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Abstract

This paper investigates the determinants of the diffusion

and intensity of the COVID-19 at the country level, focus-

ing on the role played by urban agglomeration, measured

using three urban variables: percentage of the urban popu-

lation, population density, and primacy. We estimate the

influence of urban agglomeration on two outcome variables:

cumulative number of cases and deaths per 100,000 inhabi-

tants up to 31 December 2020, using both parametric and

semiparametric models. We also explore possible spatial

effects. The non-linear effects of the urban variables on the

intensity of the disease reveal non-monotonous relation-

ships, suggesting that it is the size of the urban system that

is linked to a stronger incidence.
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1 | INTRODUCTION

The disease known as COVID-19 appeared for the first time in the Chinese city of Wuhan in November 2019,

spreading worldwide and being declared a universal pandemic by the World Health Organization on 11 March 2020.
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In April 2020, half of the world's population was under some kind of lockdown. In addition to the very serious health

consequences of this shock, the economic impact in most countries has also been catastrophic.

Throughout 2020, interesting literature about the economic effects of COVID-19 has emerged. Baker

et al. (2020) define three uncertainty indices to estimate their impact on the real GDP of the United States. Two

papers that were written in February and March 2020 (Maital & Barzani, 2020; McKibbin & Fernando, 2021) pre-

dict, under several scenarios, the worldwide macroeconomic effects of the shock, concluding that a global reces-

sion is coming. Topcu and Gulal (2020) analysed the impact of COVID-19 on emerging stock markets. The

contraction of public fiscal revenues (income tax) in the US is quantified in Clemens and Veuger (2020). Other

works have adopted a microeconomic approach. In this line, Martin et al. (2020) and Sumner et al. (2020) have

studied the consequences of the virus on household income, consumption, and poverty. Following with microeco-

nomic visions, Elenev et al. (2020) modelled the consequences of the pandemic as a drop in workers' productivity

with the associated fall in firms' revenues; in addition, Bartik et al. (2020) estimated the effects of the shock on

small business outcomes and expectations. Of course, the consequences of the COVID-19 have been analysed

from many other points of view, beyond economic; see, to cite just a couple of works, Bashir et al. (2020) for the

environmental impact and Rodríguez-Pose and Burlina (2021), who study which factors determine the geography

of COVID-19-related excess mortality in Europe. However, the study of the economic effects of contagious dis-

eases did not begin with the irruption of COVID-19. See, for example, the medieval age and the Black Death,

Voigtländer and Voth (2013) and Jedwab et al. (2019), and Alfani and Percoco (2019) for the impact of the pan-

demic during 1629–1630 in Italy.

The objective of this paper is essentially different and complementary to the literature described in the previous

paragraph. Instead of analysing the impact of the pandemic on a range of variables, we focus on how different socio-

economic and urban variables affect the incidence of the virus. Our main explanatory variables are urban primacy

(a measure of the degree of concentration of the population in the largest city of a country), the percentage of the

urban population, and population density. These three variables represent different measures of urban and popula-

tion agglomeration. To our knowledge, only a few studies have adopted a similar approach, all of them using US data.

Wheaton and Thompson (2020) regress the per capita contagion rate over GDP per capita, density, and percentage

of industrial and commercial use for 351 nuclei of Massachusetts; Carozzi et al. (2020) estimate the link between

population density and COVID-19 spread and severity considering US counties, and Geng et al. (2021) analyse the

sparseness of COVID-19 infections and their time variations across the US at scales ranging from county to conti-

nental scale. Nevertheless, the spatial scale of these studies addressing the patterns of the spread of the disease

within one unique country limits the scope of their conclusions compared to our cross-country analysis.

Why do we expect any relationship between urbanization or population agglomeration and COVID-19 intensity?

From an epidemiological point of view, that concentration of people and, in general, the existence of large and dense

urban areas is one of the key factors that facilitate the transmission of viruses (Alirol et al., 2011; Neiderud, 2015).

This is the main reason for the worldwide implementation of lockdown practices. Therefore, the main working

hypothesis we want to test is whether a direct and positive relationship exists between the three urban variables

and the incidence of COVID-19 at the country level, considering both cases and deaths. To do so, we use a wide set

of control variables that might also influence the intensity of the virus incidence. In this context, we can consider the

contagion risk as a new urban congestion cost, apart from the traditional costs (e.g., commuting, pollution, traffic

density, housing price), associated with the existence of urban agglomerations.

An important contribution of this work lies in the fact that we combine parametric and semiparametric specifica-

tions. The advantage of doing so is double. On the one hand, both approaches are complementary and give robust-

ness to our results. On the other, the parametric specification assumes that the average relationship between

COVID-19 incidence and the urban variables is linear, while the semiparametric approach is more flexible and specif-

ically enables us to estimate functional forms that do not have to be necessarily linear. We expect, as the empirical

exercise we carry out confirms, the relationship between the virus intensity and the urban variables to be not con-

stant over the distribution of their values, showing concavities and convexities. This is for two main reasons: urban
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and new economic geography models show that congestion costs usually behave non-linearly. Second, infection cur-

ves across countries have shown that the virus spread is not linear.

