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Spatial Modeling of Day-Within-Year
Temperature Time Series: An Examination of
Daily Maximum Temperatures in Aragón,

Spain
Jorge Castillo-Mateo , Miguel Lafuente , Jesús Asín ,
Ana C. Cebrián , Alan E. Gelfand, and Jesús Abaurrea

Acknowledging a considerable literature on modeling daily temperature data, we pro-
pose a multi-level spatiotemporal model which introduces several innovations in order
to explain the daily maximum temperature in the summer period over 60 years in a
region containing Aragón, Spain. The model operates over continuous space but adopts
two discrete temporal scales, year and day within year. It captures temporal dependence
through autoregression on days within year and also on years. Spatial dependence is
captured through spatial process modeling of intercepts, slope coefficients, variances,
and autocorrelations. The model is expressed in a form which separates fixed effects
from random effects and also separates space, years, and days for each type of effect.
Motivated by exploratory data analysis, fixed effects to capture the influence of elevation,
seasonality, and a linear trend are employed. Pure errors are introduced for years, for
locations within years, and for locations at days within years. The performance of the
model is checked using a leave-one-out cross-validation. Applications of the model are
presented including prediction of the daily temperature series at unobserved or partially
observed sites and inference to investigate climate change comparison.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Evidence of global warming in the climate system is strong and many of the observed
changes since the 1950s are unprecedented, with an estimated anthropogenic increase of
0.2◦C per decade due to past and ongoing emissions (IPCC 2013, 2018). Climate change
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raises significant concerns as it may result in health problems and death, degradation of
flora and fauna biodiversity, reductions in crop production, increase in pests, etc. In this
framework, the analysis of daily maximum temperatures and their long-term trends over
time is particularly important due to the strong potential impact on public health (Roldán
et al. 2016; Rossati 2017; Watts et al. 2015), agriculture (Hatfield et al. 2011; Schlenker and
Roberts 2009), and economy (Diffenbaugh and Burke 2019).

We propose a new multi-level spatiotemporal model to explain the daily maximum tem-
perature in the summer period, in an area containing the Comunidad Autónoma de Aragón
in the northeast of Spain. The region includes part of the Ebro Valley in the center, with
mountainous areas in the south (Iberian System) and north (Pyrenees). The valley is an
extensively irrigated production area with garden crops, fruits, and vegetables, as well as
rainfed agriculture with cereals, almonds, wine, and oil. In the mountainous areas, there are
some protected natural spaces with extensive forests and a high diversity of landscapes. It is
an area of great biodiversity with important water resources for the region. Despite its rela-
tively small size, spatiotemporal modeling of the temperatures in this region is a challenge
due to the heterogeneous orography and the climatic variability.

The spatiotemporal model seeks to characterize spatial patterns and detect trends over
time in the daily maximum temperature during the summer period. It is specified over
continuous space but adopts two discrete units of time, years and days within years. This
allows us to model the time evolution of daily maximum temperatures during the summer,
omitting the cooler months that are not of interest here. The model introduces temporal
dependence using autoregression terms for days within years and also for years. The model
separates fixed and random effects in the mean. Fixed effects capture the global mean, the
seasonal component across days, the average long-term trend across years, and the influence
of elevation. Random effects are employed for the spatial dependence in the intercepts, the
slope coefficients, the autoregression coefficients, and the variances of the responses. The
two temporal scales allow us to separate space, years, and days within years for each type of
effect. Three pure error processes are adopted, one for locations at days within years, one for
locations within years, and one for years. The full specification is motivated by exploratory
analyses. Altogether, the model provides a better understanding of the temporal evolution
of temperatures for the entirety of the region along with the spatial uncertainty linked to
those features.

The model is specified in a hierarchical Bayesian framework and estimated using a
Markov chain Monte Carlo (MCMC) algorithm. In this framework, posterior predictive
distributions for the features of daily maximum temperatures (trends, persistence, mean,
variance, etc.) can be readily obtained. In particular, we can obtain posterior predictive
samples of the spatial processes and the daily maximum temperature series at unobserved
sites. Prediction at unobserved sites is particularly important in Aragón since this region
is sparsely monitored due to rural depopulation; there is a lack of observed series in many
areas of interest. The model can also be used to impute periods of missing observations in
a series.

