
xr = JCJT (8)

being

J = J(xA
g , θr) = (

bg

(kg − kp)2 ,
−1

ag − ap
,

bp − bg

(ag − ap)2 ,
1

ag − ap
, ρ sin (θr + α))

C = diag(σ2
ag , σ2

bg
, σ2

ap , σ2
bp

, σ2
θr
)

5.2. RF Signal Fading Detection

The first step of the proposed method consists of extracting a discrete model repre-
senting the theoretical minimum model from the RF map. Using the propagation model
described in [1], it is possible to determine the position of each valley along the tunnel,
and the theoretical minimum model can then be obtained in advance. This model consists
of a set of points (x, rs) where x represents the position and rs the theoretical RSSI value
(Figure 9a). During the displacement of the vehicle, the algorithm attempts to match a
discrete real model with the theoretical model. The real model is generated by accumulating
points (xt, rst) during a certain period of time (Figure 9b), where xt is the position estimated
by the odometry and rst corresponds to the actual RSSI value provided by an RF sensor.

The matching process is based on the calculation of the Mahalanobis distance between
each real point from the real model and the closest neighbors from the theoretical model
(Figure 9c,d). The points are classified as inliers or outliers depending on the resultant dis-
tance. If the number of inliers is greater than a certain threshold and the ratio between left
and right inliers is balanced, we can conclude that a minimum has been found (Figure 9e).
Information about the estimated position of the minimum xm together with its correspond-
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ing position in the map xA
mi

is available (Figure 9f). The RF minimum detection method is
explained in detail in [4].
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(a) Theoretical model extraction from RF signal model
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Figure 9. RF signal minima detection steps: (a) Theoretical model (green points inside dashed
green square A) extracted from the RF signal model (red). (b) Real model generation during the
displacement of the vehicle from the real RF signal. (c) Both models referenced the same system
coordinates. (d) Point classification depending on the Mahalanobis distance between the real data
and the closest neighbors from the theoretical model. (e) Minimum detection if the number and
proportion of inliers satisfy the threshold. (f) Estimated position based on the odometry xm (blue
point) and position reference from the RF map xA

mi
(green point) of the detected minimum.

The resulting data are the estimated position provided by the odometry (xr = xm)
and the position reference of the RF map (xA

mi
), both of which correspond to a minimum of

the RF signal. The uncertainty of the position reference (σm) is a measure of the RF signal
model fidelity with respect to the ground truth. This value is initially estimated offline
based on the absolute position of the transmitter in the tunnel. Subsequently, it is adjusted
online by a practical approach after each trip, comparing the positions of the actual minima,
provided by the localization approach, with the absolute positions of the minima of the RF
signal model.

It is remarkable that the information provided by the virtual sensor corresponds to
delayed measurements (i.e., the position of the minimum is detected at a timestamp (T)
after its appearance (T− k)). This implies the incorporation of information referring to a
past position in the estimation process. This can be managed through the use of a graph
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representation, having an impact on the current pose estimation after the optimization
process. The strategy followed to add these measurements to the pose graph is explained
in Section 6.1.

6. Multi-Sensor Graph-Based Localization

Inspired by the graph SLAM paradigm, our approach models the robot localization
problem as a graph-based pose optimization problem. This approach represents the robot
trajectory x0:T = {x0, . . . , xT} using a graph in which nodes symbolize discrete robot po-
sitions xt at time step t while the edges impose position constraints on one or multiple
nodes [33]. Hence, some nodes in the graph are related by binary edges encoding relative po-
sition constraints between two nodes (xi, xj) characterized by a mean zij and an information
matrix Ωij. These relative measurements are typically obtained through odometry or scan
matching. Furthermore, it is possible to incorporate global or prior information associated
with only one robot position xi into the graph by means of unary edges characterized by
the measurement zi with information matrix Ωi. These measurements typically come from
sensors providing direct absolute information about the robot pose (e.g., GPS or IMU).

Let x = (x0, . . . , xT)
T be the vector of parameters describing the pose of each node

xi. Let ẑi(xi) and ẑij(xi, xj) be the functions that compute the expected global and relative
observations given the current estimation of the nodes. Following [33], for each unary and
binary edge, we formulate an error function that computes the difference between the real
and the expected observation:

e(xi, zi) = ei(xi) = zi − ẑi(xi)

e(xi, xj, zij) = eij(xi, xj) = zij − ẑij(xi, xj)
(9)

Figure 10 depicts a detail of the graphical representation used in this paper for the
pose graph as well as the binary and unary edges.

