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Abstract

Virtual reality (VR) is rapidly growing: Advances in hardware, together with the current
high computational power, are driving this technology, which has the potential to change the way
people consume content, and has been predicted to become the next big computing paradigm.
However, although it has become accessible at a consumer level, much still remains unknown
about the grammar and visual language in this medium. Understanding and predicting how
humans behave in virtual environments remains an open problem, since the visual behavior
known for traditional screen-based content does not hold for immersive VR environments: In
VR, the user has total control of the camera, and therefore content creators cannot ensure
where viewers’ attention will be directed to. This understanding of visual behavior, however,
can be crucial in many applications, such as novel compression and rendering techniques, content
design, or virtual tourism, among others.

Some works have been devoted to analyzing and modeling human visual behavior. Most
of them have focused on identifying the content’s regions that attract the observers’ visual
attention, resorting to saliency as a topological measure of what part of a virtual scene might
be of more interest. When consuming virtual reality content, which can be either static (i.e.,
360◦ images) or dynamic (i.e., 360◦ videos), there are many factors that affect human visual
behavior, which are mainly associated with the scene shown in the VR video or image (e.g.,
colors, shapes, movements, etc.), but also depend on the subjects observing it (their mood and
background, the task being performed, previous knowledge, etc.). Therefore, all these variables
affecting saliency make its prediction a challenging task.

This master thesis presents a novel saliency prediction model for VR videos based on a deep
learning approach (DL). DL networks have shown outstanding results in image processing tasks,
automatically inferring the most relevant information from images. The proposed model is the
first to exploit the joint potential of convolutional (CNN) and recurrent (RNN) neural networks
to extract and model the inherent spatio-temporal features from videos, employing RNNs to
account for temporal information at the time of feature extraction, rather than to post-process
spatial features as in previous works. It is also tailored to the particularities of dynamic VR
videos, with the use of spherical convolutions and a novel spherical loss function for saliency
prediction that work on a 3D space rather than in traditional image space. To facilitate spatio-
temporal learning, this work is also the first in including the optical flow between 360◦ frames for
saliency prediction, since movement is known to be a highly salient feature in dynamic content.

The proposed model was evaluated qualitatively and quantitatively, proving to outperform
state-of-the-art works. Moreover, an exhaustive ablation study demonstrates the effectiveness
of the different design decisions made throughout the development of the model.
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1. Introduction

“Virtual reality is the use of computer technology to create the effect of an interactive three-
dimensional world in which the objects have a sense of spatial presence” (Steve Bryson – NASA
Ames). “In a virtual environment, patterned sensory impressions are delivered to the senses of
the human participant through computer generated displays (visual, auditory, tactile and kines-
thetic)” (Ellis, 1992). Nowadays, the most common virtual reality (VR) experience is the one
provided by a head-mounted display (HMD). These devices create the notion of spatial presence
by showing a slightly different image to each eye, simulating human’s stereoscopic vision, and
tracking head movement, allowing users to explore the whole 360◦ virtual environment that
surrounds them. Besides the HMD, some controllers are often used as a tool to interact with
the virtual environment, enhancing the final experience. Although VR was once relegated to
a privileged minority, recent advances in computer graphics and computer vision, the techni-
cal improvement of displays, and the increasing computing power of devices, are fostering its
development and allowing it to reach the consumer level.

Virtual reality, which has been usually associated with the entertainment industry, has proven
to be a powerful tool in many other fields such as the manufacturing industry, online market,
architecture, design, and education, among others. Although many advances have been made in
VR, this new visual representation technology presents challenges and limitations that are still
an open problem. Unlike traditional media, where the whole content is usually shown on a flat
screen, VR content occupies the 360◦ space around the user. As in real life, only the part of the
scene which falls into the observer’s field of view is seen, and it is by eye and head movements
that the remainder of the environment can be explored. Therefore, the user takes control of the
camera, choosing what to observe. Due to this paradigm shift, most of the patterns and visual
behaviors known for 2D images do not neccessarily hold for 360◦ immersive environments. This
may be due to the feeling of presence that VR elicits, where the observer perceives and responds
to VR simulations as if they were real.

Human visual behavior refers to the eye movements performed in response to a visual stim-
ulus, which can be roughly categorized into fixations (i.e., the maintaining of the gaze on a
single location), and saccades, (i.e., rapid jerky movements that take place between fixations).
The two most common representations of visual behavior are: Saliency, the probability of each
image’s pixel to be observed; and scanpaths, the ordered gaze fixation of the observers’ when
shown an image. Usually, observers tend to fixate on the areas of an image that are of more
interest, although each may present a radically different scanpath. Therefore, many approaches
have focused on modeling which points in a scene are most likely to attract users’ attention,
resorting to saliency as a topological measure of the conspicuity of the elements of that scene,
or in other words, the probability of each element to receive a fixation from the observer.

10



1. Introduction

Figure 1.1: Example of a 360◦ scene projected into a 2D plane by an equirectangular projection (right) and a
viewport projection (left) [4]. The viewport representation corresponds to the the reduce region of the whole 360◦

image observed at each instant (red contour in the sphere). Note the distortion introduced by the equirectangular
projection, which is larger in the image regions corresponding to areas of the sphere that are close to the poles,
and the practically null distortion in the viewport projection.

The study of fixation data from real observers gathered with eye-tracking devices has shown
that there exists an inter- and intra- observer variability when exploring 360◦ visual stimuli [7].
This variability makes the task of visual human attention prediction challenging, but although
the behavior of multiple observers in response to the same stimulus is rarely the same, they all
share some common, inherent patterns [7]. Most of the observers are usually attracted by the
most salient regions of a scene. Hence, modeling the saliency of an image can be considered a
fundamental step towards understanding human visual behavior in VR environments. Modeling
saliency in dynamic 360◦ content (i.e., videos) presents even additional challenges with respect
to the static case, since features such as the movement of objects, actions, or the storyline of
the video being watched have a huge impact on saliency, and therefore on human attention.

This project focuses on modeling saliency in dynamic cinematic content, which refers to
360◦ videos consisting of a succession of frames (i.e., 360◦ static images) that are intended to
be shown in an HMD and usually pre-recorded. Many previous works have been devoted to
saliency prediction in 360◦ content due to the numerous potential applications (see Martin et
al’s survey [8]:Sec.4), such as the assistance in VR content design: having a model that simulates
human visual attention helps VR content creators get a sense of what the viewers’ behavior will
be like, adapting the experience to them. However, working with the spherical representation
of this 360◦ content, either static or dynamic, can be cumbersome. Therefore, VR content is
usually reprojected into 2D, facilitating visualization and manipulation (see Figure 1.1).

The aim of this master’s thesis is to propose a novel saliency prediction model for dynamic
360◦ content. For this purpose, relevant state-of-the-art works devoted to this problem were
reviewed, particularly those based on deep learning (DL). Deep learning techniques are rapidly
growing in many disciplines, thanks to their ability to learn and model inherent characteristics
of complex data. Previous works have shown that DL is able to learn spatio-temporal features
from images, and have leveraged them to yield accurate saliency predictions. However, and after
reviewing this body of literature, some limitations have been encountered.

Thus, the proposed model for saliency prediction in dynamic 360◦ content was specifically
designed to to alleviate these limitations. It was evaluated over two different datasets in a
quantitative and qualitative fashion, with results outperforming previous approaches in the state
of the art. Additionally, an exhaustive ablation study supports the different design decisions
made trough the development of the model.

11



1. Introduction

Figure 1.2: Gantt chart of the project schedule.

1.1 Objectives and Scope of the Project

The main objective of this master’s thesis is the design, implementation, and evaluation of
a saliency prediction model for dynamic 360◦ environments. To accomplish it, the following
specific objectives are established:

• Study of the state of the art in saliency prediction in traditional and 360◦ content, for
both static and dynamic content (Section 2).

• Design and implementation of a saliency prediction model for dynamic 360◦ content (Sec-
tion 3).

• Evaluation of the model’s performance and comparison to state-of-the-art models (Section
4.2 and 4.3).

• Ablation studies of the different modules that form the proposed model (Section 4.4).

This project is carried out in the Graphics and Imaging Lab research group, at the University
of Zaragoza. The group’s work focuses on computer graphics, conducting research in areas of
physically realistic rendering, image processing, computational photography, virtual reality, or
applied perception, among others. The group’s work frequently involves the use of gaze tracking
and deep learning techniques, as well as concepts such as saliency.

1.2 Planning and tools

The timeline followed to achieve the different objectives of this master thesis is shown in the
Gantt chart of Figure 1.2. The time dedicated to the project is of 744 hours distributed over
five months.

The saliency model was implemented in Python, using PyTorch, an open-source machine
learning framework for research prototyping and production deployment. The datasets used
for training and evaluation of the model were processed with the programming language and
numeric computing environment MATLAB. The deep learning model was trained with a Quadro
P5000 GPU with an integrated memory of 16 GB. GitHub was used as the version control tool.

12



2. Related Work

This section provides an overview of the state of the art in saliency prediction. It first presents
a review of the literature about traditional 2D saliency, since it has established a strong basis
later leveraged by models designed specifically for 360◦ content. Then, it focuses on the different
existing approaches to address the particular challenges of saliency prediction in both static and
dynamic 360◦ content.

2.1 Modeling visual attention in traditional 2D content

2.1.1 Heuristic approaches

In the last decades, many works have been devoted to saliency prediction in 2D content. The
method proposed by Itti et al. [9] in 1998 can be considered the seminal work in this regard.
They propose a heuristic approach in which they extract low-level features from the images,
such as color, orientation, or high contrast areas, and linearly combine them to obtain a final
saliency map. Several follow-up works [10, 11, 12] continued with this bottom-up strategy,
exploring different hand-crafted features to improve the predicted saliency. Similarly, Haret
et al. [13] develop a graph-based visual attention model that uses a Markovian approach to
generate activation maps from feature vectors, and combine them into a single saliency map.

However, these bottom-up strategies based on low-level features often failed to capture the
actual eye movements, thus novel approaches [14, 15, 16] arised to palliate this limitation. Judd
et al. [15] proposed using low-level, middle, and high-level image features, combining them with
a linear Suport Vector Machine (SVM). Borji et al. [14] combined the best previous bottom-up
models with top-down semantic features (e.g., cars, animals, faces, etc.) using machine learning
techniques such as SVM, regression, and AdaBoost classifiers.

2.1.2 Data-driven approaches

With the emergence of deep neural networks (DNNs), hand-crafted features were progressively
replaced. DNNs, especially convolutional neural networks (CNNs), were yielding outstanding
results in image classification tasks since they were able to extract automatically the most
relevant features from the images. Numerous works [17, 18, 19, 20] followed these data-driven
approaches in the field of saliency prediction, leading to unprecedentedly accurate models that
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2. Related Work

increasingly resembled human behavior.

One of the first models to exemplify the superiority of DNNs was DeepFix [17], a fully
convolutional neural network that proved to surpass state-of-the-art results relying on previous
bottom-up approaches based on hand-crafted features. Later, and considering that eye move-
ments in free-viewing are related to both bottom-up and top-down visual factors, Liu et al. [18]
presented a multiresolution convolutional neural network able to extract features at three dif-
ferent scales. However, Deep Learning techniques are usually limited by the enormous amount
of data and time required for training. Some works like the ones from Junting et al. [20] or
DeepGaze [19] alleviate these limitations by leveraging feature spaces obtained from networks
specifically trained for other tasks such as image classification.

As new deep learning techniques have emerged, some of them have also been applied to
saliency prediction. Particularly, architectures like generative adversarial networks (GANs) such
as SalGAN [21], or long short-term memory (LSTM) recurrent networks, like SAM [22] and
DSCLRCN [23], have achieved results outperforming other CNN approaches.

Although saliency prediction in 2D images has been extensively explored in recent years,
the body of literature specifically addressing this topic in dynamic content (i.e., video), is quite
narrow. Works such as the ones from Bak et al.[24, 25], or the one from Jianget et al. [26]
also resorted to DNNs to extract spatial features, but those works were also designed to handle
temporal information. Specifically, the two latter use recurrent neural networks, whereas the
former obtains that information from optical flow estimation.

2.2 Modeling and predicting attention in static 360◦ content

The emergence and popularization of virtual reality have increased the interest, and even neces-
sity, on understanding human behaviour in virtual environments. As detailed in the previous
section, many works have focused on modeling human visual attention in 2D images, but these
cannot be applied to this 360◦ content, since this content presents new challenges such as the
distortion generated by reprojecting 3D content into 2D space, or the fact that observers cannot
seen the whole 360◦ image at once. Nevertheless, the evolution of saliency prediction models
for 360◦ content has been closely linked to that of traditional one, thus the same trends can
be observed, where heuristic approaches established a baseline until the rise of deep neural
networks.

2.2.1 Heuristic approaches

Heuristic approaches extract low and high hand-crafted features to determine areas of interest.
Within them, it is possible to differentiate two approaches to deal with 360◦ images. The first one
resorts to new methodologies to obtain those features in the new paradigm of 360◦ content, such
as using viewport representations instead of the whole 360◦ image [27, 28], or segmenting the
image into super-pixels by a simple linear iterative clustering (SLIC) before feature extraction
[29].
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2. Related Work

The other approach is based on the application of 2D saliency models, such as those discussed
in Section 2.1, to different reprojections of the 360◦ content (e.g., cube-map, equirectangular,
etc.). The main limitation of this strategy lies in the distortion introduced by the sphere-to-
plane projection. Works like Lebreton et al. [30] and Guilherme et al. [31] apply 2D saliency
prediction approaches on the viewport images, and usually depends on the Field of View (FoV)
of the used display. This representation presents little geometric distortion but limits the size of
seen content. On the other hand, Startsev et al. [32] proposed the use of both equirectangular
and cube-map projection to diminishing the distortion.

2.2.2 Data-driven approaches

Deep learning rapidly overtook heuristic approaches based on hand-crafted features as occurred
with traditional image saliency prediction, due to their outstanding performance. Most of the
works proposed for spherical images are adapted from, or strongly based on 2D image saliency
models.

Assens et al. [33] propose an equirectangular projection and the model SaltiNet, which has
the same structure as the CNN-based 2D image saliency network SalNet [20]. Except for the last
layer which is intended for sampling scanpaths from the saliency maps, which are the succession
of fixations that an observer would probably make when exploring the image.

On the other hand, Monroy et al. [34] also proposed a network whose core is based on
SalNet [20] but using a cube-map representation. The obtained saliency, which is represented
as cube-maps, jointly with the spherical coordinates of the pixels, are passed to a second CNN
module that refines the prediction and provides the final equirectangular saliency map.

SalGAN [21] is adapted as well to 360◦ images by Chao et al. in SalGAN360 [35] by re-
training part of the model with 360◦ images (i.e., fine-tuning). They resorted to a cube-map
representation: Transferring each equirectangular image into multiple cube maps by rotating
the center of the cube to multiple horizontal and vertical angles. SalGAN360 uses for training
a new loss function that combines three typical saliency evaluation metrics: Kullback-Leibler
divergence (KLD), Pearson’s Correlation Coefficient (CC), and Normalized Scanpath Saliency
(NSS).

Dealing with the distortion introduced by the sphere-to-plane projection has been one of
the main challenges when using 360◦ content. The works aforementioned tried to diminish
the effect of distortion in their final predictions by using representations such as cube-maps or
viewport images, that yield lower distortion than equirectangular projections, but still deform
the images. Nonetheless, representations with multiple images lead to discontinuities, redundant
image boundaries, and repeated computations, which can hamper the prediction process.

Some state-of-the-art works [36, 5, 37] propose a different strategy to alleviate this issue.
Instead of manipulating the projection of the content, they modified the neural network structure
to account for 360◦ content particularities. Haoran et al. [36] represent the 360◦ images with a
Geodesic ICOsahedral Pixelation (GICOPix) and present an alternative to CNNs with SalGCN,
which is based on graph convolutional networks (GCNs). In SphereNet [5], rather than applying
the conventional kernel directly in the equirectangular image, it is applied on spherical space,
and then projected into de 2D plane. Consequently, the kernel used for convolution and pooling
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presents the same distortion as the equirectangular image. Although initially conceived for
classification and detection tasks, it has subsequently been used for saliency prediction in works
such as the one from Martin et al. [3]. A similar approach is proposed by Yanyu et al. [37],
but they use a circular crown kernel in the sphere. Additionally to their spherical convolutional
and pooling layers, they also present a spherical Mean Squared Error (MSE) loss, which weights
the MSE of each pixel with its solid angle, thus accounting for the distortion of equirectangular
saliency maps.

2.3 Modeling and predicting attention in dynamic 360◦ content

Although dynamic content consists of a succession of images and could be considered an exten-
sion of saliency prediction in 360° images, the human visual behavior towards it differs greatly
from the static case. Aspects such as the movement of the elements or the plot of the sequence
influence the viewer’s attention, causing the saliency of each frame to be influenced by previous
frames.

