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ABSTRACT

The abundance of dark matter haloes is one of the key probes of the growth of structure and expansion history of the Universe.
Theoretical predictions for this quantity usually assume that, when expressed in a certain form, it depends only on the mass
variance of the linear density field. However, cosmological simulations have revealed that this assumption breaks, leading to
10-20 per cent systematic effects. In this paper, we employ a specially designed suite of simulations to further investigate this
problem. Specifically, we carry out cosmological N-body simulations where we systematically vary growth history at a fixed
linear density field, or vary the power spectrum shape at a fixed growth history. We show that the halo mass function generically
depends on these quantities, thus showing a clear signal of non-universality. Most of this effect can be traced back to the way
in which the same linear fluctuation grows differently into the non-linear regime depending on details of its assembly history.
With these results, we propose a parameterization with explicit dependence on the linear growth rate and power spectrum shape.
Using an independent suite of simulations, we show that this fitting function accurately captures the mass function of haloes over
cosmologies spanning a vast parameter space, including massive neutrinos and dynamical dark energy. Finally, we employ this
tool to improve the accuracy of so-called cosmology-rescaling methods and show they can deliver 2 per cent accurate predictions
for the halo mass function over the whole range of currently viable cosmologies.
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In the Press—Schechter formalism (Press & Schechter 1974,

1 INTRODUCTION hereafter PS), the abundance of dark matter haloes of mass M is

Collapsed dark matter structures, also known as haloes, offer an
important way to constrain fundamental properties of the Universe.
The abundance of haloes is sensitive to the growth of structure and
the statistics of primordial fluctuations, thus it can be employed to,
for instance, constrain the value of cosmic parameters including
dark energy and the sum of neutrino masses (Weinberg et al.
2013).

In the next decades, up to hundreds of thousands of haloes
with mass above ~ 10'3 h~'Mg will be detected by upcoming
observational surveys [e.g. eROSITA (Hofmann et al. 2017), EUCLID
(Sartoris et al. 2016), LSST (Ivezi¢ et al. 2019), Simons Observatory
(Adeetal.2019), CMB-S4 (Abazajian et al. 2019), and J-PAS (Bonoli
et al. 2020)]. These future surveys will employ various observables
over different wavelengths to identify haloes, such as their Sunyaev—
Zeldovich effect, X-ray emission, gravitational lensing, or number
of optically detected galaxies. Despite these differences, a necessary
ingredient for all such analyses is accurate predictions for the
abundance of haloes of a given mass as a function of cosmological
parameters.
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fundamentally given by the relative abundance of peaks of different
types in a Gaussian random field. Specifically, the halo mass function
reads

dn pp dlogo
dinM ~  MdlogM

v f(v), (D

where py, is the background matter density of the universe; f(v) =
JV2/mexp(—0.5v?); v is the so-called ‘peak height’ associated to a
halo of mass M and is defined as v = 8.(z)/o (M, z); 8. is the critical
overdensity for collapse; and o(M, z) is the rms linear variance
extrapolated at the redshift of interest, z.

In this approach, cosmological parameters and the shape of the
power spectrum of fluctuations, P(k), are considered only through
modifications to o:

2 oo
o(R,2) = %/ SkP)W(k, R)?, )
0

where D(z) is the linear growth factor, and W(k, R) is the Fourier
transform of the top-hat window function and M = %"pr3. On top
of this, n(M) is affected by the cosmological parameters through
pp- Since f(v) is cosmology-independent, the halo mass function is
predicted to be ‘universal’.
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The ‘universality’ of the mass function is a key property because
it allows for accurate predictions even if PS itself is inaccurate.
For instance, if the mass function is universal, a single simulation is
needed to measure f{(v), and then use equation (1) to make predictions
for any cosmological model. Therefore, computational resources can
be focused on accurately measuring f{v) using high force and high-
mass resolution simulations of large cosmic volumes, rather than
requiring large ensembles of simulations spanning the full range of
cosmological parameters of interest.

In fact, several early studies found that the PS halo mass function
describes only qualitatively the abundance of dark matter haloes in V-
body simulations. Motivated by the universality of the mass function,
these works have provided much more precise fitting functions for
f(v), usually employing functional forms inspired by ellipsoidal
collapse, but still assuming that all cosmology dependence can be
captured through o (M) (e.g. Sheth & Tormen 1999; Jenkins et al.
2001; Sheth & Tormen 2002; Reed et al. 2003; Warren et al. 2006;
Reed et al. 2007; Crocce et al. 2010; Bhattacharya et al. 2011; Angulo
et al. 2012; Watson et al. 2013; Bocquet et al. 2016; Seppi et al.
2020).

More recently, various authors pointed out and quantified the
‘non-universality’ of the mass function (Tinker et al. (Tinker et al.
2008; Courtin et al. 2010; Despali et al. 2015; McClintock et al.
2019; Bocquet et al. 2020; Diemer 2020). They have found that the
amplitude and shape of f(v) does depend on redshift and cosmology
in a complicated manner, which depends on the halo definition, and
can modify by up to 10 per cent the expected abundance of haloes of
a given mass. This can be easily the leading theory systematic error
in the cosmological analysis of future cluster catalogues (Artis et al.
2021).

One of the main goals of this paper is to explore the non-
universality of the halo mass function. That is, the dependence of
the abundance of dark matter haloes on cosmology and/or redshift in
addition to that on the linear rms variance of fluctuations, o (M). For
this, we will consider cosmologies with identical values for o (R) at
z =0, but with very different growth histories. In this way, any signal
of non-universality can be attributed to the way in which haloes grow,
since the statistics of the initial fluctuation field are identical. This
can shed light on the origin of the mass function non-universality and
allow for a more accurate modelling. In addition, we will consider
simulations with fixed growth history but varying the power spectrum
of primordial fluctuations.

Indeed, we will show that by explicitly accounting for the depen-
dence of f{v) on the growth rate and power spectrum slope, we are
able to predict the halo mass function with a 2-3 per cent accuracy
over essentially the whole currently viable cosmological parameter
space, including dynamical dark energy. Moreover, this modelling
allows to improve the accuracy with which cosmology-rescaling
algorithms predict the abundance of haloes.

The outline of this paper is as follows. In Section 2, we describe the
cosmological models and the respective N-body simulation we carry
out. In Section 3, we measure the non-universality of our simulated
halo catalogues and illustrate its physical origin by comparing haloes
across simulations. In Section 4, we model the departures from
universality as a function of an effective growth rate and power
spectrum slope in each cosmological model. In Section 5, we validate
these predictions against the halo mass function as measured in
a suite of simulations spanning a broad range of cosmological
parameters. We further show in Section 6 that our proposed model
can be employed to improve the accuracy of cosmology-rescaling
techniques. Finally, we conclude and summarize our findings in
Section 7.
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Table 1. The cosmological parameters that we vary to obtain the nine
cosmological models we simulate. We keep the rest of the cosmological
parameters fixed assuming flat cosmology and 2, = 0.046, o3 = 0.82, h =
0.677, 2, = 0., wo = 0.0, wy = 0.0.

extremel central extreme2
ng 0.75 0.75 0.75
0.9611 0.9611 0.9611
1.25 1.25 1.25
Qm 1. 0.307 0.148
QA 0. 0.693 0.852
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Figure 1. Linear properties of the cosmological models we consider and
simulate throughout this paper. Left-hand panel: growth factor, D(a) and
growth rate, f(a), as a function of the expansion factor a. Right-hand panel:
linear mass variance at z = 0 as a function of the Lagrangian radius of haloes
of mass M.