1 
 

 
Figure 10. (a) Graphical representation of a portion of a pose graph where two nodes xi and xj are
related by a binary edge (blue point) and where a unary edge is associated with node xi (green
point). (b) Binary edge representing the relative position between the xi and xj nodes. (c) Unary edge
corresponding to an absolute position associated with the xi node.
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The goal of a graph-based approach [33] is to determine the configuration of nodes x∗

that minimizes the sum of the errors introduced by the measurements, formulated as:

x∗ = argmin
x

(
∑
i,j

eT
ijΩijeij + ∑

i
eT

i Ωiei

)
(10)

Equation (10) poses a non-linear least-squares problem as a weighted sum of squared
errors, where Ωij and Ωi are the information matrices of eij and ei, respectively. This
equation can be solved iteratively using the Gauss–Newton algorithm.

Our approach for localization inside tunnels considers measurements coming from
three sources of information (i.e., odometry data, gallery detection, and RF signal minima
detection) and uses the procedures described in Sections 5.1 and 5.2. Odometry measure-
ments are straightforwardly introduced into the graph as binary constraints encoding the
relative displacement between consecutive nodes (xt−1, xt). The output provided by the
minima detection mechanism can be considered an absolute positioning system inside
the tunnel that can be used as a unary constraint during the graph optimization process.
Additionally, the absolute gallery location provided by the gallery detector algorithm is
also introduced as a unary edge into the graph. Once the constraints derived from the
measurements are incorporated into the graph, the error minimization process takes place,
where the optimization time depends directly on the number of nodes.

Graph-based localization and mapping systems usually perform a rich discretization
of the robot trajectory, where the separation between nodes ranges from a few centimeters
to a few meters. This type of dense discretization would be intractable in a tunnel-like
environment with few distinguishable features, where the length of the robot trajectory
is measured in the order of kilometers. Therefore, it is necessary to maintain a greater
distance between nodes to manage a sparser and more efficient graph.

These general criteria for introducing spread odometry nodes in the graph are modi-
fied when discrete features are detected. The following Sections 6.1 and 6.2 describe the
mechanisms used to incorporate the discrete measurements into the graph.

6.1. Management of RF Fadings Minima Detection in the Pose Graph

As previously mentioned, RF signal minima detection is obtained at a posterior time
T from when it occurred. This implies the need to incorporate information regarding an
absolute position reference associated with a past robot position xT−k in the estimation
process by means of a unary constraint. Due to the sparsity of the graph, the referred
position is not likely represented in the graph by a previous node. Therefore, a mechanism
to modify the current graph structure is needed to include the node corresponding to the
point in the trajectory where the minimum was detected with its unary constraint. Figure 11
shows the procedure to introduce the unary measurement corresponding to a previous
robot position xT−k.

Suppose that an RF signal minimum corresponding to a previous time T− k is detected
at timestamp T. Since the robot position xT−k is not present in the graph, the first step
is to identify between which two nodes (xi and xj) should be included based on the
timestamps stored in each node and the odometry information corresponding to each
timestamp (Figure 11a). The new node is then inserted into the graph connected to nodes
xi and xj using their original relative odometry information. The unary edge with the
reference position of the minimum is attached to the node xT−k. Finally, to avoid double-
counting information, the previous binary edge that relates xi and xj is deleted from
the graph (Figure 11b). In the event of detecting another minimum corresponding to
the same minimum in the RF map, the unary constraint of the previous minimum is
deactivated, and the same procedure is followed (Figure 11c). Note that the node that
initially corresponded to a minimum (xT1−k1 ) is maintained in the graph as a regular node
with the binary edge already created with the previous node, and the binary edge with the
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new minimum node. This can be the case for false positives or improved detections after
the accumulation of more data.
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Figure 11. Pose-graph creation steps: (a) Minimum identification at time T. (b) Insertion of the node
and the unary constraint corresponding to the detected minimum. (c) False positive case detail,
deactivation of the previous unary edge. (d) Resulting pose-graph after three minimums.

Figure 11d presents an example of a final graph after detecting three RF minimums at
different timestamps (i.e., T1, T2, and T3). As shown in this figure, the nodes (with their
unary edges) are introduced into the graph representing their real positions corresponding
to the minima occurrences, which highlights the simplicity of the pose graph approach
to incorporating information from the past. Since the optimization process occurs after
each graph modification, the estimation position is corrected by considering the newly
incorporated restrictions.