For saliency prediction in dynamic 360◦ content, some models such as PanoSalNet [38],
followed a näıve approach and presented a saliency CNN-based estimation network similar to
those used for images. However, it just predicts an independent saliency map for each frame,
thus not taking temporality into consideration. Due to this limitation, many posterior works
resorted to a different approach, in which spatio-temporal features are extracted in order to
make a more suitable prediction.

A frequent choice in state-of-the-art models is the use of Recurrent Neural Networks (RNNs),
especially LSTMs, given their ability to retain temporal information. Cheng et al. [2] use a cube-
map representation and propose a cube padding technique applicable to CNNs, which solves the
image boundary problem. With it, they obtain the prior saliency maps of each frame with a
CNN-based network, and then pass them through a convolutional LSTM (ConvLSTM) to cap-
ture relations between saliency in consecutive frames and get the definitive saliency prediction.

A more sophisticated architecture was proposed by Dahou et al. with AtSal [1], in which
they combine the saliency maps obtained from two different streams (namely attention and
expert streams). The core of the attention stream architecture is a convolutional encoder-
decoder, which consist on consecutive convolutional layers that extract the image’s features
(i.e., encoder) followed by deconvolutional layers that recover the saliency map from them (i.e.,
decoder). This CNN encoder-decoder, jointly with an attention mechanism, are intended to
extract global static saliency from the equirectangular frames. On the other hand, the expert
stream tries to learn spatio-temporal saliency information from a cube-map representation. It is
composed of two SalEMA [39] networks, whose architecture is based on CNNs and LSTMs, one
for the poles and the other for the equator views of the cube map. Having a different network
for the poles allows them to avoid overestimating fixations in these areas, as most of the saliency
concentrates in the equator.

The network proposed by Yanyu et al. [37] for video saliency prediction includes spherical
convolutions, pooling, and MSE loss as aforementioned, but also implements a spherical convo-
lutional LSTM. The model’s architecture is based on a U-Net [40], but with the inclusion of an
LSTM in its bottleneck to capture temporal information.
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2. Related Work

This master thesis presents a data-driven approach for 360◦ video saliency prediction based
on the spherical convolutions from SphereNet [5]. In line with state-of-the-art models like Cheng
et al.’s [2], Yanyu et al.’s [37], or AtSal [1], LSTMs will be used to obtain temporal features.
These previous works use traditional CNNs to extract the image features and then process them
with LSTMs. However, traditional CNNs only base their predictions on the current frame, thus
the features extracted could not be the most relevant ones given the time frame. To account for
this limitation, the model presented in this master thesis proposes to use spherical convolutional
LSTMs, namely Spherical ConvLSTMs, to directly learn the spatiotemporal features. Addi-
tionally, and taking as a reference works like the one by Bak et al. [24] for 2D video saliency,
this work proposes using optical flow estimation together with the 360◦ images as input to the
network, since it is considered to have a strong influence on visual human attention.
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3. AModel for Saliency Prediction on 360◦ Videos

This section details the proposed model for saliency prediction on dynamic 360◦ content, which
is based on an encoder-decoder architecture built over Spherical Convolutional LSTMs (Section
3.2). The input to the model is the RGB frames from the 360◦ video, and an estimation of the
optical flow between frames to predict frame-wise saliency (Section 3.1.3). To further alleviate
the effect of the distortion introduced by the equirectangular representation of 360◦ content, a
novel spherical loss function is presented in Section 3.3.

Figure 3.1: Network’s encoder-decoder architecture: The encoder is composed of an Spherical ConvLSTM and a
Spherical Max Pooling layer. It takes as input the concatenation of the RGB image and the optical flow of the
frame. The decoder, formed by an Spherical ConvLSTM and an Up-Sampling layer, decodes the feature vector
predicting the final saliency.

3.1 Theoretical Background

3.1.1 Spherical Convolutions

This work is built over the spherical convolutions specifically designed for equirectangular images
presented by SphereNet [5], which are an adaptation of traditional convolutional layers (see
Appendix A.3). These spherical convolutions were designed to handle the distortion of 360◦

images: The convolutional operations are projected from the 2D image domain to the surface
of a sphere representing the 360◦ image. To account for real neighboring in spherical space, the
kernel is defined as the projection on the sphere of a small patch tangent to its surface (Figure
3.2a). Thus, the kernel sampling pattern is distorted along with the image in equirectangular
projection (Figures 3.2b and 3.2c).
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3. A Model for Saliency Prediction on 360◦ Videos

(a) SphereNet Kernel tangent to the
sphere.

(b) Kernel Pattern projected on the
sphere. Kernel center on the equator
(blue) and close to the pole (red).

(c) Equirectangular representation of
the projected Kernel Pattern center on
the equator (blue) and close to the pole
(red).

Figure 3.2: Original figures from SphereNet [5] representing spherical convolutions.

3.1.2 Convolutional Long Short-Term Memory Cells

Dynamic videos contain elements that are likely to move, change, or disappear. These continuous
variations in position, appearance, or illumination are considered temporal features which usually
attract the observer’s attention, being perceived as salient.

Convolutional Long Short-Term Memory (ConvLSTM) cells can extract and process tem-
poral features from sequential data (e.g., videos) and infer temporal relations between them
[41]. The fully-connected structures from traditional LSTMs (see Appendix A.4) are replaced
in ConvLSTMs by convolutional layers, which are traditionally used in image processing due to
their ability to infer spatial correlations from the input data. A ConvLSTM cell is composed
of cell states c and hidden states h, which enable storing information through the processing of
the points of the input sequence. The cell and hidden state at each timestep t are computed as
follows:

it = σ (Wi ∗ [xt, ht−1] + bi)

ft = σ (Wf ∗ [xt, ht−1] + bf )

ot = σ (Wo ∗ [xt, ht−1] + bo)

gt = tanh (Wg ∗ [xt, ht−1] + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

(3.1)

where i, f , and o are the self-parameterized input, forget and output gates, W and b are learned
weights and biases, x is an input data point, ∗ the convolutional operation, ⊙ the Hadamard
product, and σ the sigmoid activation function. The cell output is obtained from the last value
of h. More details about the behaviour of LSTMs can be found in Appendix A.4.

3.1.3 Optical Flow Estimation

The movement of objects, people, or animals in 360◦ videos influences human visual attention
[42, 43], and both their speed and direction can be relevant features to consider when predicting
saliency. A representation of this movement is the optical flow, which in computer vision can
be defined as a velocity field associated with image changes, yielding the relative movement
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3. A Model for Saliency Prediction on 360◦ Videos

between objects and the camera.

The optical flow estimation between frames used in this master thesis is obtained with RAFT
[44], a deep neural network trained on the Sintel Dataset [45], which has shown outstanding
results on both synthetic and real images. RAFT stands out for its efficiency, even with high-
resolution images, and strong generalization, posing a great advantage with respect to alternative
methods for optical flow estimation. RAFT is inspired by optimization-based approaches. It is
formed by an encoder that extracts a feature vector for each pixel of both frames. These feature
vectors are passed through a correlation layer that computes the visual similarity between the
pixels. Then, these similarities are used to update the optical flow estimation (which is initialized
to zero) by means of a RNN-based network, mimicking the steps of an iterative optimization
algorithm.

Although RAFT is designed to work on traditional 2D images, the provided optical flow
estimation was evaluated and found to be sufficiently accurate (see Section 4.4.4), since most
of the motion is going to be concentrated in the less distorted region of equirectangular images:
the equator.

3.2 Architecture

The proposed model is based on an encoder-decoder architecture (see Appendix A.2). The
encoder module extracts the spatiotemporal features from the frames of a 360◦ video, and the
decoder module predicts each frame’s saliency map from these spatiotemporal features.

Some state-of-the-art works for saliency prediction in 360◦ videos [37, 2, 38] have proposed
similar encoder-decoder approaches using CNNs, which apply either traditional or spherical con-
volutions, for both the encoder and decoder. Additionally, they include a LSTM-based module
after the encoder to infer the temporal relationships between encoded feature vectors. Although
these approaches extract spatio-temporal features from the feature vectors, the encoding stage
is done without any information from the previous steps.

In contrast, the model proposed in this thesis is based on the hypothesis that having tempo-
ral information at the time of feature extraction would allow obtaining more relevant features
from dynamic content, leading to more accurate predictions. Therefore, the proposed encoder
and decoder architectures are built over ConvLSTMs (see Section 3.1.2), but whose traditional
convolutions have been replaced by the spherical convolutions proposed in SphereNet (see Sec-
tion 3.1.1) to account for the distortion introduced by the equirectangular projection. The
Spherical ConvLSTMs are used to encode and decode the feature vectors considering the infor-
mation retained in their internal states (i.e., hidden and cell states) about previous frames, thus
accounting for the temporal information at the time of feature extraction.

Additionally, the optical flow between frames (see Section 3.1.3), which is hypothesized
to provide crucial information about the video saliency, is input to the network as an RGB
image, where color encodes the displacement (direction and magnitude) of each pixel between
consecutive frames.

Figure 3.1 shows the network’s architecture diagram. The first module of the network’s
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3. A Model for Saliency Prediction on 360◦ Videos

architecture is the encoder, which is fed with the concatenation of a sequence S of frames f with
length n, and the corresponding sequence OF of optical flow estimations o. Hence, the model’s
input I can be defined as:

I = [S,OF ] = {f0 o0, · · · , ft ot, · · · , fnon} t ϵ [0, n] (3.2)

where f and o are RGB equirectangular images of size WxHx3 (W and H are the width and
height of the frames, and 3 the number of channels). The timestep of each element on the
sequence is represented by t.

The encoder module is built with a Spherical ConvLSTM followed by a Spherical Max Pooling
layer. The Spherical ConvLSTM takes at each timestep t the input vector it = [ft, ot] with shape
WxHx6, and outputs a hidden state with 36 channels (this size was empirically set). Then, to
obtain the feature vector of the current frame, a Spherical Max Pooling layer downsamples the
input along its spatial dimensions by taking the maximum value over a spherical kernel of size
3x3 for each of the 36 channels. This yields a final shape of the feature vector (i.e., bottleneck)
of W

2 xH
2 x36.

The encoder is followed by the decoder module, built with a Spherical ConvLSTM and an
Up-Sampling layer. The Spherical ConvLSTM decodes the feature vector into a single channel
that represents the saliency map. Then, the Up-Sampling layer is applied to increase the spatial
resolution to match the input spatial dimensions. Thus, the obtained final saliency map has a
shape of WxHx1.

3.3 Loss Function

This model has been trained with a novel spherical weighted Kullback–Leibler Divergence (KL-
Div) loss term, which refers to the KLDiv adapted to 360◦ content. The traditional Kull-
back–Leibler Divergence is a metric broadly used for saliency map comparisons, which measures
the overall dissimilarity between two saliency maps that are considered as probability density
functions and can be defined as follows:

KLDiv (G,P ) =
∑
i,j

Gi,j log

(
ϵ +

Gi,j

ϵ + Pi,j

)
(3.3)

where Pi,j , Gi,j , are the predicted and ground truth saliency values at pixel (i, j), and ϵ is a
regularization constant that determines how much zero-valued predictions are penalized.

However, this metric does not account for the distortion introduced by the equirectangular
projection, obtaining inadequate scores for this type of content. This behavior is represented in
the upper image of Figure 3.3, where for the same area on the sphere (i.e., yellow circle) different
KLDiv values are obtained depending on its location. To overcome this limitation also present
in the Mean Squared Error (MSE) loss proposed by Xu et al. [37], they applied a spherical
weighting by the solid angle to compensate for the distortion. For an equirectangular image of
shape m x n these weights can be computed as:
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3. A Model for Saliency Prediction on 360◦ Videos

wi,j = sin(∆φ(j+1))−sin(∆φj)
∆θ

where ∆θ = π
m ; ∆φ = π

2n ; i ∈ [0, n] ; j ∈ [0,m]

(3.4)

The proposed spherical weighted KLDiv loss employ to train the model applies this weighting
to the traditional KLDiv, compensating for the distortion introduced by the equirectangular
projection, since the contribution of each pixel to the KLDiv is proportional to its solid angle
(see the bottom image of Figure 3.3). Therefore, the proposed spherical weighted KLDiv loss is
defined as follows:

LKLDiv (G,P ) =
∑
i,j

wi,j Gi,j log

(
ϵ +

Gi,j

ϵ + Pi,j

)
(3.5)

Figure 3.3: Graphical representation of the KLDiv metric behavior. The image represents the KLDiv and weighted
KLDiv metrics obtained between two assumed saliency maps: the one obtained by projecting the spherical image
with a salient area (yellow circle) and a map without any salient points. It can be seen that an equal area on the
sphere (yellow circle) corresponds to different projected areas. Therefore, the traditional KLDiv (top image) is
greater at the poles, since the projected yellow patch covers a larger number of pixels in the 2D representation,
which contributes to the KLDiv score. However, when weighted by their solid angle, the contribution of each
pixel to the KLDiv is compensated, obtaining the same value (bottom image).
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3. A Model for Saliency Prediction on 360◦ Videos

3.4 Dataset and Training Details

The dataset used to train the proposed model was the VR-EyeTracking dataset [46], whose
videos present a resolution of at least 4K (3840 pixels in width), a frame ratio of 25 frames
per second (fps), duration ranging 20s to 60s, and varied content (e.g., indoor scenes, outdoor
activities, or sports games). The fixations of 45 human observers, recorded with an eye-tracking
device mounted on the HMD, are also provided together with the 360◦ videos. From the entire
dataset of 76 360◦ videos, 32 that present simple scenes and a static camera are selected as
training data.

To train the model, the selected 32 videos were down-sampled from 25 fps to 8 fps, and
reshaped to a 320x240 resolution, which reduces memory, computation, and processing require-
ments. Each video is then divided into sequences of 20 frames, each one corresponding to
2.5s. The initial 20 frames are discarded to avoid a center bias present due to the capturing
methodology (i.e., all participants were asked to look at the same point at the beginning of each
video).

A second dataset proposed by Zhang et al. [47] will be used for an additional evaluation of
the model and comparisons to state-of-the-art works. The dataset consists of 104 videos of the
342 from the Sports-360 dataset [48] whose duration was at least 20s. The videos show different
sports activities such as dance, BMX, or skateboarding, and present challenging scenes with
multiple elements and salient areas. They also include artistic cuts and artistic transitions (e.g.,
fade out, cross dissolve). Even though most of the videos were recorded with a static camera,
some of them were captured while the camera was in motion. The recorded eye fixations of 20
observers are provided along with the videos as ground truth data. The Sports-360 dataset was
processed as the VR-EyeTracking dataset.

Figure 3.4: Example of a saliency map (right image) obtained from its fixation map (left image), after applying
the Gaussian kernel, whose horizontal radius has been scaled to account for the distortion introduced by the
equirectangular projection.

The ground truth saliency maps used for training and evaluation were obtained from the
eye fixations provided with the datasets using the method adopted by Sitzman et al. [49]. Each
value of the saliency map represents the probability that an observer will fix its gaze on that
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3. A Model for Saliency Prediction on 360◦ Videos

pixel. Therefore, each frame’s saliency map is built by counting the number of fixations that
observers have made at each pixel location in the equirectangular image (see the left image of
Figure 3.4). Then, these maps are convolved with a Gaussian with a standard deviation of 2◦ of
visual angle to yield continuous saliency maps (see the right image of Figure 3.4). To account
for the distortion introduced by the equirectangular projection, the Gaussian kernel’s horizontal
radius is scaled, increasing as it approaches the poles.

The training process took 10.93 hours on a Quadro P5000 with the following hyperparam-
eters: an Adam optimizer [50], a learning rate of 0.001, a batch size of 3 sequences, and 175
epochs. Please refer to Appendix A.1 for more information about deep neural networks and
their training process. A mean inference time of 125.795 milliseconds with a standard deviation
of 1.266 milliseconds was obtained after performing 3000 model inferences with sequences of 20
frames.
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4. Results and Evaluation

This section provides an in-depth analysis of the performance of the proposed model for dynamic
360◦ saliency prediction. Section 4.2 show some results obtained with the proposed model,
and Section 4.3 presents a qualitative and quantitative comparison with state-of-the-art works.
Furthermore, Section 4.4 offers a detailed ablation study that validates the effectiveness of the
different elements included in the network architecture.