The main results are the following. From the parametric approach, we conclude that the main explanatory vari-

able is the percentage of the urban population, which exerts a positive influence on COVID-19 incidence. Moreover,

we also test for possible spatial effects, finding weak evidence supporting spatial interactions between countries.

From the semiparametric approach, we cannot find a systematic and monotonous positive relationship between the

three urban variables and the intensity of the disease, as might be expected a priori. The link is positive only for inter-

mediate and high values of the percentage of urban population, for low and very high values of density, and for very

high values of the primacy.

The remainder of the paper is organized as follows. Section 2 presents the data used. In Section 3, we describe

the methodology. Section 4 shows the main results, and Section 5 concludes.

2 | DATA

Our sample comprises 90 countries across five continents (see the list in the Appendix), and all variables are mea-

sured at the country level. The descriptive statistics and the sources of the variables used are described in Table 1.

We consider two different measures of the COVID-19 incidence, updated up to 31 December 2020: the cumulative

number of cases per 100,000 inhabitants and the cumulative number of deaths per 100,000 inhabitants. To make an

easier interpretation, we normalize both of these, subtracting the mean and dividing by the standard deviation for

our sample of countries. Hence, the mean is zero, and the standard deviation is equal to one.1

We are aware of some potential reporting bias in these statistics. Cases reported are the number of detected

cases. In contrast, the true number of infected people might be larger because the detected cases depend crucially

on the number of pharmaceutical tests carried out.2 In the same way, mortality statistics are lower than the true

number of deaths by COVID-19 in many countries, as the excess of mortality statistics are revealing. Some estimates

of the real mortality are being released for some countries based on the excess of mortality, but, unfortunately, for

most countries, the only reliable data source is the World Health Organization (WHO) data. Official statistics for

cases and deaths probably underestimate the true incidence of the virus, so we can consider the official statistics by

the WHO as a lower bound of the real effect of the COVID-19; if we can find any significant pattern (even with

these data), the true underlying relationships are likely to be even stronger.

Our main explanatory variables have an urban dimension: percentage of urban population (over the total country

population), population density (population per square kilometre), and urban primacy, defined as the population of

the largest city of a country divided by its total population. The other explanatory variables can be grouped into

three main categories. First, variables related to the level of development at the national level: a democracy index

ranging from 0 for an absolute dictatorship to 10 for a complete democracy; the Human Development Index (HDI)

by the United Nations; and GDP per capita (Wildman, 2021). Second, we include variables capturing the influence of

globalization (Farzanegan et al., 2021), openness, and geography: trade (exports plus imports divided by GDP), the

number of total air passengers divided by total population, and the geographical distance from the capital of each

country to Wuhan in China (place of origin of the virus) or, in the case of European countries, distance to Milan (the

main source of the virus in Europe in March 2020). The inclusion of this distance variable is debatable. We exclude

distance to Wuhan/Milan in an alternative specification and use spatial models considering spatial matrices with

bilateral distances between all countries.

Finally, we add three variables somehow directly related to COVID-19: the share of health expenditure over

total GDP; the percentage (always negative) of change in the mobility to the workplace provided by Google,3 and

the COVID stringency index from the University of Oxford, which measures the severity of the control policies

implemented by the governments ranging from a value of zero for January 2020 to 1 (the strictest control

measures).4
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We want to emphasize the advantages of using country data over within-country data. Institutions, laws, health

system, level of development, geography, and other characteristics change more intensively across countries than

within countries. Therefore, the potential explanatory power of our variables is larger and can capture more properly

the differences between countries with regards to the incidence of the COVID-19. For within-country studies, as all

these variables are quite similar across sub-national units, the main (and only, in most cases) source of cross-sectional

variation comes from the different non-pharmaceutical interventions adopted by the local and regional governments,

limiting the scope of these analyses to the effectiveness of these lockdown measures.

3 | METHODOLOGY

A first way to test the relationships between our urban variables and the incidence of COVID-19 is to run a simple

parametric OLS regression for our pool of 90 countries. We estimate the following parametric model:

Yi ¼ αþβ1URBAN_POPULATIONiþβ2DENSITYiþβ3PRIMACYiþ

þ
Xm
i¼1

γmXmiþδkþ εi,
ð1Þ

where i indexes countries, Yi is the measure of the incidence of COVID-19 (normalized cumulative cases per

100,000 and cumulative deaths per 100,000), our main variables of interest are URBAN_POPULATIONi, DENSITYi

and PRIMACYi ,
5 Xmi represents the rest control variables at the country level, δk is a vector of region dummies for

the five major area categories (America, Africa, Asia, Eastern Europe, and Western Europe), and εi is the error term.