2 NUMERICAL SIMULATIONS

In this section, we will describe our set of cosmological simulations
and our measurements of the halo mass function. Specifically, in
Section 2.1, we describe the cosmological models we consider and
in Section 2.2 the numerical setup of the respective simulations. In
Section 2.3, we discuss our measurements of the halo mass function,
and how we account for numerical and discretization errors.

2.1 Cosmological models

We will consider nine cosmological models given by a combination
of three different growth histories and three linear power spectra. In
this way, we can explore the effect of the growth history at a fixed
linear mass variance, and of the power spectrum shape at a fixed
growth history. We note that, in practice, we obtain varying growth
histories by defining them with different values of the matter density
parameter, 2, and vary the power spectrum shape by considering
different values of the primordial spectral index n (see Table 1).

In the left-hand panel of Fig. 1, we show the linear growth factor,
D(a), and growth rate, f = fill‘(’)i 1; , as a function of expansion factor a
of the models we will consider. By construction, at z = 0 all models
have the same linear amplitude, however, they show very different
values for the linear growth rate. At one extreme (green lines), we
have a cosmology where structure initially grew very quickly and
then stalled, where we expect very little mass accretion today. At the
other extreme (blue lines) is a cosmology where structure has been
growing at the same pace through the history of the universe, and
in particular, we expect it to yield the highest present-day accretion
rates on to dark matter haloes.

In the right-hand panel of Fig. 1, we show the three different o (R) at
z = 0 we consider. The respective power spectra are given by linear
predictions for a cosmology consistent with recent observational
constraints (cf. Table 1), for three different values of the primordial
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Table 2. The main numerical parameters of our simulations. L is the box size;
€ is the gravitational softening length; and my, is the mass of each N-body

particle.
L(h~" Mpc) 200 600 1200 2400
e(h~" Mpc) 0.004  0.012  0.023 0.047
mp(}Fl Mgp/1el0) extremel 0.207 5.58 44.67 357.3
central 0.064 1.71 13.7 109.7
extreme?2 0.031 0.82 6.62 52.9
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spectral index, ns = {0.75, 0.96, 1.25}. Although these values are
clearly inconsistent with current data, they will allow us to clearly
identify the role of the shape of fluctuations at a fixed growth history.
Specifically, the cosmology with n, = 0.75 displays a very flat
power spectrum, thus the density field has more similar fluctuations
on all scales. We expect this to yield to similar collapse redshifts
among different halo masses. On the other hand, the case with
ng = 1.25 features stronger small-scale fluctuations, thus we expect
small haloes collapsing at high redshifts and large haloes forming at
progressively later time.

2.2 N-body simulations

For each cosmological model described in the previous subsec-
tion, we have carried out a suite of cosmological simulations
with N = 1024 particles and four different box sizes, L =
{200, 600, 1200, 2400} h*IMpc. This allows us to compute the halo
mass function over a broad range of halo masses with a sufficient
statistical accuracy at a moderate computational cost. Therefore, in
total we have a suite of 36 simulations. The details of the simulations
are listed in Table 2.

Each of our simulations is initialized at z = 49 using second-order
Lagrangian perturbation theory. As recently pointed out by Michaux
et al. (2020), this configuration is expected to be accurate at the
2 per cent level for the abundance haloes resolved with more than
100 particles.

We carry out our simulations with an updated version of the L-
Gadget3 code (Angulo et al. 2021), employing 48 MPI Tasks. In all
cases, we set the Plummer-equivalent softening length to a 2 per cent
of the mean interparticle separation. Each of our simulations took
approximately 1-3 thousand CPU hours, depending on the mass
resolution of the simulation.

2.3 Halo catalogues and discreteness correction

We construct halo catalogues employing a Friends-of-Friends (FoF)
algorithm with a linking length parameter b = 0.2 at the z =
{0, 0.5, 1} simulation outputs. Additionally, for each FoF halo, we
compute the spherical-overdensity masses M = 4T"Ari, for A =
{200p,, 20005, Ay}, where py, is the mean matter density of the
universe, and A, = p {187 — 82[1 — Qu(z)] — 39[1 — Qum(z)]*} is
the virial overdensity expected at each cosmological model. For each
mass definition, we compute the halo mass function by considering
haloes with more than 32 particles in equally spaced logarithmic
bins, AlogM = 0.155.

It is known that the FoF algorithm suffers from effects related to
particle discreteness, which leads to an overestimation of the mass
function (see e.g. Leroy etal. 2021, and references therein). In Warren
et al. (2006), an empirical formula was derived to correct for these
effects. In agreement with Lukic et al. (2009) and More et al. (2011),
we have, however, found that the performance of this correction

£ —— L=2400n'Mpe

Alog dn/dInMlg;

M[h~"Mo]

Figure 2. The differential abundance of Moo haloes in one of our cosmo-
logical model (2, = 0.307, ng =0.9611) at z = 0 and 1, as estimated in four
cosmological simulations of various sizes. The middle and bottom panels
display the measurements relative to the expectations of the fitting function
with dependence on negr and aefr developed in this work. The shaded regions
correspond to the Poisson uncertainty of the measurements. Moreover, for
comparison, dotted and dashed lines display the fitting functions developed
in Despali et al. (2015) and Tinker et al. (2008), as well as the emulator
presented in McClintock et al. (2019), as indicated by the legend.

varied greatly with cosmology and redshift. In addition, finite
numerical precision in the force calculation and time-integration,
as well as the effect of softening length, also affect the abundance
of haloes detected by FoF (Ludlow, Schaye & Bower 2019). Thus,
we have followed a conservative approach and impose a cut of 200
particles per halo without any additional correction. This limit, as
shown by Ludlow et al. (2019) is enough to keep all the numerical
effects below 5 percent for all mass definitions. Consequently, we
will add in quadrature to Poisson errors this 5 per cent to account for
possible systematic errors in the measurement of our mass functions.

2.4 Finite volume and output redshift corrections

In order to span a broad mass range, we have combined simulations
of many box sizes. For different box sizes, however, the output times
can vary slightly since in L-Gagdet3 we choose them to coincide
with a global time-step which, in turn, can vary from simulation to
simulation. In Appendix B, we describe and validate a simple model
with which we account for this effect in our measurements.

In addition, the lack of modes larger than the simulated box
will induce systematic differences among different box sizes (e.g.
Power & Knebe 2006; Lukic et al. 2007; Reed et al. 2007). However,
we have checked that for all the boxes these effects are sub-per cent
at the relevant masses.

