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Abstract

Virtual reality (VR) is rapidly growing: Advances in hardware, together with the current
high computational power, are driving this technology, which has the potential to change the way
people consume content, and has been predicted to become the next big computing paradigm.
However, although it has become accessible at a consumer level, much still remains unknown
about the grammar and visual language in this medium. Understanding and predicting how
humans behave in virtual environments remains an open problem, since the visual behavior
known for traditional screen-based content does not hold for immersive VR environments: In
VR, the user has total control of the camera, and therefore content creators cannot ensure
where viewers’ attention will be directed to. This understanding of visual behavior, however,
can be crucial in many applications, such as novel compression and rendering techniques, content
design, or virtual tourism, among others.

Some works have been devoted to analyzing and modeling human visual behavior. Most
of them have focused on identifying the content’s regions that attract the observers’ visual
attention, resorting to saliency as a topological measure of what part of a virtual scene might
be of more interest. When consuming virtual reality content, which can be either static (i.e.,
360° images) or dynamic (i.e., 360° videos), there are many factors that affect human visual
behavior, which are mainly associated with the scene shown in the VR video or image (e.g.,
colors, shapes, movements, etc.), but also depend on the subjects observing it (their mood and
background, the task being performed, previous knowledge, etc.). Therefore, all these variables
affecting saliency make its prediction a challenging task.

This master thesis presents a novel saliency prediction model for VR videos based on a deep
learning approach (DL). DL networks have shown outstanding results in image processing tasks,
automatically inferring the most relevant information from images. The proposed model is the
first to exploit the joint potential of convolutional (CNN) and recurrent (RNN) neural networks
to extract and model the inherent spatio-temporal features from videos, employing RNNs to
account for temporal information at the time of feature extraction, rather than to post-process
spatial features as in previous works. It is also tailored to the particularities of dynamic VR
videos, with the use of spherical convolutions and a novel spherical loss function for saliency
prediction that work on a 3D space rather than in traditional image space. To facilitate spatio-
temporal learning, this work is also the first in including the optical flow between 360° frames for
saliency prediction, since movement is known to be a highly salient feature in dynamic content.

The proposed model was evaluated qualitatively and quantitatively, proving to outperform
state-of-the-art works. Moreover, an exhaustive ablation study demonstrates the effectiveness
of the different design decisions made throughout the development of the model.
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1. Introduction

“Virtual reality is the use of computer technology to create the effect of an interactive three-
dimensional world in which the objects have a sense of spatial presence” (Steve Bryson — NASA
Ames). “In a virtual environment, patterned sensory impressions are delivered to the senses of
the human participant through computer generated displays (visual, auditory, tactile and kines-
thetic)” (Ellis, 1992). Nowadays, the most common virtual reality (VR) experience is the one
provided by a head-mounted display (HMD). These devices create the notion of spatial presence
by showing a slightly different image to each eye, simulating human’s stereoscopic vision, and
tracking head movement, allowing users to explore the whole 360° virtual environment that
surrounds them. Besides the HMD, some controllers are often used as a tool to interact with
the virtual environment, enhancing the final experience. Although VR was once relegated to
a privileged minority, recent advances in computer graphics and computer vision, the techni-
cal improvement of displays, and the increasing computing power of devices, are fostering its
development and allowing it to reach the consumer level.

Virtual reality, which has been usually associated with the entertainment industry, has proven
to be a powerful tool in many other fields such as the manufacturing industry, online market,
architecture, design, and education, among others. Although many advances have been made in
VR, this new visual representation technology presents challenges and limitations that are still
an open problem. Unlike traditional media, where the whole content is usually shown on a flat
screen, VR content occupies the 360° space around the user. As in real life, only the part of the
scene which falls into the observer’s field of view is seen, and it is by eye and head movements
that the remainder of the environment can be explored. Therefore, the user takes control of the
camera, choosing what to observe. Due to this paradigm shift, most of the patterns and visual
behaviors known for 2D images do not neccessarily hold for 360° immersive environments. This
may be due to the feeling of presence that VR elicits, where the observer perceives and responds
to VR simulations as if they were real.

Human visual behavior refers to the eye movements performed in response to a visual stim-
ulus, which can be roughly categorized into fixations (i.e., the maintaining of the gaze on a
single location), and saccades, (i.e., rapid jerky movements that take place between fixations).
The two most common representations of visual behavior are: Saliency, the probability of each
image’s pixel to be observed; and scanpaths, the ordered gaze fixation of the observers’ when
shown an image. Usually, observers tend to fixate on the areas of an image that are of more
interest, although each may present a radically different scanpath. Therefore, many approaches
have focused on modeling which points in a scene are most likely to attract users’ attention,
resorting to saliency as a topological measure of the conspicuity of the elements of that scene,
or in other words, the probability of each element to receive a fixation from the observer.