The main coefficients of interest are the βj, representing the effect on COVID-19 incidence of each one of our urban

variables.

The full model includes all the control variables, but we also consider reduced versions of the model, including

only one of the groups of the control variables. Furthermore, we also estimate a spatial Durbin model (Anselin, 1988;

LeSage & Pace, 2009) with the aim of explicitly considering the impact of neighbouring countries on COVID-19 inci-

dence.6 The convenience of explicitly considering the spatial dimension in the analysis of the cross-country incidence

of COVID-19 has been emphasized in Krisztin et al. (2020); spatial models have also been used to analyse the spatial

diffusion of the disease within countries, see the studies by Paez et al. (2021) and Ehlert (2021) of the Spanish and

German cases, respectively.

The spatial Durbin model includes three elements (LeSage & Pace, 2009): a spatial lagged dependent variable, a

set of explanatory variables, and a set of spatial lagged explanatory variables. It can be expressed as:

Yi ¼ αþρ
Xn
j¼1

WijYiþβ1URBAN_POPULATIONiþβ2DENSITYiþβ3PRIMACYiþ

þφ1

Xn
j¼1

WijURBAN_POPULATIONiþφ2

Xn
j¼1

WijDENSITYiþφ3

Xn
j¼1

WijPRIMACYiþ

þ
Xm
i¼1

γmXmiþ
Xm
i¼1

Xn
j¼1

WijφmXmiþδkþεi,

ð1’Þ

with ρj j<1 being the spatial autoregressive parameter measuring the effect on the response variable of COVID-19

incidence in neighbouring countries (endogenous interaction relationships) and φi capturing the effects of the spatial

lagged explanatory variables (exogenous interaction relationships). Wij are the elements of the W spatial weight

matrix, built using the k-nearest neighboring countries; following LeSage and Pace’s (2009) suggestion, we compared

the log-likelihood values of models with different weights matrices to set k to 5.7 Distances between countries are
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calculated from the co-ordinates (longitude and latitude) of the country's capital city, obtained from the United

Nations. In the spatial model the variable distance to Wuhan/Milan is excluded.

Besides the possible spatial effects, the functional relationship of the variables in Equation 1 can also be a prob-

lem. A parametric specification implies strong assumptions; it imposes a particular structure on the underlying rela-

tionship between the variables (that may not reflect the true underlying relationship), and the coefficients are not

allowed to change over countries (the relationship is restricted to being stationary over the entire structure of the

distribution of the urban variable).

To overcome these limitations, Durlauf (2001) suggested the use of semiparametric methods. This approach

allows us to tackle the possible non-linear effect of the different urban variables on COVID-19 incidence in a more

flexible way. For instance, the standard correlation index and the coefficients from parametric regressions give us

only an aggregate average relationship between variables, and this relationship is restricted by the fact that it must

remain unchanged through the entire distribution of the urban variables. In contrast, the semiparametric estimate

allows Yi to vary with these variables over the entire distribution, allowing for the linear effects of other conditioning

variables. In related literature, Barrios and Strobl (2009), Lessmann (2014), and Díez-Minguela et al. (2020) have

applied this methodology to the study of regional inequalities.

We perform a semiparametric analysis using the kernel regression estimator (Robinson, 1988). This consists of

taking the following specification:

Y¼ αþ f URBAN_VARIABLEð Þþ γXþε, ð2Þ

in which, for the sake of clarity, we drop the subscript i. X is a set of explanatory variables that are assumed to have

a linear effect on Y , f :ð Þ is a smooth and continuous, possibly non-linear, unknown function of the corresponding

URBAN VARIABLE (percentage of urban population, population density and primacy), and ε is a random error term.

Thus, the model has a parametric (γX) and a non-parametric f URBAN_VARIABLEð Þ part. Only one non-parametric var-

iable is allowed at a time, so we run a semi-parametric regression for each of the urban variables. In each case, the

other two urban variables are included in the linear part of the model. Robinson's approach is a two-step methodol-

ogy. First, bγ is estimated by applying a procedure similar to that whereby variables can be partialled out of an OLS

regression (but using nonparametric regressions). Second, a kernel regression of Y�bγX on each URBAN_VARIABLE is

carried out. In both stages, a Gaussian kernel-weighted local polynomial fit is used for kernel regressions.

4 | RESULTS

4.1 | Parametric analysis

Table 2 shows the results for the OLS estimations of the parametric model (Equation 1) when the endogenous vari-

able is the normalized relative number of cases. Each table column corresponds to a different set of explanatory vari-

ables grouped by category (see Section 2). Column (5) shows the results for the full specification of the model,

including all the regressors and a set of regional dummies. The mean value of the VIF statistic shows tolerable values

for all the models (including the full specification), which allows us to conclude that multicollinearity is not a problem.