In Fig. 2, we display our measured Mo, halo mass function at
z = 0 and 1 for the cosmological model with €, = 0.307 and
ns = 0.9611. Results from simulations of various box sizes (after the
corrections described above) are denoted by different line colours,
as indicated by the legend.

The top panel displays the differential mass function whereas
the middle and bottom panels display the ratio with respect to the
predictions of a fitting function we will develop later in this work.

MNRAS 509, 6077-6090 (2022)
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Note we only display bins with more than 400 objects resolved with
at least 200 particles. We can see how our suite of various box sizes
complement each other to cover a very large range of halo masses,
from 5 x 10'" up to 1042~ 'Mg. The agreement in the overlapping
regions is always better than 5 per cent, consistent with our systematic
error estimate. Although not shown here, we have checked that this
also holds for the other 8 cosmological models.

For comparison, in the bottom panels, we also display the fitting
functions of Despali et al. (2015) and Tinker et al. (2008), and the
emulator of McClintock et al. (2019). Although some differences
among our data and these models are expected due to differences in
the group finder mostly in the low-mass end, the comparison readily
highlights the impact of non-universality of the mass function. Atz =
0, our model and that of Despali et al. (2015), Tinker et al. (2008),
and McClintock et al. (2019) are in reasonable agreement. However,
at z = 1, these fits overestimate by more than 10-15 percent the
abundance of haloes in our simulations. The emulator, that includes
explicit redshift evolution of the parameters, yields better results than
the fits at z = 1. In subsequent sections, we will explore this issue in
greater detail.

3 THE DEPENDENCE OF THE MASS
FUNCTION ON GROWTH HISTORY

In this section, we will compare how the same linear fluctuation turns
into collapsed objects of different mass for different cosmologies. We
will then explore the dependence of the mass function on both growth
rate and the slope of the power spectrum.

3.1 Examples of haloes matched across simulations

The universality of the mass functions assumes that the mass function
is completely described by the linear density field. In order to
test this assumption, we have run simulations with very different
growth histories that share the same linear density field at z =
0. In Fig. 3, we show the simulated density field at z = O for
our L = 200A~'Mpc simulations with the most dissimilar growth
histories for the n, = 0.9611 cosmology. In the top panel, we show
a region of 2004~ 'Mpc wide, whereas in the middle and bottom
panels, we zoom on a massive dark matter halo of normalized mass
Mooon/ oo ~ 8.5 x 103hMpc?. We can see that, although both cases
corresponding to identical z = 0 linear density peaks, their non-
linear counterparts are different. Specifically, in the case, with the
highest ©,, value, and thus, highest current growth rate (in the right-
hand panel), haloes are significantly less dense in its center, which
is consistent with its expected lower formation redshift and thus
lower concentration parameters. Various definitions of halo radii are
displayed by white circles in each case. By comparing ryp. and ry;,
radii in the two cosmologies, we see that they identify very different
regions of the halo, unlike r,og, Which is similar in both cases.

To explore this further, we will compare haloes of the same peak
height in different simulations. In particular, we have cross-matched
halo catalogues among simulations that share the same linear power
spectrum at z = 0. For this, we associate two haloes based on their
position and peak height. From Fig. 3, we expect that the same
fluctuation in the linear density field will end up having a different
mass depending on its non-linear evolution.

We will characterize each halo by an ‘effective growth rate’ and an
effective ‘local power spectrum slope’, which we define, respectively,
as

dlog(D)

a=da, 9 3
dloga la=ae, L)

Aefr(a) =
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Figure 3. The projected simulated density field normalized by the mean
background density at z = 0 for two cosmological models that share the same
linear density field but differ significantly in their current growth rate. Top
panels show the full simulated box, L = 2004~ 'Mpc, whereas the middle
panels and bottom panel show zooms into regions of 30 and 74~ Mpc a side
centred in a halo of normalized mass Maogy/pp ~ 8.5 x 103hMpc?. In the
left-hand column, we plot the cosmological simulation with the lowest matter
density 2, = 0.148, whereas in the right-hand panel, we display that with the
highest matter density, 2, = 1. The solid, dashed, and dotted circles show
72004 » 1200, » and r;; radii of the halo.

where a., is defined implicitly via D(a.y) = yD(a) with y = 4/5,
and

dl R
) ogo(R)

et = =3 = dlog R

iRy (M) €]
where k = 1, and R, is the Lagrangian radius of a halo of mass
M. Physically, these two parameters will be capturing how quickly
haloes have recently grown and the density profile of the collapsing
region, which can be considered as a proxy for the full mass accretion
and merger history of a given halo.

Note that the effective growth rate is not evaluated at the redshift
in which we identify a halo, but it is evaluated in the past, i.e. y <
1. By this, we seek to capture not the rate of current mass accretion,
but instead the amount of mass that has been accreted recently. We
have tried different definitions of «.¢ and found that this distinction
was particularly important for models with dynamical dark energy.
We chose the numerical value for y as that which provided the most
accurate and simplest model for the halo mass functions, as we will
show in Section 6.

In Fig. 4, we display the spherically averaged mass distribution
around cross-matched haloes in 2 bins of the peak height, v ~1
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Figure 4. The profiles of the cross-matched haloes with the same linear
density field for two v bins. In the first row, we display the density profiles,
in the second row the cumulative mass and in the third row the logarithmic
slope of the density profile. The vertical lines indicate the values of r2oc, 7vir,
and rpoom radii. The shaded area represents r < 2.7¢, where € is the softening
length.

and ~2. We display the average density profile, the cumulative mass
profile, and the logarithmic slope of the halo density profiles. Vertical
lines indicate the radius at which the average enclosed density reaches
a value equal to 200 times the background, virial and critical density,
as indicated in the legend. Coloured lines indicate three growth
histories for the simulations with n, = 0.9611.

We can see that generically the mass profiles differ systematically
with a.f, at all values of v. The higher the growth rate the lower
the enclosed mass with respect to the background density at a given
physical radius. We emphasize that all these objects share the same
shape and amplitude of their linear overdensity field at z = 0. Thus,
all changes necessarily are caused by the different growth history.

The different growth histories are expected to influence the internal
structure of haloes. In particular, lower growth rates are expected to
cause lower current accretion rates on to haloes, which implies haloes
formed earlier and thus are expected to have higher concentrations.
In the first row of panels, we see that this is indeed the case.
Inner regions of haloes appear more concentrated. However, the
changes are not limited to the concentration, as external parts are also
modified increasing their density the higher the current growth rate.
In fact, there seems to be an inflection point located at around ¢
radius.

Despite the systematic dependence on ., the profiles are very
similar when expressed in physical units. However, as a consequence
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Figure 5. The mass ratio of the cross-matched haloes at z = 0 respect to the
self-similar cosmology, i.e. aeff = 1. The colours depict the current growth
rate value of the given cosmology. In each panel, we display the ratios for
Mok, Moo, Myir, and Mooo. mass definitions.

of the pseudo-evolution of the halo boundaries (Diemer, More &
Kravtsov 2013), when expressed in 7 units the profiles become very
different. The pseudo-evolution of the boundaries is clear in Fig. 4.
In the aer = 1 cosmology, ry. is almost three times larger than
in the aer = 0.343 case, while ryyp radii remain roughly constant.
Thus, depending on how we define the boundary of our halo, the
mass differences will be enhanced or suppressed.