10



1. Introduction

Viewport Image

Equirectangular Image

Figure 1.1: Example of a 360° scene projected into a 2D plane by an equirectangular projection (right) and a
viewport projection (left) [4]. The viewport representation corresponds to the the reduce region of the whole 360°
image observed at each instant (red contour in the sphere). Note the distortion introduced by the equirectangular
projection, which is larger in the image regions corresponding to areas of the sphere that are close to the poles,
and the practically null distortion in the viewport projection.

The study of fixation data from real observers gathered with eye-tracking devices has shown
that there exists an inter- and intra- observer variability when exploring 360° visual stimuli [7].
This variability makes the task of visual human attention prediction challenging, but although
the behavior of multiple observers in response to the same stimulus is rarely the same, they all
share some common, inherent patterns [7]. Most of the observers are usually attracted by the
most salient regions of a scene. Hence, modeling the saliency of an image can be considered a
fundamental step towards understanding human visual behavior in VR environments. Modeling
saliency in dynamic 360° content (i.e., videos) presents even additional challenges with respect
to the static case, since features such as the movement of objects, actions, or the storyline of
the video being watched have a huge impact on saliency, and therefore on human attention.

This project focuses on modeling saliency in dynamic cinematic content, which refers to
360° videos consisting of a succession of frames (i.e., 360° static images) that are intended to
be shown in an HMD and usually pre-recorded. Many previous works have been devoted to
saliency prediction in 360° content due to the numerous potential applications (see Martin et
al’s survey [8]:Sec.4), such as the assistance in VR content design: having a model that simulates
human visual attention helps VR content creators get a sense of what the viewers’ behavior will
be like, adapting the experience to them. However, working with the spherical representation
of this 360° content, either static or dynamic, can be cumbersome. Therefore, VR content is
usually reprojected into 2D, facilitating visualization and manipulation (see Figure .

The aim of this master’s thesis is to propose a novel saliency prediction model for dynamic
360° content. For this purpose, relevant state-of-the-art works devoted to this problem were
reviewed, particularly those based on deep learning (DL). Deep learning techniques are rapidly
growing in many disciplines, thanks to their ability to learn and model inherent characteristics
of complex data. Previous works have shown that DL is able to learn spatio-temporal features
from images, and have leveraged them to yield accurate saliency predictions. However, and after
reviewing this body of literature, some limitations have been encountered.

Thus, the proposed model for saliency prediction in dynamic 360° content was specifically
designed to to alleviate these limitations. It was evaluated over two different datasets in a
quantitative and qualitative fashion, with results outperforming previous approaches in the state
of the art. Additionally, an exhaustive ablation study supports the different design decisions
made trough the development of the model.

11



1. Introduction

Month 1 Month 2 Month 3 Month 4 Month 5

Study of the state of the art

Saliency model development

Ablation studies

Model evaluation

Comparison with previous works

Master thesis report

Figure 1.2: Gantt chart of the project schedule.

1.1 Objectives and Scope of the Project

The main objective of this master’s thesis is the design, implementation, and evaluation of
a saliency prediction model for dynamic 360° environments. To accomplish it, the following
specific objectives are established:

e Study of the state of the art in saliency prediction in traditional and 360° content, for
both static and dynamic content (Section [2)).

e Design and implementation of a saliency prediction model for dynamic 360° content (Sec-

tion .

e Evaluation of the model’s performance and comparison to state-of-the-art models (Section

2 and [I3).

e Ablation studies of the different modules that form the proposed model (Section .

This project is carried out in the Graphics and Imaging Lab research group, at the University
of Zaragoza. The group’s work focuses on computer graphics, conducting research in areas of
physically realistic rendering, image processing, computational photography, virtual reality, or
applied perception, among others. The group’s work frequently involves the use of gaze tracking
and deep learning techniques, as well as concepts such as saliency.

1.2 Planning and tools

The timeline followed to achieve the different objectives of this master thesis is shown in the
Gantt chart of Figure [I.2] The time dedicated to the project is of 744 hours distributed over
five months.

The saliency model was implemented in Python, using PyTorch, an open-source machine
learning framework for research prototyping and production deployment. The datasets used
for training and evaluation of the model were processed with the programming language and
numeric computing environment MATLAB. The deep learning model was trained with a Quadro
P5000 GPU with an integrated memory of 16 GB. GitHub was used as the version control tool.

12



2. Related Work

This section provides an overview of the state of the art in saliency prediction. It first presents
a review of the literature about traditional 2D saliency, since it has established a strong basis
later leveraged by models designed specifically for 360° content. Then, it focuses on the different
existing approaches to address the particular challenges of saliency prediction in both static and
dynamic 360° content.