The coefficient of the percentage of urban population is systematically significant and has the expected sign:

more urbanized countries show a higher incidence of the disease. Also, population density exerts a certain positive

influence on the incidence of COVID-19, although not so intense as that of the percentage of urban population. On

the other hand, the coefficient of primacy is not significant in any case and even changes its sign. Therefore, it seems

that the size of the urban system (percentage of urban population), and not the preeminence of the largest city (pri-

macy), is the key urban variable that explains the incidence of the virus on the number of cases. From our country-

level perspective, these results indicate that having a large city does not imply a higher incidence of the virus.
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Although the main city could be severely hit at the beginning of the pandemic, ultimately, the intensity of the disease

spread in the whole country depends on the urbanization level rather than in the population agglomeration in only

one particular city.

Regarding the rest of the control variables, focusing on the last column, when all the regressors and geographical

dummies are considered, only three controls significantly affect on the relative number of cases. The coefficient of

the democracy index variable is significant and has the expected negative sign: democratic countries reported a sig-

nificantly lower number of relative cases. The effect of the COVID stringency index is significant and positive, indi-

cating that the larger the number of cases, the more the health and political authorities are forced to implement

restrictive measures. Finally, the percentage of health expenditure is positively correlated with the dependent vari-

able. An analysis of the data can shed some light on this result: among the top 15 countries ordered by the relative

number of cases, you can find countries such as Belgium, Czechia, the US, Switzerland, Spain, and France; the last

five (out of 90) are New Zealand, Thailand, Cambodia, Vietnam, and Tanzania.8 As the number of detected cases

TABLE 2 Parametric estimates: Cases per 100,000 population

(1) (2) (3) (4) (5)

Urban population (%) 2.926***

(0.477)

1.292**

(0.611)

2.489***

(0.528)

1.479**

(0.583)

1.325**

(0.621)

Ln (Population density) 0.107 (0.083) 0.149*

(0.087)

0.023

(0.083)

0.142

(0.093)

0.196* (0.100)

Primacy �1.649

(1.277)

�1.114

(1.205)

�0.802

(1.477)

�0.269

(1.305)

0.286 (1.181)

Democracy index �0.042

(0.050)

�0.135**

(0.054)

HDI 5.108**

(1.958)

�1.894

(2.470)

Ln (GDPpc) �0.113

(0.204)

0.278 (0.234)

Trade (% of GDP) 0.338

(0.274)

0.129 (0.224)

Air passengers per capita 0.000

(0.001)

0.001 (0.001)

Ln (distance to Wuhan/

Milan)

�0.269***

(0.094)

�0.123

(0.236)

Health expenditure

(% of GDP)

12.855**

(5.076)

14.851**

(6.862)

% Mobility change

(workplaces)

�1.334

(0.951)

�0.626

(0.916)

COVID stringency index 0.862

(0.705)

1.401**

(0.689)

Regional dummies N N N N Y

Observations 90 90 90 90 90

Degrees of freedom 86 83 83 83 73

Adjusted R2 0.247 0.341 0.379 0.363 0.556

Mean VIF 1.31 5.39 1.44 1.70 5.76

Notes: Dependent variable: normalized number of cumulative cases per 100,000 population. All regressions include a

constant. Coefficient (robust standard errors). Regional dummies are dummies at five major area categories: America, Africa,

Asia, Eastern Europe, and Western Europe (Asia is the base category). Significant at the *10%, **5%, ***1% level.
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depends directly on the number of pharmaceutical tests carried out, even if the relative number of infected people

were the same in all countries, those countries that perform more tests would detect more cases, and the country's

capacity to perform tests depends on the health expenditure. This explains why countries with high health expendi-

ture rank highly for relative cases, while many underdeveloped countries with low health expenditure rank low.

The lack of statistical significance of the other control variables might indicate the wide worldwide diffusion of

the virus across countries, despite the important heterogeneity across countries in those variables. Although these

characteristics may have affected the impact of the virus, our results indicate that, ultimately, they do not have a sig-

nificant effect on the cumulative number of cases after almost 1 year of pandemic, confirming that the diffusion of

the virus is space-filling (Geng et al., 2021).