In the lower panels of Fig. 3, this can be appreciated visually. The
panels show the most massive cross-matched halo at z = 0 in e =
0.343 (left-hand panel) and ags = 1 (right-hand panel) cosmologies.
The dashed, dotted, and solid lines represent rypgc, Fvir, and ragop
radii of the halo, respectively. While g, defines a halo boundary
roughly at the same physical location, ryp. compares very different
regions of the density field. This effect is less important for r;,, which
might explain why Despali et al. (2015) found that M, is the mass
definition that leads to the most universal behaviour.

In order to explore this effect more systematically, in Fig. 5, we
show how the masses of the cross-matched haloes differ depending
on the growth history and the mass definition. We display the ratio of
the masses of the cross-matched haloes with respect to the aep = 1
cosmology as a function of v. We see that in the cosmology with the
lowest current growth rate value M,y masses are around 30 percent
smaller than in our reference cosmology. However, for the same
cosmologies and haloes, Moo, masses are around 20 percent more
massive.

This effect has two contributions. On the one hand, ryy. radii lie
in the inner parts where the effect of the growth history on the mass
profile is larger. On the other hand, because of the pseudo evolution
of 0., we compare the masses enclosed in different physical radii.
As a consequence, even if at a given physical radius the enclosed
mass is always larger for haloes in low growth rate cosmologies,
when comparing M,y masses it seems that haloes in high growth
rate cosmologies are more massive. Note that this is solely because
we compare masses enclosed in different physical regions. Thus, the
non-universality of M,y mass function is in a big part due to the
evolution of the boundary itself.
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Figure 6. The mass ratio of the cross-matched haloes at z = 0 with respect to
the cosmological model with self-similar growth, i.e. aeff = 1, and identical
linear density field. The colours represent the nefr values of the cross-matched
haloes. In each panel we display the ratios for Mror, Maoob, Myir, and Maoc
mass definitions.

Finally, we want to explore the effect of the local slope of the
power spectrum in the cross-matched haloes. For a given power
spectrum, redshift and v, ne is completely determined. Therefore,
in order to see the effect of this variable on the mass of the haloes,
we cross-match the cosmologies with aef = 0.52 and 1 for the three
power spectra defined with the three n; values we have considered in
this work. Note that we only cross-match cosmologies with the same
linear power spectrum. However, if the local power spectrum slope
affects the mass of the haloes, we expect the departures of the masses
of aerr = 0.52 from aef = 1 cosmology to be different in the three
linear density fields. In Fig. 6, we show the results following Fig. 5,
coloured by the neg values of the cross-matched haloes. Indeed, we
see that for a given v, the departures of a. = 0.52 haloes from
o = 1 haloes are different depending on the n. value of the halo.
Nevertheless, these differences are much smaller than the differences
that haloes with different o.¢ show.

In summary, the whole density profile of the halo is affected by
the growth history in a non-trivial way. This effect will be reflected
in the mass function in a different fashion depending on how masses
are defined. Specifically, we expect the non-universality of the mass
function to change with the mass definition.

3.2 The non-universality of the mass function

From the numerical simulations described in the previous section,
we have obtained measurements of the halo mass function in nine
cosmologies — three growth histories and three different power
spectrum slopes — covering a broad range of masses at various
redshifts.

In order to compare these measurements and estimate the impact
of the non-universality in the mass function, we have computed vf(v),
where v is §./o (M). Operationally, we first measure the mass function
n(M) and then estimate vf(v) inverting equation (1).

The critical density for collapse, 8.(z), can be estimated as
3/5(1.5m)*3Qun(2)%%% (Kitayama & Suto 1996), with an explicit
dependence on €2,,,. In this work, we approximate it with the value that
corresponds to a universe where there is only matter, §. = 1.686. We
do this to simplify the redshift and cosmology dependence and make
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Figure 7. The measured My, mass functions of the nine cosmological
models considered in this work at z = 0, 0.5, and 1. The bottom panel shows
the ratio relative to the mean value in each v bin. We show in grey the z >
0 mass functions, while we colour the z = 0 mass functions according to
their aefr value. The shaded area corresponds to measurements with v < 0.7,
which will be excluded when developing a fitting function for f(v).

iteasier to model. We have checked that the deviations from universal
behaviour of the mass function are stronger (up to =£30 per cent)
than the effect of taking into account the redshift evolution of the
critical overdensity for collapse, which changes the results around
410 per cent (see Appendix A).

In Fig. 7, we display the measurements of vf(v) from Myy, mass
function in the cosmologies listed in the Table 1 at z = 0, 0.5, and
1. The mass functions with z > 0 are displayed as grey lines, while
z = 0 mass functions are coloured according to their ag value. The
average value in each v bin is displayed as a black solid line, and it
is used as a reference for the ratio displayed in the bottom panel. To
avoid possible biases due to differential coverage of our models,' we
will restrict our subsequent analysis to the range 0.7 < v < 5. For
the cosmology most consistent with observational constraint, this
implies a mass range of 10" < M/[h~'My] < 10" at z = 0.

In this figure, we can clearly see deviations from an universal
behaviour. For v values above unity, haloes of a given peak height
in one cosmology can be up to 70 per cent more abundant than in
others. By construction, the origin of this non-universal behaviour
must be in a combination of the different statistics of the initial
Gaussian random fields and the different growth histories. Indeed,
we can already see that this is the case for the cosmologies that share
the same linear density field at z = 0. At a given v, haloes seem to
be more abundant the lower the growth rate value. Recall that, as
we saw in the previous section, this is a consequence of the same
fluctuation being more massive for low growth rate values.

We now explore how these deviations correlate with the value of
the effective growth rate and power spectrum slope at any redshift.
In Fig. 8, we display the deviations from the average vf(v) as a
function of ne and oegr; that is, vA(v)/ < vf(v) >, where the average
is computed among all our simulations at fixed v. Each panel shows

At a fixed volume and number of particles, the differences in the power
spectrum shape and @, lead to differences in the range of v-peaks that our
simulations are able to resolve.
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Figure 8. The deviation of the mass function from the average vf(v) computed among all our simulations at fixed v, plotted according to the oefr and nefr values.

The panels correspond to different mass definitions.

the result for a different mass definition. The results are similar if we
use the median instead of the mean.

For all mass definitions, we can see that the non-universality
clearly correlates with these properties — despite them being only
a proxy of very different merger and assembly histories. In the
second panel, we see that for Myyp, deviations around the mean
can reach +20 per cent. Cosmologies that have higher-than-the-mean
vf(v) typically have lower growth rate values, whereas those with
higher growth rate values lead to lower abundances. At fixed o,
deviations from universality are much smaller, about 15 per cent, and
they correlate with n.g. Note that here we are plotting measurements
of many redshifts, therefore, we expect that the redshift evolution
of the mass function could be described through the dependence on
these physically motivated variables.