Space–time modeling of environmental series has received substantial attention in the
literature. Sahu et al. (2006) proposed a random effects model for fine particulate matter
concentrations in the midwestern USA. Sahu et al. (2007) proposed a space–time hierarchi-
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cal model for daily 8-hour maximum ozone levels in the state of Ohio. This model includes
an autoregressive part for the residuals of the fixed effects, a global annual intercept, and
a spatially correlated error term. Lemos et al. (2007) modeled monthly water temperature
data in a Central California Estuary. They used a Bayesian approach to separate the sea-
sonal cycle, short-term fluctuations, and long-term trends by means of local mixtures of two
patterns. With regard to temperature models, Craigmile and Guttorp (2011) built space–
time hierarchical Bayesian models using daily mean temperatures in Central Sweden that
emphasize modeling trend through a wavelet specification, as well as seasonality, and error
that may exhibit space–time long-range dependence. Verdin et al. (2015) modeled max-
imum and minimum temperature to develop a weather generator using spatial Gaussian
processes (GPs), where both temperature models are autoregressive with spatially varying
model coefficients and spatial correlation. Li et al. (2020) proposed a three-step space–time
regression-kriging model for monthly average temperature data. With such data, they first
remove seasonality, then they regress the revised data on environmental predictors, and
finally they take the resulting residuals and administer spatiotemporal variogram modeling.
By contrast, models for daily temperatures take a different approach, seeking to explicitly
express short-term persistence of temperature. They employ autoregressive terms, e.g., the
one-point model byMohammadi et al. (2021). Amodeling approach very different from our
mean specification considers extremes in the daily temperature series and leads to extreme
value modeling under the block maxima framework or peaks-over-threshold framework
(see, e.g., Reich et al. 2014; Bopp and Shaby 2017).

The outline of the paper is as follows. An exploratory analysis to motivate the complexity
of the model is given in Sect. 2. Section 3 describes the modeling details, and Sect. 4
presents a leave-one-out cross-validation (LOOCV) analysis for model comparison as well
as some results and applications for the selected model. Section 5 ends the paper with some
conclusions and future work. Supplementary Materials accompanying this paper appear
online.

2. DATA AND EXPLORATORY ANALYSIS

The point-referenced dataset we use contains 18 daily maximum temperature obser-
vational series from AEMET (the Spanish Meteorological Office) around the Comunidad
Autónoma de Aragón (see Fig. 1). The time series include the daily observations fromMay
to September (MJJAS), corresponding to the extended summer period, and span the period
from 1956 to 2015. The region of interest is located in the central portion of the Ebro Basin
in the northeastern part of Spain and has an area of 53,279 km2, wherein the areas above 500
m and 1,000 m are 32,924 km2 and 15,195 km2, respectively. The maximum elevation is
roughly 3,400m in the Pyrenees, 2,600m in the Iberian System, and between 200 and 400m
in the Central Valley. Most of the area is characterized by a Mediterranean-Continental dry
climate with irregular rainfall and a large temperature range. However, climate differences
can be distinguished by elevation and the influence from theMediterranean Sea in the east as
well as the continental conditions of the Iberian Central Plateau in the southwest (AEMET
2011).
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Figure 1. Map locating within the Iberian Peninsula the 18 sites (black) used to fit the model and the 3 unobserved
sites (red) where prediction is carried out (Color figure online).

We summarize an extensive exploratory data analysis of the daily maximum temperature
series that helps us establish the covariates and spatiotemporal structures that are candidates
for inclusion in the model. The top plots in Fig. 2 show the variability in temperature
characteristics and the influence of elevation on them. The two plots on the left show the
mean and the standard deviation of temperature at each site against elevation. The mean
temperature shows an approximately linear decreasing relation with elevation, varying from
almost 30 to 18◦C. However, there exist other influential factors, e.g., Sallent in the north
and Tornos in the south have both an elevation around 1,000 m, but a quite lower mean
temperature is observed for the latter (see Table S1 in Supplementary Materials).

The bottom plots in Fig. 2 summarize the mean and standard deviation from data corre-
sponding to a month inMJJAS for the 18 sites in the periods 1956–1985 and 1986–2015; the
summary measures are calculated in 30-year periods following the recommendation of the
WMO (2017). The seasonal pattern for all of the series is quite similar, i.e., the maximum
mean temperature is observed in July and the minimum in May, with a difference of around
7◦C between them. The range of the mean temperatures among sites is around 10◦C, so
the spatial variability of the mean is a bit higher than the variability at each site within the
summer. The mean of the set of standard deviations is slightly higher than 4◦C. However,
relevant spatial differences are observed with a range of values around 1.5◦C. Temporal
variability is lower within the summer.

To explore the effect of globalwarming in the region, the changes between1956–1985 and
1986–2015 periods, expressed as differences for the means and quotients for the standard
deviations, are also shown on the bottom-right plot in Fig. 2 and Table S1. The mean
temperature in 1986–2015 has increased from 1956–1985 by roughly 1◦C, with a slightly
smaller increase in the northeastern sites. The increase in the mean temperature is observed
in May, June, August and, except for three sites, in July. No relevant change in the seasonal
pattern is observed. The spatial variability in the two periods is similar. As for the standard
deviations, no evidence of temporal change is observed, with all of the quotients between
the two periods being approximately one.
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Figure 2. Top: Mean value, standard deviation, annual time trend, and serial correlation against elevation for the
daily maximum temperature series at the 18 sites. Bottom: Mean value and standard deviation of the series in both
30-year periods, 1956–1985 and 1986–2015, and the change between them, expressed as differences for the mean
and quotients for the standard deviation.