6.2. Management of Gallery Detection in the Pose Graph

As previously stated, during the displacement of the robot along the tunnel, the dis-
crete robot poses are represented by nodes in the graph. The relative odometry distance
between them is encoded using binary edges, as shown in Figure 12a. In addition to the
information introduced to the graph each time an RF minimum is detected, the graph is
also enriched with information from the gallery detector, resulting in improved localization
in the whole tunnel.

The gallery detector provides two different types of information: (a) the relative
localization of the gallery and its associated error with respect to the robot positions from
which the gallery is observed and (b) the absolute known position of the identified gallery.
In this regard, we consider the gallery as a new feature of the environment whose position
can be represented as a node in the graph. Then, the information provided by the gallery
detector is introduced by using the types of edges that better suit their nature: binary edges
encoding the relative observation between the robot and the gallery, and a unary edge
associated with the gallery node encoding its a priori known absolute position.
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Figure 12. Gallery pose graph creation steps: (a) Initial situation. The vehicle starts moving. (b) The
gallery is detected for the first time. (c) Nodes are added each time the gallery is detected. (d) Graph
nodes once the vehicle has traversed the gallery. Blue dots denote binary edges and green dots denote
unary edges. The robot is represented as traveling along the center of the tunnel and without heading
variations to simplify the figure.

The procedure for introducing the gallery information into the graph starts once a
particular gallery is detected for the first time. Figure 12 illustrates this process, which
consists of the following steps:

• At timestamp T, the uncertainty provided by the gallery detector complies with the
criteria to consider that a gallery is detected. A new odometry node (xk1 ) correspond-
ing to the robot position from which the gallery has been observed is added to the
graph using the relative odometry information with respect to the previous node xj.

• The first time the gallery is detected, the node corresponding to the gallery position
(xg) is also added to the graph using a binary edge that represents the relative observed
position (dk1g) between the gallery and the current position of the robot. A unary edge
encoding the absolute position of the gallery (zg) is also attached to the gallery node.
This gallery position is provided by the metric-topological map (xA

g ) (Figure 12b).
• Each time the gallery is detected, a new node (xki

) is inserted into the graph connected
to the previous node using the relative odometry position and connected to the gallery
node through a binary edge using the information provided by the gallery detector
(relative distance dki g and uncertainty of the detection σki g). Both edges are encoded
as binary edges (Figure 12c).

• When the gallery is no longer detected (i.e., the uncertainty raises above the threshold),
the nodes are again introduced to the graph following the regular criteria (sparse
graph) (Figure 12d).

It is worth noticing that the procedure to introduce the measurements from the gallery
detector differs from the one proposed for the minima detector. Although the global
positions for both types of features are known, their detection is produced in a different
manner. As mentioned, in the case of the galleries, there is a relative observation that is
instantaneous, so that this measurement and its associated uncertainty can be introduced
into the graph at the time of its detection as a binary edge. However, in the case of the
minima, the detection returns the value of the global position of the minimum, which is
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not instantaneous due to the necessity to accumulate signal readings to form the geometric
shape of the minimum. This makes it more appropriate to represent that information as
a unary edge associated with the past position from which the pattern of the minimum
is centered.

To sum up, the pose graph is updated with the positions from which the gallery is
observed, adding binary edges encoding relative distance constraints between nodes and a
unary edge encoding an absolute position reference associated to the gallery node. As a
result of this process, the localization resolution increases during the gallery detection.
Again, the estimated position is corrected after executing the optimization process with
each new node incorporation.

7. Experimental Results

To validate the proposed graph-based localization approach, all of the algorithms
involved in the entire process were implemented in MATLABTM and tested with real data
collected during an experimental campaign carried out in the real-world scenario described
in Section 3. The vehicle started from gallery number 17 (50 m from the Spanish tunnel
entrance) and was driven up to gallery 6, traveling approximately 5000 m along the tunnel.

To the best of our knowledge, there are no publicly available datasets in these tunnel-
like environments that we could use for comparison purposes. Moreover, few experimental
results have been published in this field. The most relevant ones rely on the use of a UWB
location system (see [31,34]), i.e., a GNSS-like approach for tunnels. The UWB localization
systems obtain errors below 20 cm in tunnels but it is necessary to install an anchor device
each 20 m inside the tunnel and to locate them accurately. Moreover, the experiments
presented in the referenced works were conducted in a 30-m long gallery. Such a UWB-
based localization system would require the installation of 250 anchor devices for the 5000 m
tunnel length covered in the present work, which in most cases would be unfeasible.