However, the non-universality of the mass function depends on the
mass definition. Among those considered in this work, Mo (Mgor)
mass functions are the most (least) non-universal with deviations up
to 30 per cent (£10per cent) around the mean. It is interesting to
note that, as Despali et al. (2015) found, M,;; mass functions are
the most universal among the SO mass functions. Furthermore, the
dependence on the growth rate is inverted in My and M, cases
with respect to Mg case (in agreement with Diemer 2020).

In summary, haloes of a given peak height, vago,, are more
abundant the lower the growth rates and the shallower the power
spectrum slope. In other words, a halo that forms early and has
grown mostly through minor mergers, will be more massive than
another that has recently formed and has experienced a lot of major
mergers, even if both have an identical peak height in the linearly
extrapolated initial field.

There could be different paths to follow at this point. One could
be to find the halo boundary definition that minimizes the non-
universality of the mass function. In fact, we have seen that mass
definitions based on the critical density induce strong pseudo-
evolution in the mass function driven by the change of the boundary
of the halo. One quantity that has been argued is more physical is
the turnaround radius, which by definition encloses the outermost
shell that has collapsed. In the same direction, the first explorations
of the splashback mass functions have been done (Diemer 2020).
Other alternatives have been recently proposed, which are claimed
separate better the linear and non-linear regimes of the density field
and are tightly related to the splashback radius (e.g. Fong & Han
2020; Garcia et al. 2020).

However, there is no perfect mass definition, and the suitability
of different candidates depends on the science question one wants
to address. Any universal mass definition, as we saw earlier, would
correspond to very large scales, which although perhaps better suited
for describing the mass distribution, might not describe equally well,

and thus it might display less correlation with the properties of
collapsed gas and of the galaxies hosted by the halo. In addition,
many of the proposed halo definitions are ambiguous to implement
numerically.

Another option would be to develop a model for the changes of
the full density profile as a function of the mass accretion history.
For instance, in an analogous manner to the models developed for
the relationship between the concentration and the expected mass
accretion history in Extended Press Schechter (Ludlow et al. 2016,
2019), it is perhaps possible to develop a model for the outer regions
of a halo, which would then predict the changes in halo mass at any
radius.

The option we will follow here is to adopt a standard halo definition
but calibrate the predictions for the halo abundance to be a function
of the peak height but also of the properties of the cosmological
model. We will show that with a simple parameterization in terms of
o and negr, we can accurately describe the halo mass function for a
large region in cosmological parameters space.

4 MODELLING THE DEPENDENCE ON
GROWTH FUNCTION AND POWER SPECTRUM
SLOPE

In the previous sections, we showed how the halo mass function
varies systematically with growth rate and slope of the power
spectrum. In this section, we will model this dependence explicitly.

We will focus on the Mg, mass function, because as it has been
discussed in the previous section, it is the most physically motivated
choice and presents the least pseudo-evolution among the overdensity
mass definitions. FoF mass function could also be a good candidate,
but the fact that it has no clear observational counterpart and that the
masses are very subject to numerical effects make it a less interesting
candidate. However, in Appendix C, we show that our approach is
valid to model the mass function of any of the other mass definitions
considered in this work.

We have employed the following functional form f(v, neg, cefr) to
model each of our measurements

V[V, et @etr) = v f1(V) fa(nerr) f3(cterr), (5)
Vi) =2Am (14 (@v?)~" )@e“" (©)
Fo(new) = nonky + ny negr + na, (7)
S3(eer) = ag oerr + an, (3)

where {a, p, Amp, g, N1, Ny, do, a,} are the free parameters of
the model, where we have used the same functional form for f(v)
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Figure 9. Deviations between vf{v) measured in our N-body simulations and
the predictions of the fitting functions developed in this work. Left-, middle,
and right-hand panels display these deviations as a function of the peak
height, v; the effective power spectrum slope, nef; and the effective growth
rate, oeff, respectively. In each panel, shaded regions indicate the region that
contains 95 per cent of our simulated results when employing a fitting function
calibrated only as a function of v (blue) or additionally including dependence
with respect to nefr (green), oefr (orange), or both of them (red). Solid lines
indicate the median residual while dashed lines represent the mean.

as Despali et al. (2015). The parametrizations of the neg and o
dependencies were inspired by the shape of the deviations from the
universal behaviour (blue lines in Fig. 9). We tried higher order
polynomials, but the results did not improve noticeably. Notice that
the contributions of the variables are separable. Thus, in principle one
could calibrate f(v) separately, or reuse previously ran simulations.

In each case, we find the best-fitting parameters by minimizing
the x2 of the quantity vf(v). We assume a Gaussian Likelihood
with a diagonal covariance given by the Poisson error in each bin
plus a constant 5 percent that accounts for systematic errors, as
discussed in Section 2. We impose a limit of 200 particles per halo
and 400 haloes per mass bin. The minimization is done with the
optimize.minimize package of scipy, imposing bounds on
the possible values that the parameters may take. Other than our
main model (equation 5), we have found the best-fitting parameters
for the functional forms that depend only on v (equation 6), v, and
negr (€quation 6 x 7) and v and a.g (equation 6 x 8). We list all
the best-fitting parameters and the reduced x? values in Table 3.
As it can be seen from the reduced x2 values, the quality of the fit
improves when we add a.¢ and neg dependencies. In agreement with
what we found in the previous section, «. dependence seems to be
more important than 7.y dependence. All in all, reduced %2 values
vary from 3.26 (the universal fit) to 0.51 (main model), indicating a
very good fit.

In order to study the internal degeneracies of the parameters, we
check their stability. First, we see that the best-fitting parameters
of the universal part are stable and do not change when we add
other variables. This is especially true for the amplitude (Anp) and
the parameter that controls the exponential suppression of haloes
(a). However, it seems that the n.; and o parametrizations are
somewhat degenerated. Even if the overall sign does not change, the
best-fitting parameters vary; mainly the zero-order parameter in ng
(n,) and the af parameters (ap and a;).

We now asses how well this model is able to describe our
calibrating data. In Fig. 9, we display the ratio of measured vf(v),
in all our simulations at all three redshifts, to their corresponding
predictions of equation (5) (red). In the left-hand, middle, and right-
hand panels, we display the residuals as a function of v, neg, and aeg,
respectively. In all cases, solid and dashed lines display the median
and the mean, whereas the shaded areas denote the regions enclosing
95 per cent of the measurements. Thus, this plot quantifies the overall
accuracy of each model in describing the mass function diversity we
measured.
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We can see that indeed, for the full model, (v, aes, negr), the
residuals are smaller than 310 percent over the whole range of
values explored, with no noticeable remaining dependence with
either parameter. For comparison, we display also residuals with
respect to a version of equation (6) where we have measured their
parameters to our whole data set but only adopting dependence
with respect to v (blue). As expected, in this case, the residuals
are significantly larger, reaching variations of £20 per cent.

Although the lack of residual dependence with oy and neg is
achieved by construction, it is in principle not guaranteed that the
amplitude of these residuals decrease significantly. For instance, the
mass function could have shown dependence on many more details
of the assembly history of haloes and the statistics of peaks than
simply on the effective growth rate and power spectrum slope. It is,
therefore, remarkable that the residuals in the mass function are all
contained within a region of +10 percent.