2.1 Modeling visual attention in traditional 2D content

2.1.1 Heuristic approaches

In the last decades, many works have been devoted to saliency prediction in 2D content. The
method proposed by Itti et al. [9] in 1998 can be considered the seminal work in this regard.
They propose a heuristic approach in which they extract low-level features from the images,
such as color, orientation, or high contrast areas, and linearly combine them to obtain a final
saliency map. Several follow-up works [I0, 11, 12] continued with this bottom-up strategy,
exploring different hand-crafted features to improve the predicted saliency. Similarly, Haret
et al. [I3] develop a graph-based visual attention model that uses a Markovian approach to
generate activation maps from feature vectors, and combine them into a single saliency map.

However, these bottom-up strategies based on low-level features often failed to capture the
actual eye movements, thus novel approaches [14} [15] [16] arised to palliate this limitation. Judd
et al. [I5] proposed using low-level, middle, and high-level image features, combining them with
a linear Suport Vector Machine (SVM). Borji et al. [14] combined the best previous bottom-up
models with top-down semantic features (e.g., cars, animals, faces, etc.) using machine learning
techniques such as SVM, regression, and AdaBoost classifiers.

2.1.2 Data-driven approaches

With the emergence of deep neural networks (DNNs), hand-crafted features were progressively
replaced. DNNs, especially convolutional neural networks (CNNs), were yielding outstanding
results in image classification tasks since they were able to extract automatically the most
relevant features from the images. Numerous works [17, 18] [19] 20] followed these data-driven
approaches in the field of saliency prediction, leading to unprecedentedly accurate models that

13



2. Related Work

increasingly resembled human behavior.

One of the first models to exemplify the superiority of DNNs was DeepFix [I7], a fully
convolutional neural network that proved to surpass state-of-the-art results relying on previous
bottom-up approaches based on hand-crafted features. Later, and considering that eye move-
ments in free-viewing are related to both bottom-up and top-down visual factors, Liu et al. [18]
presented a multiresolution convolutional neural network able to extract features at three dif-
ferent scales. However, Deep Learning techniques are usually limited by the enormous amount
of data and time required for training. Some works like the ones from Junting et al. [20] or
DeepGaze [19] alleviate these limitations by leveraging feature spaces obtained from networks
specifically trained for other tasks such as image classification.

As new deep learning techniques have emerged, some of them have also been applied to
saliency prediction. Particularly, architectures like generative adversarial networks (GANs) such
as SalGAN [21], or long short-term memory (LSTM) recurrent networks, like SAM [22] and
DSCLRCN [23], have achieved results outperforming other CNN approaches.

Although saliency prediction in 2D images has been extensively explored in recent years,
the body of literature specifically addressing this topic in dynamic content (i.e., video), is quite
narrow. Works such as the ones from Bak et al.[24] 25], or the one from Jianget et al. [26]
also resorted to DNNs to extract spatial features, but those works were also designed to handle
temporal information. Specifically, the two latter use recurrent neural networks, whereas the
former obtains that information from optical flow estimation.

2.2 Modeling and predicting attention in static 360° content

The emergence and popularization of virtual reality have increased the interest, and even neces-
sity, on understanding human behaviour in virtual environments. As detailed in the previous
section, many works have focused on modeling human visual attention in 2D images, but these
cannot be applied to this 360° content, since this content presents new challenges such as the
distortion generated by reprojecting 3D content into 2D space, or the fact that observers cannot
seen the whole 360° image at once. Nevertheless, the evolution of saliency prediction models
for 360° content has been closely linked to that of traditional one, thus the same trends can
be observed, where heuristic approaches established a baseline until the rise of deep neural
networks.

2.2.1 Heuristic approaches

Heuristic approaches extract low and high hand-crafted features to determine areas of interest.
Within them, it is possible to differentiate two approaches to deal with 360° images. The first one
resorts to new methodologies to obtain those features in the new paradigm of 360° content, such
as using viewport representations instead of the whole 360° image [27, 28], or segmenting the
image into super-pixels by a simple linear iterative clustering (SLIC) before feature extraction
[29].

14



2. Related Work

The other approach is based on the application of 2D saliency models, such as those discussed
in Section to different reprojections of the 360° content (e.g., cube-map, equirectangular,
etc.). The main limitation of this strategy lies in the distortion introduced by the sphere-to-
plane projection. Works like Lebreton et al. [30] and Guilherme et al. [3I] apply 2D saliency
prediction approaches on the viewport images, and usually depends on the Field of View (FoV)
of the used display. This representation presents little geometric distortion but limits the size of
seen content. On the other hand, Startsev et al. [32] proposed the use of both equirectangular
and cube-map projection to diminishing the distortion.

2.2.2 Data-driven approaches

Deep learning rapidly overtook heuristic approaches based on hand-crafted features as occurred
with traditional image saliency prediction, due to their outstanding performance. Most of the
works proposed for spherical images are adapted from, or strongly based on 2D image saliency
models.

Assens et al. [33] propose an equirectangular projection and the model SaltiNet, which has
the same structure as the CNN-based 2D image saliency network SalNet [20]. Except for the last
layer which is intended for sampling scanpaths from the saliency maps, which are the succession
of fixations that an observer would probably make when exploring the image.

