
JID:YINCO AID:104746 /FLA [m3G; v1.306] P.1 (1-12)

Information and Computation ••• (••••) ••••••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Computing absolutely normal numbers in nearly linear time

Jack H. Lutz a,∗, Elvira Mayordomo b,∗
a Department of Computer Science, Iowa State University, Ames, IA 50011, USA
b Departamento de Informática e Ingeniería de Sistemas, Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza, 50018
Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2020
Received in revised form 22 March 2021
Accepted 18 April 2021
Available online xxxx

Keywords:
Algorithms
Computational complexity
Lempel-Ziv parsing
Martingales
Normal numbers

A real number x is absolutely normal if, for every base b ≥ 2, every two equally long
strings of digits appear with equal asymptotic frequency in the base-b expansion of x. This
paper presents an explicit algorithm that generates the binary expansion of an absolutely
normal number x, with the nth bit of x appearing after npolylog(n) computation steps. This
speed is achieved by simultaneously computing and diagonalizing against a martingale that
incorporates Lempel-Ziv parsing algorithms in all bases.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1909 Borel1 [6] defined a real number α to be normal in base b (b ≥ 2) if, for every m ≥ 1 and every length-m
sequence w of base-b digits, the asymptotic, empirical frequency of w in the base-b expansion of α is b−m . Borel defined
α to be absolutely normal if it is normal in every base b ≥ 2. (This clearly anticipated the fact, proven a half-century later,
that a real number may be normal in one base but not in another [10,27].) Borel’s proof that almost every real number (i.e.,
every real number outside a set of Lebesgue measure 0) is absolutely normal was an important milestone in the prehistory
of Kolmogorov’s development of the rigorous, measure-theoretic foundations of probability theory [20]. For example, it is
section 1 of Billingsley’s influential textbook [5]. The recent book [9] provides a good exposition of the many aspects of
current research on normal numbers.

Borel’s proof shows that absolutely normal numbers are commonplace, i.e., that a “randomly chosen” real number is
absolutely normal with probability 1. Rational numbers cannot be normal in even a single base b, since their base-b expan-
sions are eventually periodic, but computer analyses of the expansions of π , e,

√
2, ln 2, and other irrational numbers that

arise in common mathematical practice suggest that these numbers are absolutely normal [7]. Nevertheless, no such “natu-
ral” example of a real number has been proven to be normal in any base, let alone absolutely normal. The conjectures that
every algebraic irrational is absolutely normal and that π is absolutely normal are especially well known open problems
[7,9,33].

* Corresponding authors.
E-mail addresses: lutz@cs.iastate.edu (J.H. Lutz), elvira@unizar.es (E. Mayordomo).

1 Borel’s original definition was that x is normal in base b if x is simply normal in all bases b, b2b3, . . . Our definition here is well known to be equivalent
to Borel’s.
https://doi.org/10.1016/j.ic.2021.104746
0890-5401/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ic.2021.104746
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lutz@cs.iastate.edu
mailto:elvira@unizar.es
https://doi.org/10.1016/j.ic.2021.104746
http://creativecommons.org/licenses/by-nc-nd/4.0/

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.2 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
The work reported here concerns a much newer problem, namely, the complexity of explicitly computing a real number
that is provably absolutely normal, even if it is not natural in the above informal sense. Sierpinski and Lebesgue gave explicit
constructions of absolutely normal numbers in 1917 [29,21], but these were intricate limiting processes that offered no
complexity analyses (coming two decades before the theory of computing) and little insight into the nature of the numbers
constructed. In a 1936 note that was not published in his lifetime, Turing [31] gave a constructive proof that almost all real
numbers are absolutely normal and then derived constructions of absolutely normal numbers from this proof. Moreover,
although Turing does not mention Turing machines or computability, the note is typed, with equations handwritten by him,
on the back of a draft of his paper on computable real numbers [30], so it is reasonable to interpret “constructively” in
a computability-theoretic sense. And in fact his proof, with 2007 corrections by Becher, Figueira, and Picchi [3], explicitly
computes an absolutely normal number x. However, this algorithm is very inefficient, requiring a number of steps that is
doubly exponential in n to compute the nth bit of x. (Independently, Knuth [19] published in 1965 an explicit construction
of an absolutely normal number, also inefficient).

Some 75 years passed between Turing’s algorithm and more efficient ones. It was only in 2013 that Becher, Heiber,
and Slaman [4] published an algorithm that computes an absolutely normal number in polynomial time. Specifically, this
algorithm computes the binary expansion of an absolutely normal number x, with the nth bit of x appearing after O (n2 f (n))

steps for any computable unbounded nondecreasing function f . (Unpublished polynomial-time algorithms for computing
absolutely normal numbers were announced independently by Mayordomo [26] and Figueira and Nies [14,15] at about the
same time.) We omit here extensive work on the discrepancy, that is, the order of convergence to normality of an absolutely
normal number and its tradeoff with the time complexity of the construction of the corresponding number (see the latest
results in [1], [25] and their references).

In this paper we present a new algorithm that provably computes an absolutely normal in nearly linear time. Our
algorithm computes the binary expansion of an absolutely normal number x, with the first to nth bits of x appearing after
O (npolylogn) steps. The term “nearly linear time” was introduced by Gurevich and Shelah [16]. In that paper they showed
that, while linear time computability is very model-dependent, nearly linear time is very robust. For example, they showed
that random access machines, Kolmogorov-Uspensky machines, Schoenhage machines, and random-access Turing machines
share exactly the same notion of nearly linear time.

The novelty of our algorithm is its use of the Lempel-Ziv parsing algorithm to achieve its nearly linear time bound. For
each base b ≥ 2, we use a martingale (betting strategy) that employs the Lempel-Ziv parsing algorithm and is implicit in the
work of Feder [13]. This base-b Lempel-Ziv martingale succeeds exponentially when betting on the successive digits of the
base-b expansion of any real number that is not normal in base b. Our algorithm simultaneously computes and diagonalizes
against (limits the winnings of) a martingale that incorporates efficient proxies of all these martingales, thereby efficiently
computing a real number that is normal in every base.