Therefore, the objective of the experiments is to prove that our approach works in real
environments. To highlight the effect of the discrete features detection on the cumulative
localization error, we have not used the actual odometry, but a degraded one. The optimized
instantaneous pose error depends on the quality of the odometry or enhanced odometry
(possibly with scan matching or vision) used in continuous localization. However, as this
section will show, this error will be reset to a maximum of 20 cm after each gallery detection
and between 0.5 and 1.5 m after detection of RF signal minima.

In the experiments presented in this section, the robot navigated in a straight line
along the center of the tunnel with negligible heading variations. This behavior during
the experiment makes the simplification of the general formulation of our graph-based
localization approach feasible, where x refers to (x, y, θ), a one-dimensional problem where
x corresponds to the longitudinal distance from the tunnel entrance. The y and θ values are
computed as described in Section 4.1. Hereafter, the magnitudes will be represented without
bold type to be consistent with this simplification. During the displacement of the vehicle,
the data provided by the sensors were streaming and logging with a laptop running a Robot
Operating System (ROS) [35] on Ubuntu. For the validation process, the scan pattern-based
gallery detector has been selected; however, both methods could have been used since they
provide the same information for incorporation into the pose graph.

The real localization of the vehicle, which will be used as ground truth, is obtained
by fusing all of the sensor data using the algorithm described in [36] with a previously
built map. It is only feasible to apply this approach due to a very specific characteristic
of the Somport testbed, which is that emergency shelters are placed every 25 m and thus
serve as landmarks. It is noteworthy that the ground truth is only used for comparison
purposes. The existence of these shelters is omitted by the proposed localization system
to generalize the applicability of the method to other types of tunnels that do not include
these characteristics.
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Table 1 presents the absolute positions of each gallery xA
g , as provided by the metric-

topological map. These absolute positions, considered as the ground truth, correspond to
reference points from which the gallery patterns were generated.

Table 1. Galleries.

Gallery # xA
g (m) Gallery # xA

g (m) Gallery # xA
g (m)

17 51 13 1813.9 9 3365.2
16 489.5 12 2260 8 4091.5
15 1026.9 11 2702.4 7 4475.8
14 1469.2 10 3275.1 6 4841

The position references of the minima xA
m extracted from the RF map are shown

in Table 2. It should be noted that the periodicity of the RF signal under the defined
transmitter-receiver setup is observable once the near sector is crossed (i.e., at a significant
distance from the tunnel entrance). Therefore, during the route of the platform, there will be
areas where the graph-based approach will only incorporate information from the galleries.
However, there will be other areas where both the galleries and the RF signal minima
coexist. Thus, the data provided by the detection of both features will be introduced into
the graph.

Table 2. RF minimums.

MIN # xA
m (m)

1 2593.4
2 3103.6
3 3613.5

7.1. Algorithm Implementation

As previously mentioned, the nodes are added to the graph at regular intervals
corresponding to the distance traveled by the platform. The selected interval is 40 m,
which is adequate to fulfill a twofold purpose: (a) providing sufficient discretization of
the total distance traveled (in the range of km) while avoiding the complexity of a more
dense graph and (b) ensuring sufficient resolution between tunnel feature detections. The
constraints between two consecutive nodes (xi, xj) are modeled with binary edges 〈zij, Ωij〉
using the relative position between them provided by the odometry as the measurement,
zij = (xodom

j − xodom
i ) and the odometry uncertainty σodomij

for the information matrix

Ωij = [σ2
odomij

]−1. The uncertainty is scaled by the traveled distance from node i to node
j. Table 3 shows the equations involved the first time a new regular node xj is introduced
into the graph with the labeling of the binary edge. The expression used to compute the
error at each iteration is also detailed.

Table 3. First time a new node is introduced into the graph based on odometry information. The error
is computed at each iteration.

Graph Node Binary Edge Error

xi xj
xj = xi + dodom

ij
dodom

ij = xodom
j − xodom

i

zij = dodom
ij

Ωij = [σ2
odomij

]−1

σodomij
= f (dodom

ij )

eij = dodom
ij − (xj − xi)

The two detection processes run concurrently in real-time, waiting for the occurrence
of a minimum or gallery event. When a minimum is detected at time T, a new node
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xm is introduced into the graph using the mechanism described in Section 6.1. First,
the odometry robot position corresponding to the minimum occurrence (xodom

m ) is used
to create binary edges with xi and xj, as previously described. The position reference of
the minimum (xA

m) provided by the RF map is considered as the measurement zm and is
included as global information with a unary edge associated with this new minimum node,
being Ωm = [σ2

m]
−1 (i.e., the information matrix). σm corresponds to the uncertainty of

the measurement provided by the RF map. Table 4 summarizes the process when a new
minimum node is introduced into the graph for the first time with the unary edge and the
error computed at each iteration.

