ORIGINAL PAPER

Large characteristically simple sections of finite groups

A. Ballester-Bolinches¹ · R. Esteban-Romero¹ · P. Jiménez-Seral²

Received: 20 July 2021 / Accepted: 5 November 2021 / Published online: 22 November 2021 © The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2021

Abstract

In this paper we prove that if G is a group for which there are k non-Frattini chief factors isomorphic to a characteristically simple group A, then G has a normal section C/R that is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a significant extension of the notion of crown for isomorphic chief factors.

Keywords Finite group · Maximal subgroup · Probabilistic generation · Primitive group · Crown

Mathematics Subject Classification 20E34 · 20E28 · 20D10 · 20P05

1 Introduction and statement of results

All groups considered in this paper will be finite.

Gaschütz [8] introduced the notion of crown associated with a complemented chief factor of a soluble group G. Given a G-module A, he discovered an important section of G, called the A-crown of G, which is a completely reducible and homogeneous G-module and the length of its G-composition series is the number of complemented chief factors of G which are G-isomorphic to A in a given chief series of G. These crowns turn out to be complemented sections of G. Gaschütz applied his significant result to construct a characteristic conjugacy class of subgroups in every soluble group: the *prefrattini* subgroups. Later Hawkes [11] used this notion to define a closure operation for Schunck classes of finite soluble groups.

Lafuente [13] defined the crown associated with a non-Frattini chief factors of an arbitrary group G. His approach depends on a equivalence relation in the set of all chief factors of G, called *G*-connection, which is a natural extension of *G*-isomorphism. We say that two chief

R. Esteban-Romero Ramon.Esteban@uv.es

P. Jiménez-Seral paz@unizar.es

A. Ballester-Bolinches Adolfo.Ballester@uv.es

¹ Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain

² Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

factors of *G* are *G*-connected (or *G*-equivalent) when they are *G*-isomorphic or there exists a normal subgroup *N* of *G* such that G/N is a primitive group of type 3 whose minimal normal subgroups are *G*-isomorphic to the given chief factors. It is clear that if two chief factors of *G* that are *G*-connected and non-*G*-isomorphic, then they are non-abelian and there is a primitive epimorphic image of *G* connecting them. Lafuente discovered the existence of some sections associated with the non-abelian chief factors with similar properties to Gaschütz's crowns (see [13–15]), and he also used this notion to defined in [13] a new closure operation of Schunck classes of arbitrary groups which allows us to discover new relations between Schunck classes and saturated formations. Later, Förster [6] used the crowns to give an alternative approach of the generalised Jordan–Hölder theorem, and Ezquerro and the first author [1] used them to introduce the prefrattini subgroups in every group.

Crowns are also important in probabilistic group theory. Hall [10] gave a formula for the probability $P_G(t)$ that t elements taken at random from a group G with a uniform probability distribution generate G and Gaschütz [7] developed a formula for the conditional probability $P_{G,N}(t)$ that a t-tuple generates G modulo a normal subgroup N, given that the corresponding elements of the quotient group G/N generate G/N. The concept of crown has become crucial in the work of Detomi and Lucchini [4] to obtain factorisations of $P_G(t)$. Given a monolithic primitive group L with a unique minimal normal subgroup A, for each positive integer k we can consider the direct product L^k of k copies of L and its subgroup

$$L_k = \{ (l_1, \dots, l_k) \in L^k \mid l_1 \equiv \dots \equiv l_k \pmod{A} \},\$$

called in [5] the *kth crown-based power* of *L*. The crown-based powers play a key role in [5] to understand the groups that need more generators than their proper quotients.

There is a close relation between crowns and crown-based powers. In order to state it, we need to recall the definition of the primitive group associated with a chief factor.

Definition 1.1 (*See* [2, Definition 1.2.9]) Given a chief factor H/K of a group G, the *primitive* group [H/K]*G associated with H/K in G is the semidirect product $[H/K](G/C_G(H/K))$ if H/K is abelian and the quotient group $G/C_G(H/K)$ if H/K is non-abelian.

Theorem 1.2 ([4, Proposition 9]) Let H/K be a non-Frattini chief factor of a finite group G and let C/R be its crown. Then G/R is isomorphic to a crown-based power L_k , where L = [H/K] * G and k is the number of chief factors of G that are G-related to H/K in a given chief series of G.

The following result shows the relation between crowns and crown-based powers.