4.1 Saliency Metrics

To assess the performance of the developed model, and provide a meaningful comparison with
state-of-the-art works, three different metrics commonly used in the literature for saliency
maps comparison were chosen. They are computed following the implementation proposed
by Gutiérrez et al. [51] in which each pixel i of a saliency map is weighted by the sine of its
latitude, thus accounting for the distortion introduced by the equirectangular projection. The
metrics used to measure the difference between a predicted saliency map P and its ground truth
G obtained from real observers’ fixations (see Section 3.4), are the following:

• Linear Correlation Coefficient (CC): It is a statistical method used to measure the correla-
tion or dependence between two variables. In saliency prediction, CC measures the linear
relationship between two saliency maps, where CC=0 means poor correlation, CC=1 per-
fect correlation, and CC=-1 perfect correlation but the distributions are opposite. There-
fore, areas with similar magnitude values in both predicted and ground truth saliency maps
will present high positive CC values. This metric can be obtained from the covariances σ
of the saliency maps as follows:

CC (P,G) =
σ (P,G)

σ(P ) × σ (G)
(4.1)

• Similarity Metric (SIM): It measures the similarity between two saliency maps represented
as probability distributions. The SIM value is 1 when both saliency maps are the same,
and 0 if they do not overlap. The SIM score is computed as follows:

SIM (P,G) =
∑

i min (Pi, Gi)

where
∑

i Pi =
∑

iGi = 1
(4.2)
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This metric is very sensitive to missing values, penalizing predictions that do not present
the same density as the ground truth. Because of this, the standard deviation of the
Gaussian kernel applied when obtaining the ground truth saliency maps (see Section 3.4)
affects the SIM value, only reaching its maximum value when the standard deviation of
the predicted and ground truth saliency maps is the same [52].

• Kullback-Leibler Divergence (KLDiv): It measures the difference between two saliency
maps considered as probability distributions. KLDiv ranges from 0, where both saliency
maps are the same, to infinity. The KLDiv value is obtained as follows:

KLDiv (P,G) =
∑
i

Gi log

(
ϵ +

Gi

ϵ + Pi

)
(4.3)

The SIM, KLDiv, and CC values presented as results in the comparisons represent the
average mean and the average standard deviation of the measures obtained for all the videos.
The mean values and their standard deviation for each video are computed by evaluating each
video’s frame with respect to its ground truth counterpart with the three metrics presented.
Then, the values obtained for all the videos are averaged to obtain the final performance of a
model.

There are a greater number of metrics for saliency map comparison than the three presented,
and each of them considers different factors. The properties of each saliency map affect metric
scores differently: how the ground truth is represented, whether the prediction includes dataset
bias, whether the inputs are probabilistic or whether spatial deviations exist between the predic-
tion and ground truth [52]. Therefore, several metrics and qualitative analyses must be used to
draw conclusions about the similarity between two saliency maps, since there is no single metric
that can address all the saliency maps’ properties and provide a reliable similarity measure.

4.2 Results

A K-Fold Cross-Validation strategy has been used for the evaluation of the proposed model
over the VR-EyeTracking dataset, due to the limited number of selected videos (see Section
3.4). K-Fold cross-validation is a procedure used for the evaluation of machine learning models
when data availability is limited. This method divides the entire dataset into k groups, or
folds, of approximately equal size. Then, k models are trained under identical conditions and
hyperparameters, but each time a different fold is used as test data and the remaining k-1 as
training data. The evaluation results of each k-model on the corresponding test fold are averaged
to determine the overall network’s performance. This evaluation method offers a better analysis
of the network’s accuracy than using a single test fold or split with a reduced number of samples,
which are susceptible to being biased, leading to an overestimation, or underestimation of the
network’s performance.

The VR-EyeTracking dataset was divided into 5 different folds, with each fold representing
approximately 20% of the dataset. Therefore, the proposed model was trained five times (i.e.,
five runs) for the evaluation with the VR-EyeTracking dataset, each of them with a different
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4. Results and Evaluation

Figure 4.1: Results obtained with the proposed model for two sequences of the VR-EyeTracking dataset1. The
horizontal axis represents time. The vertical axis shows the frames, the ground truth saliency, and the predicted
saliency for two sequences. Saliency is represented as a heat map blended with the frame’s image, where warm
colors correspond to more salient areas. Note that the proposed model performs accurate predictions similar to
the ground truth, both focusing in small, yet relevant regions of the scene.
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Figure 4.2: Results obtained with the proposed model for a sequence of the Sports-360 dataset1. The horizontal
axis represents time. The vertical axis shows the frames, the ground truth saliency, and the predicted saliency
for the sequence and the zoomed area within the blue rectangle. Saliency is represented as a heat map blended
with the frame’s image, where warm colors correspond to more salient areas. Note the model’s ability to identify
dynamic features in the sequence, where, although there are multiple salient elements (e.g., people on bicycles),
it only focuses on the truly relevant one, since it has prior information about what happened earlier in the 360◦

video.
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combination of folds. For the evaluation with the Sports-360 dataset, a single training was
performed with all the 32 videos of the selected VR-EyeTracking dataset.

Figures 4.1 and 4.2 show some sample results obtained with the proposed model in the
VR-EyeTracking and Sports-360 datasets.1 For a set of videos, some consecutive RGB frames
are shown, together with their ground truth saliency maps and the model’s prediction, blended
with the frame. It can be seen how the proposed model is able to perform accurate saliency
predictions, which are close to the ground truth, both focusing on small, yet relevant regions
of the scene. The ability of the model to handle dynamic features can also be appreciated
in the Figure 4.2, where although there are multiple salient elements (i.e., people on bicycles)
the network is able to detect and focus on which one is truly salient, thanks to the temporal
information it has retained about what happened before in the 360◦ video.

Additionally, Table 4.1 provides a quantitative evaluation of the proposed model with the
CC, SIM and KLDiv metrics obtained for the VR-EyeTracking and Sports datasets, showing
promising results with respect to state-of-the-art works.

4.3 Comparison with Previous Methods

The proposed model was compared to three state-of-the-art works whose implementation is
publicly available: one spherical deep neural network designed for saliency prediction in 360◦

images (i.e., Martin et al’s [3]) to serve as a baseline, and to show that static approaches cannot
perform well in dynamic scenarios, and two state-of-the-art models specialized on 360◦ videos,
ATSal [1] and CP-360 [2]. More details on them can be found in Sections 2.2.2 and 2.3. To
assess the models’ performance, the metrics CC, SIM, and KLDiv (Section 4.1) were computed
over the saliency predictions of the models for the VR-EyeTracking and Sports-360 datasets.

Table 4.1 shows that the proposed model outperforms previous approaches in all computed
metrics. Martin et al.’s model was trained on a dataset of static 360◦ images, which hinders its
ability to generalize to dynamic content, focusing on more low-level features such as contrast
or edges. Both ATSal and CP-360 models were trained on dynamic content, and have a small
LSTM-based module on their bottleneck to account for temporal relations. However, they
neglect the fact that temporal information may be of importance even when extracting and
encoding features, and are therefore limited. The proposed model, nevertheless, is able to handle
temporal relations in all stages, and yields more precise results. Note that, although performance
drops for all the models when evaluated on the Sports-360 datasets given its complex nature (i.e.,
moving cameras and several regions of interest), the proposed model is still able to outperform
previous approaches, suggesting it is robust and able to generalize to different types of stimuli.

Additionally, Figure 4.3 shows a qualitative comparison between the models on a small
subset of sequences from 360◦ videos from the VR-EyeTracking and Sports-360 datasets1. The
proposed model produces plausible saliency predictions, identifying the regions where humans
tend to direct their attention.

1Video results are available at:
https://drive.google.com/drive/folders/1d4I4hvDiZwLGXDbFwc5uFeeenoziKZcx?usp=sharing.
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4. Results and Evaluation

Figure 4.3: Qualitative comparison of the proposed model against ATSal [1], CP-360 [2], and Martin et al.’s
[3]1. The horizontal axis represents time. The vertical axis shows, from top to bottom: The RGB frame, the
ground truth saliency, the proposed model’s prediction, ATSal, CP-360, and Martin et al.’s saliency predictions.
Saliency is shown both with a heat map blended with the frame’s image (warm colors correspond to high salient
areas) and with the saliency maps (black indicates zero probability of being observed). Note that the proposed
model outperforms the state-of-the-art works since its saliency prediction is closer to the ground truth. Martin et
al.’s, as a saliency prediction method for 360◦ images, tends to predict exploration saliency maps typical of this
type of content. Both ATSal and CP-360 models were trained on dynamic content, but either fail to identify the
truly salient elements of the 360◦ video or predict a high probability for most of the frame’s regions, which does
not resemble the ground truth behavior. ∗ATSal was trained with the VR-EyeTracking dataset; its results are
included for completeness.
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VR-EyeTraking dataset Sports-360 dataset
CC ↑ SIM ↑ KLDiv ↓ CC ↑ SIM ↑ KLDiv ↓

Proposed Model
0.4075
(0.1539)

0.2186
(0.0653)

10.070
(1.5424)

0.2598
(0.1113)

0.1221
(0.0411)

12.501
(1.0902)

ATSal*
0.2435

(0.0883)
0.1069

(0.0266)
12.398

(0.6667)
0.1792

(0.0743)
0.0785

(0.0226)
13.037

(0.6231)

CP-360
0.2577

(0.0502)
0.1516

(0.0310)
13.754

(0.7039)
0.2106

(0.0492)
0.1038

(0.0260)
14.773

(0.6089)

Martin et al.’s
0.1520

(0.0439)
0.0834

(0.0194)
13.607

(0.5245)
0.1444

(0.0460)
0.0657

(0.0175)
14.005

(0.4921)

Table 4.1: Quantitative comparisons of the proposed model against ATSal[1], CP-360[2], and Martin et al.’s [3],
with both VR-EyeTracking and Sports-360 datasets. Arrows indicate whether higher or lower is better, and
boldface highlights the best result for each metric. The values represent the mean score among the different
videos in the dataset for each metric, and in brackets is shown the averaged standard deviation. The individual
scores for each video can be found in the Appendix B.1. ∗ATSal was trained with the VR-EyeTracking dataset;
its results are included for completeness.

The quantitative evaluation of Table 4.1 shows that 360◦ videos present a great variability in
terms of saliency between frames, since the scenes can change completely from frame to frame,
and between videos, due to their varied content (e.g., sports, films, indoor scenes, etc.). This
causes noticeable differences among the CC and SIM values obtained for each frame of the same
video, resulting in elevated standard deviations when using ATSal and the proposed model. In
contrast, CP-360 and Martin et al.’s present significantly lower standard deviations. This low
variability comes from the fact that CP-360 predicts similar high probability saliency maps for
all videos and Martin et al.’s has a strong equator bias, failing to represent the natural variation
of data. Despite this variability, the proposed model shows consistently better overall results,
further confirmed by the qualitative assessment.

4.4 Ablation Study

Some ablation studies have been performed to endorse the effectiveness of the decisions taken
through the design stage of the model’s architecture. These studies analyze the influence of the
input data resolution, the spherical convolutions, the loss function employed, the inclusion of
optical flow and depth information, and the advantages reported by the Spherical ConvLSTMs.

The K-Fold Cross-Validation strategy, already mentioned in Section 4.2 has been used for
the different tests. The results obtained for each experiment of the ablation study are shown in
Table 4.2. The values represent the average of the five scores obtained with the metrics detailed
in Section 4.1 for each fold.

4.4.1 Input Resolution

This first ablation study analyzes the influence of the resolution of the 360◦ videos on the ability
of the network to predict an accurate saliency map. To this purpose, the proposed model detailed
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in Section 3 was trained with two different setups: with the 360◦ videos of the dataset resize to
a resolution of 208x106, and with a higher resolution of 320x240.

The results obtained for the three metrics in these experiments can be seen in the first two
rows of Table 4.2. The mean score of the three metrics reports a slight improvement when using
the higher resolution layout, which could indicate that the reduction of the frame’s resolution,
hindered the training process.

4.4.2 Spherical Convolutions

While the purpose and operation of spherical convolutions have already been explained in Sec-
tion 3.1.1, this ablation study justifies in terms of the model’s performance its inclusion on
the ConvLSTM architecture. For its evaluation, the proposed model architecture is modified,
replacing the spherical convolutions implemented in the Spherical ConvLSTMs of both encoder
and decoder by traditional convolutions. Then, the non-spherical model is trained under the
same conditions as the original spherical one. The results can be observed in the third row of
Table 4.2.

Results show an improvement in the model’s performance when spherical convolutions are
used. Evidencing that the use of architectures that account for the peculiarities of the equirect-
angular representation is an advantageous approach when dealing with 360◦ content.

4.4.3 Alternative Loss Functions

The current spherical weighted KLDiv loss function used to train the model was compared
against two alternative configurations. A traditional KLDiv (Equation 4.3), in which all pixels
have equal weight in the metric, no matter where they are located, and a spherical sampled
KLDiv, which presents a different strategy to account for the distortion introduced by the
equirectangular projection. Instead of weighting each pixel by its solid angle, the equirectangular
image’s pixels are sampled following a uniform cosine sampling distribution. Therefore, the
equator of the image will have more weight than the poles on the final value of the loss function,
since a greater number of pixels belonging to this region will be used to compute the metric. The
results obtained after training the model with the spherical weighted KLDiv, spherical sampled
KLDiv, and traditional KLDiv metrics are shown in the second, fourth, and fifth rows of Table
4.2 respectively.

The results obtained with the different loss functions suggest that the best suited is the
weighted KLDiv, as it achieves better mean accuracy for all the metrics. It was expected that
the sampled KLDiv loss function, which accounts for the equirectangular projection, would
report better performance than the traditional KLDiv loss. However, sampled KLDiv loss
presents worse results for CC and SIM. This could be either because of the poor performance of
randomness of the samples, or the fact that most of the relevant information of the videos are
in the less distorted part, leading the traditional KLDiv loss to reach a higher performance.
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4.4.4 Inclusion of Optical Flow Estimation

The motivation behind providing an optical flow estimation between consecutive frames to the
model is to achieve more accurate saliency predictions, since moving elements tend to capture
human visual attention. Therefore, the aim of this ablation study is to analyze the effect that
providing the network with this information has on its performance. For this purpose, a variation
of the model was trained in which it was deprived of the optic flow information. Therefore, the
dimensions of the input data became 320x240x3, since only the RGB image of each frame is fed
to the model. The results obtained with this configuration are shown in the sixth row of Table
4.2.

Figure 4.4: Comparison between saliency predictions obtained with and without optical flow estimations for two
sequences of VR-EyeTracking dataset. The horizontal axis represents the time sequence. The vertical axis shows
from top to bottom: the RGB frames, the ground truth saliency, the predicted saliency without optical flow and
the predicted saliency with optical flow. Saliency is represented as a heat map blended with the frame’s image,
warm colors correspond to high salient areas. Note that when using an optical flow estimation the model performs
more accurate predictions, reducing the saliency of high contrast areas, that although salient in static images, in
the dynamic case they lose relevance in the face of motion.

The scores obtained with the three metrics show an improvement in performance when
including the optical flow estimations. This improvement is even more noticeable when qualita-
tively analyzing the saliency predictions made by the model. Figure 4.4 shows two cases where
the inclusion of this optical flow estimation is especially critical in identifying salient regions.
Without optical flow estimation, the model tends to fixate on areas of high contrast, which while
salient in static content, are unattractive in dynamic content due to the existence of motion and
action.
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208x106 320x240
Spherical

ConvLSTM
Optical
Flow

Depth
Weighted

KLDiv
Sampled
KLDiv

Traditional
KLDiv

CC ↑ SIM ↑ KLDiv ↓

✓ - ✓ ✓ - ✓ - -
0.3975

(0.1560)
0.2118

(0.0656)
10.608

(1.6748)

- ✓ ✓ ✓ - ✓ - -
0.4075
(0.1539)

0.2186
(0.0653)

10.070
(1.5424)

- ✓ - ✓ - ✓ - -
0.3284

(0.1366)
0.1896

(0.0593)
10.739

(1.4757)

- ✓ ✓ ✓ - - ✓ -
0.3822

(0.1373)
0.2088

(0.0576)
10.377

(1.3414)

- ✓ ✓ ✓ - - - ✓
0.3873

(0.1241)
0.2062

(0.0522)
10.498

(1.2233)

- ✓ ✓ - - ✓ - -
0.3614

(0.1271)
0.1946

(0.0541)
10.781

(1.2942)

- ✓ ✓ ✓ ✓ ✓ - -
0.3779

(0.1374)
0.2072

(0.0565)
10.456

(1.3540)

- ✓ - ✓ - ✓ - -
0.2830

(0.1317)
0.1124

(0.0339)
12.339

(0.7856)

Table 4.2: Ablation Study: Comparison of the scores, mean and standard deviation, obtained with the different
configurations. Check marks indicate which elements are used in the ablation study, and the shaded row is the
model proposed in this master’s thesis. The values represent the mean score among the different videos in the
dataset for each metric, and in brackets is shown the averaged standard deviation. The individual scores for each
video can be found in the Appendix B.2. Please refer to Section 4.4.1 to 4.4.6 for further details.

4.4.5 Influence of Spherical ConvLSTMs

The estimation of the optical flow provides the network with temporal information about the
previous frame. The present study aims to determine if the temporal information provided by
the motion flow estimation is sufficient, or if ConvLSTMS need to be included to achieve accurate
predictions. To analyze the effect of using spherical ConvLSTMs without optical flow estimation
versus using only the latter, a structure without spherical ConvLSTMs is trained. The model
consists of an encoder and decoder formed only by spherical convolutional layers. The encoder
accepts as input data the concatenation of the RGB frame and the RGB optical flow of size
320x240x6. The input’s spatial size is reduced to 160x120x36 by means of a spherical convolution
and a spherical Max Pool (SphereNet implementation), thus extracting the feature vector. The
decoder returns the predicted saliency map of size 320x240x1 by processing the feature vector
with another spherical convolution and an Up-sampling layer. The results obtained with this
configuration can be seen in the eighth row of Table 4.2.