The two plots in the top right in Fig. 2 summarize an exploratory analysis of the behavior
of the time series over time. The first shows the slope regressed against year (expressed in ◦C
per decade), fitted by ordinary least squares to the daily maximum temperature series in each
site. Clear differences are observed in the 18 fitted trends, suggesting the need to include a
spatial random effect to reflect this feature. The variability in the trends does not seem to be
related to the elevation. The last plot shows the serial correlation in the temperature series. A
strong correlation, higher than 0.72, is observed for all the sites but with spatial differences.
The strong autocorrelation is probably caused by a persistent anticyclonic situation that
tends to affect the Iberian Peninsula in the summer. Sites with a higher elevation seem to
show a slightly higher persistence.

As an additional exploratory analysis, 18 hierarchical temporal models were fitted, one
for each of the available sites. These local models, which are summarized in Section S1.1
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of the Supplementary Materials, are useful to identify the time structures required for the
temperature series and to evaluate the spatial variability of the fitted terms. The results
motivate the introduction of spatially varying intercepts, trends, autoregression coefficients,
and variances for the spatial variability in the model.

3. THE MODEL

We propose a multi-level (i.e., hierarchical) full mean model for daily maximum tem-
peratures that operates over continuous space and two discrete temporal scales. It captures
temporal dependence through autoregression on days within year and on years. It captures
spatial dependence through spatial process modeling of intercepts, slope coefficients, vari-
ances, and autocorrelations. We detail this model below and then discuss model fitting,
prediction under the model, and model comparison.

3.1. MODEL CONSTRUCTION

Let Yt�(s) denote the daily maximum temperature for day �, � = 2, . . . , L of year t ,
t = 1, . . . , T at location s ∈ D, where D is our study region. Here, for all years, � = 1
corresponds to May 1 and L = 153 corresponds to September 30. It is convenient to
express the full model in a form which separates fixed effects from random effects and also
carefully separates space, years, and days for each type of effect. Specifically, we model
daily maximum temperature for day �, year t , and location s by

Yt�(s) = μt�(s; θ f ) + γt (s) + ρY (s)
(
Yt,�−1(s) − (μt,�−1(s; θ f ) + γt (s))

) + ε
(Y )
t� (s). (1)

Here, μt�(s; θ f ) denotes the fixed effects component and γt (s) the random effects com-
ponent. We specify

μt�(s; θ f ) = β0 + αt + β1sin(2π�/365) + β2cos(2π�/365) + β3elev(s) (2)

in which β0 is a global intercept, α is a global linear trend coefficient, the sin and cos terms
are introduced to provide an annual seasonal component, and elev(s) is the elevation at s.
We denote these fixed effect parameters by θ f = (β0, α, β1, β2, β3).

We specify
γt (s) = β0(s) + α(s)t + ψt + ηt (s). (3)

In (3), ψt follows an AR(1) specification, i.e., ψt = ρψψt−1 + λt , providing an autore-
gression in years for annual intercepts. This autoregression could help to capture factors
yielding correlation across years, such as the influence of variation in solar activity on the
earth’s surface temperature or the El Niño–Southern Oscillation. However, in Sect. 3.2, we
discover that ρψ is not significantly different from 0. We still need ψ’s in the model to
address the fact that some years are warmer or colder than others, but we do not need to
specify them autoregressively. We denote the variance for this component by σ 2

λ .
Continuing, β0(s) is a mean-zero GP with an exponential covariance function having

variance parameter σ 2
β0

and decay parameter φβ0 , and α(s) is a mean-zero GP with an
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exponential covariance function having variance parameter σ 2
α and decay parameter φα .

Thus, β0(s) provides local spatial adjustment to the intercept and α(s) provides local slope
adjustment to the linear trend. Due to the simplicity of linear time trends they are often
used in climate studies (IPCC 2013). Here, they provide an extremely flexible, locally
linear baseline specification. Further, we add local space–time varying random effects,
ηt (s), to provide adjustment to this baseline. We collect the random effects parameters into
θr = (ρψ, σ 2

λ , σ 2
β0

, φβ0 , σ
2
α , φα).