Table 3 reports the results of the parametric model for the normalized relative number of deaths. The VIF indi-

cates that, again, there are no problems of multicollinearity. The coefficient of the percentage of urban population is

significant in all cases and shows the expected sign: more urbanized countries also suffer a larger relative number of

deaths. Regarding the other two urban variables, this time, population density is no longer significant, and urban

TABLE 3 Parametric estimates: deaths per 100,000 population

(1) (2) (3) (4) (5)

Urban population (%) 2.784***

(0.548)

2.278***

(0.733)

2.434***

(0.534)

1.361**

(0.620)

2.421***

(0.789)

Ln (Population density) �0.038 (0.087) �0.007

(0.091)

�0.095

(0.086)

�0.006

(0.084)

�0.055 (0.075)

Primacy �3.487***

(1.219)

�3.106**

(1.205)

�2.462*

(1.320)

�2.089*

(1.184)

�1.182 (1.062)

Democracy index 0.100**

(0.044)

�0.038 (0.048)

HDI 5.351***

(1.678)

1.889 (2.289)

Ln (GDPpc) �0.461**

(0.197)

�0.295 (0.195)

Trade (% of GDP) �0.019

(0.243)

�0.136 (0.237)

Air passengers per capita 0.001 (0.001) 0.001 (0.001)

Ln (distance to Wuhan/

Milan)

�0.254**

(0.098)

�0.651***

(0.190)

Health expenditure (% of

GDP)

13.133**

(5.477)

6.534 (5.469)

% Mobility change

(workplaces)

�1.448

(0.924)

0.244 (0.987)

COVID stringency index 1.371**

(0.669)

1.805***

(0.587)

Regional dummies N N N N Y

Observations 90 90 90 90 90

Degrees of freedom 86 83 83 83 73

Adjusted R2 0.207 0.272 0.255 0.352 0.539

Mean VIF 1.31 5.39 1.44 1.70 5.76

Notes: Dependent variable: normalized number of cumulative deaths per 100,000 population. All regressions include a

constant. Coefficient (robust standard errors). Regional dummies are dummies at five major area categories: America, Africa,

Asia, Eastern Europe, and Western Europe (Asia is the base category). Significant at the *10%, **5%, ***1% level.
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primacy exerts a negative influence on the relative number of deaths. The interpretation of these results seems

straightforward: the existence of a very big city or a very large agglomeration not only does not increase the number

of deaths but reduces it, and it is the complete urban structure of the country (including cities of all sizes: large, inter-

mediate and small) that most contributes to the magnitude of the dependent variable in Table 3.

Besides the percentage of the urban population, in the last column, when all controls are added, another two

variables help explain the relative number of deaths: the distance to Wuhan/Milan and the COVID stringency index.

Both show the expected sign. The coefficient of the COVID stringency index is significant and positive, indicating

that the larger the number of deaths, the more the health and political authorities are forced to implement restrictive

measures, and the negative effect of distance suggests that the geographically farther away a country is from one of

the two main sources of infection, the lower the number of deaths.

Table 4 shows the results of the spatial Durbin model (Eq. 10) for the two dependent variables, estimated by

maximum likelihood. For both dependent variables the spatial lag parameter ρð Þ is not significant, indicating that the

endogenous interaction relationships are not relevant either for the relative number of deaths or for the relative

number of cases.

Therefore, the evidence supporting spatial effects is weaker than that found in previous research. Krisztin

et al. (2020) found notable spatial spillover mechanisms in the early stages of the virus, considering annual country

data from 23 January to 28 March 2020, for a set of 99 countries. However, here we are considering the cumulative

incidence for almost 1 year (up to 31 December 2020), instead of focusing only on the initial outbreak of the disease.

After all the international restrictions to people movements between countries and all the internal non-

pharmaceutical interventions, we expect that spatial interactions between and within countries would have

decreased. Krisztin et al. (2020) also observed a sharp drop in the intensity of spatial spillovers in later stages of the

spread of the disease due to national travel bans, indicating that travel restrictions led to a reduction of cross-

country spillovers.

Nevertheless, we find that some spatial lagged explanatory variables are significant in some cases, which con-

firms some kind of exogenous interaction relationships. However, the coefficient lag estimates reported in Table 4

must be interpreted with caution, because in spatially lagged models the estimated coefficient of an independent

variable does not directly reflect its marginal effect on the dependent variable (Golgher & Voss, 2016). LeSage and

Pace (2009) pointed out that using the point estimation method of the spatial regression model to test the spatial

spillover effect leads to bias because the coefficient estimate of the explanatory variable does not represent the true

partial regression coefficient and suggested that the direct, indirect, and total effects of a change in an independent

variable should be calculated. Then, according to Elhorst (2014), the effects have the following interpretation: if an

explanatory variable in a particular country changes, not only the relative number of cases and/or deaths in that

country changes, but also relative number of cases and/or deaths in other countries change via the spatial spillover.

Therefore, a change in one of the independent variables in a particular country has a direct effect on that country,

but also an indirect effect on neighbouring countries, and the sum of the direct and indirect effects is the total effect

of a change in that explanatory variable.

Table 4 reports the direct, indirect and total effects for the spatial Durbin model, estimated using equation 2.46

in LeSage and Pace (2009). The main conclusion from this Table is that spatial effects are limited, because just a few

variables show a significant effect on the relative number of cases or deaths. Paez et al. (2021) obtained a similar

result for the Spanish case, and their explanation was that under a situation of lockdown, inter-regional contagion is

reduced. In our context, the same explanation applies, because international restrictions to people movements

between countries were stronger than within countries.