In both quantitative (Table 4.2) and qualitative (Figure 4.5) comparisons between using just
optical flow and using just Spherical ConvLSMs, a drop in performance can be observed with the
former one. It can be seen in Figure 4.5 that the saliency prediction provided by the model that
only uses optical flow practically corresponds to this estimation plus some high contrast areas,
which leads to an erroneous prediction since not all moving elements are salient. However, the
poor accuracy reported may be due to the simplicity of the structure, which is built with only
two spherical convolutional layers and deeper architectures are usually employed in DL networks
for image processing. Nevertheless, this simple architecture provides a fair comparison with the
proposed model, since with the same number of convolutions and equal feature vector’s size it
achieves significantly better saliency predictions.
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Figure 4.5: Comparison between saliency predictions using just Spherical ConvLSTMs and just optical flow for
a sampled sequence of VR-EyeTracking dataset. The horizontal axis represents the time sequence. The vertical
axis shows from top to bottom: the RGB frames, the optical flow estimation, the ground truth saliency, the
predicted saliency with just optical flow, and the predicted saliency with just Spherical ConvLSTMs. Saliency is
represented as a heat map blended with the frame’s image, warm colors correspond to high salient areas. Note
that when using just the optical flow estimation the model predicts high saliency to areas that are not salient,
such as tree branches, which, although they have movement, do not attract humans’ attention.

4.4.6 Inclusion of Depth Information

Not only does the movement present in a scene play an important role in its saliency, but depth
also has a great influence on it [53, 54]. The closeness or remoteness of the elements on the scene
can alter the way in which humans perceive them. Objects close to the observer are more likely
to be looked at due to their proximity, but also deep areas such as corridors, horizons, or abysses
tend to capture human attention on 360◦ content. Because of this, the possibility of providing
the network with an estimation of the depth at each frame was studied. The proposed model
was trained with input data of shape 320x240x7, composed of depth estimation, optical flow
estimation, and the RGB image. Additionally, the size of the hidden state is increased from 36
to 49, since the inclusion of the depth estimation may require a larger feature vector to be able
to collect the new input information. The results can be seen in the seventh row of Table 4.2.
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Depth estimation was obtained with DPT [55], a deep neural network for saliency prediction
in traditional 2D images. Although several works address the issue of depth prediction in 360◦

images [56, 57, 58], all of them focus on indoor scenes, due to a lack of labeled datasets of outdoor
scenes. The choice of DPT over other depth estimation networks for traditional 2D images was
mainly based on the depth estimations provided, which greatly surpassed those obtained with
other methods such as Monodepth2 [59] or MiDaS [60]. The depth estimation is performed for
each frame, obtaining a numerical depth value for each pixel, thus it is represented as a single
channel matrix of the same size as the frame.

However, depth estimation seems to hinder the model’s performance instead of boosting it.
This may be due to the lack of precision of the depth estimations obtained with DPT, which
could be confusing the model rather than enhancing its learning. It has been observed that
the depth estimations present a low resolution (i.e., all objects beyond a distance threshold are
considered to have the same depth, even if some are clearly much further away than others).
This is especially relevant in outdoor scenes, which constitute a large part of the datasets, and
where the difference between the depths of the scene elements is high. Therefore, this lack of
resolution could result in salient areas due to their great depth being overlooked in preference
to nearby regions.

To conclude, the present ablation study has shown that the use of optical flow estimation is
a better approach, which combined with spherical convolutions, an encoder-decoder structure
based on ConvLSTMs, and a spherical weighted loss function, allows to produce accurate saliency
predictions that resemble human visual behavior.
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This master’s thesis has presented a DL-based approach for modeling human visual behavior in
dynamic 360◦ environments through saliency prediction. The proposed saliency model has been
tailored to dynamic 360◦ scenes, accounting for the spatio-temporal information and the par-
ticularities of the 360◦ equirectangular representation by its encoder-decoder architecture based
on Spherical ConvLSTMs. The proposed model outperforms state-of-the-art works, obtaining
accurate saliency predictions in a wide variety of 360◦ videos.

The work carried out in this master’s thesis reveals that dynamic content requires models that
account for temporal information. Saliency prediction models for static images are surpassed
by architectures specifically designed for videos, whose awareness of the temporal relationships
between frames seems to play a major role in the accuracy of the dynamic saliency prediction.
Additionally, the availability of this temporal information at the time of feature extraction and
its posterior decoding has proved to allow inferring the most relevant features, leading to more
accurate predictions. The proposed model has been the first to account for temporal informa-
tion through an encoder-decoder based on spherical ConvLSTMs, demonstrating to outperform
previous state-of-the-art approaches based on traditional CNNs encoder-decoders, which only
extract spatial features.

Based on the results obtained and the ablation study carried out, optical flow can be con-
sidered as a highly salient feature that should be contemplated in dynamic saliency prediction.
The proposed model has benefited from the inclusion of the optical flow estimations between
frames, contributing positively to the saliency prediction’s accuracy.

It also has been shown that to work with 360° images, architectures must be adapted to their
particularities. The use of spherical convolutions and the novel spherical weighted KLDiv loss
function, which take into account the distortion present in the equirectangular representation,
aid in the interpretation of 360◦ images, enhancing the quality of the modeled saliency.

5.1 Limitations and Future Work

The work carried out in this master’s thesis aims to be a first step towards understanding and
modeling human visual behavior in dynamic 360◦ environments, aiming to serve as a basis for
future works in this field that is still an open problem. There is room for improvement in
dynamic 360◦ saliency prediction and further work is expected.

The proposed model for saliency prediction in 360◦ videos has been trained with a selection of
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videos from the VR-EyeTraking dataset without camera movement. Thus, saliency prediction
on 360◦ videos presenting more challenging scenes remains interesting for future works. The
proposed approach has focused on videos with a static camera due to the use of optical flow
estimations. These videos present a clearer correlation between high optical flow and salient
objects than videos with camera movement, where for example the background of the scenes
usually shows high optical flow without being salient at all. Therefore, as camera movement
was not contemplated during training, it is to be expected that the model does not adapt to
these situations. To palliate this, the training dataset could be extended in future works with
videos presenting camera movement, analyzing whether the network is able to establish the
relationships between optical flow and saliency in both static and dynamic camera videos.

A limitation of the current model related to the LSTMs architecture is that, although these
networks present longer memory than conventional RNNs, it is still limited. Recently, more
powerful architectures are emerging to cope with this limitation (e.g., transformers [61]), thus an
interesting future work could be to explore the implementation of these alternative architectures
for the particular case of saliency prediction in dynamic 360◦ content.

Saliency models for 360◦ videos are also being held back by the lack of datasets with a large
number of videos and ground truth data. Existing datasets present recorded gaze data of a small
group of observers, resulting in sparse ground-truth saliency maps in which the common behavior
is sometimes unclear, usually in complex scenes with multiple salient elements. Therefore, gaze
data from a larger number of observers are needed to have a representative sample of human
visual behavior, thus allowing saliency models to infer it.

Additionally, 360◦ dynamic environments are not only visual experiences, but they usually
include directional acoustic stimuli surrounding the observers that affect how they perceive and
explore the scenes. These acoustic cues greatly affect visual perception [62]. Therefore, the
study of the inclusion of audio together with the 360◦ video is an interesting line for future
work, but this is again limited by the lack of a dataset containing auditory information about
the 360◦ videos.
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Appendix A. Deep Learning Background

A.1 Deep Neural Networks

Deep learning is a subset of machine learning algorithms, called Deep Neural Networks (DNNs)
that attempt to match the ability of humans’ brains to learn. Nowadays, DNNs are being used
in multiple applications in everyday products and services such as digital assistants, self-driving
cars, medical diagnosis, stock market, electricity demand prediction, or marketing.

DNNs are formed by several layers of artificial neurons: elementary processing units that
interconnect with each other. Like those in the human brain, artificial neurons process infor-
mation, recognize patterns and learn from data or examples provided. The interaction between
neurons is defined by adjustable parameters (weights and biases) and by fixed operations (e.g.,
nonlinear functions, concatenations, multiplications, etc.). In the learning stage of the DNN,
these parameters, are automatically adjusted to produce the expected response from the DNN.

Deep learning algorithms can be classified as supervised or unsupervised depending on how
these parameters are learned. Supervised learning is the most common form of machine learning
in which label data is used to learn to perform classification or prediction tasks. Labeled data
refers to data points whose information to be extracted by the DNN is known. However, it is
not intended that the DNNs ‘memorize’ the label of each data point, but that learn from them
to generalize, determining which relationships, patterns, or characteristics must be identified in
the input data. On the other hand, unsupervised learning is performed without labeled data by
recognizing differences between data points and grouping them according to them (a technique
known as clustering).

A.1.1 Development of a Deep Neural Network by Supervised Learning

The development of a DNN to perform a specific task with a supervised learning technique
starts by collecting the labeled data. Then, a network architecture is designed, implemented,
and trained with the labeled data. Finally, the trained DNN is tested to assess its performance
when dealing with unseen data.
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A. Deep Learning Background

Data acquisition

A sufficiently large number of relevant examples must be collected to allow the network to
correctly learn from them. These examples or data points need to be labeled as well, since the
label or ground truth information is what the DNNs must learn from de data point. The totality
of the labeled data points is called the dataset. The dataset is usually preprocessed to facilitate
the network’s learning. This processing can consist of a reduction of the data variables, the
elimination of outliers, or the normalization of the data.

The dataset should be as large and varied as possible, otherwise, it could result in an insuffi-
cient adjustment of the model to the task to be performed (i.e., underfitting) or a ‘memorization’
of the dataset (i.e., overfitting). The ability of a DNN to generalize is strongly influenced by the
variety of training data, thus the dataset should be a representative sample of all possible varia-
tions of the data. For example, in an image classification task between apples and pears images,
a network trained with a dataset formed only by images of red apples will lead to erroneous
classifications when dealing with images of green apples, as it has never seen this variation on
the data.

The labeled dataset is generally divided into two different splits: training split, which usually
represents 80-90% of the whole dataset, and test split.

Design of the Network’s Architecture

The design of the DNN architecture will determine its ability to fit the specific task for which
it is designed. The architecture design must be based on the input that is going to receive (i.e.,
the data points) and the output that should produce (i.e., the labels of the data points). The
DNNs’ architecture refers to the order, type, and quantity of the different modules that built
the network, such as layers of neurons, operations, and activation functions.

The design of the architecture is frequently limited by the capabilities of the specific hardware
used for training, since the number of operations needed for training a DNN is elevated, resulting
in high computational and storage requirements. Architectural constraints could also result from
the limited capabilities of not the training hardware, but the devices where the network is to be
deployed

Supervised Training

DNNs learn to perform a specific task from the data of the training split. The adjustable
parameters that constitute the network’s architecture are modified during training to produce
an output as similar as possible to the ground truth. The initial values of these parameters can
be randomly initialized or sampled from a sampling distribution.

To train the model, each data sample in the training set, or group of data (i.e., batch), is
passed through the network to produce an output. The generated output is compared with
the ground truth with a loss function, which is a comparison metric (e.g., mean square error)
that usually depends on the task being performed by the model. Once the error is known, it
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is backpropagated, computing the gradient of the loss function with respect to the network’s
parameters. Then, optimization algorithms are used to reduce the gradients by adjusting the pa-
rameter’s values, thus optimizing the loss function. The optimization algorithms have a param-
eter called the learning rate that multiplies the value of the gradients, which allows controlling
the degree of updating of the network parameters.

This process of optimization is repeated iteratively for each batch, the number of iterations
(i.e., steps) required to process the entire train split is called an epoch. Usually, a subset of the
training data (around 10-20 % of the training split) is chosen as validation data. After each
epoch, and once the model has been updated with the epoch’s training split, the validation data
is passed through the model to compute the loss function. The loss function value obtained with
the validation test split after each epoch provides feedback about how well the model is learning
to generalize. For example, a significant increase of the validation loss along with a continuous
decrease of the training loss could indicate the overfitting of the network. The validation data
is also employed to adjust the different hyperparameters (e.g., optimizer, loss function, number
of epochs, etc.) to obtain the best performance of the model.

Training is usually terminated when the loss function obtained with the training data is no
longer minimized with the optimizer (i.e., there is no gradient) indicating that a local minimum
or global minimum has been reached. However, training may be terminated before this happens
if there is a continued stall or rise in the loss function obtained with the validation data, which
could indicate that the model is overfitting.

Evaluation

The evaluation is performed over the set of data initially separated from the total dataset, the
test split, and therefore it has never been seen by the network. The test data is fed into the
trained DNN to be processed, thereby obtaining the label predicted for it, this operation is
known as inference. After performing the inference over the test split, the labels obtained are
compared, either qualitative or quantitative, with the ground truth to obtain an evaluation of
the network’s performance.

A.2 Encoder-Decoder Architectures

These architectures are composed of two main modules, the encoder, and the decoder, through
which the data is processed sequentially. These structures are typically employed in variable
sequence processing tasks with recurrent neural networks (RNNs), such as in language processing
tasks, and in image processing, where they are formed by convolutional layers.

The encoder is used to ‘encode’ the input data into a more suitable representation, called
latent space or feature vector, extracting from it the most relevant information for the task
to be performed. In image processing, the encoder based on convolutional layers reduces the
spatial dimensionality of the input images at the expense of increasing their channel dimension,
in which each channel represents an image’s feature. Therefore, translating the images into a
list of representative features.
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These features are then processed by the decoder, which retrieves the target output rep-
resentation (e.g., saliency map, semantic segmentation, etc.) by decoding them. The stage
between the encoder and decoder, where the input’s feature vector can be obtained, is called
the bottleneck.

A.3 Convolutional Layers

The traditionally called convolutional layers are a type of transformation frequently used in
deep learning models for image processing. Convolutional layers extract features from images
by convolving the image with kernel filters, with are 2D tensors of weights. The convolutional
layer is defined by the number of filters and their shape. When training a model that includes
convolutional layers, the kernel’s weight values are learned. Thus, they are optimized to extract
the most relevant features for the specific task in which the model is being trained.

Given an input tensor I with shape mxnxch and a convolutional layer with k number of
kernel filters, the output tensor O will have shape mxnxk. For each kernel filter, the convolution
operation performs an element-wise product between each element of the 2D kernel and the
input tensor at each tensor’s location. The results are summed to obtain the output value in the
corresponding position of the output tensor, called a feature map. This operation is exemplified
in Figure A.1.

Figure A.1: Representation of the operations performed by a convolutional layer [6].
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A.4 Long Short-Term Memory Cells

The Long Short-Term Memory (LSTMs) are used to process sequential data of variable length
since they are capable to infer and store patterns between timesteps. They are recursive ar-
chitectures that store previous information into the cell states, thus the output obtained for an
input data point in a sequence is influenced by previous data points. The information outputted,
stored, and forgotten by the LSTM is regulated by structures called gates.

An LSTM cell at each timestep t is defined by a hidden state ht and a cell state ct, whose
values are determined by the response of its three self-parameterized forget, input, and output
gates to the arrival of a new data point xt. The LSTM architecture can be seen in Figure A.2.

Figure A.2: Schematic representation of the operations performed on a LSTM cell (A) where t represents the
timestamp, h the hidden state and c the cell state [63]

A.4.1 Cell state update

First, the forget gate ft decides which information is going to be eliminated from the cell state
ct by multiplying each value of ct by a number between 0 and 1. These values are obtained as
shown in Equation A.1, where the input xt is concatenated with the previous hidden state ht−1

and passed through a fully connected layer of neurons represented by its weights Wf and bias
bf . A sigma function σ is applied to the output of the fully connected layer to obtain the values
between 0 and 1.

ft = σ (Wf ∗ [xt, ht−1] + bf ) (A.1)

Then, the input gate it decides which values of the proposed new cell state gt are input into
the cell state ct. The input gate also uses a sigmoid layer to produce a value between 0 and 1,
which will be multiplied by each element of gt, thus controlling the incoming information. Both
are computed from the processing trough a fully-connected layer the concatenation of xt and
ht−1 as shown in Equations A.2 and A.3, where W and b are the weights and biases.
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it = σ (Wi ∗ [xt, ht−1] + bi) (A.2)

gt = tanh (Wg ∗ [xt, ht−1] + bg) (A.3)

Therefore, the cell state at time t is:

ct = ft ⊙ ct−1 + it ⊙ gt (A.4)

where ⊙ is the Hadamard product.