Theorem 1.3 ([4, Proposition 9]) Let H/K be a non-Frattini chief factor of a finite group G and let C/R be its crown. Then G/R is isomorphic to a crown-based power L_k , where L = [H/K] * G and k is the number of chief factors of G that are G-related to H/K in a given chief series of G.

The main aim of this paper is to obtain an extension of the notion of crown for isomorphic chief factors, not necessarily related by *G*-connectedness. Our result will establish a relation between the number of non-Frattini chief factors isomorphic to a characteristically simple group *A* in a given chief series and the *A*-rank $r_A(G)$, defined as the largest number *k* such that *G* has a normal section that is the direct product of *k* non-Frattini chief factors of *G* that are isomorphic to *A*.

Theorem A Let A be a non-Frattini chief factor of a group G and suppose that in a given chief series of G there are k non-Frattini chief factors isomorphic to A. Then there exist two

normal subgroups C and R of G such that $R \leq C$ and C/R is isomorphic to a direct product of k minimal normal subgroups of G/R isomorphic to A.

The proof of this result depends on the following property of monolithic primitive groups.

Theorem B If G is a primitive group with a unique minimal normal subgroup B, then G/B has no chief factors isomorphic to B.

We thank one of the anonymous referees for informing us of a result (see Theorem 3.3 below) that has allowed us to present Theorem B in its broadest generality.

We bring the paper to a close with a consequence of Theorem A.

Corollary 1.4 If a group G has k non-Frattini chief factors in a given chief series isomorphic to a characteristically simple group A, then $r_A(G) = k$.

2 Preliminaries

In this short section, we recall the definition of the precrowns and the crown associated with a non-Frattini chief factor and their main properties.

Definition 2.1 Let H/K be a supplemented chief factor of a group G. Assume that M is a maximal subgroup of G supplementing H/K in G such that G/M_G is a monolithic primitive group. We say that the chief factor $Soc(G/M_G) = HM_G/M_G$ is the *precrown* of G associated with M and H/K, or simply a *precrown* of G associated with H/K.

Note that if C/R is the precrown of G associated with the maximal subgroup M and the supplemented chief factor H/K of G, then G/R is the primitive quotient group G/M_G of G associated with M.

Definition 2.2 Let H/K be a non-Frattini chief factor of a group G. Let \mathcal{E} denote the set of all cores M_G of all maximal subgroups M of G such that the quotient G/M_G is a monolithic primitive group and M supplements chief factors G-connected to H/K, let

$$R = \bigcap \{ N \mid N \in \mathcal{E} \},\$$

and let $C^* = C^*_G(H/K)$. We say that the factor C^*/R is the *crown* of G associated with H/K.

Here $C_G^*(H/K) = HC_G(H/K)$ denotes the *inneriser* of a chief factor H/K of G. The crown associated with a supplemented chief factor H/K of G possesses the following properties.

Theorem 2.3 (see [2, Theorem 1.3.2]) Let C^*/R be the crown of *G* associated to the supplemented chief factor H/K. Then $C^*/R = \text{Soc}(G/R)$. Furthermore,

- 1. every minimal normal subgroup of G/R is a supplemented chief factor of G which is G-connected to H/K, and
- 2. no supplemented chief factor of G over C^* or below R is G-connected to H/K.

Unless otherwise stated, we will follow the notation of the books [2,3]. Detailed information about primitive groups and chief factors, crowns, and precrowns of a group can be found in [2, Chapter 1].

3 Proofs of the theorems

We begin by proving Theorem B. In order to show that in a primitive group of type 2 the only chief factor isomorphic to the socle is the socle itself, we use the following elementary result.

Lemma 3.1 Let n be a natural number. Then 2^n does not divide n!.

Proof Suppose that the result is false. Note that 2^1 does not divide 1!. Suppose that *n* is the smallest natural number such that 2^n divides *n*!. We have that n > 1 and that *n* must be even. Hence 2^n divides the product

$$2 \cdot 4 \cdot 6 \cdot 8 \cdots n = 2^{n/2} (n/2)!$$

Therefore $2^{n/2}$ divides (n/2)!. This contradicts the minimality of *n*.

Theorem 3.2 Let G be a monolithic primitive group in which B = Soc(G) is non-abelian. Then G/B has no chief factors isomorphic to B.