The structure of this paper is based on the main result proof. Building on the base-b normality characterization in terms
of finite state martingales and the universality of Lempel-Ziv martingale, we need to construct a conservative version of the
Lempel-Ziv martingale that does not fluctuate too much and then establish a base change method for such conservative
martingales. Finally a careful efficient combination of all resulting strategies for different bases is needed.

The rest of this paper is organized as follows. Section 2 presents the base-b Lempel-Ziv martingales and their main prop-
erties. Section 3 shows how to transform a base-b Lempel-Ziv martingale into a base-b supermartingale with an efficiently
computable nondecreasing savings account that is unbounded whenever the base-b Lempel-Ziv martingale succeeds expo-
nentially. Section 4 develops an efficient method for converting a base-b martingale with an efficiently computable savings
account to a base-2 martingale that succeeds whenever the base b savings account is unbounded. Section 5 presents an
algorithm that exploits the uniformity of these constructions to efficiently and simultaneously compute (a) a single base-2
martingale d that succeeds on the binary expansion of every real number x for which some base-b martingale succeeds
on the base-b expansion of x and (b) a particular real number x on which binary expansion d does not succeed. This x is,
perforce, absolutely normal. Section 6 presents an open problem related to our work.

For our complexity arguments, we use a (log-cost) RAM model. By [2] a nearly linear time bound on this model is
equivalent a nearly linear time bound for any of the robust models in [16].

2. Lempel-Ziv martingales

For each base b ≥ 1 we let �b = {0, 1, . . . , b − 1} be the alphabet of base-b digits. We write �∗
b for the set of all (finite)

strings over �b and �∞
b for the set of all (infinite) sequences over �b . We write |x| for the length of a string or sequence

x, and we write λ for the empty string, the string of length 0. For x ∈ �∗
b ∪ �∞

b and 0 ≤ i ≤ j < |x|, we write x[i.. j] for the
string consisting of the ith through jth digits in x. For x ∈ �∗

b ∪ �∞
b and 0 ≤ n < |x|, we write x � n = x[0..n − 1]. For w ∈ �∗

b
and x ∈ �∗

b ∪ �∞
b , we say that w is a prefix of x, and we write w 	 x, if x � |w| = w .

In our (log-cost) RAM model, if an input is represented as a string b1 . . .bk the algorithm can in time O (log(i)) request
and obtain the value of bi for any i.

Let D be the set of dyadic rationals. Let f : �∗
b → [0, ∞) be a function. f is nearly linear time computable if there exists

a, c > 1 and f̂ : �∗
b → D such that f̂ is exactly nearly linear time computable and for all w ∈ �∗

b , |̂ f (w) − f (w)| ≤ a/|w|c .
(We denote f̂ as a nearly linear time computation of f .)

Let f : �∗ → [0, ∞) be a function. f is online nearly linear time computable if there exists g : �∗ → [0, ∞) such that
b b

2

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.3 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
1. f , g are nearly linear time computable, with f̂ and ĝ nearly linear time computations of them;
2. for w ∈ �∗

b, a ∈ �b , f (wa) and g(wa) can be computed in polylogarithmic time from w, ̂f (w), ̂g(w).

A (base-b) martingale is a function d : �∗
b → [0, ∞) satisfying

d(w) = 1

b

∑
a∈�b

d(wa) (1)

for all w ∈ �∗
b . (This is the original martingale notion introduced by Ville [32] and implicit in earlier papers of Lévy [23,24].

Its relationship to Doob’s subsequent modifications [12], which are the “martingales” of probability theory, is explained in
[18] along with the reason why Ville’s original notion is still essential for algorithmic information theory.) Intuitively, a
base-b martingale d is a strategy for betting on the subsequent digits in a sequence S ∈ �∞

b , with the strategy encoded in
such a way that d(S � n) is the amount of money that a gambler using the strategy d has after the first n bets. The condition
(1) says that the payoffs for these bets are fair in the sense that the conditional expectation of d(wa), given that w has
occurred (and assuming that the digits a ∈ �b are equally likely), is d(w).

A function g : �∗
b → [0, ∞) (which may or may not be a martingale) succeeds on a sequence S ∈ �∞

b if

lim sup
n→∞

g(S � n) = ∞, (2)

i.e., if its winnings on S are unbounded. The success set of a function g : �∗
b → [0, ∞) is

S∞[g] = {
S ∈ �∞

b | g succeeds on S
}
.

A function g : �∗
b → [0, ∞) succeeds exponentially on a sequence S ∈ �∞

b if

lim sup
n→∞

log g(S � n)

n
> 0, (3)

i.e., if its winnings on S grow at some exponential rate, perhaps with recurrent setbacks. The exponential success set of a
function g : �∗

b → [0, ∞) is

Sexp[g] = {
S ∈ �∞

b | g succeeds exponentially on S
}
.

The f (n) success set of a function g : �∗
b → [0, ∞) is

S f (n)[g] =
{

S ∈ �∞
b

∣∣∣∣ lim sup
n→∞

log g(S � n)

log f (n)
≥ 1

}
.

Note that Sexp[g] = ∪ε>0 S2εn [g].
For technical reasons we will also need to consider the notion of supermartingale, which in many contexts turns out to

be equivalent to the notion of martingale.
A (base-b) supermartingale is a function d : �∗

b → [0, ∞) satisfying

d(w) ≤ 1

b

∑
a∈�b

d(wa) (4)

for all w ∈ �∗
b .

Lemma 2.1. For each online nearly linear time computable supermartingale d there is an online nearly linear time computable
martingale d′ and a constant α > 0 such that for every w ∈ �∗

b d′(w) ≥ d(w) − α. If for every w ∈ �∗
b d(w) ≤ a|w|c , then

d′(w) ≤ a|w|c+1 − α. If for some m, C , d(w) = C for |w| ≤ m then d′(w) = C for |w| ≤ m.