Table 4. First time a new minimum node is introduced into the graph.

Graph Node Unary Edge Error

xi xj

xm xm = xi + dodom
im

dodom
im = xodom

m − xodom
i

zm = xA
m

Ωm = [σ2
m]
−1 em = xA

m − xm

Similarly, when a gallery is detected for the first time, a new node xk1 corresponding to
the estimated robot position from which the gallery is observed is added to the graph using
the odometry position (xodom

k1
). A binary edge 〈zjk1 , Ωjk1〉 is created between the previous

node j and the new one using the same mechanism previously described in Table 3. At the
same timestamp, a node representing the position of the gallery xg is also incorporated
into the graph. The constraint between the xk1 and the gallery node xg is modeled by a
binary edge 〈zk1g, Ωk1g〉 using the information provided by the gallery detector: the relative
distance dk1g between them as the measurement zk1g and the detection uncertainty (σk1g)
for the information matrix Ωk1g. Lastly, the absolute position of the gallery in the tunnel
(xA

g ) is introduced into the graph as a global measurement zg by means of a unary edge
〈zg, Ωg〉 associated with the gallery node. Since the gallery global position is obtained from
the geometrical map of the tunnel, it is considered a ground truth with a very low value for
the uncertainty of the unary edge (σg = 10−4). Each time the gallery is detected from a new
position, a new node xki

is incorporated into the graph by encoding the constraints with the
previous node (xki−1

) and the gallery node (xg) by means of two binary edges, as previously
described. Once the gallery is no longer detected because the vehicle has passed through
the gallery area, the next gallery pattern is loaded to await the next detection. Table 5 shows
the equations of the nodes and edges involved when a gallery is detected for the first time,
along with the corresponding formulas to compute the errors.

Table 5. First time a new gallery node is introduced into the graph.

Graph Node Binary Edge Unary Edge Error

xk1xj

xg xg = xk1 + dk1g
zk1g = dk1g
Ωk1g = [σ2

k1g]
−1

zg = xA
g

Ωg = [σ2
g ]
−1

ek1g = dk1g − (xg − xk1)

eg = xA
g − xg

Each time a new node or measurement is added to the graph, the optimization process
occurs. The goal of this process is to determine the assignment of poses to the nodes of the
graph, which minimizes the sum of the errors introduced by the measurements. The larger
the information matrix (Ωij, Ωi), the more the edge matters in the optimization. In our
case, the measurements associated with the minimum and gallery nodes have the smallest
uncertainty since they are observations from the maps. Therefore, they play the role of
“anchors” in the pose graph. As previously mentioned, the optimization process has been
implemented in MATLABTM based on the g2o back-end implementation [37].
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Our approach guarantees continuous robot localization by accumulating the odometry
data to the last estimated robot position in the graph—even in those areas where the node
separation in the graph is large (when neither a gallery nor an RF minimum is detected).

7.2. Results
7.2.1. Minima Detection

Figure 13 presents the results of the minima detection method. The RSSI data provided
by the RF receiver and the RF signal model are represented related to the ground truth in
Figure 13a. As clearly shown, the RF sensor measurements in the real scenario are similar
enough to the RF signal model to consider the latter as an RF map. The periodicity of
the RF signal fadings under the transmitter-receiver setup of the Somport experiments
was observed with sufficient signal quality from approximately 2.1- to 3.8-km points.
As mentioned above, the original odometry was degraded to evaluate the strength of
the detection systems. When the vehicle reached the area of the periodic fadings, some
odometry error was accumulated as shown Figure 13b, where the RF real values are
represented with respect to the position estimated by the odometry. Although the real
signal waveform did not exactly match the RF signal model, the detection method can
identify the real minima and associate them with the RF map minima, thereby providing
the data required for incorporation into the graph. The error detection of the minima ranges
from 0.5 to 1.5 m. The mechanism explained in Section 6.1 was used to handle this situation.
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Figure 13. Results of the mimima detection process. (a) RF signal model and RF real values repre-
sented with respect to the ground truth. (b) RF real values with respect to the position estimated by
the odometry without any correction due to the detection of previous discrete features.

7.2.2. Generic Gallery Detection

In Figure 14, four galleries with different shapes, inclinations, widths, dimensions,
and supporting points were recognized by the generic gallery detection method. In this case,
the intersection point in the corner corresponding to the representative point G associated
with each gallery in the topological map was used to compute the gallery location in the
global reference.