Proof Let $B = S_1 \times \cdots \times S_n$ be the decomposition of *B* as a product of isomorphic non-abelian simple groups $S_i \cong S$, $1 \le i \le n$. Let $Y = \bigcap_{i=1}^n N_G(S_i)$. By [2, Remarks 1.1.40 (13)], *G* is isomorphic to a subgroup of $X \wr P_n$, which is in turn isomorphic to a subgroup of Aut(S) \wr Sym(n) \cong Aut(S^n), where P_n is a transitive subgroup of the symmetric group Sym(n) and $X = N_G(S_1)/C_G(S_1)$ is isomorphic to a subgroup or Aut(S) containing the inner automorphism group. Hence we can assume that *G* is in fact a subgroup of W =Aut(S) \wr Sym(n). Let *M* be the intersection of *G* with the base group of *W*, then M/B = $(G \cap W^{\natural})/B$ is isomorphic to a subgroup of Aut(S)^{$\natural}/B \cong (Out S)^n$, which is a soluble group by the Schreier conjecture, whose validity has been checked with the classification of finite simple groups (see [12, page 151]).</sup>

Assume now that there exists a chief factor F of G/B such that $F \cong B$. Since M/B is soluble, there exist normal subgroups N, K of G such that $M \leq N \leq K$ and $K/N \cong B$. In particular,

$$G/M = G/(G \cap (\operatorname{Aut}(S))^{\natural}) \cong G(\operatorname{Aut}(S))^{\natural}/(\operatorname{Aut}(S))^{\natural},$$

which is a subgroup of $P_n \leq \text{Sym}(n)$. It follows that the order of G/M divides n! and, in particular, |K/N| divides n!. Since $K/N \cong S_1 \times \cdots \times S_n$ and all non-abelian simple groups have order divisible by 2, 2^n divides |K/N|. Consequently, 2^n divides n!. This contradicts Lemma 3.1.

Now let us consider non-Frattini abelian chief factors. Recall that a Fermat prime is a prime of the form $2^{2^n} + 1$ for some $n \ge 0$. We apply the following consequence of a result of Giudici, Glasby, Li, and Verret [9, Theorem 1]. We thank one of the referees for drawing our attention to this beautiful result. Without it, we would not have been able to prove Theorem B in its current form and the proofs would have been longer.

Theorem 3.3 If G is a primitive group with a unique minimal normal subgroup of order $q = p^d$, where p is a prime, then the number of composition factors of G of order p is at most $d + \frac{\varepsilon_p d - 1}{p - 1}$, where

$$\varepsilon_p = \begin{cases} \frac{p}{p-1} & \text{if } p \text{ is a Fermat prime,} \\ 1 & \text{otherwise.} \end{cases}$$

🖄 Springer

Corollary 3.4 Let G be a prime and let G be a primitive group in which B = Soc(G) is an elementary abelian p-group of order p^d . Then G/B has no chief factors isomorphic to B.

Proof By Theorem 3.3, the number of composition factors of order p of G is bounded by

$$d + \frac{\varepsilon_p d - 1}{p - 1} \le \begin{cases} d + \frac{d - 1}{2 - 1} = 2d - 1 < 2d, & \text{if } p = 2, \\ d + \frac{(3/2)d - 1}{p - 1} < 2d, & \text{if } p \ge 3. \end{cases}$$

Hence the number of composition factors of order p of G/B is less than d. If G/B had a chief factor of order p^d , then by refining the corresponding chief series to a composition series we would obtain that the number of composition factors of order p of G/B is at least d. This contradiction shows that G/B does not have chief factors isomorphic to B.

We are now in a position to prove Theorem A.

Proof of Theorem A We will construct a sequence

 $(C_0, R_0), (C_1, R_1), (C_2, R_2), \dots, (C_l, R_l)$

of pairs of subgroups of G satisfying the following conditions:

- 1. C_i and R_i are normal subgroups of G with $R_i \leq C_i$, $1 \leq i \leq l$, and $C_0 = R_0 = G$.
- 2. $C_i/R_i = (N_{i,1}/R_i) \times \cdots \times (N_{i,i}/R_i)$, where $N_{i,j}/R_i$ is a non-Frattini minimal normal subgroup of G/R_i isomorphic to A.
- 3. $C_i = \bigcap_{i=1}^{l} C_G^*(N_{i,j}/R_i).$