Proof (proof sketch). We define d′ recursively as follows, d′(λ) = d(λ) and for w ∈ �∗
b, a ∈ �b

d′(wa) = d′(w) + d̂(wa) − 1/b
∑

b′
d̂(wb′)

d′ is online nearly linear computable. It can be proven by induction that d′ is a martingale and that for all for w ∈ �∗
b ,

d′(w) ≥ d̂(w) and d′(w) ≤ ∑
u	w d̂(u). �

A function g : �∗
b → [0, ∞) succeeds strongly on a sequence S ∈ �∞

b if (2) holds with the limit superior replaced by a
limit inferior i.e., if the winnings converge to ∞. A function g : �∗ → [0, ∞) succeeds strongly exponentially on a sequence
b

3

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.4 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
input w ∈ �∗
b ;

x, L(x),d = λ,1,1 ;
T , j = {λ},0 ;
while true do
begin

i f w = λ then output d and hal t ;
i f L(x) = 1 then
begin

L(x) = b ;
for each 0 ≤ a < b do L(xa) = 1 ;
T , x(j), j = T ∪ {x}�b, x, j + 1 ;
x = λ ;

end
else
begin

a, w = head(w), tail(w) ;

L(x), x,d = L(x) + b − 1, xa,
bL(xa)

L(x) d

end
end

Fig. 1. Algorithm for computing dLZ(b)(w).

S ∈ �∞
b if (3) holds with the limit superior replaced by a limit inferior i.e., if the winnings grow at exponential rate. The

strong success sets S∞
str[g] and Sexp

str [g] of a function g : �∗
b → [0, ∞) are defined in the now-obvious manner. It is clear that

the inclusions

Sexp
str [g] ⊆ Sexp[g] ⊆ S∞[g]

and

Sexp
str [g] ⊆ S∞

str[g] ⊆ S∞[g]
hold for all g : �∗

b → [0, ∞).
For each base b ≥ 2 the base-b Lempel-Ziv martingale is a particular martingale dLZ(b) based on the Lempel-Ziv parsing

algorithm [22], as we now explain.
Formally, dLZ(b) is computed by the algorithm in Fig. 1, but some explanation is appropriate here. The algorithm is written

with several instances of parallel assignment. For example, the second line initializes x, L(x), and d to the values λ, 1, and 1,
respectively. The items T , j, and x(j) are not needed for the computation of dLZ(b)(w), but they are useful for understanding
and analyzing the algorithm.

The growing set T of strings in �∗
b always contains all the prefixes of all its elements, so it is a tree. We envision this

tree as being oriented with its root at the top and the immediate children v0, v1, . . . , v(b − 1) of each interior vertex v of
T displayed left-to-right below T . The dictionary of the algorithm is the current set of leaves of T .

The string x in the algorithm is always an element of (i.e., location in) the tree T , and L(x) is always the number of
leaves of T that are descendants of x. We regard x as a descendant of itself, so x is a leaf if and only if L(x) = 1.

It is clear that dLZ(b)(λ) = 1. In fact, the algorithm’s successive values of d are the values dLZ(b)(u) for successive prefixes
u of the input string w . More precisely, if wt and dt are the values of w and d after t executions of the else-block, then
w = (w � t)wt and dt = dLZ(b)(w � t).

For w ∈ �∗
b we define the tree T (w) as follows. If w = λ, then T (w) = {λ}. If w = w ′a, where w ′ ∈ �∗

b and a ∈ �b , then
T (w ′a) is the value of T when the algorithm terminates on input w ′ . (Note that this is one step before it terminates on
input w ′a.) For w ∈ �∗

b we define D(w) to be the number of leaves in T (w). For each x in T (w), L(x, w) is the number of
leaves of T (w) that are descendants of x.

The computation is divided into “epochs”. At the beginning of each epoch, the string x is λ, i.e., it is located at the root
of T . The string x then takes successive digits from whatever is left of w (because a, w = head(w), tail(w) removes the first
digit of w and stores it in a), following this path down the tree and updating d at each step, until w is empty (the end of
the last epoch) or x is a leaf of T . In the latter case, the jth epoch is over, the b children x0, x1, . . . , x(b − 1) are added to
T as new leaves, x is the jth phrase x(j) of w , and x is reset to the root λ of T .

When the algorithm terminates, it is clear that exactly one of the following things must hold.

(a) w = λ.
(b) w = x(0) . . . x(j − 1).
(c) w = x(0) . . . x(j − 1)u for some nonempty interior vertex u of T (w).

In case (a) or (b) we call w a full parse. In case (b) or (c) we call x(0), . . . , x(j − 1) the full phrases of w . In case (c) we call
u the partial phrase of w .
4

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.5 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
Notice that the function h(w) = (T (w), j(w), D(w)) is online nearly linear time computable. Notice that our algorithm
does not work in nearly linear time when computing d as a product of |w| factors. We give below an alternative character-
ization of dLZ(b) that will be useful later.

Define the set Ab = {
1 + (b − 1)r

∣∣ r ∈N
}

and the generalized factorial function f actb : Ab → Ab by

f actb(1 + (b − 1)r) =
r∏

k=1

(1 + (b − 1)k)

for all r ∈N .

Observation 2.2. For all n ∈ Ab,

1 ≤ f actb(n)

e
1

b−1
(n

e

) n
b−1

≤ n. (5)

Using Euler-Maclaurin formula we also have

Observation 2.3. For all n ∈ Ab,

f actb(n) = (6)

C · n
n

b−1 · e−(n−1)(b−1) · n1/2 · e(b−1)/(12n) · e−(b−1)3/(720n3) · e(b−1)5/(30240n5) · eO (1/n7). (7)

Using the terms in Observation 2.3 we define

f̂ actb(n) = C · n
n

b−1 · e−(n−1)(b−1) · n1/2 · e(b−1)/(12n) · e−(b−1)3/(720n3) · e(b−1)5/(30240n5). (8)

All terms in the definition of f̂ actb(n) are computed with an approximation of eO (1/n7) , that is, all terms in the exponents
will have precision 7 log n + O (1).

Lemma 2.4. (Feder [13]) Let w ∈ �∗
b .

1. If w is a full parse, then

dLZ(b)(w) = b|w|

f actb(D(w))
.

2. If w is not a full parse and u is its partial phrase, then

dLZ(b)(w) = b|w|

f actb(D(w))
L(u, w),

where L(u, w) is the number of leaves below u in T (w).

The following lemma follows from Lemma 2.4.

Lemma 2.5. For S ∈ �∞
b and α ∈ (0, 1) the following three conditions are equivalent.

(a) S ∈ Sb(1−α)n [dLZ(b)].
(b) There exist infinitely many full parses w 	 S for which

D(w) logb |w| < α(b − 1)|w|.
(c) There exist infinitely many full parses w 	 S for which

D(w) logb D(w) < α(b − 1)|w|.