On the other hand, Monroy et al. [34] also proposed a network whose core is based on
SalNet [20] but using a cube-map representation. The obtained saliency, which is represented
as cube-maps, jointly with the spherical coordinates of the pixels, are passed to a second CNN
module that refines the prediction and provides the final equirectangular saliency map.

SalGAN [21] is adapted as well to 360° images by Chao et al. in SalGAN360 [35] by re-
training part of the model with 360° images (i.e., fine-tuning). They resorted to a cube-map
representation: Transferring each equirectangular image into multiple cube maps by rotating
the center of the cube to multiple horizontal and vertical angles. SalGAN360 uses for training
a new loss function that combines three typical saliency evaluation metrics: Kullback-Leibler
divergence (KLD), Pearson’s Correlation Coefficient (CC), and Normalized Scanpath Saliency
(NSS).

Dealing with the distortion introduced by the sphere-to-plane projection has been one of
the main challenges when using 360° content. The works aforementioned tried to diminish
the effect of distortion in their final predictions by using representations such as cube-maps or
viewport images, that yield lower distortion than equirectangular projections, but still deform
the images. Nonetheless, representations with multiple images lead to discontinuities, redundant
image boundaries, and repeated computations, which can hamper the prediction process.

Some state-of-the-art works [36] B, B7] propose a different strategy to alleviate this issue.
Instead of manipulating the projection of the content, they modified the neural network structure
to account for 360° content particularities. Haoran et al. [36] represent the 360° images with a
Geodesic ICOsahedral Pixelation (GICOPix) and present an alternative to CNNs with SalGCN,
which is based on graph convolutional networks (GCNs). In SphereNet [5], rather than applying
the conventional kernel directly in the equirectangular image, it is applied on spherical space,
and then projected into de 2D plane. Consequently, the kernel used for convolution and pooling
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2. Related Work

presents the same distortion as the equirectangular image. Although initially conceived for
classification and detection tasks, it has subsequently been used for saliency prediction in works
such as the one from Martin et al. [3]. A similar approach is proposed by Yanyu et al. [37],
but they use a circular crown kernel in the sphere. Additionally to their spherical convolutional
and pooling layers, they also present a spherical Mean Squared Error (MSE) loss, which weights
the MSE of each pixel with its solid angle, thus accounting for the distortion of equirectangular
saliency maps.

2.3 Modeling and predicting attention in dynamic 360° content

Although dynamic content consists of a succession of images and could be considered an exten-
sion of saliency prediction in 360° images, the human visual behavior towards it differs greatly
from the static case. Aspects such as the movement of the elements or the plot of the sequence
influence the viewer’s attention, causing the saliency of each frame to be influenced by previous
frames.

For saliency prediction in dynamic 360° content, some models such as PanoSalNet [38],
followed a naive approach and presented a saliency CNN-based estimation network similar to
those used for images. However, it just predicts an independent saliency map for each frame,
thus not taking temporality into consideration. Due to this limitation, many posterior works
resorted to a different approach, in which spatio-temporal features are extracted in order to
make a more suitable prediction.

A frequent choice in state-of-the-art models is the use of Recurrent Neural Networks (RNNs),
especially LSTMs, given their ability to retain temporal information. Cheng et al. [2] use a cube-
map representation and propose a cube padding technique applicable to CNNs, which solves the
image boundary problem. With it, they obtain the prior saliency maps of each frame with a
CNN-based network, and then pass them through a convolutional LSTM (ConvLSTM) to cap-
ture relations between saliency in consecutive frames and get the definitive saliency prediction.

A more sophisticated architecture was proposed by Dahou et al. with AtSal [I], in which
they combine the saliency maps obtained from two different streams (namely attention and
expert streams). The core of the attention stream architecture is a convolutional encoder-
decoder, which consist on consecutive convolutional layers that extract the image’s features
(i.e., encoder) followed by deconvolutional layers that recover the saliency map from them (i.e.,
decoder). This CNN encoder-decoder, jointly with an attention mechanism, are intended to
extract global static saliency from the equirectangular frames. On the other hand, the expert
stream tries to learn spatio-temporal saliency information from a cube-map representation. It is
composed of two SalEMA [39] networks, whose architecture is based on CNNs and LSTMs, one
for the poles and the other for the equator views of the cube map. Having a different network
for the poles allows them to avoid overestimating fixations in these areas, as most of the saliency
concentrates in the equator.