For the relative number of cases, only the democracy and the stringency indexes have a significant total effect.

Interestingly, population density has no significant total effect because direct and indirect effects have opposite signs

and cancel out each other. Regarding the relative number of deaths, only the stringency index has a significant and

positive direct effect, whereas the development index and the number of air passengers show a significant total

effect driven by the indirect effect. What these results reveal compared to the OLS estimations shown previously is
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that population density and the democracy index have a significant negative indirect effect on the relative number

of cases, while urban population and the number of air passengers have a significant and negative indirect effect on

the relative number of deaths; the development index show a large positive and significant indirect effect on relative

deaths. The positive and significant effects found for the stringency index on both dependent variables are consis-

tent with the OLS results.

To sum up, if we focus on the results of the full models, including all the regressors (column (5) in Tables 2 and

3), we find two variables always significant, and that show the expected sign: the COVID stringency index and,

among our three urban variables, the percentage of the urban population of the country. The results of the estimated

spatial Durbin model confirm the effect of the stringency index, whereas the influence of the urban population vari-

able is found weaker than in the OLS results. However, as explained above, a parametric growth regression is not

the best way to address non-linear relationships because of the strong assumptions implied. Therefore, we next esti-

mate semiparametric models, allowing the effect of the urban variables to vary across their distributions and includ-

ing the rest control variables in a linear way.

As explained above, congestion costs of urban agglomeration usually behave in a non-linear manner. Further-

more, besides econometric and flexibility reasons, the consideration of non-linear influences between the variables is

also recommendable from an epidemiological perspective. In the words of Hu et al. (2013, Abstract): “Empirical data

of human and wildlife diseases indicate that a non-linear function may work better when looking at the full spectrum

of densities”.

4.2 | Semiparametric analysis

Table 5 reports the results of the linear part of the model for each COVID-19 outcome variable. We only show

results for the specification including all control variables. Results are consistent with those reported in column (5) in

Tables 2 and 3, although there are slight differences. The first three numerical columns show the results for the rela-

tive number of cases and, respectively, including each of our urban variables in a nonparametric way. The explana-

tory variables that appear significant at least in two of the three columns are the percentage of urban population, the

democracy index, the health expenditure as a percentage of GDP, the percentage of mobility change, and the COVID

stringency index. All of these, except the percentage of mobility change, are also systematically significant in the last

two columns of Table 2. The signs are as expected, except for the health expenditure variable, something explained

above.

Regarding the relative cumulative deaths, the last three columns in Table 5, the variables with more explicative

power (see also Table 3) are the percentage of urban population (this is, perhaps, the more pervasive outcome of this

paper), the distance to Wuhan/Milan and the COVID stringency index, all of them with the expected sign.

Table 5 also reports the Hardle and Mammen's (1993) specification test; the null hypothesis is that parametric

and non-parametric fits are not different from a statistical perspective. In the case of the relative number of cases,

this null hypothesis cannot be rejected, thus rejecting any significant non-linear relationship for two out of three

urban variables: percentage of urban population and primacy. For the relative number of deaths, we reject the null of

the test at the 5% significance level for density and primacy, confirming the non-linear relationship between the rela-

tive number of deaths and these two urban variables. To sum up, in half of the six possible cases the non-linear

approach is more suitable.

Figure 1 shows the non-parametric part of the estimation, including the 95% confidence bands. These graphs

show the non-linear relationship between our three urban variables (percentage of urban population, density, and

primacy), separately considered, and each of the two dependent variables used to measure the COVID-19 incidence:

relative number of cases and the relative number of deaths. Moreover, as the two incidence rates are normalized,

the value zero indicates the mean value across our sample of countries, and values significantly different from zero

point to a higher or lower than average incidence. A first and important outcome is that the six figures show relevant
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parts of the curves with concave and convex behaviours, far from being purely linear. However, in Figures 1(a),

1(c) and I(d), these non-linearities are not significantly different from a linear approach.

The influence of the percentage of urban population on the virus incidence (Figures 1(a) and 1(d)) is similar for

our two dependent variables: first, for low percentages of the urban population, the effect can be well proxied by a

horizontal straight line with incidence values lower than average; once the threshold of about 50% of urban popula-

tion is reached then the relationship between both variables in the two graphs is clearly increasing, and for very high

percentages the growth is at increasing rates, that is to say, convex. The urban primacy variable (Figures 1(c) and

TABLE 5 Semi-parametric estimated, linear part of the model

Dependent variable:

Cumulative cases per 100,000 Cumulative deaths per 100,000

(1) (2) (3) (4) (5) (6)

Urban population (%) Nonpar.

variable

1.721***

(0.584)

2.094***

(0.628)

Nonpar.

variable

2.654***

(0.834)

2.767***

(0.810)

Ln (Population density) 0.157

(0.102)

