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A B S T R A C T   

The broad possibilities offered by microfluidic devices in relation to massive data monitoring and acquisition 
open the door to the use of deep learning technologies in a very promising field: cell culture monitoring. In this 
work, we develop a methodology for parameter identification in cell culture from fluorescence images using 
Convolutional Neural Networks (CNN). We apply this methodology to the in vitro study of glioblastoma (GBM), 
the most common, aggressive and lethal primary brain tumour. In particular, the aim is to predict the three 
parameters defining the go or grow GBM behaviour, which is determinant for the tumour prognosis and response 
to treatment. The data used to train the network are obtained from a mathematical model, previously validated 
with in vitro experimental results. The resulting CNN provides remarkably accurate predictions (Pearson’s ρ >
0.99 for all the parameters). Besides, it proves to be sound, to filter noise and to generalise. After training and 
validation with synthetic data, we predict the parameters corresponding to a real image of a microfluidic 
experiment. The obtained results show good performance of the CNN. The proposed technique may set the first 
steps towards patient-specific tools, able to predict in real-time the tumour evolution for each particular patient, 
thanks to a combined in vitro-in silico approach.   

1. Introduction 

According to the World Health Organization, cancer is the second 
leading cause of death in the world, responsible for about 10 million 
deaths per year. These figures are expected to rise to 16 million deaths in 
2040. Approximately one sixth of the total number of deaths are due to 
cancer. Among the more than 200 types of cancer, Glioblastoma (GBM) 
is the most aggressive and frequent primary brain tumour, accounting 
for 17% of these tumours [14]. Survival of GBM patients who undergo 
the first-line standard treatments (surgery followed by adjuvant 
chemotherapy and local radiation) has a median of 14 months since 
diagnosis and a 5-year survival rate of only 6.8% [47,48]. This is due to 
its heterogeneity, rapid progression and high invasive capacity [23,24]. 

Hypoxia has been proposed as one of the main driving forces of GBM 
progression [15]. GBM cells proliferate around blood vessels, eventually 
provoking their occlusion, leading to local hypoxia. As a consequence, 

many cells die in this hypoxic region, forming a necrotic core around the 
collapsed vessel, while the surviving cells rapidly migrate towards more 
oxygenated areas, creating waves with high cellular density, called 
pseudopalisades. Once they reach a new vessel, they stop migrating and 
start a fast proliferation, so the whole process is restarted. As a result, 
cells undergo migration and proliferation cycles, in a dichotomous 
process known as go or grow, which proposes that cells exhibit either a 
migratory or proliferative state depending on the oxygen level [31]. It is 
therefore clear that characterising the go or grow paradigm in GBM 
behaviour is key for the development of treatment strategies against this 
cancer [62], as it also plays a crucial role in the acquisition of chemo-
resistance [38]. 

Due to the complexity of GBM evolution (and of cell biological 
processes in general), which strongly depends on the particular micro-
environment [16], two-dimensional in vitro experiments (Petri dishes) 
are not able to reproduce the behaviour of cells in real tissues. 
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Microfluidics and micro-technologies have recently arisen as powerful 
tools to recreate the complex three-dimensional microenvironment that 
governs tumour dynamics [54], and, in particular, GBM [13], thus 
overcoming some of these limitations. These techniques allow to 
reproduce important characteristics of tumour evolution that were not 
observed before in two-dimensional cultures, as well as testing drugs in a 
much more efficient way [29,57]. In particular, the study of tumour 
chemotaxis has been considerably developed [46,59]. Besides, thanks to 
the flexibility, reproducibility, automation, integration and miniatur-
isation of microfluidic experiments, they have the potential to generate 
large amounts of data, in the form of images and videos of long periods 
of cell culture evolution [20]. This fact enables to use the framework of 
Data Science and, in particular, of Machine Learning methods to analyse 
these complex, multifactorial and very nonlinear biological problems. 

The use of Machine Learning in Biomechanics and Bioengineering 
has been very fruitful in the last two decades (see for example Hosseini 
et al. [34], Caschera et al. [18], Halilaj et al. [30]). A very common 
application of Machine Learning and, in particular, of Neural Networks 
is as a Reduced Order Model built from Finite Element simulations [50]. 
This strategy can be oriented towards real time patient-specific tools 
(see, for instance, Cabeza-Gil et al. [17] for an application in ophthal-
mology). The use of Neural Networks is also very common for parameter 
identification or constitutive modelling in computational mechanics. 
Some examples, out of the huge amount, are soft tissues [5,19,41], 
history and rate dependent materials [2,3,25,37], granular materials 
[22,27,58,64] and polymeric, polycrystalline and composite materials 
[1,4,7,42,43]. Recently, Deep Convolutional Neural Networks (CNN) 
have emerged in computational mechanics [49,55,60,61] as powerful 
tools to exploit the information contained spatially in the datasets, as 
occurs in medical image processing [40,52,56]. 