Corollary 2.6. For S ∈ �∞
b the following three conditions are equivalent.

(a) S ∈ Sexp[dLZ(b)].
5

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.6 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
(b) There exist α < 1 and infinitely many full parses w 	 S for which

D(w) logb |w| < α(b − 1)|w|.
(c) There exist α < 1 and infinitely many full parses w 	 S for which

D(w) logb D(w) < α(b − 1)|w|.

We conclude this section by explaining the connection between the Lempel-Ziv martingales and normality. First, Schnorr
and Stimm [28] defined (implicitly) a notion of finite-state base-b martingale and proved that every sequence S ∈ �∞

b obeys
the following dichotomy.

1. If S is normal, then no finite-state base-b martingale succeeds on S . (In fact, every finite-state base-b martingale decays
exponentially on S .)

2. If S is not normal, then some finite-state base-b martingale succeeds exponentially on S .

Some twenty years later, Feder [13] defined (implicitly) the Lempel-Ziv martingale dLZ(b) and proved (implicitly) that
dLZ(b) is at least as successful on every sequence as every finite-state base-b martingale. That is, for finite-state base-b mar-
tingale d, the inclusions

S∞[d] ⊆ S∞[dLZ(b)], S∞
str[d] ⊆ S∞

str[dLZ(b)],
Sexp[d] ⊆ Sexp[dLZ(b)], Sexp

str [d] ⊆ Sexp
str [dLZ(b)]

all hold. This, together with Schnorr and Stimm’s dichotomy result, implies that dLZ(b) succeeds exponentially on every non-
normal sequence in �∞

b . Hence a real number x is absolutely normal if none of the martingales dLZ(b) succeed exponentially
on the base-b expansion of x.

In order to avoid time bounds that are dependent on the alphabet size b, we will consider the following variant of dLZ(b) ,

dLZ+(b)(w) =
{

1, if |w| ≤ 2b

dLZ(b)(w)

dLZ(b)(w�2b)
, if |w| > 2b.

Notice that S∞[dLZ(b)] = S∞[dLZ+(b)] and that for any a.e. unbounded f , S f (n)[dLZ(b)] = S f (n)[dLZ+(b)].
Notice that if log(|w|) > b then a polynomial bound on b is a polylogarithmic bound on |w|.

3. Savings accounts

In this section we construct a conservative version of the Lempel-Ziv martingale dLZ+(b) consisting of a new super-
martingale d′ that can be smaller than dLZ+(b) but that has a savings account in the sense explained next. We will need this
conservative version in the base change transformation in section 4.

Definition. A function g : �∗
b → [0, ∞) is a savings account of a supermartingale d : �∗

b → [0, ∞) if g is nondecreasing with respect
to substring order and, for every w ∈ �∗

b , d(w) ≥ g(w).

In the following construction we use Observation 2.2 and Lemma 2.4 to get a far more conservative version of dLZ+(b) .
We define a function goal(w) such that

b ≤ dLZ+(b)(w)b−goal(w) ≤ b6|w|2
and then a nondecreasing upper bound taken(w) ≥ goal(w) such that for every S , taken(S � n) coincides with goal(S � n)

infinitely often.

Construction 3.1. Let d = dLZ+(b) be the base-b-Lempel-Ziv martingale. We define a new supermartingale d′ = e′ + g′ as follows.
We first define e′ . Let w ∈ �∗

b . For |w| ≤ 2b, e′(w) = b, taken(w) = 0. For |w| > 2b, let w = x(0) . . . x(j − 1)u, for z =
x(0) . . . x(j − 1) a full parse and u the partial or the last full phrase of w. Let

goal(w) = |w| − D(w)(logb(D(w)))/(b − 1)� + �D(w)(logb(e))/(b − 1)�
−logb(D(w))� − logb e

1
b−1 � − logb dLZ(b)(w � 2b)� − 1,

taken(w) = max{taken(z), goal(w)},
e′(w) = d(w)b−taken(w).
6

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.7 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
Let g′ be defined as follows. Let w ∈ �∗
b, a ∈ �b. For |w| ≤ 2b, g′(w) = 0 and for |w| ≥ 2b,

g′(wa) =
{

g′(w) if goal(wa) ≤ taken(w)

g′(w) + e′(w) b−1
b if goal(wa) > taken(w)

Theorem 3.2. Let d′ and g′ be as defined in Construction 3.1. Then d′ is a supermartingale and g′ is its savings account,

Sexp[dLZ(b)] ⊆ S∞[g′],
d′ is computable in an online nearly linear time bound that does not depend on b, and there exists a, c > 1 not depending on b such
that for every w ∈ �+

b , d′(w) ≤ b · a · |w|c , d′(λ) = b.

Proof of Theorem 3.2.
Notice that from Construction 3.1, we can assume that b < log |w| for all complexity bounds in this proof.

Claim 3.3. d′ = e′ + g′ is a supermartingale and g′ is a savings account for d′.

Proof. Let us prove that d′ is a supermartingale. Note that by definition of D , goal(wa) does not depend on a. When
goal(wa) ≤ taken(w) we have that∑

a∈�b

e′(wa) = e′(w)

d(w)

∑
a∈�b

d(wa) = b · e′(w)

d(w)
· d(w) = b · e′(w).

Since g′(wa) is constant the martingale equality holds in this case.
In the second case, when goal(wa) > taken(w), since they are integer values goal(wa) ≥ taken(w) + 1. We have that∑

a∈�b

d′(wa) = ∑
a∈�b

e′(wa) + ∑
a∈�b

g′(wa)

= e′(w)
d(w)

∑
a∈�b

b−goal(wa)+taken(w)d(wa) + ∑
a∈�b

g′(wa)

≤ e′(w) + b(g′(w) + e′(w) b−1
b) = b(e′(w) + g′(w)) = bd′(w).

Since e′ is nonnegative, by definition g′ is a nondecreasing function. Therefore g′ is a savings account of d′ . �
Claim 3.4. For every w ∈ �∗

b with |w| > 2b

e′(w) = d(w)b−taken(w) ≤ b6 · D(w) · L(u, w).

d(w)b−goal(w) ≥ b

for u the partial or the last full phrase of w.