In the next section, we will explore whether our approach is
actually able to describe accurately the mass function in multiple
cosmologies currently allowed by observational data.

5 VALIDATION: HALO ABUNDANCES AS A
FUNCTION OF COSMOLOGY

To assess the accuracy of our description for the halo mass function,
we will compare its predictions against a suite of simulations
with 30 different cosmologies. Each of our simulations evolved
1536% particles inside a box of approximately L = 5124~ 'Mpc.
The initial conditions where created using second-order Lagrangian
Perturbation theory at z,« = 49 and fixing the amplitude of Fourier
modes (Angulo & Pontzen 2016). The cosmologies were chosen
so that they cover a region of approximately 10c around Planck’s
best-fitting values. Specifically, they cover the following parameters
ranges:

oy € [0.73,0.86],

Qn € [0.23,0.4],

Qp € [0.04,0.06],

n, € [0.92,0.99], )
h[100kms~'Mpc™'] € [0.65, 0.8],

M, [eV] € [0.0,0.4],
wy € [—1.3,-0.7],
w, € [—0.3,0.3].

Note these simulations not only cover parameters of the minimal
Lambda cold dark matter (ACDM) model, but also neutrino masses,
M,, using the linear response approach of Ali-Haimoud & Bird
(2013); and dynamical dark energy with an equation of state w(z) =
wo + (1 + z) w,. The cosmology of each simulation is obtained by
changing one cosmological parameter of a fiducial cosmology while
keeping the rest fixed. The fiducial cosmology assumes flat geometry,
massless neutrinos (M, = 0), a dark energy equation of state with
wo = —1 and w, = 0, an amplitude of matter fluctuations og = 0.9,
cold dark matter density Q.4 = 0.265, baryon density 2, = 0.05,
and normalized Hubble constant i = 0.6.

In Figs 10 and 11, the solid lines represent the measured mass
functions of the 30 simulations relative to the predictions of the main
model developed in this work (equation 5). We show the limits of
the bins with at least 400 haloes with resolved with more than 200
particles as vertical lines.

In each row, we show the mass functions of the cosmologies where
we vary one cosmological parameter keeping the rest fixed. In Fig. 10,
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Table 3. A table listing the best-fitting parameters of our Maq,-fitting functions and the reduced x 2 values of the fits.

a P Amp ny ny ny ap aj X2/
filv) 0.769 0.0722 0.3173 - - - - - 3.26
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Figure 10. Comparison between My, halo mass functions in multiple
cosmologies as measured in N-body simulations relative to the fit developed in
this work (solid lines) and the model developed in Despali et al. (2015)(dotted

lines), at z = 0. We display R |data,fic = dﬁﬂv{ (@) The vertical lines display

the limits of the bins with at least 400 haloeshrtesolved with more than 200
particles. Each row, from the top to bottom, display variations in ng, Qm, Qb,
and og for the first column and &, 2,, wo, and w, for the second column.
The grey lines display the result for the fiducial cosmology. The shaded areas

denote regions of £5 and £2 percent.

we display the results at z = 0, and in Fig. 11 the results at z = 1. For
comparison, we also show the residuals respect the model developed
in Despali et al. (2015) as dotted lines, which assumes universality
of the mass function. We recall that the functional dependence on
f(v) is the same in both models, while in our model we have added
extra dependences on neg and o in order to capture the effect of
growth history on the mass function. We have decided not to display
the non-universal prediction of McClintock et al. (2019) because our
parameter space is larger than theirs, and therefore many of the mass
functions would lie outside the tested regime. Moreover, they do not
include massive neutrinos and dynamical dark energy.

At z = 0, our model describes the low-mass end of the mass
function at an accuracy of 3 percent, while Despali et al. (2015)
predict that haloes are 10 per cent more abundant. This may be a
consequence of using different group finders, SO and FoF, respec-

Figure 11. Same as Fig. 10atz = 1.

tively. For haloes with masses above M > 10'*h~'M, there seems
to be an underprediction of our fitting function. To investigate this,
we have compared our predictions against the simulations of Angulo
et al. (2021), which feature the same mass resolution as our test suite
but on a volume 27 times larger. Although not shown here, in such
case we find an agreement to better than 5 per cent up to 10342~ 'M,.
Combined with the good agreement of our predictions with those of
Despali et al. (2015), we speculate that there is a systematic over
prediction of the abundance of haloes in our test sims for M >
10"h~'Mg, which could be caused by finite-volume effects.

At z = 1, the redshift evolution of the mass function is evident.
Even if at z = 0, (Despali et al. 2015) is a good description to the
mass function, at z = 1 it overpredicts the abundances for more
than 10 per cent. Our model captures this and yields results that are
accurate within 5 per cent at all masses considered.

Compared to the redshift evolution, the cosmology dependence of
the mass function seems to be weak. However, the mass functions of
wo cosmologies present strong deviations from universality. The
scatter of the ratio with respect to Despali et al. (2015) is of
~ 5percent among cosmologies with different w, values at both
redshifts. After taking into account the dependences on o and 7y,
this scatter vanishes. We emphasize that we have only used ACDM
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cosmolgies to calibrate the fit, and so oy and n.s are physically
meaningful proxies of the non-universality of the mass function.

It is interesting to notice that the largest part of the improvement
is obtained when adding «. to the universal description. This is
expected, because as discussed in Section 3, the deviations from
universality correlate much stronger with o than with ngg.

6 APPLICATION: IMPROVING THE
ACCURACY OF COSMOLOGY-RESCALING
METHODS

To approach an optimal exploitation of current and future observa-
tions of the abundance of dark matter haloes and the clustering of
galaxies, very accurate theoretical predictions for these quantities are
required. Although fitting functions and calibrated recipes are indeed
extremely valuable, they fall short in providing correlations among
different observables or the full three-dimensional distribution of
clusters of galaxies. One option to obtain those predictions is to
employ cosmological N-body simulations together with cosmology-
rescaling algorithms.

The basic idea of cosmology rescaling is to employ a few simula-
tions carried out adopting specific cosmological parameters, and then
manipulate their outputs so that represent non-linear structure in any
other set of cosmologies. These algorithms have been extensively
discussed and tested in Angulo & White (2010), Angulo & Hilbert
(2015), Ruiz et al. (2011), Mead & Peacock (2014b), Mead &
Peacock (2014a), Renneby, Hilbert & Angulo (2018). In particular,
Zennaro et al. (2019) showed these are applicable to cases of
massive neutrinos, and Contreras et al. (2020) showed that the
clustering of dark matter and dark matter haloes and subhaloes can be
obtained to better than 3 per cent accuracy from large to very small
scales (0.01 < k/hMpc~' < 5). This technique has been recently
employed by Angulo et al. (2021) to predict the non-linear power
spectrum as a function of cosmology, by Arico et al. (2019), Arico
et al. (2020) to model the effect of baryonic physics and predict the
suppression of the power spectrum due to baryons, and by Zennaro
et al. (2021) to model the clustering of biased tracers.