A total of 12 galleries were detected. Neither false positives nor false negatives were
detected. Their global locations were computed using Equation (7) and represented in
Figure 15. The detector was able to recognize and distinguish them from other tunnel
characteristics (e.g., lateral shelters, large holes on walls, small caves, etc.).

After applying Equation (8), the minimum, mean, and maximum values obtained for
σxg along the tunnel were 0.01, 0.08, and 0.22 m, respectively. Only 16% of the estimated
gallery locations have an uncertainty above 0.2 m.



Sensors 2022, 22, 1390 26 of 35

(a) (b)

(c) (d)

Figure 14. Four galleries recognized in the tunnel. Blue lines are the regression lines computed from
the supporting points. The G point (i.e., the intersection of the extension of regression lines of the
corner) is the location of the recognized gallery matching the gallery location in the topological map.
(a–d) show galleries 16, 15, 13, and 9 from Table 1, respectively.

Figure 15. Squares represent the locations of the robot in front of every gallery. Each gallery is
represented by laser points at the moment when the robot location was recomputed. The four
galleries presented in Figure 14 are also shown.
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7.2.3. Pattern-Based Gallery Detection

The results of the pattern-based gallery detector for gallery number 17 of the Somport
tunnel are shown in Figure 16. The first row represents the laser scan reading along with
the gallery 17 pattern at three different timestamps. The second and the third rows show
the evolution of the uncertainty and the evolution of relative distance between the vehicle
and the gallery, respectively. Figure 16a shows the first steps of the gallery observation from
the vehicle. When the uncertainty σrg falls below the threshold (Figure 16d), the gallery is
considered detected and the relative distance drg17 between the current position of the robot
and the gallery is calculated (Figure 16g). The relative position of the gallery is provided by
the detector as long as the uncertainty remains below the threshold (th), which is fixed at
0.5 m. Figure 16b,e,h presents the timestamp when the error in the scan-pattern matching
process is close to 0. This situation corresponds to the vehicle passing by at the reference
position of the gallery in the tunnel (FEA_REF). Lastly, when the uncertainty exceeds the
threshold, the detection process of the current gallery is considered complete. Figure 16i
presents the relative distance from the different vehicle positions to gallery 17 during the
whole detection process. As previously stated, knowing the current estimated position of
the vehicle and the movement direction, the pattern of the next expected gallery is loaded
and the detection process starts again. Note that the new pattern is also loaded in case the
gallery is not detected within the expected range of positions. The results of the matching
process for other galleries are presented in Figure 17.
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Figure 16. Gallery detection process. (a) First gallery detection timestamp. The detection uncertainty
falls below the threshold (around the 90th iteration) (d) and the relative distance between the vehicle
position and the gallery is provided by the detection algorithm (g). (b) The vehicle passes through the
gallery position corresponding to the pattern reference. The uncertainty remains under the threshold
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(e) and the relative distance is provided during this time (h). (c) The vehicle (laser data) moves away
from the gallery (pattern) and the uncertainty increases above the threshold (f). The condition of
gallery detection is unsatisfied. (i) Relative distances between the vehicle position and the gallery
during all the detection processes.
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Figure 17. Matching process results for several galleries represented by different patterns during the
vehicle displacement.

In the experiments in the Somport tunnel, uncertainty in the drg estimation of less
than 40 cm in 90% of the cases was assumed. However, when the robot was near the point
where the pattern was acquired, the position error fell to a minimum. This corresponds to
the point of less uncertainty in the robot position.

This minimum error had a mean value of 6.8 cm for the complete set of galleries.
The best case was 1.9 cm for gallery 14 and the worst case was 12.7 cm for gallery 13.

The evolution of gallery detection uncertainty during the displacement of the vehicle
along the tunnel can be observed in Figure 18. This figure clearly shows a sharp drop in
uncertainty below the threshold, indicating the detection of each gallery.
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Figure 18. Evolution of the gallery detection uncertainty during the displacement of the vehicle from
gallery 17 to gallery 6. The abrupt drops in uncertainty, indicating the detection of the gallery, have
been previously depicted in detail in Figure 16d–f. The starting position of the vehicle corresponds to
gallery 17.
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7.2.4. Graph-Based Localization Results