Proof. Use that taken(w) ≥ goal(w), Lemma 2.4, and Observation 2.2. �
Claim 3.5. If y ∈ �∞

b and goal(y � n) is unbounded then y ∈ S∞[g′].

Proof. If goal(y � n) is unbounded then infinitely often we use the second case in the definition of g′ and have that
taken(y � n) = goal(y � n) > taken(y � (n − 1)), e′(y � n) = d(y � n)b−goal(y�n) , and g′(y � n) = g′(y � (n − 1)) + e′(y � (n −
1)) b−1

b .
Since goal(y � (n − 1)) ≥ goal(y � n) − 1, then taken(y � (n − 1)) = goal(y � (n − 1)). By Claim 3.4, e′(y � (n − 1)) ≥ b,

therefore g′(y � n) ≥ g′(y � (n − 1)) + b − 1.
Since g′ is monotonic, y ∈ S∞[g′]. �

Claim 3.6. For every α ∈ (0, 1), Sb(1−α)n [dLZ(b)] ⊆ S∞[g′].

Proof. If y ∈ Sb(1−α)n [dLZ(b)] then by Lemma 2.5 for infinitely many n, D(y � n) logb(D(y � n)) < α(b − 1)n.
Notice that therefore goal(y � n) is unbounded and by Claim 3.5 y ∈ S∞[g′]. �

Claim 3.7. For every w ∈ �∗
b , e′(w) ≤ e′(λ) log(|w|)6|w|2 and g′(w) ≤ ∑

v	w e′(v). Therefore d′(w) is polynomially bounded.

Proof. Use Claim 3.4. �

7

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.8 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
Claim 3.8. d′ can be computed in online nearly linear time (in time n logc n for c not depending on b).

Proof. We first proof that e′ : �∗
b → [0, ∞) can be computed in online nearly linear time. Let

ê′(w) = b|w|

f̂ actb(D(w))
L(u, w)b−taken(w).

Then

|e′(w) − ê′(w)| ≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣ 1

f actb(D(w))
− 1

f̂ actb(D(w))

∣∣∣∣∣
≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣ f̂ actb(D(w)) − f actb(D(w))

f actb(D(w)) · f̂ actb(D(w))

∣∣∣∣∣
≤ b|w|−taken(w)L(u, w)

∣∣∣∣∣1 − eO (1/D(w)7)

f actb(D(w))

∣∣∣∣∣ = e′(w)|1 − eO (1/D(w)7)|

≤ e′(w)
1

C D(w)7 + O (1/D(w)14)

≤ 1

C D(w)4
+ O (1/D(w)11)

Notice that D(w) ≥ √|w|, therefore,

|e′(w) − ê′(w)| ≤ b/C1/|w|2 + O (1/|w|5).
Since ê′ is computable in online nearly linear time, e′ is too.
Again, for w ∈ �∗

b , let w = x(0) . . . x(j − 1)u, for z = x(0) . . . x(j − 1) a full parse and u a partial or full phrase of w . If
goal(w) > taken(z), let t be the shortest such that t 	 u and goal(zt) > taken(z).

Notice that by Lemma 2.4 and the definition of g′ ,

g′(w) =
{

g′(z) if goal(w) ≤ taken(z)
g′(z) + ∑

v	u,|zv|≥|zt| e′(zt)/L(t, w) b−1
b L(v, w) if goal(w) > taken(z),

where L(v, w) is the number of leaves below v in T (w). Given precomputed values for f (u) = ∑
v	u L(v, w), the value of

g′(w) can be easily computed in online nearly linear time. �
This completes the proof of Theorem 3.2. �

4. Base change

We use infinite sequences over �b to represent real numbers in [0, 1). For this, we associate each string w ∈ �∗
b with

the half-open interval [w]b defined by [w]b = [x, x + b−|w|), for x =
|w|∑
i=1

w[i − 1]b−i . Each real number α ∈ [0, 1) is then

represented by the unique sequence seqb(α) ∈ �∞
b satisfying

w 	 seqb(α) ⇐⇒ α ∈ [w]b

for all w ∈ �∗
b . We have

α =
∞∑

i=1

seqb(α)[i − 1]b−i

and the mapping seqb : [0, 1) → �∞
b is a bijection. (Notice that [w]b being half-open prevents double representations.) We

define realb : �∞
b → [0, 1) to be the inverse of seqb . A set of real numbers A ⊆ [0, 1) is represented by the set

seqb(A) = {seqb(α) | α ∈ A}
of sequences. If X ⊆ �∞

b then

realb(X) = {realb(x) | x ∈ X}.

8

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.9 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
Construction 4.1. Let d : �∗
b → [0, ∞) be a polynomially-bounded martingale with a savings account g.

We define γ : �∗
b → [0, 1] a probability measure on �∞

b , γ (w) := b−|w|d(w)/d(λ).
Using the Carathéodory extension to Borel sets, γ can be extended to any interval [a, c]; we denote with γ̂ this extension. (In

fact if we consider all U ⊆ �∗
b such that all u, v ∈ U , u �= v are incomparable and [u]b ⊆ [a, c] for all u ∈ U , then γ̂ ([a, c]) =

supU
∑

u∈U γ (u)).
We define μ : {0, 1}∗ → [0, 1] by μ(y) = γ̂ ([y]2).
Finally we define d(2) : {0, 1}∗ → [0, ∞) by d(2)(y) = 2|y|μ(y).

Theorem 4.2. Let d be a base-b martingale that is polynomially bounded such that d(w) is constant for |w| ≤ 2b, and let g be a
savings account of d. Let d(2) be defined from d and g as in Construction 4.1. Then

realb(S∞[g]) −Q⊆ real2(S∞[d(2)]).
Moreover, if d is computable in an online nearly linear time bound not depending on b, then so is d(2). If for all w ∈ �+

b , d(w) ≤
a|w|c then for all y ∈ {0, 1}+ , d(2)(y) ≤ 3a|y|c/d(λ).

Proof of Theorem 4.2. We will first show that Carathéodory extension of d works for sequences base change, and then
approximate the resulting d(2) using d restricted to �m

b for a fixed m.

Property 4.3. If for all w ∈ �∗
b , d(w) ≤ a|w|c then for all y ∈ {0, 1}∗ , d(2)(y) ≤ 3a|y|c/d(λ).