The network proposed by Yanyu et al. [37] for video saliency prediction includes spherical
convolutions, pooling, and MSE loss as aforementioned, but also implements a spherical convo-
lutional LSTM. The model’s architecture is based on a U-Net [40], but with the inclusion of an
LSTM in its bottleneck to capture temporal information.
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2. Related Work

This master thesis presents a data-driven approach for 360° video saliency prediction based
on the spherical convolutions from SphereNet [5]. In line with state-of-the-art models like Cheng
et al.’s [2], Yanyu et al.’s [37], or AtSal [I], LSTMs will be used to obtain temporal features.
These previous works use traditional CNNs to extract the image features and then process them
with LSTMs. However, traditional CNNs only base their predictions on the current frame, thus
the features extracted could not be the most relevant ones given the time frame. To account for
this limitation, the model presented in this master thesis proposes to use spherical convolutional
LSTMs, namely Spherical ConvLSTMs, to directly learn the spatiotemporal features. Addi-
tionally, and taking as a reference works like the one by Bak et al. [24] for 2D video saliency,
this work proposes using optical flow estimation together with the 360° images as input to the
network, since it is considered to have a strong influence on visual human attention.
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3. A Model for Saliency Prediction on 360° Videos

This section details the proposed model for saliency prediction on dynamic 360° content, which
is based on an encoder-decoder architecture built over Spherical Convolutional LSTMs (Section
. The input to the model is the RGB frames from the 360° video, and an estimation of the
optical flow between frames to predict frame-wise saliency (Section . To further alleviate
the effect of the distortion introduced by the equirectangular representation of 360° content, a
novel spherical loss function is presented in Section

Spherical ConvLSTM
Spherical Max Pooling
o Up-Sampling

- ENCODER AE'—’\ DECODER o -

HxWx6 H/2 x W/2 x 36 HxWx1

e

Figure 3.1: Network’s encoder-decoder architecture: The encoder is composed of an Spherical ConvLSTM and a
Spherical Max Pooling layer. It takes as input the concatenation of the RGB image and the optical flow of the
frame. The decoder, formed by an Spherical ConvLSTM and an Up-Sampling layer, decodes the feature vector
predicting the final saliency.

3.1 Theoretical Background

3.1.1 Spherical Convolutions

This work is built over the spherical convolutions specifically designed for equirectangular images
presented by SphereNet [5], which are an adaptation of traditional convolutional layers (see
Appendix . These spherical convolutions were designed to handle the distortion of 360°
images: The convolutional operations are projected from the 2D image domain to the surface
of a sphere representing the 360° image. To account for real neighboring in spherical space, the
kernel is defined as the projection on the sphere of a small patch tangent to its surface (Figure
. Thus, the kernel sampling pattern is distorted along with the image in equirectangular

projection (Figures and [3.2¢)).
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3. A Model for Saliency Prediction on 360° Videos
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Figure 3.2: Original figures from SphereNet [5] representing spherical convolutions.

3.1.2 Convolutional Long Short-Term Memory Cells

Dynamic videos contain elements that are likely to move, change, or disappear. These continuous
variations in position, appearance, or illumination are considered temporal features which usually
attract the observer’s attention, being perceived as salient.

Convolutional Long Short-Term Memory (ConvLSTM) cells can extract and process tem-
poral features from sequential data (e.g., videos) and infer temporal relations between them
[41]. The fully-connected structures from traditional LSTMs (see Appendix are replaced
in ConvLLSTMs by convolutional layers, which are traditionally used in image processing due to
their ability to infer spatial correlations from the input data. A ConvLSTM cell is composed
of cell states ¢ and hidden states h, which enable storing information through the processing of
the points of the input sequence. The cell and hidden state at each timestep ¢ are computed as
follows:

iv = o (Wi [y, hy—1] + b;)

fr =0 Wgs [z, he1] + by)

op = o (Wy * [x4, hy—1] + o)

gr = tanh (Wy * [z, hy—1] + bg)
c=fiOc 1+t Og

hy = oy ® tanh (¢)

where i, f, and o are the self-parameterized input, forget and output gates, W and b are learned
weights and biases, x is an input data point, * the convolutional operation, ® the Hadamard
product, and o the sigmoid activation function. The cell output is obtained from the last value
of h. More details about the behaviour of LSTMs can be found in Appendix [A.4]

3.1.3 Optical Flow Estimation

The movement of objects, people, or animals in 360° videos influences human visual attention
[42, [43], and both their speed and direction can be relevant features to consider when predicting
saliency. A representation of this movement is the optical flow, which in computer vision can
be defined as a velocity field associated with image changes, yielding the relative movement

19



3. A Model for Saliency Prediction on 360° Videos

between objects and the camera.

The optical flow estimation between frames used in this master thesis is obtained with RAFT
[44], a deep neural network trained on the Sintel Dataset [45], which has shown outstanding
results on both synthetic and real images. RAFT stands out for its efficiency, even with high-
resolution images, and strong generalization, posing a great advantage with respect to alternative
methods for optical flow estimation. RAFT is inspired by optimization-based approaches. It is
formed by an encoder that extracts a feature vector for each pixel of both frames. These feature
vectors are passed through a correlation layer that computes the visual similarity between the
pixels. Then, these similarities are used to update the optical flow estimation (which is initialized
to zero) by means of a RNN-based network, mimicking the steps of an iterative optimization
algorithm.