The entire specification is supplied distributionally in the form of a multi-level hierar-
chical model as

[Yt�(s) | Yt,�−1(s), �θ f , γt (s), ρY (s), σ 2
ε (s)]

[γt (s) | β0(s), α(s), ψt , σ
2
η ]

[β0(s)|σ 2
β0

, φβ0 ][α(s)|σ 2
α , φα][ψt |ψt−1, ρψ, σ 2

λ ]
[ZρY (s)|ZρY , σ 2

ρY
, φρY ][Zσ 2

ε
(s)|Zσ 2

ε
, σ 2

σ 2
ε
, φσ 2

ε
]

[�θ f ][�θr ][σ 2
η ][ZρY ][σ 2

ρY
][φρY ][Zσ 2

ε
][σ 2

σ 2
ε
][φσ 2

ε
].

(4)

As a result, we have introduced three pure error terms: λt
i id∼ N (0, σ 2

λ ) at yearly scale,

ηt (s)
i id∼ N (0, σ 2

η ) at sites within years, and ε
(Y )
t� (s)

ind.∼ N (0, σ 2
ε (s)) at sites for days

within years. Additionally, ρY (s) and σ 2
ε (s) are, respectively, a spatially varying autore-

gressive term and a spatially varying variance at location s, both of which are assumed
constant over days and years. We model log {(1 + ρY (s))/(1 − ρY (s))} = ZρY (s) ∼
GP(ZρY ,C(·; σ 2

ρY
, φρY )), and log{σ 2

ε (s)} = Zσ 2
ε
(s) ∼ GP(Zσ 2

ε
,C(·; σ 2

σ 2
ε
, φσ 2

ε
)), again

with exponential covariance functions. Motivation for adopting spatially varying specifica-
tions for these terms arises from exploratory data analysis at the level of the individual sites.
That is, suppose we fit the model above but ignore spatial structure and treat the sites as
conditionally independent.We show in Section S1.1 of the SupplementaryMaterials that the
assumptions of constant autoregression coefficients and constant variances over the region
do not seem justified.

All of the components considered in the full model and their relationships are depicted
in the graphical model in Fig. 3. This diagram, perhaps, reveals the complexity of the full
model more readily than through Equations (1) to (4).

The reader might wonder if the GPs above are independent. We investigated dependence
between the intercept and slope GPs using the following coregionalization (Banerjee et al.
2014, Chapter9). Suppose v1(s) and v2(s) are independent GPs with zero mean and unit
variance whose exponential covariance functions have decay parameters φ1 and φ2, respec-
tively. In the full model, we insert β0(s) = a11v1(s) and α(s) = a21v1(s) + a22v2(s). Here,
we let a11 and a22 each have a half (or folded) Gaussian prior, while a21 has a regular
Gaussian prior. The parameter a21 captures the dependence between the two processes.
That is, the induced covariance between β0(s) and α(s) is a21a11. We care whether a21 is
significantly different from zero with little interest in exactly what the correlation is. Under
the model above, the posterior distribution of a21 was centered at zero with wide credible
intervals. So, this dependence was not included in the final model for which we present the
inference.
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Figure 3. Graphical model for specification in Equations (1) to (4). Rectangular nodes are observed, circular
nodes are unobserved.

Returning to the full model, notice that we have separated the fixed effects according
to subscripts t , �, and s. As for γt (s), we can see that it has a spatially varying intercept, a
spatially varying coefficient for drift, and an AR(1) model for years. Also, γt (s) has both
space and time dependence and, in fact, we can readily calculate cov(γt (s), γt+h(s′)). Under
independence of the intercept and slope processes, the equilibrium covariance becomes

cov(γt (s), γt+h(s′)) = C(||s− s′||; σ 2
β0

, φβ0)+ t (t + h)C(||s− s′||; σ 2
α , φα)+ σ 2

λ

1 − ρ2
ψ

ρ
|h|
ψ .

(5)
Finally, special cases of interest include: β0(s) = 0 implies a constant intercept over

space, α(s) = 0 implies a constant linear drift over space, and ρψ = 0 implies no yearly
autoregression. These assumptions merely revise the form of γt (s). We might consider con-
ditioning on a longer history of maximum temperatures. We experimented with introducing
additional lags in the modeling, but we found no gain in predictive performance. We could
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also consider additional fixed effects, e.g., longitude, latitude or distance to coast, or even
adding interactions, e.g., t × elev(s). However, the exploratory analysis did not reveal a
relationship between daily temperatures and these fixed effects, so they were not introduced
in the full model.

3.2. MODEL FITTING

Model inference is implemented in a Bayesian framework, requiring prior distributions
for each of the model parameters. In general, diffuse and, when available, conjugate prior
distributions are chosen. Recall that the model adopts a conditional Gaussian distribution
for all Yt�(s)’s. Thus, it is appropriate to assign each of the coefficient parameters β0,
α, β1, β2, and β3, independent and diffuse Gaussian prior distributions with mean 0 and
standard deviation 100. The variance parameters, σ 2

λ and σ 2
η , are assigned independent

Inverse-Gamma(2, 1) prior distributions. In preliminary analyses, the autoregresive term
between years,ρψ , was assigned a non-informativeUniform(−1, 1) prior distribution. As its
posterior distribution was centered at zero with wide credible intervals, we set the parameter
at ρψ = 0. For identifiability, the random effect for the first year, ψ1, is fixed to zero.