Let y ∈ {0, 1}∗ . Let A y = {
w ∈ �∗

b | |w| = |y| and [w]b ∩ [y]2 �= ∅}
. Then

d(2)(y) ≤ 2|y| ∑
w∈A y

b−|w|d(w)/d(λ)

≤ 2|y| ∑
w∈A y

b−|w|a|w|c/d(λ)

≤ 2|y|(2−|y| + 2b−|y|)a|y|c/d(λ)

≤ 3a|y|c/d(λ)

Property 4.4. Let α ∈ [0, 1) −Q. If seqb(α) ∈ S∞[g], then seq2(α) ∈ S∞[d(2)].

Proof. Let x = seqb(α) ∈ S∞[g]. Let y = seq2(α).
We use here that d has a savings account g , so if g(x � n) > m then for all w with x � n 	 w , g(w) > m.
Let m ∈N and choose n such that g(x � n) > m. Let q be such that [y � q]2 ⊆ [x � n]b (this q exists because α ∈ [0, 1) −Q).

Let us see that d(2)(y � q) > m/d(λ).
Let r ∈N . Let Aq

r = {
w ∈ �∗

b | |w| = r and [w]b ⊆ [y � q]2
}

. Then

d(2)(y � q) = 2qγ̂ ([y � q]2) = 2q lim
r

∑
w∈Aq

r

d(w)/d(λ)b−|w|

≥ 2qm/d(λ) lim
r

∑
w∈Aq

r

b−|w| = 2qm/d(λ)2−q = m/d(λ).

The last chain of equations holds because [y � q]2 ⊆ [x � n]b and for every w ∈ Aq
r , [w]b ⊆ [y � q]2, so x � n 	 w for any

w ∈ Aq
r . �

We next compute d(2) . For each m ∈N we define μm : {0, 1}∗ → [0, 1] by

μm(y) =
∑

|w|=m,[w]b∩[y]2 �=∅
γ (w).

Claim 4.5. For every y ∈ {0, 1}∗ and m ∈N , |μ(y) − μm(y)| ≤ 2b−mamc/d(λ).

Proof. Let a, c be such that d(w) ≤ a|w|c for every w (using that d is polynomially bounded). Then since at most two
strings w with |w| = m have the property that [w]b ∩ [y]2 �= ∅ and [w]b � [y]2, we have

|μ(y) − μm(y)| ≤ 2b−mamc/d(λ). �

9

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.10 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
For each m ∈N we define d(2)
m : {0, 1}∗ → [0, ∞) by d(2)

m (y) = 2|y|μm(y).

Claim 4.6. For some c > 0, for every y ∈ {0, 1}∗ , for every m ∈N ,

|d(2)(y) − d(2)
m (y)| ≤ 2|y|2−m log b+c log m+1/d(λ).

Corollary 4.7. For some c′ > 0, for every y ∈ {0, 1}∗ ,

|d(2)(y) − d(2)

|y|/ log b+c′ log |y|(y)| ≤ 1/|y|3 · 1/d(λ).

Proof. Take c′ = (4 + c)/ log b and use the previous claim. �
Property 4.8. For m ∈ N , y ∈ {0, 1}∗ , d(2)

m (y) can be computed by considering a maximum of 2b neighbor strings w ∈ �r
b for r =

|y|/ log b to m, computing d(w) for each of them and doing an addition and a multiplication for each.

Proof. Consider P , the smallest prefix free set of strings w ∈ �∗
b such that [w]b ⊆ [y]2, and notice that |w| ≥ |y|/ log b for

each such string. For each r there are at most 2b − 2 strings of length r in P (otherwise we can replace some of them by a
single string of length r − 1). For length m we may need two more strings |w| = m, [w]b ∩ [y]2 �= ∅. �
Corollary 4.9. For y ∈ {0, 1}∗ , d(2)

|y|/ log b+c′ log |y|(y) can be computed by considering a maximum of 2b neighbor strings w ∈ �r
b for

r = |y|/ log b to |y|/ log b + c′ log |y|, computing d(w) for each of them and doing an addition and a multiplication for each.

By Corollary 4.7 f (y) = d(2)

|y|/ log b+c′ log |y|(y) approximates d(2)(y) within a 1/|y|3 · 1/d(λ) bound, and by the last corollary
f can be computed in online nearly linear time. Using that d(w) is constant for |w| ≤ 2b we have a nearly linear time
bound independent of b.

This concludes the proof of Theorem 4.2. �
5. Absolutely normal numbers

In this section we give an algorithm that diagonalizes against the Lempel-Ziv martingales for all bases in nearly linear
time.

We use the following theorem which is a union lemma for online nearly linear martingales that works for a set of
martingales that is uniformly computable, uniformly approximated and uniformly polynomially bounded.

Theorem 5.1. Let (dk)k∈N be a sequence of base-2 martingales such that for each of them there exists a function d̂k : {0, 1}∗ → [0, ∞)

with the following properties

1. d̂k is computable in an online nearly linear time bound that does not depend on k.
2. There is a, c > 1 such that for every k ∈N , y ∈ {0, 1}∗

|dk(y) − d̂k(y)| ≤ a

|y|c .

3. dk(λ) = d̂k(λ) = 1 and there is a, c > 1 such that for every k ∈N , y ∈ {0, 1}∗ , dk(y) ≤ a|y|c .

Then we can compute in online nearly linear time a binary sequence x such that, for every k, x /∈ S∞[dk].

Proof. Let d : {0, 1}∗ → [0, ∞) be defined by

d(w) =
∞∑

k=1

2−kdk(w).

Then d is a martingale. Let ̂d : {0, 1}∗ → [0, ∞) be

d̂(w) =
(c+2) log |w|+log a∑

k=1

2−kd̂k(w).