Nonpar.

variable

0.008

(0.085)

�0.094

(0.083)

Nonpar.

variable

�0.107

(0.085)

Primacy 0.401

(1.153)

�0.808

(1.190)

Nonpar.

variable

�1.136

(1.058)

�2.291**

(0.980)

Nonpar.

variable

Democracy index �0.106**

(0.048)

�0.146**

(0.059)

�0.134**

(0.055)

�0.010

(0.048)

�0.055

(0.053)

�0.052

(0.047)

HDI �2.578

(2.215)

�2.488

(2.206)

�3.792*

(2.146)

1.179

(2.364)

1.306

(2.129)

0.634

(2.066)

Ln (GDPpc) 0.299

(0.200)

0.289

(0.241)

0.259

(0.242)

�0.260

(0.235)

�0.189

(0.196)

�0.241

(0.188)

Trade (% of GDP) 0.052

(0.223)

0.028

(0.192)

0.090

(0.199)

�0.188

(0.210)

�0.255

(0.225)

�0.077

(0.235)

Air passengers per capita 0.000

(0.001)

0.001

(0.001)

�0.000

(0.001)

0.000

(0.001)

0.001

(0.001)

�0.001

(0.002)

Ln (distance to Wuhan/

Milan)

�0.276

(0.246)

�0.284

(0.211)

�0.453**

(0.207)

�0.702***

(0.192)

�0.743***

(0.185)

�0.712***

(0.205)

Health expenditure (% of

GDP)

12.496

(7.884)

13.207**

(5.847)

15.007**

(7.237)

5.847

(5.966)

4.687

(4.871)

7.055

(5.883)

% Mobility change

(workplaces)

�0.164

(0.846)

�1.269*

(0.714)

�1.549*

(0.785)

0.805

(0.974)

�0.069

(0.931)

�0.257

(0.943)

Covid stringency index 1.562**

(0.705)

1.821***

(0.604)

1.461**

(0.663)

1.897***

(0.548)

2.196***

(0.549)

1.653***

(0.541)

Regional dummies Y Y Y Y Y Y

Hardle and

Mammen's (1993) test,

p-value

0.59 0.04 0.19 0.53 0.01 0.03

Observations 90 90 90 90 90 90

Effective degrees of

freedom

72.5 69.8 62.8 72.8 71 72.6

Adjusted R2 0.440 0.620 0.602 0.449 0.603 0.541

Notes: All dependant variables are normalized. All regressions include a constant. Coefficient (robust standard errors).

Regional dummies are dummies at five major área categories: America, Africa, Asia, Eastern Europe, and Western Europe

(Asia is the base category). Nonpar. Variable indicates the variable included in a non-parametric way in each regression.

Significant at the *10%, **5%, ***1% level.
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1(f)) confirms this result at least to a certain extent. In effect, for low and intermediate primacies, the curve is, espe-

cially for the number of cases, a sinusoid around the zero value, and the relationship with the COVID-19 incidence

variable is positive only for very high primacies (about 33% for the number of cases and about 25% for the deaths);

therefore, for the majority of values of primacy, an increase in the relative importance of the largest city does not

necessarily imply a growth in the number of cases or deaths.

Finally, Figures 1(b) and 1(e) define the behaviour of the population density variable. In the body of both distri-

butions, especially for the number of deaths, an inverted U-shape relationship is found. For low (up to 3.8 in log scale

in both graphs) and very high densities (beyond 6.2), the link between density and COVID-19 incidence is positive;

for the rest of the distribution (which includes the majority of the observations in Figures 1(b) and 1(e)) a higher pop-

ulation density implies a lower virus incidence in terms of cases and deaths.

5 | CONCLUSIONS

The COVID-19 crisis has spurred the scientific community to search for the determinants and consequences of the

pandemic from many points of view. In this paper, we have not analysed the impact of COVID-19 on a set of vari-

ables of interest, as is becoming usual in this literature. Our approach is different: we have studied how some vari-

ables can explain the diffusion and intensity of the virus in a sample of 90 countries. Two endogenous variables are

defined: the cumulative number of cases and deaths per 100,000 inhabitants up to 31 December 2020. Our main

explanatory variables are related to the urban dimension of each country: percentage of the urban population, popu-

lation density (concentration of population per square kilometre), and urban primacy (percentage of the population

of the largest city), to test whether higher values of these three variables imply or not a stronger incidence of the dis-

ease. A secondary working hypothesis we adopt is that the relationship between primacy and COVID-19 incidence

might be non-linear, varying across the distribution of these urban variables, as agglomeration can generate a new

non-linear congestion cost: the risk of infection cost.