This will be done by induction on *i*. For i = 0, we construct $C_0 = R_0 = G$. Assume that for some $i \ge 0$ we have constructed (C_i, R_i) satisfying the previous conditions. Consider a chief series of *G* passing through R_i and suppose that in this series there exists a non-Frattini chief factor H/K of *G* isomorphic to *A* such that $H \le R_i$. Let C/R be a precrown associated to H/K. Let $R_{i+1} = R_i \cap R$. Note that $C = C_G^*(H/K) = C_G^*(C/R)$. Let $C_{i+1} = C_i \cap C$. The unique minimal normal subgroup of G/R is C/R. Since HR = C, *H* is not contained in *R* and so R_i is not contained in *R*. Since G/R is monolithic, we have that

$$R < C \leq R_i R = R_i C.$$

Therefore

$$(C \cap R_i)/(R \cap R_i) = (C \cap R_i)/(C \cap R_i \cap R)$$

$$\cong_G R(C \cap R_i)/R = (C \cap RR_i)/R = C/R.$$

Consequently $(C \cap R_i)/R_{i+1}$ is a normal subgroup of G/R_{i+1} that is *G*-isomorphic to C/R. Consider now $1 \le j \le i$, then

$$N_{i,j}R/RR_i = N_{i,j}RR_i/RR_i \cong_G N_{i,j}/(N_{i,j} \cap RR_i).$$

By the minimality of $N_{i,j}/R_i$, we have that either $N_{i,j} = N_{i,j} \cap RR_i$ or $N_{i,j} \cap RR_i = R_i$. Assume that the second case holds for a given j with $1 \leq j \leq i$. Hence $(N_{i,j}/R_i) \cap (RR_i/R_i) = 1$ and so $R < C \leq RR_i \leq C_G(N_{i,j}/R_i) \leq C_G^*(N_{i,j}/R_i)$. But now in a chief series of $G/C_G^*(N_{i,j}/R_i)$ there are no chief factors isomorphic to A. Moreover, $C/R \cong A$ and $RR_i < RN_{i,j} \leq C_G^*(N_{i,j}/R_i)$ with $RN_{i,j}/RR_i \cong A$. It follows that there are at least two chief factors isomorphic to A in a chief series of the primitive group associated with C/R, which is isomorphic to the primitive group associated with H/K. This contradicts Theorem B. Consequently, for all j with $1 \le j \le i$, the condition $N_{i,j} = N_{i,j} \cap RR_i$ holds, that is, $N_{i,j} \le RR_i$. Therefore, $C_i \le RR_i$. Now

$$(C_i \cap R)/(R_i \cap R) = (C_i \cap R)/(R_1 \cap C_i \cap R)$$

$$\cong_G R_1(C_i \cap R)/R_1 = (C_i \cap RR_i)/R_i = C_i/R_i.$$

Moreover, $(C_i \cap R) \cap (C \cap R_i) = R \cap R_i = R_{i+1}$. It follows that G/R_{i+1} has a normal subgroup $N_{i+1,i+1}/R_{i+1} = (C \cap R_i)/R_{i+1}$ *G*-isomorphic to C/R, which is in turn *G*-isomorphic to H/K, and another normal subgroup $(C_i \cap R)/R_{i+1}$ which is *G*-isomorphic to C_i/R_i . Hence $(C_i \cap R)/R_{i+1}$ is isomorphic to a direct product of minimal normal subgroups $N_{i+1,j}/R_{i+1}$ of G/R_{i+1} *G*-isomorphic, respectively, to $N_{i,j}/R_i$, $1 \le j \le i$. By construction,

$$C_{i+1} = C_i \cap C = \bigcap_{j=1}^{i} C_G^*(N_{i,j}/R_i) \cap C_G^*(H/K) = \bigcap_{j=1}^{i+1} C_G^*(N_{i+1,j}/R_{i+1})$$

This construction can be done until we reach an i = l such that there are no non-Frattini chief factors isomorphic to A below R_l . Note that, in this case, l = k, because all primitive groups associated to non-Frattini chief factors isomorphic to A have no chief factors isomorphic to A and, hence, $G/C_G^*(H/K)$ has no chief factor isomorphic to A, consequently, there are no chief factor of G isomorphic to A that could appear above C_i .

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4 The normal section C/R obtained in Theorem A is the product of k minimal normal subgroups of G/R isomorphic to A, hence $k \leq r_A(G)$. Since obviously $r_A(G) \leq k$, we obtain the result.