Although RAFT is designed to work on traditional 2D images, the provided optical flow
estimation was evaluated and found to be sufficiently accurate (see Section , since most
of the motion is going to be concentrated in the less distorted region of equirectangular images:
the equator.

3.2 Architecture

The proposed model is based on an encoder-decoder architecture (see Appendix |[A.2]). The
encoder module extracts the spatiotemporal features from the frames of a 360° video, and the
decoder module predicts each frame’s saliency map from these spatiotemporal features.

Some state-of-the-art works for saliency prediction in 360° videos [37, 2, [38] have proposed
similar encoder-decoder approaches using CNNs, which apply either traditional or spherical con-
volutions, for both the encoder and decoder. Additionally, they include a LSTM-based module
after the encoder to infer the temporal relationships between encoded feature vectors. Although
these approaches extract spatio-temporal features from the feature vectors, the encoding stage
is done without any information from the previous steps.

In contrast, the model proposed in this thesis is based on the hypothesis that having tempo-
ral information at the time of feature extraction would allow obtaining more relevant features
from dynamic content, leading to more accurate predictions. Therefore, the proposed encoder
and decoder architectures are built over ConvLLSTMs (see Section , but whose traditional
convolutions have been replaced by the spherical convolutions proposed in SphereNet (see Sec-
tion to account for the distortion introduced by the equirectangular projection. The
Spherical ConvLLSTMs are used to encode and decode the feature vectors considering the infor-
mation retained in their internal states (i.e., hidden and cell states) about previous frames, thus
accounting for the temporal information at the time of feature extraction.

Additionally, the optical flow between frames (see Section , which is hypothesized
to provide crucial information about the video saliency, is input to the network as an RGB
image, where color encodes the displacement (direction and magnitude) of each pixel between
consecutive frames.

Figure [3.1] shows the network’s architecture diagram. The first module of the network’s
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3. A Model for Saliency Prediction on 360° Videos

architecture is the encoder, which is fed with the concatenation of a sequence S of frames f with
length n, and the corresponding sequence OF of optical flow estimations 0. Hence, the model’s
input Z can be defined as:

I:[SaOf]:{fO 007"'7ft 0ta"'>fn0'n,} tﬁ[o,n] (32)

where f and o are RGB equirectangular images of size WxHx3 (W and H are the width and
height of the frames, and 3 the number of channels). The timestep of each element on the
sequence is represented by t.

The encoder module is built with a Spherical ConvLLSTM followed by a Spherical Max Pooling
layer. The Spherical ConvLLSTM takes at each timestep ¢ the input vector i; = [fi, o;] with shape
WxHx6, and outputs a hidden state with 36 channels (this size was empirically set). Then, to
obtain the feature vector of the current frame, a Spherical Max Pooling layer downsamples the
input along its spatial dimensions by taking the maximum value over a spherical kernel of size
3x3 for each of the 36 channels. This yields a final shape of the feature vector (i.e., bottleneck)
of %x%xfﬁﬁ.

The encoder is followed by the decoder module, built with a Spherical ConvLSTM and an
Up-Sampling layer. The Spherical ConvLLSTM decodes the feature vector into a single channel
that represents the saliency map. Then, the Up-Sampling layer is applied to increase the spatial
resolution to match the input spatial dimensions. Thus, the obtained final saliency map has a
shape of WxHx1.

3.3 Loss Function

This model has been trained with a novel spherical weighted Kullback—Leibler Divergence (KL-
Div) loss term, which refers to the KLDiv adapted to 360° content. The traditional Kull-
back—Leibler Divergence is a metric broadly used for saliency map comparisons, which measures
the overall dissimilarity between two saliency maps that are considered as probability density
functions and can be defined as follows:

KLDiv (G, P) Z Gi; 10g< fP ) (3.3)
€ i

where P; j, G, are the predicted and ground truth saliency values at pixel (7,7), and € is a
regularization constant that determines how much zero-valued predictions are penalized.

However, this metric does not account for the distortion introduced by the equirectangular
projection, obtaining inadequate scores for this type of content. This behavior is represented in
the upper image of Figure where for the same area on the sphere (i.e., yellow circle) different
KLDiv values are obtained depending on its location. To overcome this limitation also present
in the Mean Squared Error (MSE) loss proposed by Xu et al. [37], they applied a spherical
weighting by the solid angle to compensate for the distortion. For an equirectangular image of
shape m x n these weights can be computed as:
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3. A Model for Saliency Prediction on 360° Videos

wZ,] =

sin(Ap(j+1))—sin(Aypy)
A

where Af = 5 Ap = i€(0,n]; j€[0,m]

™
m

The proposed spherical weighted KLDiv loss employ to train the model applies this weighting
to the traditional KLDiv, compensating for the distortion introduced by the equirectangular
projection, since the contribution of each pixel to the KLDiv is proportional to its solid angle