The pose graph is continuously generated during the displacement of the vehicle along
the Somport tunnel while incorporating information provided by odometry, RF minima
detection, and gallery detection. Figure 19a shows the resulting graph with all sources
of information before (red) and after optimization (blue). This figure highlights how the
positions of the vehicle, represented by the nodes, have an obvious forward odometry drift
corrected after the optimization. As previously mentioned, a sparse graph is maintained by
the addition of trajectory nodes at long regular intervals. This criterion changes in the case
of a gallery detection, with a node being added from each vehicle position from which the
gallery is observed. This situation is represented in Figure 19b,c for gallery 17, where it is
observed how the graph density increases in those areas, providing greater discretization.
Similarly, when an RF minimum is detected, a node is incorporated at the position where
the minimum occurred.
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Figure 19. Node graph with RF minimums and gallery detections. (a) Complete node graph before
(red) and after (blue) optimization. Due to the applied simplification to one-dimension problem, the y
axis values have been set to those values only for visualization purposes, avoiding the overlapping of
both graphs. (b) Area of the node graph showing the nodes incorporated during gallery 17 detection
joined together with regular nodes before and after gallery detection. (c) Details corresponding to
the nodes representing the vehicle position from which gallery 17 was detected (cyan). The node
corresponding to the gallery position is shown in black.

The resulting position graph corresponding to the entire displacement of the vehicle
consists of 223 nodes and 306 edges. The total number of nodes includes 3 nodes repre-
senting the positions of the vehicle corresponding to RF minimum occurrences, 12 nodes
representing the positions of the galleries present in the Somport tunnel, 81 nodes from
which any of the galleries were detected, and 127 regular nodes. Table 6 summarizes these
figures. The total quantity of edges includes unary edges encoding absolute positions
related to minimums and gallery nodes (3 and 12, respectively) as well as binary edges,
which represent relative constraints between nodes and gallery nodes (81) and between
regular nodes (210). Table 7 presents the classification of edges.
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Table 6. Resulting pose-graph nodes.

Nodes Qty.

Minimum nodes 3
Gallery nodes 12
Nodes with gallery detection 81
Sparse regular nodes 127

Total 223

Table 7. Resulting pose-graph edges.

Edges Qty.

Unary edges associated to minimum nodes 3
Unary edges associated to gallery nodes 12
Binary edges from nodes to galleries 81
Binary edges between sparse regular nodes 210

Total 306

The results of our pose graph localization approach are represented in Figure 20.
Figure 20a presents the pose estimation of the vehicle during the continuous localiza-
tion process in comparison with the pose estimation using only odometry information.
The position is corrected with each RF minimum or gallery detection, as shown in de-
tail in Figure 20b. As a consequence of the optimization process, the localization error
accumulated during the movement of the vehicle was reset each time a discrete feature
providing an absolute position was detected, as shown in Figure 20c. It is worth noticing
that, since the optimization process was applied during motion, the longitudinal error
remained bounded every time a discrete feature was found, which also led to a decrease
in the errors of previous instants. However, this is not reflected in Figure 20c since the
graph represents the instantaneous error during the displacement of the vehicle and the
representation of previous values was not modified.

One of the main benefits of the proposed approach is the ability to not only correct
the error position online (during the displacement of the vehicle), but also to modify the
location of certain features observed during the vehicle trajectory once the service routine
is complete. Figure 21 presents the results for when the position and error are calculated
once the tunnel has been traversed (i.e., when the optimization process occurs with all of
the information included in the graph at the end of travel). Figure 21a presents how the
estimated position obtained through our proposed method closely follows the true position
of the vehicle, whereas the purely odometry-based estimation diverges from it. The position
error along the tunnel remains bounded under very acceptable values in comparison with
the resulting error from using only odometry information, which increases over time as
shown in Figure 21b. As expected, higher position errors corresponded to areas where
the distance between galleries is larger. It is worth noting that the position error was
significantly flattened with respect to the online case, which demonstrates the strengths of
this method for inspection applications.
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Figure 20. Results of the online pose graph localization approach. (a) Estimated position along the
tunnel provided by the odometry (red) and our proposed approach (blue) in comparison with the
ground truth (black). (b) Details of the estimated positions corresponding to the time slot when an
RF minimum (dashed blue lines) and two galleries (dashed green lines) were detected. The position
was corrected with each detection. (c) Position error during the displacement of the vehicle.
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Figure 21. Results of the pose-graph approach after the service routine of the vehicle. (a) Pose
estimation, (b) error pose.

7.3. Graph-Based Localization Performance Evaluation

To compare the performance of the graph-based localization approach using diffe-
rent sources of information, we used the metric proposed in [38]. The graph accuracy is
not based on the calculation of absolute error among positions but rather on the creation
of a graph consisting of virtual edges created by using the ground truth measurements
evaluated in the estimated node positions. This well-known technique is commonly used
to compare SLAM approaches that use different estimation techniques or different sensor
modalities since all computations are made based on the corrected trajectory of the robot.