Example 3.5 Let S be a non-abelian simple group, then the group $H = \text{Inn}(S) \cong S$ of inner automorphisms of S acts on S and we can consider the corresponding semidirect product G = [S]H. As a consequence of Theorem A we can obtain the well-known fact that G is isomorphic to the direct product $S \times S$ of two copies of S.

Example 3.6 Consider the group

$$G = \langle (1, 2, 3), (1, 4, 5), (1, 2), (6, 7, 8), (6, 9, 10), (6, 7) \rangle$$

isomorphic to the direct product of two copies of the symmetric group of degree 5 acting naturally on the sets $\{1, 2, 3, 4, 5\}$ and $\{6, 7, 8, 9, 10\}$. Then *G* has two crowns corresponding to chief factors isomorphic to the alternating group Alt(5) of degree 5, namely C_1/R_1 with

$$C_1 = \langle (1, 2, 3), (1, 4, 5), (6, 7, 8), (6, 9, 10), (6, 7) \rangle$$

and

$$R_1 = \langle (6, 7, 8), (6, 9, 10), (6, 7) \rangle$$

and C_2/R_2 with

$$C_2 = \langle (1, 2, 3), (1, 4, 5), (1, 2), (6, 7, 8), (6, 9, 10) \rangle$$

and

$$R_2 = \langle (1, 2, 3), (1, 4, 5), (1, 2) \rangle.$$

We note that the chief factors C_1/R_1 and C_2/R_2 correspond to different crowns because their innerisers, C_1 and C_2 , respectively, are different. In this case, Theorem A gives the normal

section C/R with C = 1 and $R = \langle (1, 2, 3), (1, 4, 5), (6, 7, 8), (6, 9, 10) \rangle$ isomorphic to the direct product of two copies of the alternating group of degree 5.

Acknowledgements These results are part of the R+D+i project supported by the Grant PGC2018-095140-B-I00, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", as well as by the Grant PROMETEO/2017/057 funded by GVA/10.13039/501100003359, and partially supported by the Grant E22 20R, funded by Departamento de Ciencia, Universidades y Sociedad del Conocimiento, Gobierno de Aragón/10.13039/501100010067. We thank one of the anonymous referees for drawing our attention to the reference [9] and to Theorem 3.3. This has allowed us to improve the statements and to simplify the proofs of the main results of this paper.

References

- Ballester-Bolinches, A., Ezquerro, L.M.: On maximal subgroups of finite groups. Commun. Algebra 19(8), 2373–2394 (1991)
- Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups, Volume 584 of Mathematics and Its Applications. Springer, Dordrecht (2006)
- Doerk, K., Hawkes, T.: Finite Soluble Groups, Volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1992)
- Detomi, E., Lucchini, A.: Crowns and factorization of the probabilistic zeta function of a finite group. J. Algebra 265(2), 651–668 (2003)
- Dalla Volta, F., Lucchini, A.: Finite groups that need more generators than any proper quotient. J. Aust. Math. Soc. Ser. A 64(1), 82–91 (1998)
- Förster, P.: Chief factors, crowns, and the generalised Jordan–Hölder theorem. Commun. Algebra 16(8), 1627–1638 (1988)
- 7. Gaschütz, W.: Die Eulersche Funktion endlicher auflösbarer Gruppen. Ill. J. Math. 3(4), 469–476 (1959)
- 8. Gaschütz, W.: Praefrattinigruppen. Arch. Math. 13, 418–426 (1962)
- 9. Giudici, M., Glasby, S.P., Li, C.H., Verret, G.: The number of composition factors of order *p* in completely reducible groups of characteristic *p*. J. Algebra **490**, 241–255 (2017)
- 10. Hall, P.: The Eulerian functions of a group. Q. J. Math. 7(1), 134-151 (1936)
- 11. Hawkes, T.: Closure operations for Schunck classes. J. Aust. Math. Soc. Ser. A 16(3), 316–318 (1973)
- Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An introduction. Universitext. Springer, New York (2004)
- Lafuente, J.: Nonabelian crowns and Schunck classes of finite groups. Arch. Math. (Basel) 42(1), 32–39 (1984)
- Lafuente, J.: Crowns and centralizers of chief factors of finite groups. Commun. Algebra 13(3), 657–668 (1985)
- Lafuente, J.: Eine Note über nichtabelsche Hauptfaktoren und maximale Untergruppen einer endlichen Gruppe. Commun. Algebra 13(9), 2025–2036 (1985)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.