Hyperpriors are assigned to the mean of both ZρY (s) and Zσ 2
ε
(s). That is, ZρY and

Zσ 2
ε
are given a Gaussian prior distribution with mean 0 and standard deviation 100 and

1, respectively. The variance parameter for each of the four spatial covariance functions,
σ 2

β0
, σ 2

α , σ
2
ρY
, and σ 2

σ 2
ε
, is assigned an independent Inverse-Gamma(2, 1) prior distribution.

Preliminary analyses with a discrete uniform prior distribution for each of the spatial decay
parameters indicated that these parameters almost always placed most mass on the smallest
decay value. Due to the fact that, with an exponential covariance function, the variance and
the decay parameter cannot be individually identified (Zhang 2004), and the decay parameter
is 3/range, we set φ ≡ φβ0 = φα = φρY = φσ 2

ε
= 3/dmax , where dmax is the maximum

distance between any pair of spatial locations.
MCMC is used to obtain samples from the joint posterior distribution. The sampling

algorithm is a Metropolis-within-Gibbs version. Since we only have 18 sites, we fit the
model without marginalization over the spatial random effects. Also, we introduce β̃0(s) =
β0 + β0(s) and α̃(s) = α + α(s) within γt (s) for the fitting to enable the benefits of
hierarchical centering in the model fitting (Gelfand et al. 1995). Details of the MCMC used
for the model fitting are provided in Section S2.1 of the Supplementary Materials. All the
covariates have been centered and scaled to have zero mean and standard deviation one to
improve the mixing behavior of the algorithm.

3.3. SPATIAL AND SPATIOTEMPORAL PREDICTION

Under the full model, prediction at location s0, day �′, and year t ′ is based on the posterior
predictive distribution of Yt ′�′(s0) arising from the full model. Here, s0 may correspond
to a fully observed location (held out for validation), a partially observed location (for
completion of a record), or a new location in D. Our goal is not forecasting, so we restrict
ourselves to the observed time period �′ = 2, . . . , L and t ′ = 1, . . . , T . Within the Bayesian
framework, the posterior predictive distribution for Yt ′�′(s0) is obtained by integrating over
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the parameters with respect to the joint posterior distribution. The formal expression for the
posterior predictive distribution for [Yt ′�′(s0) | Y], where Y is the observed data, is given
in Section S2.2 of the Supplementary Materials. Customarily, the distribution is obtained
empirically through posterior samples. That is, with MCMC algorithms, samples of the
posterior parameters are used to obtain posterior predictions of observations, the so-called
composition sampling (see Banerjee et al. 2014, Chapter 6; and Section S2.2 for the details).

3.4. MODEL EVALUATION

For model assessment, a LOOCV is carried out to compare the spatial predictive per-
formance of the models. The full model considered includes four spatial GPs. To validate
that model as well as the importance of the considered GPs, reduced models incorporating
0, 1, 2, or 3 GPs are fitted. Models are presented explicitly in Sect. 4.1 where we further
clarify that removing particular terms allows explicit interpretation of the resulting reduced
models.

Results from Sect. 4.1 favor the full model, and so results for this model are presented
subsequently. However, several of the reduced models yield essentially equivalent global
performance, though the fit at some sites is poorer. We attempt to clarify why this might
be expected but also show that each set of random effects reveals differences across sites,
further encouraging us to retain them in the inference presentation.

For each location in the holdout set, the entire time series of dailymaximum temperatures
is withheld during model fitting. Then, for location si , we conduct our model comparison
through the following metrics: (i) root-mean-square error (RMSE), (ii) mean absolute error
(MAE), (iii) continuous ranked probability score (CRPS; Gneiting and Raftery 2007), and
(iv) coverage (CVG). By definition,

RMSEi =
√√√√ 1

T (L − 1)

T∑

t=1

L∑

�=2

(
Ŷt�(si ) − Yt�(si )

)2
,

MAEi = 1

T (L − 1)

T∑

t=1

L∑

�=2

∣∣∣Ŷt�(si ) − Yt�(si )
∣∣∣ ,

CRPSi = 1

T (L − 1)

T∑

t=1

L∑

�=2⎛

⎝ 1

B

B∑

b=1

∣∣
∣Y (b)

t� (si ) − Yt�(si )
∣∣
∣ − 1

2B2

B∑

b1=1

B∑

b2=1

∣∣
∣Y (b1)

t� (si ) − Y (b2)
t� (si )

∣∣
∣

⎞

⎠ ,

CVGi = 1

T (L − 1)