(see the bottom image of Figure . Therefore, the proposed spherical weighted KLDiv loss is
defined as follows:

Giy'
LK LDiv (G, P) = izjwiyj Gi’j log (6 + HéJ) (3.5)
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Figure 3.3: Graphical representation of the KLDiv metric behavior. The image represents the KLDiv and weighted
KLDiv metrics obtained between two assumed saliency maps: the one obtained by projecting the spherical image
with a salient area (yellow circle) and a map without any salient points. It can be seen that an equal area on the
sphere (yellow circle) corresponds to different projected areas. Therefore, the traditional KLDiv (top image) is
greater at the poles, since the projected yellow patch covers a larger number of pixels in the 2D representation,
which contributes to the KLDiv score. However, when weighted by their solid angle, the contribution of each
pixel to the KLDiv is compensated, obtaining the same value (bottom image).

| = KLDivyges + W

© = KLDivgg *w
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3. A Model for Saliency Prediction on 360° Videos

3.4 Dataset and Training Details

The dataset used to train the proposed model was the VR-EyeTracking dataset [46], whose
videos present a resolution of at least 4K (3840 pixels in width), a frame ratio of 25 frames
per second (fps), duration ranging 20s to 60s, and varied content (e.g., indoor scenes, outdoor
activities, or sports games). The fixations of 45 human observers, recorded with an eye-tracking
device mounted on the HMD, are also provided together with the 360° videos. From the entire
dataset of 76 360° videos, 32 that present simple scenes and a static camera are selected as
training data.

To train the model, the selected 32 videos were down-sampled from 25 fps to 8 fps, and
reshaped to a 320x240 resolution, which reduces memory, computation, and processing require-
ments. Each video is then divided into sequences of 20 frames, each one corresponding to
2.5s. The initial 20 frames are discarded to avoid a center bias present due to the capturing
methodology (i.e., all participants were asked to look at the same point at the beginning of each
video).

A second dataset proposed by Zhang et al. [47] will be used for an additional evaluation of
the model and comparisons to state-of-the-art works. The dataset consists of 104 videos of the
342 from the Sports-360 dataset [48] whose duration was at least 20s. The videos show different
sports activities such as dance, BMX, or skateboarding, and present challenging scenes with
multiple elements and salient areas. They also include artistic cuts and artistic transitions (e.g.,
fade out, cross dissolve). Even though most of the videos were recorded with a static camera,
some of them were captured while the camera was in motion. The recorded eye fixations of 20
observers are provided along with the videos as ground truth data. The Sports-360 dataset was
processed as the VR-EyeTracking dataset.

Fixation Map Saliency Map

20 60 80 100 120

Ne¢ of Fixations Probability
Figure 3.4: Example of a saliency map (right image) obtained from its fixation map (left image), after applying

the Gaussian kernel, whose horizontal radius has been scaled to account for the distortion introduced by the
equirectangular projection.

The ground truth saliency maps used for training and evaluation were obtained from the
eye fixations provided with the datasets using the method adopted by Sitzman et al. [49]. Each
value of the saliency map represents the probability that an observer will fix its gaze on that
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3. A Model for Saliency Prediction on 360° Videos

pixel. Therefore, each frame’s saliency map is built by counting the number of fixations that
observers have made at each pixel location in the equirectangular image (see the left image of
Figure . Then, these maps are convolved with a Gaussian with a standard deviation of 2° of
visual angle to yield continuous saliency maps (see the right image of Figure . To account
for the distortion introduced by the equirectangular projection, the Gaussian kernel’s horizontal
radius is scaled, increasing as it approaches the poles.

The training process took 10.93 hours on a Quadro P5000 with the following hyperparam-
eters: an Adam optimizer [50], a learning rate of 0.001, a batch size of 3 sequences, and 175
epochs. Please refer to Appendix for more information about deep neural networks and
their training process. A mean inference time of 125.795 milliseconds with a standard deviation
of 1.266 milliseconds was obtained after performing 3000 model inferences with sequences of 20
frames.
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4. Results and Evaluation

This section provides an in-depth analysis of the performance of the proposed model for dynamic
360° saliency prediction. Section show some results obtained with the proposed model,
and Section presents a qualitative and quantitative comparison with state-of-the-art works.
Furthermore, Section offers a detailed ablation study that validates the effectiveness of the
different elements included in the network architecture.