A.4.2 Hidden state update

The hidden state ht is considered the output of the LSTMs cell. The ht is based on the current
cell state, whose information is filtered by the output gate ot, again using a sigmoid function
to produce a value between 0 and 1. A hyperbolic tangent function is applied to ct to help
regulate the values flowing through the network, squishing them to always be between -1 and 1.
Therefore, the hidden state and output gate values at time t are:

ot = σ (Wo ∗ [xt, ht−1] + bo)

ht = ot ⊙ tanh (ct)
(A.5)

where ⊙ is the Hadamard product.
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Appendix B. Quantitative Evaluation

This appendix presents the detailed results obtained in the quantitative evaluations performed
in the comparison with previous works (Section 4.3) and the ablation study (Section 4.4). The
scores obtained with the saliency metrics mentioned in Section 4.1 are presented in this appendix
itemized by video, instead of averaged for all the videos belonging to the dataset.

The 360º videos in the VR-EyeTracking and Sports-360 datasets (Section 3.4) present varied
content with different themes (e.g., films, sports, indoors, outdoors, etc.). This means that the
performance of a model could greatly fluctuate from one video to another. Moreover, the model’s
performance also differs between frames, since as dynamic content, scenes change from frame
to frame and can present significantly different scenarios within the same video. Therefore, the
actual performance of a model for a specific video should not be directly extracted from the
overall behavior, which is why this appendix provides the scores itemized by video.

B.1 Comparison with Previous Works

Tables B.1,B.2, B.3, and B.4 show the values obtained for each video in the VR-EyeTracking
dataset for the proposed model, ATSal, CP-360, and Martin et al’s [3] respectively (please refer
to Section 4.3 for further details). The tables show the mean and the standard deviation of the
CC, SIM, and KLDiv scores between each video’s frames.

Tables B.5, B.6, B.7, and B.8 show the values obtained for each video in the Sports-360
dataset for the proposed model, ATSal, CP-360, and Martin et al’s [3] respectively (please refer
to Section 4.3 for further details). The tables show the mean and the standard deviation of the
CC, SIM, and KLDiv scores between each video’s frames.

B.2 Ablation Study

The ablation study performed in this master’s thesis consisted of eight studies of the model using
different setups, please refer to Section 4.4 for more information. Table B.9 indicates which
elements were employed in each study, and Tables from B.10 to B.17 show the scores obtained
with the saliency metrics itemized by video for each study. The different model configurations
were evaluated with the VR-EyeTracking dataset (Section 3.4).
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Proposed Model
CC SIM KLDiv

Video Mean Std Mean Std Mean Std

003 0.4285 0.1675 0.2386 0.0734 8.9560 1.6844

005 0.1773 0.0798 0.1410 0.0335 11.7037 1.0806

013 0.4063 0.1675 0.2162 0.0702 10.3207 1.6347

015 0.4183 0.1665 0.2213 0.0743 9.9883 1.7530

018 0.6395 0.1039 0.3571 0.0592 6.9805 1.1273

020 0.2923 0.1490 0.1642 0.0531 11.3344 1.4902

022 0.3316 0.1290 0.2033 0.0545 10.2527 1.2515

027 0.3956 0.2008 0.1812 0.0848 11.0605 1.7852

028 0.4142 0.1675 0.1851 0.0614 11.1041 1.3615

029 0.2787 0.1080 0.1630 0.0441 11.5675 1.0321

033 0.5941 0.2028 0.2633 0.0724 9.6076 1.4615

040 0.3211 0.1250 0.1689 0.0482 11.3080 1.2077

043 0.4011 0.1559 0.1899 0.0441 10.5007 1.1457

047 0.6503 0.0802 0.3131 0.0587 8.4859 1.2580

052 0.5075 0.1535 0.2248 0.0579 10.2931 1.0854

053 0.3483 0.1084 0.1929 0.0493 10.7719 1.1996

059 0.5506 0.1533 0.2393 0.0612 9.8382 1.2028

066 0.4175 0.1301 0.1780 0.0482 11.1533 1.0962

067 0.3557 0.1544 0.1869 0.0591 10.9474 1.3800

072 0.5171 0.2392 0.2735 0.1186 8.7108 2.3296

075 0.2392 0.1954 0.1730 0.0854 11.1876 2.2367

080 0.4335 0.2240 0.2514 0.0869 9.0619 1.8688

087 0.1805 0.0753 0.1672 0.0571 10.7468 1.9489

094 0.2633 0.1837 0.1909 0.0886 10.9085 2.2807

103 0.5027 0.2264 0.2618 0.0977 9.1019 1.7980

110 0.2573 0.1197 0.2020 0.0695 10.4149 1.9247

159 0.3843 0.1817 0.1854 0.0558 10.6763 1.4442

160 0.2976 0.0835 0.2467 0.0388 8.7627 1.5503

170 0.4291 0.1691 0.2456 0.0603 8.8430 1.1250

184 0.6546 0.2063 0.3143 0.0818 8.6354 1.6064

197 0.3664 0.1541 0.2028 0.0567 9.8454 1.5238

213 0.3165 0.1641 0.2500 0.0857 8.1738 2.4840

Table B.1: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset with the proposed model.
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ATSal*
CC SIM KLDiv

Video Mean Std Mean Std Mean Std

003 0.2947 0.1214 0.1268 0.0247 11.9346 0.6449

005 0.1681 0.0604 0.1385 0.0311 12.3208 1.0607

013 0.1935 0.1006 0.0968 0.0314 12.6177 0.7186

015 0.3298 0.1646 0.0862 0.0248 12.8471 0.6825

018 0.3025 0.1132 0.1299 0.0298 11.8355 0.6162

020 0.2602 0.0820 0.1091 0.0187 12.1810 0.4846

022 0.1469 0.0486 0.0919 0.0240 12.6511 0.5803

027 0.1335 0.0913 0.0560 0.0179 13.2455 0.4691

028 0.2516 0.0903 0.1168 0.0383 12.4079 0.7890

029 0.2487 0.0618 0.1253 0.0194 12.2819 0.5459

033 0.2353 0.0378 0.1007 0.0247 12.6018 0.6174

040 0.1423 0.0560 0.0769 0.0212 13.2113 0.5866

043 0.2361 0.0714 0.1249 0.0258 11.9620 0.6048

047 0.3086 0.1133 0.1253 0.0272 12.0116 0.5778

052 0.2316 0.0671 0.1165 0.0266 12.1139 0.7120

053 0.3840 0.1217 0.1303 0.0257 11.9343 0.5410

059 0.2721 0.1116 0.1129 0.0225 12.5219 0.5845

066 0.2333 0.0698 0.1026 0.0202 12.3047 0.4377

067 0.1279 0.0893 0.0763 0.0344 13.0386 0.9585

072 0.1395 0.0514 0.0662 0.0176 13.1789 0.4595

075 0.2133 0.0559 0.0975 0.0319 12.5272 0.6614

080 0.3369 0.1453 0.1286 0.0343 11.7417 0.8122

087 0.1773 0.0808 0.1433 0.0440 11.9137 1.4179

094 0.1176 0.0602 0.0548 0.0127 13.5021 0.3660

103 0.2855 0.1576 0.0935 0.0403 13.0494 0.8911

110 0.1623 0.0869 0.1215 0.0474 12.2149 1.1925

159 0.2309 0.0880 0.1106 0.0233 12.5973 0.6109

160 0.3130 0.0819 0.1703 0.0303 10.8138 0.6412

170 0.1881 0.0671 0.0837 0.0120 12.5898 0.2944

184 0.4936 0.0590 0.1247 0.0177 11.9306 0.4354

197 0.2403 0.0800 0.1108 0.0213 12.2938 0.6041

213 0.2738 0.1415 0.1170 0.0310 12.0061 0.7388

Table B.2: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset with ATSal [1].∗ATSal was trained with the VR-EyeTracking dataset; its results are include for complete-
ness.
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CP-360
CC SIM KLDiv

Video Mean Std Mean Std Mean Std

003 0.3184 0.0555 0.1898 0.0230 12.8568 0.5042

005 0.3369 0.0489 0.2208 0.0268 12.1090 0.6250

013 0.2464 0.0378 0.1237 0.0291 14.3389 0.6777

015 0.2189 0.0489 0.1377 0.0348 14.1146 0.7745

018 0.3189 0.0509 0.1692 0.0335 13.3593 0.7103

020 0.2891 0.0424 0.1937 0.0258 12.7515 0.6356

022 0.2699 0.0573 0.1534 0.0361 13.6605 0.8330

027 0.2566 0.0599 0.1378 0.0390 14.0419 0.8801

028 0.2183 0.0675 0.1352 0.0429 14.1765 0.9702

029 0.1977 0.0540 0.1341 0.0418 14.1288 0.9798

033 0.1765 0.0539 0.1244 0.0379 14.4549 0.8380

040 0.2553 0.0575 0.1370 0.0393 14.0789 0.8995

043 0.2467 0.0488 0.1475 0.0295 13.7643 0.6951

047 0.3106 0.0477 0.1582 0.0240 13.5622 0.5129

052 0.2778 0.0545 0.1674 0.0294 13.3441 0.6772

053 0.3117 0.0382 0.1818 0.0275 13.1080 0.6022

059 0.2336 0.0409 0.1382 0.0223 14.0712 0.5179

066 0.1865 0.0319 0.1332 0.0300 14.2647 0.6543

067 0.2427 0.0496 0.1253 0.0281 14.3536 0.6488

072 0.1840 0.0383 0.1033 0.0282 14.9416 0.6354

075 0.2647 0.0613 0.1630 0.0460 13.5338 1.0572

080 0.2474 0.0635 0.1624 0.0323 13.5086 0.8219

087 0.3282 0.0653 0.2077 0.0362 12.4042 0.7741

094 0.2290 0.0459 0.1225 0.0279 14.4121 0.6360

103 0.2322 0.0522 0.1247 0.0463 14.4171 1.0202

110 0.2876 0.0724 0.1580 0.0345 13.4846 0.7401

159 0.2520 0.0469 0.1715 0.0219 13.3417 0.4882

160 0.3818 0.0470 0.1949 0.0230 12.6614 0.5254

170 0.2611 0.0379 0.1536 0.0209 13.7146 0.4700

184 0.1938 0.0443 0.1349 0.0244 14.2191 0.5542

197 0.2844 0.0447 0.1864 0.0284 12.9461 0.6408

213 0.3017 0.0428 0.1430 0.0241 13.9530 0.5268

Table B.3: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset with CP-360 [2].
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Martin et al.’s [3]
CC SIM KLDiv

Video Mean Std Mean Std Mean Std

003 0.1230 0.0268 0.0798 0.0140 13.5773 0.3375

005 0.1047 0.0445 0.0851 0.0154 13.4557 0.4721

013 0.2006 0.0620 0.0955 0.0252 13.2854 0.6353

015 0.1996 0.0555 0.0885 0.0245 13.4217 0.6105

018 0.2201 0.0312 0.1025 0.0129 13.0230 0.3199

020 0.0925 0.0250 0.0733 0.0105 13.7371 0.2726

022 0.1114 0.0481 0.0746 0.0211 13.7778 0.5786

027 0.1383 0.0455 0.0767 0.0192 13.7194 0.4694

028 0.0988 0.0779 0.0662 0.0291 14.2312 0.8689

029 0.1079 0.0596 0.0733 0.0288 13.9019 0.7536

033 0.1697 0.0414 0.0898 0.0242 13.5312 0.6092

040 0.1291 0.0380 0.0711 0.0237 14.0416 0.5830

043 0.2298 0.0347 0.1122 0.0172 12.8290 0.4253

047 0.2139 0.0390 0.0954 0.0118 13.1761 0.2962

052 0.2106 0.0525 0.1111 0.0208 12.8858 0.5271

053 0.0722 0.0373 0.0675 0.0148 14.2077 0.4376

059 0.1393 0.0254 0.0790 0.0107 13.6377 0.2820

066 0.1800 0.0308 0.0791 0.0167 13.5794 0.3971

067 0.1035 0.0354 0.0611 0.0211 14.2183 0.5846

072 0.1076 0.0501 0.0545 0.0180 14.3833 0.5081

075 0.0976 0.0420 0.0679 0.0233 13.9161 0.6492

080 0.1257 0.0874 0.0913 0.0342 13.6006 1.0241

087 0.1278 0.0678 0.0918 0.0274 13.4743 0.9450

094 0.1066 0.0322 0.0619 0.0150 14.1244 0.3873

103 0.1249 0.0419 0.0729 0.0288 13.9684 0.8004

110 0.1812 0.0671 0.1008 0.0290 13.2135 0.7335

159 0.1893 0.0338 0.0950 0.0151 13.1928 0.3880

160 0.2749 0.0281 0.1440 0.0128 12.2057 0.3809

170 0.1911 0.0357 0.1015 0.0148 13.1171 0.3782

184 0.2367 0.0269 0.0925 0.0160 13.3010 0.3739

197 0.1726 0.0246 0.0838 0.0125 13.3574 0.3134

213 0.1171 0.0575 0.0583 0.0149 14.2842 0.4443

Table B.4: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset with Martin et al.’s [3].
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Proposed Model Proposed Model

Video CC SIM KLDiv Video CC SIM KLDiv

217 0.3171 0.1559 0.1296 0.0569 12.1710 1.3809 269 0.0118 0.0155 0.0283 0.0183 15.4930 0.9625

218 0.2063 0.0849 0.0947 0.0237 13.0641 0.6229 270 0.3242 0.1877 0.1049 0.0535 12.7899 1.2350

219 0.1351 0.0845 0.0580 0.0243 13.9510 0.6625 271 0.3321 0.1252 0.1464 0.0273 11.8987 0.5378

220 0.2608 0.1239 0.1524 0.0567 11.6985 1.4605 272 0.3031 0.1468 0.1295 0.0318 12.0845 0.6910

221 0.1940 0.0918 0.1084 0.0351 12.9689 0.8242 273 0.3856 0.1381 0.1510 0.0430 11.6894 0.9407

222 0.4912 0.1800 0.1887 0.0682 10.8263 1.5238 274 0.0720 0.0510 0.0426 0.0132 14.2998 0.4035

223 0.3788 0.1592 0.1987 0.0639 10.6089 1.4157 275 0.0895 0.0747 0.0771 0.0495 13.8101 1.5601

224 0.1824 0.1049 0.1110 0.0391 12.7950 1.0357 276 0.3291 0.1500 0.2115 0.0685 10.1173 1.6259

225 0.1569 0.1030 0.0887 0.0362 13.4349 0.9642 277 0.4169 0.2022 0.1337 0.0578 12.1699 1.2037

226 0.2997 0.1963 0.0924 0.0446 12.9954 0.9987 278 0.0027 0.0111 0.0176 0.0122 15.7344 0.9457

227 0.0513 0.0464 0.0488 0.0180 14.4725 0.6737 279 0.2639 0.1244 0.1488 0.0518 11.8563 1.2658

228 0.1360 0.0371 0.0866 0.0173 13.2667 0.4577 280 0.4215 0.1547 0.1806 0.0659 10.6553 1.9776

229 0.0517 0.0412 0.0490 0.0206 14.2593 0.7301 281 0.2668 0.0597 0.1512 0.0236 11.5533 0.6622

230 0.2868 0.1338 0.1171 0.0371 12.4623 0.9362 282 0.3195 0.1857 0.1345 0.0554 11.9555 1.4528

231 0.4228 0.1896 0.1616 0.0394 11.4523 0.8681 283 0.1691 0.1051 0.1131 0.0434 13.0476 1.0736

232 0.1104 0.0441 0.0738 0.0251 13.6332 0.6557 284 0.0707 0.0444 0.0618 0.0217 14.1279 0.7241

233 0.3628 0.1544 0.1355 0.0469 12.1155 0.9586 285 0.1286 0.0763 0.0581 0.0293 13.9529 0.8357

234 0.2556 0.1109 0.1284 0.0440 12.3032 1.0327 286 0.0114 0.0239 0.0307 0.0202 15.2546 1.1105

235 0.3527 0.1538 0.1231 0.0402 12.3539 0.8592 287 0.2227 0.1130 0.1290 0.0371 12.4527 0.9351

236 0.1758 0.0994 0.0924 0.0320 13.0787 0.8446 288 0.2854 0.1242 0.1240 0.0375 12.3255 0.9084

237 0.2524 0.1010 0.1554 0.0524 11.5770 1.2971 289 0.2400 0.1777 0.1055 0.0450 13.0275 1.1501

238 0.1886 0.0752 0.0966 0.0240 12.9992 0.6726 290 0.0938 0.0643 0.0866 0.0365 13.4401 1.2318

239 0.3021 0.0975 0.1446 0.0305 11.8375 0.7795 291 0.3103 0.1559 0.1060 0.0466 12.6361 1.1217

240 0.4043 0.1464 0.1646 0.0554 11.3388 1.5093 292 0.1051 0.0591 0.0796 0.0257 13.6677 0.7211

241 0.1456 0.0697 0.0627 0.0178 13.8784 0.5176 293 0.2422 0.1211 0.1261 0.0418 12.4056 0.9340

242 0.2884 0.1787 0.1740 0.0898 11.0400 2.2297 294 0.2043 0.0580 0.1065 0.0248 12.6850 0.6656