T∑

t=1

L∑

�=2

I (Lt�(si ) ≤ Yt�(si ) ≤ Ut�(si )),

where Ŷt�(si ) = ∑B
b=1 Y

(b)
t� (si )/B with Y (b)

t� (si ) the bth posterior predictive replicate of
Yt�(si ), from the left-out location si . Also, (Lt�(si ),Ut�(si )) is the 90% predictive interval
for Yt�(si ), i.e., the 5th and 95th percentiles of the MCMC samples Y (b)

t� (si ) (b = 1, . . . , B),
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Table 1. Mean value across the 18 sites of the performance metrics for models with different spatial GPs

RMSE MAE CRPS CVG

M0 4.49 3.64 2.57 0.894
M1(β0(s)) 4.36 3.53 2.49 0.901
M1(α(s)) 4.49 3.64 2.57 0.894
M1(ρY (s)) 4.49 3.64 2.57 0.895
M1(σε(s)) 4.49 3.63 2.56 0.893
M2(β0(s), σε(s)) 4.36 3.53 2.48 0.901
M3(β0(s), α(s), σε(s)) 4.36 3.53 2.49 0.899
M3(α(s), ρY (s), σε(s)) 4.49 3.63 2.56 0.894
M4 4.36 3.53 2.48 0.900

and I (·) is the indicator function. The smaller the RMSE,MAE, and CRPS values, the better
the model performance. However, the target for CVG is proximity to 0.90.

4. RESULTS

We summarize, using LOOCV, the comparison of models with differing inclusion of the
foregoing spatial GPs. Each model was fitted to the daily maximum temperature series in
months MJJAS for the 60 years from 1956 to 2015. Then, we present the results for the
fitting of the full model over the study region.

In the MCMC fitting, we ran 10 chains, with 200,000 iterations for each chain, to obtain
samples from the joint posterior distribution. The first 100,000 samples were discarded
as burn-in, and the remaining 100,000 samples were thinned to retain 100 samples from
each chain for posterior inference. MCMC diagnostics for the full model are shown in
Section S2.3 of the Supplementary Materials.

4.1. VALIDATION AND MODEL COMPARISON

The full model considered includes four spatial GPs. To compare models and assess the
importance of the proposed GPs, simpler models incorporating 0, 1, 2, or 3 GPs are fitted.
Mp with p = 0, 1, . . . , 4 denotes a model including p spatial processes that are specified
in parentheses. For example, M1(β0(s)) is the model with a single spatial process for the
intercept; for simplicity, the full model is denoted M4.

Using the criteria in Sect. 3.4 with LOOCV for each of the 18 available locations, Table 1
summarizes the averages across sites for the four metrics. The strongest improvement in
predictive performance is obtained by adding a spatially varying intercept process, i.e.,
M1(β0(s)). The inclusion of the other GPs does not yield a clear improvement in perfor-
mance. This is not surprising, since the GP for intercepts explicitly rewards predicting the
mean and random realizations well in order to agree with the held-out values. However,
the usefulness of the other GPs with regard to effectively capturing autocorrelations and
variances at the observed sites will be seen in Sect. 4.2.
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Table 2. Posterior mean and 90% credible intervals for the parameters of M4

Mean Credible interval

β0 (intercept) 25.70 (24.30, 27.16)
α (trend) 0.0207 (−0.0074, 0.0490)
β1 (sine) 13.18 (13.00, 13.37)
β2 (cosine) 0.633 (0.558, 0.709)
β3 (elevation) −0.0069 (−0.0084,−0.0054)
ρY 0.691 (0.606, 0.762)
σε 2.963 (2.433, 3.515)
ση 0.230 (0.201, 0.264)
σλ 0.936 (0.799, 1.088)
σβ0 1.492 (1.154, 1.939)
σα 0.0283 (0.0211, 0.0376)
σρY 0.339 (0.263, 0.435)
σ
σ2
ε

0.404 (0.312, 0.522)

Table S4 in the Supplementary Materials provides details, by site, for the metrics in
Table 1. The locations with poorest fit for all of the models are Pamplona and Tornos, the
only ones with CRPS greater than 3. They also show large RMSE and MAE as well as poor
CVG. For the other locations, the CVG of all the models is closer to the nominal value 0.90.
In particular, M4 not only has the best CVG on average, but the variability of the CVGi ’s
with respect to the nominal 0.90 is the lowest of all the models.

4.2. RESULTS FOR THE FULL MODEL

Here, we show fitted and prediction results for the full model, M4, and demonstrate the
need to include the four GPs. The parameters α, β1, β2, β3, α(s), and σα have been rescaled
to interpret them in terms of the original measure of the covariates. Table 2 summarizes the
posterior mean and credible intervals of the model parameters, including standard deviation
of random effects.