Table 8 presents a comparison of the overall mean χ2 error per edge during the
localization process using different sources of information. Equation (11) shows the general
expression used to calculate the χ2 value, where n is the number of edges.

χ2 =
1
n ∑

i,j
eT

ijΩijeij, Ωij = I (11)



Sensors 2022, 22, 1390 32 of 35

Table 8. Graph accuracy analysis.

Source of Data χ2

Only odom 12.87
Minima and odom 4.20
Galleries and odom 1.23
Minima, galleries and odom 1.15

As expected, using the most information sources during the localization process (i.e.,
minima and gallery positions as absolute measurements and odometry data as relative
measurements) yielded the best result in terms of accuracy. When using only the galleries
and the odometry data, the results were also good and better than those using only the
minima and odometry. This is mainly because the galleries are distributed all along the
tunnel, whereas the minima are only detected in a certain section. The greatest mean error
was obtained when only odometry data were introduced into the graph.

Finally, regarding optimization times, the full graph converged in 0.23 ms after three
iterations using the g2o framework running in an Intel Core i7 at 1.80 GHz processor.

8. Conclusions

In this paper, we have presented a graph-based localization approach for tunnel-like
environments using different sources of information, including odometry data, absolute
positions provided by an RF signal minima detector based on a theoretical fadings model
acting as an RF map, and the absolute positions provided by a gallery detector.

Various strategies have been developed to incorporate the data provided by the pro-
posed detectors into the graph. On the one hand, information from the past corresponding
to the RF minima was introduced by revisiting the nodes stored in the graph and modifying
the existing edges. On the other hand, the discretization of the graph was increased by
adding the data of all robot positions at which the galleries were detected. In both cases,
unary constraints were associated with the detected features—RF minima and galleries—
using the position references obtained from the RF map and the metric-topological map.

The feasibility of the proposed approach has been validated with the data collected
during an experimental campaign developed in a real tunnel scenario. The empirical
results demonstrate the validity of all processes involved in the localization during the
displacement of the vehicle.

In addition to the good performance of the detection methods demonstrated during
the experiments, the results also indicate that the implemented approach allows the online
correction of the localization error each time a new absolute measurement is added. This
also leads to better localization during the detection of discrete features to avoid, for ex-
ample, confusing similar galleries that are close to each other. The position error is further
reduced if the optimization process is executed once the tunnel has been traversed (i.e.,
with all the information incorporated into the graph). As a result, it is possible to accurately
locate features of interest observed during an inspection task in a service routine.

A performance evaluation of the graph was also developed, providing the expected
results in terms of localization accuracy depending on the information sources used during
the process.

Given the aforementioned information, we can state that our approach has several
advantages over other methods addressed in the literature (typically probabilistic methods
based on filters) to solve the localization problem in tunnels:

• It facilitates the easy incorporation of different sources of information. In the tunnel
case, our method takes advantage of the features present in this type of environment
(i.e., structural features in the case of galleries and periodic RF signal fadings).

• It allows us to keep track of the history of robot positions and revert from incorrect
decisions produced during the estimation process (e.g., the integration of incorrect



Sensors 2022, 22, 1390 33 of 35

measurements). Therefore, it is also possible to incorporate information from the past
that influences the present.

• This solution can be extrapolated to other types of environments of this type (e.g.,
pipes, sewers, and mines) by selecting the most appropriate sources in each case (e.g.,
the results of a scan matching process in the case of a more texturized environment).

The addition of more discrete features from the RF signal can easily be accomplished
by adding a second RF receiver at a specific location on the platform, taking into account the
effect of the cross-section antenna position over the fading structure. With this configuration,
there is a 180-degree phase difference between signals, as shown in Figure 3b, which leads to
a doubling of the RF minima and thus a resolution improvement for the proposed method.
One limitation to be addressed in the future is related to the fast fadings area described in
Section 2.3. The RF fadings periodicity is only observable at a significant distance from the
RF transmitter once the higher modes are attenuated. One potential solution would be to
add a second RF transmitter in the other extreme of the tunnel, provoking periodic fadings
in the fast fadings area corresponding to the first RF transmitter. This improvement will
be accomplished in future implementations. The integration of the proposed localization
approach into a completely autonomous navigation system in a real prototype is also
contemplated as future work in the field of inspection tasks in tunnels.
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