243 0.3841 0.1226 0.1754 0.0329 11.2069 0.7489 295 0.3160 0.1117 0.1475 0.0369 11.9317 0.7974

244 0.2253 0.1023 0.1244 0.0430 12.1798 1.2431 296 0.0919 0.0714 0.0686 0.0406 13.9617 1.2456

245 0.1077 0.0551 0.0764 0.0267 13.5466 0.7708 297 0.2723 0.1973 0.1208 0.0650 12.4236 1.6231

246 0.1753 0.1286 0.1240 0.0644 12.6434 1.8907 298 0.2065 0.1415 0.1411 0.0610 11.7646 1.9794

247 0.2830 0.1459 0.1350 0.0534 12.1157 1.4111 299 0.3209 0.0922 0.1505 0.0474 11.7125 1.1624

248 0.0427 0.0509 0.0396 0.0245 14.7307 1.0662 300 0.1089 0.0644 0.0784 0.0276 13.5475 0.7564

249 0.0295 0.0344 0.0412 0.0185 14.7312 0.6496 301 0.3887 0.1466 0.1615 0.0471 11.4403 1.0287

250 0.3479 0.1232 0.1641 0.0329 11.4165 0.8306 302 0.0945 0.0590 0.0554 0.0216 14.1144 0.6839

251 0.3245 0.1270 0.1892 0.0511 10.5540 1.4367 303 0.4186 0.1763 0.1489 0.0541 11.7598 1.1735

252 -0.0039 0.0136 0.0196 0.0125 16.0198 0.6759 304 0.2947 0.1247 0.1881 0.0556 10.6246 1.6169

253 0.0511 0.0588 0.0410 0.0250 14.8519 1.1520 305 0.0946 0.0689 0.0820 0.0239 13.7676 0.7921

254 0.3429 0.1383 0.1871 0.0408 10.6921 1.1608 306 0.4126 0.0879 0.1713 0.0355 11.1323 0.8192

255 0.0058 0.0166 0.0312 0.0213 15.5804 0.9055 307 0.3659 0.1634 0.1656 0.0510 11.3613 1.0798

256 0.0079 0.0164 0.0260 0.0189 15.6081 0.9718 308 0.0090 0.0302 0.0256 0.0241 15.4164 1.1526

257 0.5594 0.1538 0.1973 0.0516 10.7550 0.9945 309 0.1303 0.0690 0.0758 0.0232 13.6253 0.7139

258 0.4163 0.1841 0.1735 0.0505 11.0916 1.2331 310 0.3856 0.1091 0.1464 0.0387 11.6998 0.9372

259 0.5139 0.1945 0.2025 0.0771 10.7654 1.6627 311 0.3491 0.1371 0.1279 0.0423 12.1598 0.9766

260 0.3416 0.1187 0.1558 0.0370 11.6983 0.8219 312 0.2876 0.1158 0.1864 0.0549 10.5434 1.4978

261 0.3227 0.2048 0.1680 0.0784 11.0109 2.1668 313 0.3986 0.1334 0.1477 0.0392 11.7560 0.9326

262 0.4894 0.2293 0.2027 0.0804 10.8192 1.5204 314 0.3628 0.2203 0.1931 0.0924 10.6921 2.3499

263 0.2278 0.1076 0.1572 0.0519 11.4131 1.5216 315 0.0958 0.0456 0.0734 0.0204 13.6603 0.6277

264 0.1700 0.0911 0.0892 0.0497 13.1952 1.2049 316 0.4208 0.2079 0.1889 0.0799 10.9946 1.4456

265 0.1916 0.1053 0.0908 0.0275 13.0897 0.7367 317 0.2287 0.1202 0.1354 0.0573 12.2514 1.3489

266 0.2881 0.1234 0.1415 0.0437 11.9960 1.0699 318 0.2070 0.1425 0.1246 0.0668 12.3415 1.7890

267 0.0642 0.0647 0.0773 0.0371 13.7009 1.6177 319 0.3614 0.1538 0.1560 0.0426 11.6033 0.9530

268 0.1789 0.1000 0.1032 0.0301 12.8524 0.9459 320 0.2058 0.0690 0.1137 0.0288 12.6145 0.7007

Table B.5: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the Sports-360
dataset with the proposed model.
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B. Quantitative Evaluation

ATSal ATSal

Video CC SIM KLDiv Video CC SIM KLDiv

217 0.1636 0.0690 0.0705 0.0252 13.0839 0.6402 269 0.2827 0.1004 0.0745 0.0195 12.8182 0.4422

218 0.1303 0.0459 0.0688 0.0255 13.2000 0.5824 270 0.1900 0.0853 0.0690 0.0241 13.0137 0.5498

219 0.1293 0.0837 0.0604 0.0218 13.5311 0.6613 271 0.1110 0.0463 0.0749 0.0202 13.1688 0.5690

220 0.1330 0.0620 0.0693 0.0226 13.1941 0.5993 272 0.1461 0.0365 0.0851 0.0174 12.8305 0.4604

221 0.2018 0.0552 0.0782 0.0177 12.8762 0.4565 273 0.0569 0.0274 0.0507 0.0173 13.7715 0.5136

222 0.1891 0.0710 0.0623 0.0145 13.3681 0.4386 274 0.0473 0.0430 0.0371 0.0139 14.3024 0.5895

223 0.3319 0.1148 0.1210 0.0230 12.6429 0.6761 275 0.1265 0.0573 0.0679 0.0318 13.2417 0.7809

224 0.1650 0.0829 0.0924 0.0327 12.7619 0.7993 276 0.1069 0.0385 0.0688 0.0166 13.3106 0.4421

225 0.0995 0.0527 0.0648 0.0195 13.5428 0.6096 277 0.1040 0.0711 0.0493 0.0189 13.8308 0.6888

226 0.1424 0.0550 0.0428 0.0131 13.6177 0.3908 278 0.2485 0.1330 0.0651 0.0161 13.0031 0.4132

227 0.3030 0.0795 0.1083 0.0157 12.4033 0.4797 279 0.1486 0.0525 0.0799 0.0171 12.9974 0.4324

228 0.1360 0.0491 0.0909 0.0196 12.8616 0.5685 280 0.2133 0.0722 0.1055 0.0246 12.5222 0.5772

229 0.1143 0.0435 0.0621 0.0123 13.2037 0.4502 281 0.2135 0.0588 0.1253 0.0229 11.8533 0.5934

230 0.1379 0.0829 0.0640 0.0219 13.5814 0.6293 282 0.1227 0.0651 0.0685 0.0196 13.4770 0.6208

231 0.0755 0.0452 0.0543 0.0206 13.6593 0.5502 283 0.2990 0.0474 0.0909 0.0105 12.6387 0.2460

232 0.1260 0.0557 0.0718 0.0294 13.1125 0.7689 284 0.2891 0.1220 0.1081 0.0316 12.5312 0.8492

233 0.1791 0.0538 0.0746 0.0154 12.8874 0.3829 285 0.2115 0.0900 0.0711 0.0268 13.0539 0.6856

234 0.1878 0.0684 0.1033 0.0277 12.5439 0.6377 286 0.1963 0.0890 0.0901 0.0265 12.7078 0.5824

235 0.1380 0.0912 0.0715 0.0328 13.4169 0.9141 287 0.1719 0.0434 0.1087 0.0225 12.4248 0.6397

236 0.1400 0.0686 0.0686 0.0190 13.1571 0.5497 288 0.2942 0.1153 0.0819 0.0274 12.6877 0.6216

237 0.2015 0.0775 0.1035 0.0222 12.4500 0.4710 289 0.1418 0.1114 0.0658 0.0344 14.5963 2.0640

238 0.0723 0.0341 0.0555 0.0192 13.7344 0.6393 290 0.1330 0.0517 0.0675 0.0237 13.1357 0.5751

239 0.1249 0.0543 0.0712 0.0203 13.1904 0.6042 291 0.0464 0.0331 0.0361 0.0165 14.0323 0.5320

240 0.1697 0.0672 0.0916 0.0219 12.7739 0.5604 292 0.1571 0.0457 0.0890 0.0177 12.7178 0.4951

241 0.1348 0.0640 0.0662 0.0220 13.3704 0.5676 293 0.1882 0.0505 0.0846 0.0236 12.9264 0.5655

242 0.1948 0.1058 0.0901 0.0315 12.8989 0.8486 294 0.0959 0.0386 0.0719 0.0181 13.3243 0.5326

243 0.1526 0.0651 0.0916 0.0226 13.1507 0.5936 295 0.2657 0.0677 0.1218 0.0253 12.1217 0.6250

244 0.1978 0.0749 0.0827 0.0187 12.7897 0.5047 296 0.1418 0.0812 0.0671 0.0189 13.3032 0.5193

245 0.1357 0.0753 0.0781 0.0264 13.0839 0.6530 297 0.1177 0.0715 0.0478 0.0141 13.7299 0.4773

246 0.1817 0.1192 0.0764 0.0321 13.2186 1.1646 298 0.1784 0.0751 0.0967 0.0224 12.7227 0.5806

247 0.2011 0.0824 0.0916 0.0279 13.0439 0.9089 299 0.1318 0.0996 0.0786 0.0375 13.1645 1.0288

248 0.1916 0.1572 0.0566 0.0207 13.3018 0.5771 300 0.1790 0.0952 0.0879 0.0347 12.9639 0.9684

249 0.0559 0.0467 0.0425 0.0118 13.6480 0.3666 301 0.1530 0.0619 0.0706 0.0204 13.2346 0.5548

250 0.2676 0.1057 0.1143 0.0296 12.3693 0.6965 302 0.1653 0.0852 0.0661 0.0197 13.3409 0.5468

251 0.2273 0.0525 0.1258 0.0222 11.9448 0.5896 303 0.0866 0.0810 0.0415 0.0247 13.8327 0.8641

252 0.1659 0.0672 0.0744 0.0130 12.8438 0.3218 304 0.1732 0.0641 0.1024 0.0210 12.6846 0.5291

253 0.3489 0.1398 0.0886 0.0179 12.5563 0.4180 305 0.1942 0.0985 0.1050 0.0447 12.5045 1.1925

254 0.2352 0.0766 0.1247 0.0282 12.0422 0.7228 306 0.3933 0.1007 0.1130 0.0221 11.9805 0.4620

255 0.2248 0.0653 0.1008 0.0212 12.3885 0.4832 307 0.0943 0.0369 0.0643 0.0120 13.3262 0.3298

256 0.2996 0.1489 0.0822 0.0276 12.7050 0.5622 308 0.1049 0.0741 0.0513 0.0192 13.7546 0.6420

257 0.4986 0.1441 0.1156 0.0164 12.1272 0.4693 309 0.2003 0.0566 0.0825 0.0100 12.7460 0.2592

258 0.1628 0.0552 0.0774 0.0197 13.0344 0.5355 310 0.2019 0.0807 0.1015 0.0246 12.6994 0.6571

259 0.3601 0.1631 0.1072 0.0318 12.2475 0.6182 311 0.2011 0.0686 0.0789 0.0207 12.7249 0.4970

260 0.1669 0.0632 0.0814 0.0208 12.7711 0.5111 312 0.2492 0.0416 0.0910 0.0208 12.7351 0.5413

261 0.1509 0.0892 0.0759 0.0323 13.2135 1.0322 313 0.2044 0.0849 0.0939 0.0197 12.8113 0.5684

262 0.1034 0.0457 0.0627 0.0266 13.3804 0.7040 314 0.2193 0.1501 0.0806 0.0289 12.8635 0.6986

263 0.2005 0.0725 0.1240 0.0377 12.1000 1.0229 315 0.1111 0.0389 0.0720 0.0148 13.1812 0.4153

264 0.3416 0.1050 0.0974 0.0280 12.4280 0.5999 316 0.2177 0.0829 0.0799 0.0202 12.6848 0.4910

265 0.1712 0.0548 0.0710 0.0155 13.0778 0.3721 317 0.1859 0.0878 0.0876 0.0221 12.9216 0.5945

266 0.1428 0.0733 0.0832 0.0313 13.1295 0.8174 318 0.1070 0.0673 0.0596 0.0183 13.8050 0.6603

267 0.2191 0.0929 0.1161 0.0303 12.2355 0.9080 319 0.1458 0.0605 0.0669 0.0175 13.1358 0.4483

268 0.1193 0.0764 0.0863 0.0438 13.4598 1.3017 320 0.1485 0.0537 0.0870 0.0252 12.8467 0.6605

Table B.6: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the Sports-360
dataset with ATSal [1].
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B. Quantitative Evaluation

CP-360 CP-360

Video CC SIM KLDiv Video CC SIM KLDiv

217 0.1953 0.0516 0.0860 0.0250 15.1481 0.5900 269 0.2103 0.0545 0.0987 0.0273 14.9292 0.6309

218 0.2618 0.0617 0.1186 0.0359 14.4409 0.8452 270 0.2121 0.0535 0.0948 0.0311 14.9771 0.7372

219 0.1926 0.0452 0.0739 0.0237 15.4690 0.5617 271 0.2089 0.0557 0.1190 0.0236 14.4439 0.5565

220 0.1846 0.0529 0.0842 0.0258 15.1836 0.6295 272 0.2295 0.0407 0.1311 0.0242 14.1629 0.5559

221 0.2089 0.0505 0.1098 0.0274 14.6888 0.6417 273 0.2089 0.0411 0.1026 0.0204 14.8064 0.4634

222 0.1578 0.0273 0.0797 0.0196 15.3620 0.4480 274 0.1530 0.0453 0.0823 0.0278 15.2860 0.6751

223 0.2590 0.0414 0.1305 0.0250 14.1984 0.5722 275 0.1827 0.0566 0.0861 0.0387 15.2205 0.9171

224 0.2147 0.0649 0.1162 0.0267 14.5051 0.5997 276 0.2236 0.0377 0.1074 0.0174 14.6710 0.3831

225 0.1859 0.0541 0.1126 0.0281 14.5418 0.6485 277 0.1676 0.0444 0.0735 0.0219 15.5124 0.5021

226 0.1013 0.0370 0.0571 0.0217 15.9875 0.5101 278 0.2267 0.0340 0.1084 0.0325 14.6942 0.7118

227 0.2221 0.0398 0.1180 0.0200 14.4039 0.4565 279 0.2535 0.0380 0.1089 0.0195 14.6455 0.4357

228 0.2912 0.0318 0.1625 0.0185 13.3394 0.4238 280 0.2129 0.0335 0.1204 0.0215 14.4610 0.5016

229 0.2760 0.0529 0.1253 0.0213 14.2369 0.4871 281 0.3115 0.0367 0.1838 0.0180 12.9518 0.4301

230 0.2167 0.0505 0.0864 0.0276 15.1621 0.6610 282 0.1258 0.0368 0.0688 0.0245 15.6331 0.5918

231 0.2028 0.0700 0.1038 0.0406 14.7721 0.9704 283 0.1733 0.0278 0.1052 0.0140 14.8893 0.3065

232 0.2136 0.0661 0.1079 0.0427 14.6700 0.9987 284 0.1487 0.0391 0.0825 0.0163 15.3229 0.3999

233 0.1968 0.0410 0.0975 0.0203 14.9273 0.4528 285 0.1792 0.0564 0.0805 0.0275 15.3387 0.6893

234 0.2355 0.0587 0.1124 0.0348 14.5645 0.8472 286 0.2515 0.0431 0.1242 0.0248 14.3337 0.5547

235 0.1926 0.0345 0.0832 0.0230 15.2684 0.4905 287 0.2563 0.0411 0.1328 0.0180 14.1122 0.3868

236 0.2547 0.0585 0.1174 0.0257 14.4189 0.5833 288 0.2280 0.0616 0.0981 0.0323 14.9029 0.7667

237 0.2744 0.0447 0.1278 0.0310 14.2253 0.7468 289 0.1567 0.0365 0.0855 0.0233 15.1464 0.5547

238 0.1274 0.0382 0.0840 0.0245 15.2822 0.5960 290 0.2227 0.0468 0.1163 0.0280 14.4532 0.6915

239 0.2157 0.0466 0.1115 0.0221 14.5481 0.4575 291 0.1525 0.0553 0.0827 0.0299 15.2722 0.7165

240 0.1836 0.0478 0.0961 0.0192 14.9279 0.4447 292 0.2344 0.0394 0.1228 0.0206 14.3333 0.4672

241 0.1877 0.0510 0.0844 0.0200 15.2315 0.4653 293 0.1873 0.0312 0.0932 0.0200 15.0212 0.4715

242 0.2377 0.0650 0.1108 0.0209 14.5572 0.4903 294 0.2413 0.0361 0.1263 0.0193 14.2092 0.4343

243 0.2241 0.0456 0.1115 0.0236 14.6038 0.5539 295 0.1965 0.0323 0.1071 0.0198 14.7521 0.4298

244 0.2785 0.0439 0.1174 0.0201 14.3451 0.4236 296 0.1878 0.0770 0.0929 0.0354 15.0809 0.8380