From the parametric approach, we concluded that the main explanatory variable is the percentage of the urban

population, in such a way that countries more urbanized suffer a higher incidence of the virus in terms of the relative

F IGURE 1 Semi-parametric estimates
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number of cases and relative number of deaths. We also found a weaker positive influence of the density on the rel-

ative number of cases. Regarding primacy, it does not affect the number of cases and, with respect to relative deaths,

in some models, the existence of a very large agglomeration not only does not increase the number of deaths but

makes it decrease. Therefore, it seems that it is the complete urban structure of the country (with cities of all the

sizes: large, intermediate, and small) that mainly helps explain the magnitude of the endogenous variables. Finally, we

also obtain some evidence of spatial effects, although weaker than in previous research (Krisztin, Piribauer, &

Wögerer, 2020).

From the semiparametric approach, we deduce that in three out of six possible cases (two endogenous variables

and three urban explanatory variables), the non-linearities are statistically significant. Furthermore, we have not

detected a systematic and monotonous positive relationship between the three urban variables and the intensity of

the disease, as might be expected a priori. A positive relationship was detected only for intermediate and high values

of the percentage of urban population; for low and very high values of density; and for very high values of primacy.

At other points of the distribution, the relationship between COVID-19 incidence and the urban variables is constant

or even negative. These non-linear behaviours have strong implications for policymakers and health authorities, and

the causal link between urbanization and COVID-19 intensity clearly deserves further research.
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ENDNOTES
1 This normalisation only implies a change in the scale of the variables. Results are robust to this re-scaling.
2 Using data about the number of tests per capita by country from Hasell et al. (2020), we regressed our two variables mea-

suring COVID-19 incidence on the cumulative tests per 100,000 inhabitants, finding that the tests' coefficient is signifi-

cant explaining cases but not in the case of deaths. These coefficients are positive but very small, and they become even

smaller when regional dummies are included. However, as the number of tests is not available for all the countries in our

sample (we lose 25 observations), this variable is not included in the analysis, although these results are available from the

authors upon request.
3 Google provides daily data of the percent change in mobility for several categories: retail and recreation, grocery and phar-

macy, parks, transit stations, workplaces, and residential. In all cases, the references to calculate the change are the imme-

diate pre-pandemic values in January and February 2020. After several proofs we selected only the percentage change in

mobility to workplace.
4 Both the Google mobility measures and the stringency index are provided on a daily basis; to get a single value, we con-

sider all the Spring values by country (in 2020, the highest peak of cases were reported around March and April for most

countries) and then we compute the average for the mobility measure, and the maximum value for the stringency index.
5 Although the three variables represent population agglomeration, we can include the three at the same time because they

are not highly correlated. Bilateral correlations are �0.19 for urban population-density (log scale), 0.55 for urban

population-primacy and �0.13 for primacy-density (log scale).
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6 As a preliminary analysis, we apply the Lagrange multiplier and Moran's I tests to the residuals of the model in Equation 1,

using the full version of the model, including all controls and regional dummies, except the distance to Wuhan/Milan. The

null hypothesis in all tests is that there is zero spatial autocorrelation. Results provide mixed evidence: whereas the robust

Lagrange multiplier test rejects the null hypothesis of no spatial effects using both the standard spatial lag and errors

models for the relative number of cases, for the relative number of deaths, we obtain some weak evidence supporting the

spatial lag model, as the null cannot be rejected at the 10%. These results are available from the authors upon request.
7 The log-likelihood values for different values of k are available from the authors upon request.
8 Ranking of the cumulative number of cases per 100,000 inhabitants on 31 December, 2020.
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Resumen. Este artículo investiga los determinantes de la difusión y la intensidad de COVID‐19 a nivel de país,

centrándose en el papel que desempeña la aglomeración urbana, medida a través de tres variables urbanas: el por-

centaje de población urbana, la densidad de población y la primacía. Se utilizaron modelos paramétricos y semi-

paramétricos para estimar la influencia de la aglomeración urbana en dos variables de resultado: el número

acumulado de casos y de muertes por 100.000 habitantes hasta el 31 de diciembre de 2020. También se exploraron

los posibles efectos espaciales. Los efectos no lineales de las variables urbanas sobre la intensidad de la enfermedad

revelaron relaciones no monótonas, lo que sugiere que el tamaño del sistema urbano es lo que está vinculado a una

mayor incidencia.

抄録: 本稿では、都市集積が果たす役割に焦点を当てて、3つの都市変数〔urban variable:都市人口の割合(パーセ
ンテージ)、人口密度、首座都市性(primacy)〕を用いて測定して、国レベルでのCOVID‐19の拡散とその強度

の決定要因を調査する。パラメトリックモデル及びセミパラメトリックモデルの両方を用いて、2020年12月31

日までの住民10万人当たりの累積症例数と死亡数の2つの結果変数に対する都市集積の影響を推定した。また、空

間効果も推定した。疾患の強度に対する都市変数の非線形効果は非単調関係を示したことから、発生率をより大

きくするのは都市システムのサイズであることが示唆された。
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