The harmonic coefficients β1 and β2 indicate the strong seasonality in the temperature
series. The coefficient β3 supplies the gradient of temperature corresponding to elevation,
approximately−7◦C per 1,000 m. This value agrees with the exploratory analysis in Sect. 2,
and the average environmental lapse rate (Navarro-Serrano et al. 2018). The linear trend
coefficient, α, indicates that the average increase in temperature is 0.21◦C per decade. Peña-
Angulo et al. (2021) found a similar trend (0.27◦C per decade) in the summer maximum
temperature in Spain (1956–2015). The posterior mean of the autoregresive spatial process,
ρY , confirms the strong serial correlation of daily temperatures.

The other parameters are standard deviations linked to the spatiotemporal effects of the
model. The posterior mean of σε , the mean of the spatially varying standard deviations of
the pure error process ε

(Y )
t� (s), is close to 3◦C. This value doubles the posterior mean of

σβ0 which represents the spatial variability of the mean level β0(s) and triples the posterior
mean of σλ, linked to the variability of the yearly random effects ψt . The magnitude of the
remaining standard deviation parameters is smaller.
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Figure 4. Box plots of the posterior distributions of the annual random effects ψt in M4.

With ρψ = 0, the yearly random effects, ψt , are, a priori, distributed as N (0, σ 2
λ ). The

posteriors are summarized using box plots in Fig. 4. It is observed that the effects may add
or subtract in a given year up to roughly 2.5◦C, with a standard deviation close to 1◦C. These
yearly random effects are able to capture historical events like the extremely cold summer
of 1977 in Spain or the European heat wave in 2003 (Peña-Angulo et al. 2021).

The posterior distributions at the observed locations of the four spatial processes in M4,
β̃0(s), α̃(s), ρY (s), and σε(s), are summarized in Fig. 5 using box plots. The box plots of
the locations are sorted from the lowest to the highest elevation in the horizontal axis. They
confirm the need to consider the four GPs to represent the great climatic variability of the
region under study. To show the spatial behavior of the spatial processes over the entire
region, maps of their posterior means, obtained by a model-based Bayesian kriging, are
presented in Fig. 6. In Section S3.2 of the Supplementary Materials, the parameters of M4

are compared with the parameters of the local models described in Section S1.1, and both
show good agreement.

The top-left plots in Figs. 5 and 6 correspond to β̃0(s). The posterior distributions for
most of the locations show remarkable differences. In particular, β̃0(s) has a clear climatic
interpretation. The spatial adjustments provided by this GP help to improve the fit for the
two areas with a similar elevation around 1,000 m but different climates. These areas are
the southwest and the north of the region. The former has a warmer climate than the latter,
whose climate is influenced by the proximity of the Atlantic Ocean.

With regard to the spatially varying yearly linear trend, α̃(s), the top-right plots in Figs. 5
and 6 reveal clear spatial differences in the warming trend. The posterior distributions for
higher locations and for the Central Valley are shifted with respect to others. Most of the
area shows warming trends, except some areas in the northwest, e.g., Yesa or Ansó, whose
posterior distributions are centered at zero.

The spatial process for the autoregressive term, ρY (s), is clearly necessary in the model.
The bottom-left plot in Fig. 5 shows that the posterior distributions for the 18 locations
differ substantially. The posterior means of the ρY (s) are positive in all locations, and their
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Figure 5. Box plots of the posterior distributions of the spatial random effects, β̃0(s), α̃(s), ρY (s), σε(s), in M4.
Locations are sorted by elevation, from lowest to highest.

values seem to have an increasing relation with the elevation. According to the bottom-left
plot in Fig. 6, the posterior mean is also related to cierzo, a severe northwesterly cold wind
that gives rise to a renewal of the atmospheric condition with less warm air masses. This
wind reduces the persistence of the temperature and therefore the dependence with respect
to the previous day. In the areas affected by cierzo, the mean is around 0.65, lower than the
posterior mean of the mean of the process ρY (s), close to 0.7.

The need for the σε(s) process is also clear. The bottom-right plot in Fig. 5 reveals strong
differences among the posterior distributions of the standard deviations across locations. The
high variability of Pamplona, Yesa, and Tornos stands out. The bottom-right plot in Fig. 6
confirms the spatial variability of the standard deviation and shows that higher standard
deviations are observed in the western part of the region.

4.2.1. Prediction at Unobserved Locations

Now, we illustrate the use of the full model for prediction at three unobserved sites in the
region: Longares (530 m), Olite (390 m), and Guara (800 m). The new sites are marked in
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Figure 6. Maps of the posterior means of the four spatial processes included in M4, obtained by a model-based
Bayesian kriging, with resolution 100 × 100 (Color figure online).

red in Fig. 1 and represent areas with different environmental and climatic characteristics.
Longares is located in the southern half of the region in a rainfed agricultural area dedi-
cated to the production of wine. Vines are seriously affected by global warming since high
temperatures lead to both a decrease in production and a premature ripening of the grapes.
Olite is located in a rural area in the northwest where smaller increases in the temperature
have been observed; an incomplete series of observed values is available at this site. Guara
is an uninhabited area in the Natural Park Sierra and Cañones de Guara. The prediction of
the temperature evolution in this area is essential to better understand the changes that have
been observed in the ecosystem of the Natural Park.