245 0.2492 0.0480 0.1323 0.0266 14.0760 0.6233 297 0.1938 0.0642 0.0890 0.0256 15.1262 0.6147

246 0.1773 0.0609 0.0915 0.0311 15.0376 0.7456 298 0.2174 0.0476 0.1129 0.0265 14.5344 0.6222

247 0.2338 0.0363 0.1203 0.0243 14.3802 0.5658 299 0.2058 0.0753 0.1004 0.0368 14.8522 0.9283

248 0.1486 0.0832 0.0870 0.0350 15.2207 0.7922 300 0.1647 0.0576 0.0937 0.0316 15.0126 0.7659

249 0.1096 0.0829 0.1179 0.0372 14.5292 1.0090 301 0.2185 0.0349 0.1088 0.0295 14.6559 0.6459

250 0.2825 0.0494 0.1436 0.0275 13.8826 0.6245 302 0.1880 0.0305 0.0810 0.0216 15.2444 0.4857

251 0.2719 0.0334 0.1420 0.0194 13.8524 0.4441 303 0.1680 0.0652 0.0697 0.0262 15.5248 0.6664

252 0.2059 0.0501 0.1231 0.0235 14.3561 0.5436 304 0.2116 0.0519 0.1063 0.0232 14.7037 0.5372

253 0.2079 0.0366 0.1033 0.0189 14.8329 0.4275 305 0.1785 0.0475 0.0947 0.0298 14.9717 0.7049

254 0.2308 0.0615 0.1334 0.0267 14.0786 0.6218 306 0.2996 0.0510 0.1102 0.0201 14.5536 0.4652

255 0.2695 0.0468 0.1376 0.0274 14.0115 0.6304 307 0.2558 0.0384 0.1168 0.0215 14.4626 0.4495

256 0.2140 0.0586 0.1175 0.0290 14.5532 0.6465 308 0.1882 0.0628 0.0861 0.0300 15.1580 0.7129

257 0.2812 0.0400 0.1087 0.0231 14.6100 0.5188 309 0.2316 0.0416 0.1156 0.0222 14.4528 0.5129

258 0.2111 0.0405 0.1146 0.0239 14.5349 0.5499 310 0.2512 0.0355 0.1003 0.0203 14.8235 0.4406

259 0.2318 0.0387 0.1114 0.0272 14.6497 0.5970 311 0.2011 0.0749 0.1065 0.0318 14.7490 0.7874

260 0.1873 0.0465 0.0976 0.0307 14.9259 0.7266 312 0.2086 0.0348 0.1048 0.0206 14.7709 0.4541

261 0.1948 0.0671 0.1154 0.0336 14.5505 0.8092 313 0.2335 0.0750 0.1051 0.0286 14.7425 0.6911

262 0.2014 0.0631 0.1019 0.0357 14.8562 0.8137 314 0.2209 0.0584 0.0792 0.0287 15.2493 0.7378

263 0.2959 0.0427 0.1372 0.0272 13.9832 0.6197 315 0.2120 0.0399 0.1130 0.0177 14.5342 0.4024

264 0.2534 0.0588 0.0976 0.0521 14.8804 1.1759 316 0.2444 0.0698 0.1075 0.0382 14.6633 0.8990

265 0.1925 0.0462 0.1095 0.0320 14.6786 0.7451 317 0.1952 0.0579 0.0959 0.0228 14.9388 0.5489

266 0.2279 0.0465 0.1197 0.0278 14.4053 0.6148 318 0.1876 0.0571 0.1013 0.0303 14.8134 0.7109

267 0.2357 0.0499 0.1256 0.0199 14.2654 0.4599 319 0.1957 0.0391 0.0956 0.0193 14.9597 0.4765

268 0.1691 0.0562 0.0962 0.0280 14.9906 0.7003 320 0.2360 0.0664 0.1129 0.0285 14.5579 0.6750

Table B.7: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the Sports-360
dataset with CP-360 [2].
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B. Quantitative Evaluation

Martin et al.’s Martin et al.’s

Video CC SIM KLDiv Video CC SIM KLDiv

217 0.1996 0.0456 0.0750 0.0160 13.7369 0.4104 269 0.2005 0.0487 0.0711 0.0132 13.7733 0.3291

218 0.1758 0.0442 0.0710 0.0198 13.8260 0.5181 270 0.1025 0.0468 0.0455 0.0154 14.4540 0.4656

219 0.1232 0.0509 0.0496 0.0173 14.4719 0.5141 271 0.1045 0.0276 0.0715 0.0187 13.8960 0.5301

220 0.1521 0.0484 0.0609 0.0179 14.0305 0.5059 272 0.1988 0.0418 0.0863 0.0136 13.3899 0.3430

221 0.1292 0.0489 0.0658 0.0199 14.0260 0.5688 273 0.1411 0.0311 0.0636 0.0125 13.9969 0.3316

222 0.1400 0.0661 0.0519 0.0176 14.3408 0.5269 274 0.0345 0.0342 0.0317 0.0121 14.9858 0.4232

223 0.1597 0.0296 0.0797 0.0140 13.7468 0.3551 275 0.1715 0.0702 0.0740 0.0325 13.8803 0.8898

224 0.1658 0.0585 0.0826 0.0250 13.6844 0.6618 276 0.0885 0.0533 0.0485 0.0155 14.4803 0.5139

225 0.0453 0.0290 0.0434 0.0118 14.6183 0.3756 277 0.1504 0.0486 0.0577 0.0182 14.2805 0.5687

226 0.1345 0.0487 0.0453 0.0161 14.4509 0.4984 278 0.1661 0.0574 0.0603 0.0169 14.0517 0.4523

227 0.0893 0.0319 0.0557 0.0102 14.2226 0.3111 279 0.0962 0.0263 0.0609 0.0112 14.2646 0.3115

228 0.1142 0.0319 0.0742 0.0137 13.8523 0.4046 280 0.2327 0.0396 0.0974 0.0226 13.3057 0.5505

229 0.1128 0.0329 0.0600 0.0127 14.1171 0.3556 281 0.2400 0.0318 0.1158 0.0132 12.6514 0.3195

230 0.1701 0.0518 0.0570 0.0181 14.1571 0.4826 282 0.1554 0.0588 0.0610 0.0250 14.1966 0.6974

231 0.1520 0.0542 0.0711 0.0259 13.8655 0.6927 283 0.0991 0.0136 0.0470 0.0067 14.4298 0.1744

232 0.1072 0.0563 0.0618 0.0247 14.2395 0.7735 284 0.1482 0.0409 0.0617 0.0151 14.0805 0.4417

233 0.2003 0.0454 0.0873 0.0143 13.5292 0.3754 285 0.1440 0.0537 0.0529 0.0209 14.2566 0.6041

234 0.1948 0.0465 0.0873 0.0237 13.5330 0.6218 286 0.1629 0.0560 0.0706 0.0180 13.8159 0.4268

235 0.1036 0.0546 0.0483 0.0171 14.5503 0.5401 287 0.1938 0.0469 0.0980 0.0179 13.2417 0.4644

236 0.1051 0.0503 0.0624 0.0150 14.1973 0.5477 288 0.1110 0.0410 0.0435 0.0145 14.4259 0.4399

237 0.1852 0.0650 0.1036 0.0289 13.2813 0.8077 289 0.1551 0.0799 0.0701 0.0231 13.8279 0.5283

238 0.1022 0.0182 0.0539 0.0104 14.2556 0.2957 290 0.1666 0.0353 0.0746 0.0130 13.7281 0.3387

239 0.1481 0.0461 0.0689 0.0128 13.8224 0.3656 291 0.0333 0.0346 0.0320 0.0157 14.8558 0.5623

240 0.2029 0.0654 0.0870 0.0172 13.4785 0.4424 292 0.1837 0.0423 0.0848 0.0167 13.5202 0.4222

241 0.1503 0.0432 0.0533 0.0141 14.2942 0.3893 293 0.1099 0.0192 0.0609 0.0102 14.2036 0.2906

242 0.1498 0.0604 0.0687 0.0211 13.9087 0.5729 294 0.0982 0.0383 0.0613 0.0139 14.1312 0.4005

243 0.1815 0.0505 0.0865 0.0223 13.5982 0.5870 295 0.2517 0.0467 0.1050 0.0191 13.0797 0.4683

244 0.0983 0.0717 0.0589 0.0228 14.4620 0.7858 296 0.1196 0.0247 0.0464 0.0135 14.4755 0.3883

245 0.1357 0.0565 0.0683 0.0198 13.9344 0.5198 297 0.1419 0.0465 0.0517 0.0130 14.2188 0.3780

246 0.1161 0.0679 0.0514 0.0188 14.3576 0.5509 298 0.1613 0.0448 0.0739 0.0160 13.8488 0.3914

247 0.1511 0.0344 0.0718 0.0191 13.7702 0.5109 299 0.2011 0.0723 0.0831 0.0288 13.5642 0.7603

248 0.0905 0.0715 0.0481 0.0250 14.4821 0.7864 300 0.1141 0.0527 0.0648 0.0208 14.1176 0.5112

249 0.0919 0.0373 0.0561 0.0150 14.2107 0.4103 301 0.1115 0.0507 0.0582 0.0172 14.2238 0.5047

250 0.1805 0.0439 0.0864 0.0153 13.5543 0.4201 302 0.1722 0.0603 0.0665 0.0161 13.9134 0.4147

251 0.2115 0.0382 0.0905 0.0138 13.2672 0.3650 303 0.1059 0.0901 0.0456 0.0258 14.5685 0.8185

252 0.1222 0.0257 0.0588 0.0093 14.0436 0.2338 304 0.2206 0.0327 0.0875 0.0146 13.4025 0.3655

253 0.1740 0.0394 0.0693 0.0126 13.8781 0.3319 305 0.1411 0.0685 0.0720 0.0265 14.0995 0.9308

254 0.2162 0.0409 0.1046 0.0159 13.0413 0.4049 306 0.1637 0.0365 0.0631 0.0130 13.8898 0.3456

255 0.1894 0.0422 0.0876 0.0176 13.5007 0.4484 307 0.1402 0.0374 0.0786 0.0141 13.8140 0.3692

256 0.1646 0.0466 0.0671 0.0148 13.9063 0.3844 308 0.1260 0.0557 0.0507 0.0180 14.2803 0.4902

257 0.1425 0.0253 0.0607 0.0145 14.0072 0.3905 309 0.1508 0.0500 0.0720 0.0146 13.8173 0.4162

258 0.1183 0.0496 0.0632 0.0186 14.0935 0.5589 310 0.1679 0.0260 0.0555 0.0098 14.1743 0.2868

259 0.0819 0.0289 0.0499 0.0150 14.3976 0.4178 311 0.2211 0.0545 0.0899 0.0248 13.3792 0.6469

260 0.1581 0.0485 0.0744 0.0210 13.7728 0.5563 312 0.1894 0.0354 0.0819 0.0136 13.5538 0.3595

261 0.1237 0.0615 0.0685 0.0244 13.9742 0.6704 313 0.1372 0.0558 0.0683 0.0241 14.0190 0.6522

262 0.1149 0.0542 0.0554 0.0238 14.2670 0.6332 314 0.1124 0.0713 0.0495 0.0239 14.5082 0.7244

263 0.1896 0.0431 0.0969 0.0194 13.2001 0.4998 315 0.1762 0.0370 0.0821 0.0149 13.6134 0.3988

264 0.1592 0.0371 0.0551 0.0258 14.1253 0.6874 316 0.1706 0.0403 0.0669 0.0201 13.8609 0.5225

265 0.1466 0.0246 0.0655 0.0150 14.0066 0.3963 317 0.1515 0.0475 0.0699 0.0153 13.9347 0.4424

266 0.1647 0.0343 0.0849 0.0200 13.4611 0.4324 318 0.1064 0.0562 0.0544 0.0187 14.3220 0.5520

267 0.0889 0.0396 0.0639 0.0120 14.2063 0.2701 319 0.1513 0.0285 0.0754 0.0127 13.8162 0.3226

268 0.0956 0.0760 0.0618 0.0332 14.8713 1.3454 320 0.1685 0.0334 0.0765 0.0155 13.7096 0.3885

Table B.8: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the Sports-360
dataset with Martin et al.’s [3].
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B. Quantitative Evaluation

208x106 320x240
Spherical

ConvLSTM
Optical
Flow

Depth
Weighted

KLDiv
Sampled
KLDiv

Traditional
KLDiv

Ablation Study

✓ - ✓ ✓ - ✓ - - 1

- ✓ ✓ ✓ - ✓ - - 2

- ✓ - ✓ - ✓ - - 3

- ✓ ✓ ✓ - - ✓ - 4

- ✓ ✓ ✓ - - - ✓ 5

- ✓ ✓ - - ✓ - - 6

- ✓ ✓ ✓ ✓ ✓ - - 7

- ✓ - ✓ - ✓ - - 8

Table B.9: Configuration of the model in each ablation study. Check marks indicate which elements are present
in each ablation study.
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B. Quantitative Evaluation

Ablation Study 1

Video CC SIM KLDiv

003 0.4345 0.1723 0.2384 0.0705 8.7390 1.5158

005 0.2107 0.0610 0.1543 0.0267 11.9484 0.7031

013 0.3296 0.1537 0.1776 0.0651 11.5945 1.5386

015 0.4554 0.1673 0.2114 0.0608 10.8022 1.4834

018 0.6483 0.0946 0.3526 0.0710 7.2721 1.8653

020 0.3839 0.2134 0.2155 0.0913 10.2025 2.4971

022 0.2319 0.1211 0.1878 0.0610 11.0768 1.7895

027 0.3721 0.1855 0.1691 0.0666 11.8268 1.5465

028 0.3639 0.1904 0.1576 0.0521 12.1867 1.2288

029 0.3422 0.1512 0.1805 0.0510 11.7253 1.0877

033 0.5481 0.2242 0.2418 0.0891 10.4648 1.8409

040 0.3706 0.1520 0.2078 0.0590 10.6692 1.5706

043 0.3943 0.1461 0.1883 0.0526 10.9798 1.4100

047 0.6648 0.0822 0.3595 0.0668 7.5687 1.5664

052 0.5289 0.1614 0.2858 0.0688 9.0579 1.4576

053 0.2460 0.1203 0.1629 0.0486 11.9058 1.2887

059 0.4285 0.1383 0.1990 0.0461 10.9906 1.1944

066 0.4670 0.2092 0.2127 0.0684 10.4878 1.7887

067 0.3610 0.1629 0.2036 0.0669 11.0499 1.6113

072 0.5768 0.2413 0.2355 0.1042 10.4950 2.1040

075 0.2247 0.1518 0.1705 0.0766 11.3049 2.2822

080 0.4058 0.2045 0.2246 0.0626 10.0976 1.7362

087 0.1511 0.0633 0.1510 0.0505 11.4328 1.8603

094 0.2997 0.1849 0.1853 0.0845 11.7099 2.0353

103 0.4323 0.1927 0.2337 0.0894 9.6814 2.6591

110 0.2582 0.1379 0.2015 0.0800 10.9673 2.2877

159 0.3379 0.1570 0.1580 0.0348 11.8857 0.9080

160 0.2655 0.1359 0.2042 0.0660 10.5136 2.0911

170 0.4300 0.1826 0.2360 0.0822 9.7508 1.7099

184 0.6743 0.1519 0.2826 0.0716 9.6040 1.4469

197 0.3326 0.1446 0.1909 0.0506 10.6856 1.4329

213 0.2980 0.1366 0.2332 0.0647 9.1352 2.0560

Table B.10: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 1.
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B. Quantitative Evaluation

Ablation Study 2

Video CC SIM KLDiv

003 0.4285 0.1675 0.2386 0.0734 8.9560 1.6844

005 0.1773 0.0798 0.1410 0.0335 11.7037 1.0806

013 0.4063 0.1675 0.2162 0.0702 10.3207 1.6347

015 0.4183 0.1665 0.2213 0.0743 9.9883 1.7530

018 0.6395 0.1039 0.3571 0.0592 6.9805 1.1273

020 0.2923 0.1490 0.1642 0.0531 11.3344 1.4902

022 0.3316 0.1290 0.2033 0.0545 10.2527 1.2515

027 0.3956 0.2008 0.1812 0.0848 11.0605 1.7852

028 0.4142 0.1675 0.1851 0.0614 11.1041 1.3615

029 0.2787 0.1080 0.1630 0.0441 11.5675 1.0321

033 0.5941 0.2028 0.2633 0.0724 9.6076 1.4615

040 0.3211 0.1250 0.1689 0.0482 11.3080 1.2077

043 0.4011 0.1559 0.1899 0.0441 10.5007 1.1457

047 0.6503 0.0802 0.3131 0.0587 8.4859 1.2580

052 0.5075 0.1535 0.2248 0.0579 10.2931 1.0854

053 0.3483 0.1084 0.1929 0.0493 10.7719 1.1996

059 0.5506 0.1533 0.2393 0.0612 9.8382 1.2028

066 0.4175 0.1301 0.1780 0.0482 11.1533 1.0962

067 0.3557 0.1544 0.1869 0.0591 10.9474 1.3800

072 0.5171 0.2392 0.2735 0.1186 8.7108 2.3296

075 0.2392 0.1954 0.1730 0.0854 11.1876 2.2367

080 0.4335 0.2240 0.2514 0.0869 9.0619 1.8688

087 0.1805 0.0753 0.1672 0.0571 10.7468 1.9489

094 0.2633 0.1837 0.1909 0.0886 10.9085 2.2807

103 0.5027 0.2264 0.2618 0.0977 9.1019 1.7980

110 0.2573 0.1197 0.2020 0.0695 10.4149 1.9247

159 0.3843 0.1817 0.1854 0.0558 10.6763 1.4442

160 0.2976 0.0835 0.2467 0.0388 8.7627 1.5503

170 0.4291 0.1691 0.2456 0.0603 8.8430 1.1250

184 0.6546 0.2063 0.3143 0.0818 8.6354 1.6064

197 0.3664 0.1541 0.2028 0.0567 9.8454 1.5238

213 0.3165 0.1641 0.2500 0.0857 8.1738 2.4840

Table B.11: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 2.
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B. Quantitative Evaluation