4.1 Saliency Metrics

To assess the performance of the developed model, and provide a meaningful comparison with
state-of-the-art works, three different metrics commonly used in the literature for saliency
maps comparison were chosen. They are computed following the implementation proposed
by Gutiérrez et al. [5I] in which each pixel i of a saliency map is weighted by the sine of its
latitude, thus accounting for the distortion introduced by the equirectangular projection. The
metrics used to measure the difference between a predicted saliency map P and its ground truth
G obtained from real observers’ fixations (see Section [3.4), are the following:

e Linear Correlation Coefficient (CC): It is a statistical method used to measure the correla-
tion or dependence between two variables. In saliency prediction, CC measures the linear
relationship between two saliency maps, where CC=0 means poor correlation, CC=1 per-
fect correlation, and CC=-1 perfect correlation but the distributions are opposite. There-
fore, areas with similar magnitude values in both predicted and ground truth saliency maps
will present high positive CC values. This metric can be obtained from the covariances o
of the saliency maps as follows:

CC(P,G) = (4.1)

e Similarity Metric (SIM): It measures the similarity between two saliency maps represented
as probability distributions. The SIM value is 1 when both saliency maps are the same,
and 0 if they do not overlap. The SIM score is computed as follows:

SIM (P,G) = >, min (P}, G;)
(4.2)
where > . P,=> .G =1
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This metric is very sensitive to missing values, penalizing predictions that do not present
the same density as the ground truth. Because of this, the standard deviation of the
Gaussian kernel applied when obtaining the ground truth saliency maps (see Section
affects the SIM value, only reaching its maximum value when the standard deviation of
the predicted and ground truth saliency maps is the same [52].

e Kullback-Leibler Divergence (KLDiv): It measures the difference between two saliency
maps considered as probability distributions. KLDiv ranges from 0, where both saliency
maps are the same, to infinity. The KLDiv value is obtained as follows:

KLDiv (P,G) =) Gilog (e + - fp) (4.3)

The SIM, KLDiv, and CC values presented as results in the comparisons represent the
average mean and the average standard deviation of the measures obtained for all the videos.
The mean values and their standard deviation for each video are computed by evaluating each
video’s frame with respect to its ground truth counterpart with the three metrics presented.
Then, the values obtained for all the videos are averaged to obtain the final performance of a
model.

There are a greater number of metrics for saliency map comparison than the three presented,
and each of them considers different factors. The properties of each saliency map affect metric
scores differently: how the ground truth is represented, whether the prediction includes dataset
bias, whether the inputs are probabilistic or whether spatial deviations exist between the predic-
tion and ground truth [52]. Therefore, several metrics and qualitative analyses must be used to
draw conclusions about the similarity between two saliency maps, since there is no single metric
that can address all the saliency maps’ properties and provide a reliable similarity measure.

4.2 Results

A K-Fold Cross-Validation strategy has been used for the evaluation of the proposed model
over the VR-EyeTracking dataset, due to the limited number of selected videos (see Section
. K-Fold cross-validation is a procedure used for the evaluation of machine learning models
when data availability is limited. This method divides the entire dataset into k groups, or
folds, of approximately equal size. Then, k models are trained under identical conditions and
hyperparameters, but each time a different fold is used as test data and the remaining k-1 as
training data. The evaluation results of each k-model on the corresponding test fold are averaged
to determine the overall network’s performance. This evaluation method offers a better analysis
of the network’s accuracy than using a single test fold or split with a reduced number of samples,
which are susceptible to being biased, leading to an overestimation, or underestimation of the
network’s performance.

The VR-EyeTracking dataset was divided into 5 different folds, with each fold representing
approximately 20% of the dataset. Therefore, the proposed model was trained five times (i.e.,
five runs) for the evaluation with the VR-EyeTracking dataset, each of them with a different
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Figure 4.1: Results obtained with the proposed model for two sequences of the VR-EyeTracking dataset'. The
horizontal axis represents time. The vertical axis shows the frames, the ground truth saliency, and the predicted
saliency for two sequences. Saliency is represented as a heat map blended with the frame’s image, where warm
colors correspond to more salient areas. Note that the proposed model performs accurate predictions similar to
the ground truth, both focusing in small, yet relevant regions of the scene.
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Figure 4.2: Results obtained with the proposed model for a sequence of the Sports-360 dataset'. The horizontal
axis represents time. The vertical axis shows the frames, the ground truth saliency, and the predicted saliency
for the sequence and the zoomed area within the blue rectangle. Saliency is represented as a heat map blended
with the frame’s image, where warm colors correspond to more salient areas. Note the model’s ability to identify
dynamic features in the sequence, where, although there are multiple salient elements (e.g., people on bicycles),
it only focuses on the truly relevant one, since it has prior information about what happened earlier in the 360°
video.
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combination of folds. For the evaluation with the Sports-360 dataset, a single training was
performed with all the 32 videos of the selected VR-EyeTracking dataset.

Figures [4.1] and show some sample results obtained with the proposed model in the
VR-EyeTracking and Sports-360 datasetsf_-] For a set of videos, some consecutive RGB frames
are shown, together with their ground truth saliency maps and the model’s prediction, blended
with the frame. It can be seen how the proposed model is able to perform accurate saliency
predictions, which are close to the ground truth, both focusing on small, yet relevant regions
of the scene. The ability of the model to handle dynamic features can also be appreciated
in the Figure where although there are multiple salient elements (i.e., people on bicycles)
the network is able to detect and focus on which <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>