Notice that ̂d is computable in online nearly linear time.
10

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.11 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
Claim 5.2. For each w ∈ {0, 1}∗ , |d(w) − d̂(w)| ≤ (a + 1)/|w|c+1 .

|d(w) − d̂(w)| ≤
(c+2) log |w|+log a∑

k=1

2−k|dk(w) − d̂k(w)| +
∞∑

k=(c+2) log |w|+log a+1

2−kdk(w)

≤
(c+2) log |w|+log a∑

k=1

2−ka/|w|c +
∞∑

k=(c+2) log |w|+log a+1

2−ka|w|c

≤ a/|w|c + a|w|c/(a|w|c+2) = a/|w|c + 1/|w|2.
Our algorithm will diagonalize against d, constructing a binary sequence x as follows. If x � n has been defined then

choose the next bit of x as i ∈ {0, 1} that minimizes ̂d((x � n)i).

Claim 5.3. If x /∈ S∞[d] then for every k, x /∈ S∞[dk].

Let n ∈N, k ∈N , dk(x � n) ≤ 2kd(x � n).

Claim 5.4. x /∈ S∞[d].

Let w ∈ {0, 1}∗ . We prove that for i ∈ {0, 1} chosen to minimize ̂d(wi) it holds that d(wi) ≤ d(w) + (a + 1)/(|w| + 1)c+1.
Since ̂d(wi) ≤ d̂(w(1 − i)) it holds that

d(wi) ≤ d̂(wi) + (a + 1)/(|w| + 1)c+1

≤ d̂(w(1 − i)) + (a + 1)/(|w| + 1)c+1 ≤ d(w(1 − i)) + 2(a + 1)/(|w| + 1)c+1.

Since d is a martingale, it follows that d(wi) ≤ d(w) + (a + 1)/(|w| + 1)c+1.
Therefore

d(x � n) ≤ d(x � (n − 1)) + (a + 1)/nc+1

and x /∈ S∞[d]. �
We now have all the ingredients for our main result.

Theorem 5.5. There is an explicit algorithm that computes the binary expansion of an absolutely normal number z in online nearly
linear time.

Proof. The algorithm arises from a combination of Theorem 3.2, Lemma 2.1, Theorem 4.2, and Theorem 5.1, notice that all
of them give fully explicit constructions.

As explained in section 2, a real number z is absolutely normal if none of the martingales dLZ+(b) succeed exponentially
on the base-b expansion of z.

For each b, let d be the polynomially bounded and online nearly linear time computable supermartingale with a sav-
ings account g′ defined in Theorem 3.2 and construction 3.1 as a conservative substitute of dLZ+(b) (that is, Sexp[dLZ(b)] =
Sexp[dLZ+(b)] ⊆ S∞[g′]).

Let d′ be the online nearly linear time computable and polynomially bounded martingale with d′(w) ≥ d(w) for all w
given by Lemma 2.1. Notice that since d′(w) ≥ d(w), g′ is a savings account for d′ .

For b �= 2, we now use Theorem 4.2 for d′, g′ and we have an online nearly linear time computable martingale
d(2) : {0, 1}∗ → [0, ∞) that succeeds on the base-2 expansion of the irrational reals with base-b expansion in S∞[g′]
(realb(S∞[g′]) −Q ⊆ real2(S∞[d(2)])).

For b = 2 we directly take d(2)(w) = d′(w)/d′(λ). Notice that Q ⊆ realb(S∞[d′]) because seqb(Q) ⊆ Sexp[dLZ(b)].
For each b the computation of db = d(2) fulfills the conditions of Theorem 5.1, so we can compute in online nearly linear

time a binary sequence x such that, for every b, x /∈ S∞[db] and therefore real2(x) /∈ realb(Sexp[dLZ(b)]). So x is the binary
expansion of an absolutely normal number. �
6. Open problem

Many questions arise naturally from this work, but the following problem appears to be especially likely to demand new
and useful methods.

As we have seen, normal numbers are closely connected to the theory of finite automata. Schnorr and Stimm [28] proved
that normality is exactly the finite-state case of randomness. That is, a real number α is normal in a base b ≥ 2 if and only
11

JID:YINCO AID:104746 /FLA [m3G; v1.306] P.12 (1-12)

J.H. Lutz and E. Mayordomo Information and Computation ••• (••••) ••••••
if no finite-state automaton can make unbounded money betting on the successive digits of the base-b expansion of α with
fair payoffs. The theory of finite-state dimension [11], which constrains Hausdorff dimension [17] to finite-state automata,
assigns each real number α a finite-state dimension dim(b)

FS (α) ∈ [0, 1] in each base b. A real number α then turns out to
be normal in base b if and only if dim(b)

FS (α) = 1 [8]. Do there exist absolutely dimensioned numbers, i.e., real numbers α for
which dimFS(α) = dim(b)

FS (α) does not depend on b, and 0 < dimFS(α) < 1?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The first author’s research was supported in part by National Science Foundation Grants 0652569, 1143830, 1247051,
1545028, and 1900716. Part of this author’s work was done during a sabbatical at Caltech and the Isaac Newton Institute
for Mathematical Sciences at the University of Cambridge, part was done during three weeks at Heidelberg University,
with support from the Mathematics Center Heidelberg and the Heidelberg University Institute of Computer Science, and
part was done during the workshop “Normal Numbers: Arithmetical, Computational and Probabilistic Aspects” at the Erwin
Schrödinger International Institute for Mathematics and Physics at the University of Vienna.

The second author’s research was supported in part by Spanish Government MEC Grants TIN2011-27479-C04-01,
TIN2016-80347-R, and PID2019-104358RB-I00. Part of this author’s work was done during a research stay at the Isaac
Newton Institute for Mathematical Sciences at the University of Cambridge, part was done during three weeks at Heidel-
berg University, with support from the Mathematics Center Heidelberg and the Heidelberg University Institute of Computer
Science, and part was done during the workshop “Normal Numbers: Arithmetical, Computational and Probabilistic Aspects”
at the Erwin Schrödinger International Institute for Mathematics and Physics at the University of Vienna.

We also thank two anonymous reviewers of this paper for very useful and detailed comments.