In Fig. 12, we check the performance of cosmology rescaling
in predicting the halo mass functions. Specifically, we compare
measurements in the 30 simulations described in the previous section
to the halo mass function after rescaling one simulation. We refer the
reader to Contreras et al. (2020) for details on how the cosmologies
of these simulations were chosen.

In the original cosmology rescaling, the simulation volume and the
particle mass are rescaled by a single factor, found by minimizing
the difference in the linear mass variance in the target and rescaled
cosmologies. In this operation, the number of particles in each halo is
left invariant. Using this recipe, the scaling algorithm sets the same
linear density field in the rescaled and target simulations, which
is equivalent to assuming the universality of the mass function.
However, in this work, we have shown that the mass function depends
not only on the linear density field but also on the entire growth
history. In fact, we can see that the scaling of the mass function
fails in the dotted lines of Fig. 12, where we compare the mass
functions from the rescaled simulations with the target ones. By
assuming universality of the mass function, the rescaled Moo, mass
functions differ from the target mass functions up to 10 per cent in
some cosmologies at z = 0.

Our model for the dependence of the halo mass function on growth
history gives us the possibility to construct an additional correction
for cosmology rescaling by taking into account the different growth
histories the target and rescaled cosmologies have gone through.
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Figure 12. Comparison between My, halo mass functions in multiple
cosmologies as measured in N-body simulations relative to that in cosmology-

rescaled simulations at z = 0. Specifically, we display R|scaled,target =
dn (scaled

dInM \ target
haloes resolved with more than 200 particles. Each row, from top to bottom,

display variations in ng, Qm, Qb, and og for the first column and 4, 2,,, wo,
and w, for the second column. In each panel, we show results before (dotted
lines) and after (solid lines) applying our additional correction accounting for
dependence on growth history, as indicated by the legend (see the text for
details). The shaded regions denote regions of 5 and £2 per cent.

) .The vertical lines display the limits of the bins with at least 400

Specifically, we adjust the halo masses depending on the ne and ovegr
values of the rescaled and target cosmologies. The procedure is the
following: First, we compute the rescaled and target mass functions
with our model. In the target cosmology case, the prediction is
straightforward. In the rescaled original cosmology case, we compute
the expected mass function of the original cosmology once we have
applied the corresponding mass and length scalings, i.e., once we
have set the linear density field equal to the target cosmology’s linear
density field. Next, we use the fact that the difference between target
and rescaled mass functions is given by a change in mass of the
haloes, rather than a change in the abundance of haloes of a given
mass (as we have seen in Section 3.1). We find this difference by
mapping the rescaled halo masses to the target halo masses where
the abundances are the same. Therefore, for a given pair of original-
target cosmologies, we can predict a halo-by-halo mass correction to
the rescaled haloes that captures the effect of the non-universality of
the halo mass function.

‘We show the results of the rescaling algorithm after applying this
correction as solid lines in Fig. 12. We can see that in all cosmologies,
the accuracy of the predictions improves in a clear manner. At z =0,
the differences are in most of the cases smaller than 2 per cent. Note
that our model, calibrated on simulations where we only vary Q,, and
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Figure 13. Same as Fig. 12 butatz = 1.

n, is able to capture the non-universality of general cosmologies,
even in beyond ACDM cosmologies with massive neutrinos and
dynamical dark energy included. As seen in Fig. 13, at z = 1 the
accuracy is as good as for z = 0, reaching £1—2 per cent over the full
range of masses where we can measure the mass function accurately.

7 SUMMARY AND CONCLUSIONS

In this paper, we have studied the non-universality of the halo mass
function. We have run simulations with very extreme cosmologies
to maximize the deviations from universal behaviour and we have
shown that the halo masses are affected by the entire growth history.
As a consequence, given the same linear density field in two different
cosmologies, the halo mass functions are different.

In order to shed light in the origin of the non-universality of
the mass functions, we have cross-matched haloes of different
cosmologies that share the same linear density field and we have
compared their density profiles. Generally, we have observed that all
the density profiles up to very large radii are affected by the growth
history of the haloes. Furthermore, the physical boundaries of haloes
selected with density criteria are subject to pseudo evolution, and
correspond to different physical radii for different cosmologies. This
effect is more pronounced for overdensities defined with respect
to the critical density of the universe. Therefore, different mass
definitions yield mass functions with different dependences on
redshift and cosmology.

‘We have modelled the non-universality of the mass function adding
two additional parameters other than the peak-height v: the effective
growth rate, o, and the local slope of the power spectrum, 7.
Using a total of eight free parameters, our model captures the non-
universality and can lower the scatter on the halo mass functions

Non-universality of the mass function — 6087

in all the cosmologies considered from £20 percent to less than
+10percent up to z = 1. In the literature, the redshift evolution
of the mass function is typically parametrized explicitly within a
fiducial cosmology (see e.g. Tinker et al. 2008; McClintock et al.
2019). On the contrary, here we have modelled simultaneously the
cosmology and redshift non-universality of the mass function by
using physically motivated parameters.

We have tested our model on an independent set of simulations of
30 different cosmologies, including massive neutrinos and dynamical
dark energy. By considering the . and ney dependences, we have
been able to reproduce the halo mass functions within a 5 per cent
accuracy in all the cosmologies up to M ~ 5 x 101~ Mg, until z =
1. We emphasize that the simulations that we have used to calibrate
the models have been run with ACDM cosmologies. Thus, it is not a
trivial result that our model is able to describe the halo mass functions
within, for instance, cosmologies that include massive neutrinos or
dynamical dark energy.

As an application of our model, we have applied it together
with the cosmology rescaling method presented in Angulo & White
(2010). We have found that the accuracy in the scaling of the halo
mass function improves from 10 to 2 percent in all cosmologies
including dark energy and massive neutrinos, mostly because of the
dependency on the growth rate.

There are many paths that we would like to explore in future
works. It is well known that baryonic processes alter in non-trivial
way the halo mass function. In particular, astrophysical feedback
ejects a large amount of gas outside the haloes boundaries, and
therefore haloes become less massive, even by when including a
baryonic modelling (see Debackere, Schaye & Hoekstra 2020; e.g.
Castro et al. 2021). We plan to extend our formalism to include the
effect of baryons on the halo mass function, by using the so-called
baryonification technique (Schneider & Teyssier 2015; Arico et al.
2019). By combining it with cosmological-rescaling algorithms, we
will construct an emulator of the halo mass functions, as a function
of cosmological and astrophysical parameters.

In the near future, more precise and accurate predictions of the halo
mass function will be necessary in order to fully exploit the data of the
future surveys. As an example, Artis et al. (2021) estimated that, only
considering the precision of the parameters of the fitting functions
in the analysis (i.e. assuming universality of the mass function), an
improvement from 30 to 70 percent is required. This framework
provides us with a very accurate fit of the halo mass function, which
can be eventually exploited to directly compare against observed
clusters count, from optical, X-ray or Sunyaev—Zel’dovich surveys.
Thus, we anticipate that this model will be of great value value in
constraining the cosmological parameters of the Universe.
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APPENDIX A: COSMOLOGY AND REDSHIFT
DEPENDENT CRITICAL DENSITY

In this appendix, we show the effect of taking into account the redshift
dependence of the critical density for collapse on the non-universality
of the mass function. Specifically, we compute the relative difference
of the deviations in each v bin between the mass functions with §.(z)
and §, = 1.686.