We use the model to impute missing values in an observed series using the posterior
predictive distribution. Daily temperatures in Olite are available in the AEMET database
from 1968 to 2007, although with many missing observations. As an example, Fig. 7 shows
the plot of the observed series and the posterior predictivemeans with 90% credible intervals
for MJJAS days in 1968 and, as a summary, the plot of the observed and the posterior yearly
averages with 90% credible intervals. The 90% CVG in the observed data is 92.0%. The
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Figure 7. Left: Observed (black rough curve) and posterior predictive means (blue smooth curve) with associated
90% credible intervals of daily maximum temperatures in Olite (1968). Right: Observed yearly averages (black
curve) and associated posterior mean and 90% credible intervals (Color figure online).

agreement between the observed and the predicted data confirms that M4 can be used
effectively to impute missing values in Olite.

The posterior distribution of the four spatial processes β̃0(s), α̃(s), ρY (s), and σε(s) for
the three predicted locations are shown in Figure S5 of the Supplementary Materials. The
posterior distributions for β̃0(s) in Longares and Guara are similar despite having different
elevations. The posterior distributions of α̃(s) in Longares and Guara are very similar, while
the distribution of Olite is shifted with a posterior mean almost 0.3◦C per decade lower.
The fitted ρY (s)’s show the differences in the autocorrelation of temperature in the three
locations with posterior means varying from 0.65 to 0.72. The largest differences in the
posterior distributions appear in the σε(s).

M4 is also used to evaluate the change over time of the temperature in the three predicted
sites, using the posterior predictive distribution of the difference between the average in the
30-year periods 1956–1985 and 1986–2015 (see Figure S6 in Supplementary Materials).
Despite the difference in elevation, the posteriormean of the increment is similar in Longares
and Guara, around 1.4◦C, while in Olite it is smaller, 0.5◦C and its 90% credible interval
(−0.010, 1.028) contains zero. The posterior probability that the mean in 1986–2015 is
higher than in 1956–1985 is 0.94 in Olite and essentially 1 in Longares and Guara.

5. SUMMARY AND FUTUREWORK

We have proposed a very rich space–time mean model for daily maximum temperatures,
fitted over a 60-year period for a region in Spain. Our specification is continuous in space and
autoregressive in time. In time, autoregression was examined annually and also daily for the
summer season within each year. We find novel spatial structure including spatially varying
intercepts and trend coefficients as well as spatially varying autoregression coefficients and
variances.

The proposed modeling can be adapted to other regions, perhaps considering other geo-
graphical covariates such as latitude, longitude, or distance to the sea. Also, the modeling
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can omit spatial processes that are not necessary, e.g., avoiding ρY (s) in a more homoge-
neous region with a lower variation in elevation. The modeling might also be adapted to
other response variables in spatiotemporal problems, such as daily minimum temperature
and other environmental variables including daily evapotranspiration or hourly temperature
in the sea. The flexible autoregression terms can express behavior in series where serial
correlation is an important source of variation.

A limitation of the present analysis is that we have only 18 monitoring stations so that
learning about the spatial surfaces in our modeling is less than we would want. Despite
this small number of sites, the model has been able to capture the climate variability of
the region under study. The spatial random effects identify areas with a different mean
temperature level, but also areas where the observed warming over time shows a different
trend, areaswhere temperature ismore persistent (i.e.,with a stronger daily serial correlation)
or with different variability. The capacity of the fitted model to impute temperature over
the entire region allows us to obtain reliable predictions and credible intervals for daily
temperature series at unobserved sites. This can be valuable for economical, agricultural, or
environmental reasons.

Future work will consider different regions providing more available spatial locations
n. However, the O(n3) computational complexity of inverting a n × n covariance matrix
can be prohibitive for implementing the above model for data with large n. Reduced rank
approximations to GPs may be used to address this computation bottleneck, e.g., Gaussian
predictive process (Banerjee et al. 2008) or nearest-neighbor GP (Datta et al. 2016). As
a different challenge, one may wonder whether the low trend values (blue region) in the
top-right plot in Fig. 6 are actually meaningful. Future work could implement a version
of a spatially dependent multiple testing analysis (Risser et al. 2019) given the posterior
draws of α̃(s). A different future direction will move away from mean modeling to quantile
modeling in order to investigate extremes of temperature, both hot and cold. This will lead
to novel development for spatiotemporal quantile regression.
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