References

[1] C. Aistleitner, V. Becher, A.-M. Scheerer, T. Slaman, On the construction of absolutely normal numbers, Acta Arith. 180 (4) (2017) 333–346.
[2] D. Angluin, L. Valiant, Fast probabilistic algorithm for Hamiltonian circuits and matchings, J. Comput. Syst. Sci. 18 (1979) 155–193.
[3] V. Becher, S. Figueira, R. Picchi, Turing’s unpublished algorithm for normal numbers, Theor. Comput. Sci. 377 (2007) 126–138.
[4] V. Becher, P.A. Heiber, T.A. Slaman, A polynomial-time algorithm for computing absolutely normal numbers, Inf. Comput. 232 (2013) 1–9.
[5] P. Billingsley, Probability and Measure, third edition, John Wiley and Sons, New York, N.Y., 1995.
[6] E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1) (1909) 247–271.
[7] J. Borwein, D. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, second edition, A.K. Peters, 2008.
[8] C. Bourke, J.M. Hitchcock, N.V. Vinodchandran, Entropy rates and finite-state dimension, Theor. Comput. Sci. 349 (3) (2005) 392–406.
[9] Y. Bugeaud, Distribution Modulo One and Diophantine Approximation, vol. 193, Cambridge University Press, 2012.

[10] J.W.S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7 (1959) 95–101.
[11] J.J. Dai, J.I. Lathrop, J.H. Lutz, E. Mayordomo, Finite-state dimension, Theor. Comput. Sci. 310 (2004) 1–33.
[12] J. Doob, Regularity properties of certain families of chance variables, Trans. Am. Math. Soc. 47 (1940) 455–486.
[13] M. Feder, Gambling using a finite state machine, IEEE Trans. Inf. Theory 37 (1991) 1459–1461.
[14] S. Figueira, A. Nies, Feasible analysis and randomness, Manuscript, 2013.
[15] S. Figueira, A. Nies, Feasible analysis, randomness, and base invariance, Theory Comput. Syst. 56 (2015) 439–464.
[16] Y. Gurevich, S. Shelah, Nearly linear time, in: Proceedings of the First Symposium on Logical Foundations of Computer Science, Springer, 1989.
[17] F. Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1919) 157–179.
[18] J. Hitchcock, J. Lutz, Why computational complexity requires stricter martingales, Theory Comput. Syst. 39 (2006) 277–296.
[19] D.E. Knuth, Construction of a random sequence, BIT Numer. Math. 5 (1965) 246–250.
[20] A.N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, 1950.
[21] H. Lebesgue, Sur certaines demonstrations d’existence, Bull. Soc. Math. Fr. 45 (1917) 132–144.
[22] A. Lempel, J. Ziv, Compression of individual sequences via variable rate coding, IEEE Trans. Inf. Theory 24 (1978) 530–536.
[23] P. Lévy, Propriétés asymptotiques des sommes de variables indépendantes ou enchainées, J. Math. Pures Appl., Ser. 9 14 (4) (1935) 347–402.
[24] P. Lévy, Théorie de l’Addition des Variables Aleatoires, Gauthier-Villars, 1937 (second edition 1954).
[25] M. Madritsch, A. Scheerer, R. Tichy, Computable absolutely Pisot normal numbers, Acta Arith. 184 (2018) 7–29.
[26] E. Mayordomo, Construction of an absolutely normal real number in polynomial time, Manuscript, 2013.
[27] W.M. Schmidt, On normal numbers, Pac. J. Math. 10 (2) (1960) 661–672.
[28] C.-P. Schnorr, H. Stimm, Endliche automaten und zufallsfolgen, Acta Inform. 1 (4) (1972) 345–359.
[29] W. Sierpinski, Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’une tel nombre,

Bull. Soc. Math. Fr. 45 (1917) 125–132.
[30] A.M. Turing, On computable numbers with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. 42 (1936–1937) 230–265.
[31] A.M. Turing, A note on normal numbers, in: S.B. Cooper, J. van Leeuwen (Eds.), Alan Turing: His Work and Impact, Elsevier Science, 2013.
[32] J. Ville, Étude Critique de la Notion de Collectif, Gauthier–Villars, Paris, 1939.
[33] S. Wagon, Is π normal?, Math. Intell. 7 (1985) 65–67.
12

http://refhub.elsevier.com/S0890-5401(21)00061-4/bibDA0B74DB743520F767A72D74445E20FDs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib22571F088E41350DA67DED2CF8BFAB8Cs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibE5EF6F90B9A2A219AEE094C4377F8BB6s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib47557C2C5DEC955AE33FC03D715437CFs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib653B4619633D38903A235F3BADE6280Bs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibA586473D6F4984518ABF818A899CD5CEs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibF623BC8BA5C01DFCC0C217C01C93B005s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibA762E80D2D48F3270D92A21564E4C446s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib454C33E5C3D10D16DC0A364A32071479s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib5B094F25760ECDF0A30DA66C8C2854E1s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibE4D98D1AF463E15579EC27CBFD1B20A0s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib973E9AA1E41C0985EBBD1D473DB35F10s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib062C6AB603DFC80A2953A05AE4C3CD17s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib89802A3341F6AF4AE02EB16D44FBEAEAs1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib181A936AF0DC5DD933ACFE2A17876FC9s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibE7A0D301A0792D736B407FB9FB407C2As1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib05659591ECAEBB44329FBD4A4C018242s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibF8AA611FDF0D9BDC1E4E4790640E2565s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibD3FBB6D16D134502205C71AD7BEA0453s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib646A2B35BC8299FB79C1B40CCB60D05Ds1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibE58884F2D90A1E13711E61D1B039E285s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibAC060E2218D9E4ED4DF148A6DA88C88Ds1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibA3AC9FDAB1BF3CD2F5A84DF4C10F32F6s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibB40F98C644039864173DB797C9E6B987s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib2FD2D1B5DE2D93AA1742391752B55D88s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibD0EE200637ED9D9415C24361953B74A5s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib75E51DA796AF2010D4A2080FDA8562A6s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib75E51DA796AF2010D4A2080FDA8562A6s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib05AEC69C2A91F45B5430A1C8D543A94Ds1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bib8367CC16F17821224CBC03CFB90FBAF2s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibC740D902C5DE64A73B8C78A3585AFEE8s1
http://refhub.elsevier.com/S0890-5401(21)00061-4/bibEE65C8BFF7D65AE5FE3440084503E019s1

	Computing absolutely normal numbers in nearly linear time
	1 Introduction
	2 Lempel-Ziv martingales
	3 Savings accounts
	4 Base change
	5 Absolutely normal numbers
	6 Open problem
	Declaration of competing interest
	Acknowledgments
	References