Ablation Study 3

Video CC SIM KLDiv

003 0.2484 0.1385 0.1262 0.0410 11.9548 1.2006

005 0.1699 0.0901 0.1245 0.0316 11.6964 0.9213

013 0.2910 0.0950 0.1447 0.0497 11.7224 1.1636

015 0.2201 0.1279 0.0997 0.0345 12.7946 0.8975

018 0.5329 0.1181 0.2760 0.0581 7.8631 1.6325

020 0.1780 0.0684 0.1198 0.0247 12.2093 0.5850

022 0.2528 0.1270 0.1677 0.0494 10.9144 1.2693

027 0.3786 0.2558 0.1957 0.1207 10.4894 2.8161

028 0.2962 0.1690 0.1583 0.0698 11.8308 1.6890

029 0.3289 0.1284 0.2019 0.0585 10.3989 1.5041

033 0.1854 0.1066 0.1433 0.0556 12.2970 1.4806

040 0.3380 0.1397 0.1877 0.0620 10.8252 1.4316

043 0.2917 0.1363 0.1508 0.0479 11.5510 1.0634

047 0.6096 0.0792 0.3321 0.0437 7.6796 1.0443

052 0.4826 0.1700 0.2617 0.0581 9.2402 1.2089

053 0.3481 0.1526 0.1978 0.0601 10.8517 1.4108

059 0.4544 0.0936 0.2212 0.0399 10.3810 0.9272

066 0.4121 0.1447 0.2174 0.0633 10.5390 1.4895

067 0.3295 0.1681 0.2065 0.0903 10.6979 2.1780

072 0.4509 0.2355 0.2052 0.0998 10.5637 2.1744

075 0.1960 0.1324 0.1481 0.0630 11.4837 2.3462

080 0.3537 0.2030 0.2032 0.0770 10.5342 1.6529

087 0.1567 0.0510 0.1627 0.0311 11.0696 1.1405

094 0.1728 0.0834 0.1467 0.0532 11.7948 1.4862

103 0.4407 0.2407 0.2727 0.1289 8.4647 2.7913

110 0.2098 0.1115 0.1723 0.0659 11.2744 1.7242

159 0.3285 0.1670 0.1861 0.0706 10.6238 1.8364

160 0.2526 0.1088 0.2049 0.0367 9.6807 1.1306

170 0.3466 0.1345 0.1809 0.0325 11.3185 0.6867

184 0.4651 0.1523 0.2425 0.0652 9.6285 1.4836

197 0.1612 0.0734 0.1138 0.0235 12.6480 0.5504

213 0.3765 0.1706 0.2862 0.0939 7.6619 2.3086

Table B.12: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 3.
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B. Quantitative Evaluation

Ablation Study 4

Video CC SIM KLDiv

003 0.3802 0.1258 0.2013 0.0506 10.4207 1.1657

005 0.1298 0.0592 0.1271 0.0286 12.0698 0.9042

013 0.2936 0.1218 0.1702 0.0574 11.6152 1.2330

015 0.3562 0.1576 0.1838 0.0523 10.9646 1.2277

018 0.5280 0.0762 0.2674 0.0337 9.1603 0.6526

020 0.2394 0.1305 0.1506 0.0440 11.9751 1.0284

022 0.3322 0.1230 0.2151 0.0546 9.8111 1.2816

027 0.3945 0.2097 0.1890 0.0915 10.8932 1.9283

028 0.3755 0.1804 0.1846 0.0641 11.1645 1.4119

029 0.2690 0.1165 0.1548 0.0409 11.8809 0.8940

033 0.5444 0.1562 0.2412 0.0523 10.1560 1.0298

040 0.3150 0.1433 0.1714 0.0539 11.3927 1.2051

043 0.4185 0.1522 0.2266 0.0570 9.7535 1.2470

047 0.5635 0.0639 0.2683 0.0326 9.3003 0.7096

052 0.4743 0.1725 0.2596 0.0629 9.2690 1.3842

053 0.3556 0.1099 0.1903 0.0503 10.9761 1.1185

059 0.5020 0.1074 0.2314 0.0453 10.0961 1.0043

066 0.4589 0.0925 0.2206 0.0506 10.2871 1.1163

067 0.3632 0.1522 0.2172 0.0732 10.3639 1.8059

072 0.5099 0.2240 0.2691 0.1043 8.8827 2.0103

075 0.2284 0.1530 0.1669 0.0749 11.3623 1.9633

080 0.3994 0.2079 0.2191 0.0671 10.0131 1.4621

087 0.1378 0.0639 0.1481 0.0427 11.1923 1.6034

094 0.2716 0.1568 0.1937 0.0830 10.9199 2.0869

103 0.3877 0.1847 0.2366 0.0944 8.9986 2.3391

110 0.2646 0.1432 0.2037 0.0822 10.4741 2.0718

159 0.4435 0.1846 0.2377 0.0706 9.0815 1.4658

160 0.2539 0.0820 0.2156 0.0286 9.4930 1.0105

170 0.4428 0.1634 0.2420 0.0574 9.4184 1.0237

184 0.5697 0.1391 0.2295 0.0464 10.3193 0.9270

197 0.2717 0.0870 0.1426 0.0257 11.7785 0.7229

213 0.3573 0.1541 0.2522 0.0721 8.9015 1.8902

Table B.13: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 4.
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B. Quantitative Evaluation

Ablation Study 5

Video CC SIM KLDiv

003 0.2855 0.1239 0.1609 0.0467 11.2830 1.1980

005 0.1803 0.0845 0.1353 0.0317 11.8439 0.8929

013 0.3414 0.1108 0.2095 0.0452 10.5140 1.1160

015 0.3161 0.1179 0.1596 0.0378 11.4911 0.8864

018 0.4742 0.0849 0.2771 0.0445 8.6932 1.0318

020 0.2728 0.1341 0.1457 0.0425 11.7907 1.0279

022 0.4027 0.1186 0.2134 0.0507 10.4394 1.1282

027 0.4331 0.2110 0.1968 0.0898 10.7921 1.9002

028 0.3635 0.1499 0.1787 0.0537 11.3793 1.1393

029 0.3492 0.1217 0.1792 0.0452 11.2649 1.0370

033 0.5492 0.1400 0.2351 0.0508 10.2041 1.0090

040 0.3555 0.1275 0.1881 0.0519 11.0780 1.2058

043 0.4061 0.1488 0.2053 0.0487 10.3180 1.0620

047 0.5354 0.0912 0.2887 0.0404 8.6285 1.0290

052 0.3965 0.1680 0.2002 0.0447 10.7919 0.9916

053 0.3669 0.1069 0.2022 0.0434 10.7280 0.9799

059 0.4905 0.0974 0.2343 0.0452 10.0094 0.9788

066 0.4615 0.0671 0.2169 0.0359 10.3829 0.9179

067 0.3638 0.1514 0.2139 0.0733 10.5349 1.7203

072 0.5661 0.1997 0.2632 0.1140 8.9785 2.0575

075 0.2434 0.1632 0.1707 0.0717 11.3438 1.7952

080 0.3927 0.1263 0.2085 0.0418 10.3927 0.9318

087 0.1744 0.0682 0.1677 0.0434 10.9531 1.5178

094 0.2470 0.1307 0.1923 0.0731 11.1149 1.8085

103 0.4166 0.2196 0.2403 0.1020 9.2181 2.5530

110 0.3017 0.1402 0.2107 0.0749 10.2810 1.8784

159 0.4522 0.1694 0.2405 0.0585 9.3252 1.2296

160 0.2717 0.0776 0.2178 0.0407 9.9024 1.1058

170 0.4770 0.0776 0.2042 0.0291 10.7002 0.6625

184 0.4473 0.0653 0.2039 0.0349 10.6666 0.8056

197 0.3208 0.0730 0.1562 0.0285 11.7218 0.6605

213 0.4443 0.1049 0.2462 0.0378 9.5776 0.8879

Table B.14: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 5.
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B. Quantitative Evaluation

Ablation Study 6

Video CC SIM KLDiv

003 0.3609 0.1437 0.1600 0.0454 11.4296 1.1093

005 0.2081 0.0684 0.1459 0.0295 11.6792 0.7737

013 0.3094 0.1292 0.1571 0.0537 11.6391 1.2012

015 0.2800 0.1400 0.1550 0.0464 11.5143 1.0556

018 0.4625 0.0961 0.2213 0.0355 10.1580 0.8602

020 0.2359 0.1159 0.1407 0.0341 12.2300 0.7875

022 0.3451 0.0980 0.2117 0.0499 10.5636 1.1901

027 0.3506 0.1860 0.1651 0.0740 11.3954 1.6802

028 0.2951 0.1694 0.1701 0.0738 11.6266 1.7515

029 0.2765 0.1048 0.1619 0.0473 11.6622 1.0901

033 0.5459 0.1835 0.2431 0.0792 9.9187 1.6757

040 0.3019 0.1105 0.1870 0.0579 11.0425 1.4277

043 0.4049 0.1181 0.1761 0.0394 11.0906 0.9320

047 0.4765 0.1078 0.2371 0.0376 9.8643 0.8818

052 0.3928 0.0924 0.1677 0.0408 11.2999 1.0086

053 0.3968 0.0952 0.2064 0.0391 10.7021 0.8958

059 0.4299 0.0849 0.1890 0.0364 10.9120 0.8065

066 0.4481 0.1514 0.2045 0.0645 10.7124 1.3771

067 0.4092 0.1097 0.2172 0.0561 10.4411 1.3329

072 0.4519 0.1952 0.2134 0.0835 10.2876 1.9104

075 0.2168 0.1343 0.1571 0.0660 11.7905 1.8888

080 0.4360 0.1990 0.2301 0.0615 9.9019 1.3773

087 0.1986 0.0662 0.1847 0.0467 10.6663 1.4756

094 0.2592 0.1091 0.1650 0.0539 11.6309 1.3775

103 0.4671 0.2275 0.2714 0.1111 8.9606 2.5339

110 0.2924 0.1062 0.2131 0.0661 10.5680 1.8107

159 0.2867 0.1175 0.1696 0.0480 11.3085 1.2725

160 0.3218 0.0866 0.2367 0.0396 9.2186 1.0648

170 0.4382 0.1549 0.2284 0.0592 9.9713 1.0773

184 0.3398 0.1505 0.1897 0.0665 10.7825 1.5695

197 0.2628 0.1025 0.1364 0.0338 12.1772 0.8308

213 0.4272 0.1144 0.2978 0.0552 7.7520 1.3903

Table B.15: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 6.
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B. Quantitative Evaluation

Ablation Study 7

Video CC SIM KLDiv

003 0.3148 0.1609 0.1649 0.0637 11.3670 1.4918

005 0.2052 0.0736 0.1460 0.0295 11.7209 0.8047

013 0.3508 0.1377 0.2054 0.0543 10.5253 1.3365

015 0.2902 0.1566 0.1871 0.0635 10.5702 1.8053

018 0.5816 0.1043 0.3148 0.0481 7.9540 1.0664

020 0.1664 0.0659 0.1192 0.0248 12.5475 0.6634

022 0.3491 0.1111 0.2289 0.0569 9.7304 1.4016

027 0.4249 0.2324 0.1866 0.0820 11.0072 1.7460

028 0.1180 0.1055 0.0843 0.0468 13.8292 1.3668

029 0.3823 0.1174 0.1918 0.0469 10.8834 1.0910

033 0.5085 0.2063 0.2328 0.0743 10.3115 1.4127

040 0.3994 0.1427 0.2183 0.0593 10.1242 1.5422

043 0.3221 0.1305 0.1784 0.0446 11.0343 1.1572

047 0.6305 0.0871 0.3389 0.0442 7.5890 0.9926

052 0.4969 0.1899 0.2513 0.0682 9.2826 1.4538

053 0.3682 0.1354 0.2266 0.0552 10.0281 1.2670

059 0.5252 0.1272 0.2688 0.0534 9.0940 1.0925

066 0.5099 0.1431 0.2323 0.0698 10.1259 1.5276

067 0.3196 0.1472 0.1953 0.0521 10.7467 1.2676

072 0.5545 0.2060 0.2233 0.0981 10.1431 2.1525

075 0.2163 0.1379 0.1495 0.0589 11.6772 1.6357

080 0.4118 0.2042 0.2386 0.0649 9.7733 1.3414

087 0.1673 0.0720 0.1483 0.0384 11.6076 1.1192

094 0.0742 0.0665 0.0822 0.0465 13.6030 1.2505

103 0.4085 0.1931 0.2249 0.0851 9.5288 2.0606

110 0.2370 0.1273 0.1641 0.0663 11.5711 1.7172

159 0.3946 0.1804 0.1785 0.0455 11.0496 1.1972

160 0.2418 0.0836 0.2080 0.0368 10.0331 1.2192

170 0.3935 0.1622 0.2154 0.0602 9.9397 1.2362

184 0.6526 0.1049 0.3027 0.0497 8.7139 1.0583

197 0.3951 0.1316 0.2154 0.0445 9.9223 0.9877

213 0.3905 0.1540 0.2775 0.0760 8.1864 1.8685

Table B.16: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 7.
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B. Quantitative Evaluation

Ablation Study 8

Video CC SIM KLDiv

003 0.2325 0.1317 0.1008 0.0264 12.4718 0.6044

005 0.1507 0.0848 0.1190 0.0336 12.0119 0.9630

013 0.2662 0.1121 0.1431 0.0445 11.8636 1.0386

015 0.2510 0.1345 0.0987 0.0282 12.6502 0.6469

018 0.4050 0.1403 0.1912 0.0481 10.6238 1.0591

020 0.1674 0.0712 0.0928 0.0155 12.6865 0.3707

022 0.2174 0.1146 0.0922 0.0302 12.8203 0.6872

027 0.3126 0.2422 0.0928 0.0551 12.7813 1.2312

028 0.2973 0.1681 0.0903 0.0325 12.8364 0.7611

029 0.3313 0.1154 0.1029 0.0236 12.4537 0.4859

033 0.3819 0.1824 0.1022 0.0413 12.4955 0.9251

040 0.2884 0.1215 0.1115 0.0327 12.4311 0.7387

043 0.3372 0.1445 0.0976 0.0335 12.5155 0.7454

047 0.4215 0.1542 0.1787 0.0517 10.8888 1.1722

052 0.3309 0.1925 0.1348 0.0337 11.8684 0.7797

053 0.1579 0.0862 0.1107 0.0343 12.6356 0.8666

059 0.2772 0.1450 0.1011 0.0316 12.5691 0.7206

066 0.3029 0.1411 0.1042 0.0298 12.4939 0.6881

067 0.2473 0.1326 0.1253 0.0481 12.2707 1.1479

072 0.3350 0.1860 0.0718 0.0274 13.1715 0.6752

075 0.1866 0.1467 0.1090 0.0432 12.5517 1.1030

080 0.2333 0.1229 0.1099 0.0328 12.3549 0.7751

087 0.1736 0.0484 0.1202 0.0262 11.9921 0.6382

094 0.1719 0.1232 0.0875 0.0352 13.0676 0.9046

103 0.3554 0.1995 0.1108 0.0520 12.3958 1.1460

110 0.3523 0.0957 0.1837 0.0338 10.7752 0.6859

159 0.3060 0.1385 0.1204 0.0299 12.0666 0.6838

160 0.2717 0.0727 0.1480 0.0340 11.4493 0.7770

170 0.3474 0.1373 0.1171 0.0246 12.1955 0.5196

184 0.2639 0.1236 0.0888 0.0238 12.8122 0.5807

197 0.2177 0.0643 0.0841 0.0163 12.8404 0.3746

213 0.4242 0.1440 0.1538 0.0323 11.3888 0.6460

Table B.17: Mean and standard deviation of the CC, SIM, and KLDiv scores for each video in the VR-EyeTracking
dataset in the ablation study number 8.
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