In Figs Al and A2, we show these relative differences for two
different approaches of computing §.(z). We see that, for most of
the cases they do not exceed the 10 per cent, while the deviations
around the mean are much stronger, as we can see in Fig. 8.
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Figure Al. The difference of the deviations of the mass function respect
to the mean computed in each v bin between the mass functions obtained
with the critical density for collapse presented in (Kitayama & Suto 1996)
and with the critical density corresponding to a universe with only matter.
AKitayama, Eds = (f(V)Kitayama — f(V)Eds Mf(V)Eas Where f(v) = vf(v)/ < vf(v) >.
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Figure A2. Same as Fig. A1 but for the critical density computed following
(Mo, van den Bosch & White 2010).

APPENDIX B: REDSHIFT CORRECTION

For different box sizes, the redshifts of the snapshots vary slightly.
This effect is more pronounced at high redshift, where the difference
of the output redshifts of different boxes can reach Az ~ 0.01. In this
time lapse, the mass functions may have evolved, therefore, when
combining different box sizes we may be introducing some bias in
our data set. The left-hand panel of Fig. B1 displays the expected
ratio of the differential mass functions between the output redshifts of
the different boxes around z = 1. At M ~ 10>~ M, the differences
can reach 10 per cent.

20 T T
T T —_—r=1.0375 *  data
—— z=0985% L=200k"Mpc L8F— =108 theory
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Figure B1. Theratio of the differential mass function between two expansion
factors. Left-hand panel: predicted ratios for the output expansion factors
corresponding to different box sizes of our simulation set. The reference
redshift is zyr = 0.9853. Right-hand panel: predicted and measured ratios
for the expansion factors listed in the legend. The reference redshift is zrer =
1.0375.
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In order to test whether the predicted evolution of the mass function
is accurate, we make use of a simulation presented in Section 6, for
which we have many snapshots. In the right-hand panel of Fig. B1,
we display the predicted and measured ratios for the redshifts listed
in the legend. We can see that the predictions are a good description
of the data. For other cosmologies the results are similar.

Thus, we proceed to correct the mass functions of the big box sizes
in the following way:

dn I ( ) dl’l | ( ) f(Mv Zref)
correcte: Te = measures X 9
dln M comeeedtEre) = gy QXM 2)

where f(M, z) is some model for the differential mass function.

(B1)

APPENDIX C: EXTENSION TO OTHER MASS
DEFINITIONS

In this appendix, we present the main results of our modelling with
other mass definitions. These results are analogous to what already
described for Mgy, mass functions.

In general, as seen in Fig. 8, all mass functions show clear
correlations with n.s and aer for a given v. Therefore, we keep
the quadratic and linear functional forms for n.y and o in our
model (equation 7 and 8), but slightly change the functional form
of the peak-height dependence for the different mass definition. For
M » mass functions, we use the functional form used in Despali et al.
(2015) (equation 6). However, the functional form used in Angulo
et al. (2012) is more suited to describe Mg,z mass functions. Hence,
for this mass definition we replace f; with

Fiw) = A(bve + 1) exp(—dv?), (CD)

where {A, b, c, d} are the free parameters of the v dependence of
our model. By applying the methodology explained in Section 4, we
have obtained the best-fitting parameters listed in Tables C1-C3 for
Mgor, Moy, and My;: mass functions, respectively.

In Fig. C1, we show the performance of the model for each mass
definition. For Mg.r mass functions, the residual scatter is consistent
with the intrinsic uncertainties of our fit. However, even if the scatter
is reduced significantly, for M,; and Mg, the description is not as
good as in the other cases. We think that, for both the cases, this may
be a consequence of the pseudo-evolution of the boundary definition.
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Table C1. A table listing the best-fitting parameters of our Mgog-fitting functions.

L. Ondaro-Mallea et al.

A b c d no ny ny ap ap
fi(w) 0.231 1.6871 1.7239 1.1092 - - - - -
J1W)fa(nefr) 0.2297 1.6824 1.6437 1.0975 -0.1565 -0.4757 0.6947 - -
F1W)f3(aesr) 0.2218 1.8171 1.6643 1.1009 - - - -0.2908 1.2186
SV, negr, aesr) 0.2276 1.7692 1.6249 1.09 -0.1398 -0.473 0.3671 -0.3715 1.6164

Table C2. A table listing the best-fitting parameters of our Mpq.-fitting functions.

a p Amp no ny ny ap ay
fiv) 0.833 0.1753 0.263 - - - - -
Ji()b (nefr) 0.769 0.2936 0.2314 —0.979 —3.7864 —2.4854 - -
Frw)fs(cterr) 0.8186 0.1796 0.2541 - _ _

S, nege, aetr) 0.7957 0.3069 0.2549 —0.502 —1.79 —0.8305 1.8695 -0.0937
Table C3. A table listing the best-fitting parameters of our M, -fitting functions.

a P Amp no ny ny ap ai
Si(v) 0.7814 0.0854 0.3001 - - - - -
Ji()H (nefr) 0.7632 0.1867 0.2939 —0.4999 —1.761 —0.4741 - -
Ji()f3(atefr) 0.7793 0.0981 0.2951 - - - 0.3581 0.7179
SV, negr, atetr) 0.7693 0.2074 0.2861 —-1.0439 —3.4809 —-0.3037 0.1721 0.2899

— fiv)

0809
Qeff

Figure C1. Ratio of the measured mass functions respect to our model. The
ratios are displayed against v, nefr, and aefr values in the columns. In the
rows, we show the results for Mpog, Magoc, and My;; mass functions.

This paper has been typeset from a TeX/I&TEX file prepared by the author.

MNRAS 509, 6077-6090 (2022)

220z Ae\ Gz uo Jasn ezobelez ap pepisianiun Aq G#98E19// 209/v/60S/201e/selull/wod dno-olwapeoe//:sdpy Wwoly papeojumoq


art/stab3337_fC1.eps

	1 INTRODUCTION
	2 NUMERICAL SIMULATIONS
	3 THE DEPENDENCE OF THE MASS FUNCTION ON GROWTH HISTORY
	4 MODELLING THE DEPENDENCE ON GROWTH FUNCTION AND POWER SPECTRUM SLOPE
	5 VALIDATION: HALO ABUNDANCES AS A FUNCTION OF COSMOLOGY
	6 APPLICATION: IMPROVING THE ACCURACY OF COSMOLOGY-RESCALING METHODS
	7 SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: COSMOLOGY AND REDSHIFT DEPENDENT CRITICAL DENSITY
	APPENDIX B: REDSHIFT CORRECTION
	APPENDIX C: EXTENSION TO OTHER MASS DEFINITIONS