The broad possibilities offered by microfluidic devices in relation to 
massive data monitoring and acquisition open the door to the use of 
deep learning technologies in a promising field: cell culture monitoring 
[26,53], which has been little explored. Very recently, some attempts 
have been made for classification problems [63] or feature extraction 
[33,35]. However, Neural Networks have not been applied, up to the 
authors’ knowledge, to parameter identification in cell culture appli-
cations, being this a field that remains to be explored. Here, we present a 
Deep Learning approach that uses CNN for parameter identification in 
physically-based models of cell-cultures, from microscopic images of 
such cultures in microfluidic devices. This framework is then applied to 
discover important features of GBM cells during the formation of a 
necrotic core, thus helping to predict GBM evolution. The Neural 
Network is trained using synthetic data obtained from a validated 
mathematical model and considering a wide range of parameters. The 
presented methodology may then be considered as a first step towards 
personalized medicine, where each patient, with its own tumour char-
acteristics and evolution, is in vitro evaluated to get their patient-specific 
parameters. 

The paper is structured as follows. The methods are presented in 
Section 2. First, the procedures for image acquisition and processing 
from microfluidic devices are described. Then, the mathematical model, 
used to predict GBM evolution in microfluidic devices, is presented and 
the parameters associated with the go or grow behaviour (having a direct 
impact in tumour progression) are identified. Finally, the CNN frame-
work and the details about the training process are described. Section 3 
introduces the main results of the paper, in terms of the network per-
formance and the model generalisation. The results are additionally 
validated with previously published results on GBM culture evolution, 
including a different experimental configuration from the one used for 
training. Finally, Section 4, presents a discussion about the methodology 
and Section 5 summarizes the main results and conclusions. 

2. Materials and methods 

2.1. Image processing 

The outcome of cell culture microfluidic experiments are often 
fluorescence images. Fluorescence microscopy has become an essential 
tool in cell biology, allowing to visualise cells, tissues and organelles. In 
order to be suitable for this technique, samples must be fluorescent. This 
can be achieved transducing cells so that they express fluorescent pro-
teins or using fluorescent dyes. In particular, in the images used in this 
work, calcein was used to stain alive cells green, and propidium iodide to 
stain dead cells red [12,13]. Cells were then excited to show either green 
or red fluorescence, two images were taken with a confocal microscopy 
and then superimposed to obtain the final image (Fig. 1, stage 1). Due to 
the importance of fluorescence microscopy images in current research, 
they will be the starting point of the methodology presented herein. 
Precisely, fluorescent images of GBM cells cultured in microfluidic de-
vices will be used. These images are taken at a low magnification scale to 
consider the phenomena in the whole device, as we work at the popu-
lation scale, much higher than the cell size. These images need then to be 
processed to obtain the cell concentration profiles, which will be the 
network input. 

A scheme of the image processing procedure is depicted in Fig. 1, 
where the different stages are indicated with blue numbers. From the 
given image (Stage 1), obtained from Ref. [13], a rectangular region 
across the central microchamber of the device is selected (Stage 2). Next, 
we separate alive cells (marked with green fluorescence) and dead cells 
(marked with red fluorescence). The two resultant images contain the 
values of green and red intensity for each pixel, measured in the range 
[0, 255] (Stages 3 & 4). Gaussian filtering with σ = 3 is then performed 
(Stages 5 & 6) to get information on the cell population density, instead 
of counting individual cells, as our continuum model requires. Finally, to 
obtain a one-dimensional cell concentration profile, the color intensity 
level is averaged throughout the chip length (Stages 7 & 8). To transform 
the intensity levels Igreen, Ired into cell concentrations Cn, Cd, we assume 
linear proportionality between both magnitudes, so, we can write: 

κIgreen(x, t) = Cn(x, t), (1)  

κIred(x, t) = Cd(x, t), (2)  

with κ the constant of proportionality. To calculate κ, we assume that the 
integral of the initial cell concentration along the chamber equals the 
total amount of seeded cells (which are only alive cells). That is 
∫ L

0
Cn(x, t= 0)dx = C0L, (3)  

where L is the chip length and C0 is the initial cell concentration, known 
by the experimentalist. Finally, joining Eqs. (1) and (3), κ is obtained as: 

κ =
C0L

∫ L
0 Igreendx

. (4)  

Once the value of κ is determined, we can determine both alive (from Eq. 
(1)) and dead (from Eq. (2)) cell concentration profiles from an image, 
taken at any given time, at each point of the microchamber (Stage 9). 

2.2. Mathematical model for glioblastoma evolution 

The main measurement variable in our problem is the cell concen-
tration profile for alive and necrotic cell populations, Cn(x), and Cd(x), x 
∈ [0; L], respectively. We can model the time evolution of these vari-
ables by means of a recently published mathematical model based on an 
advection-diffusion-reaction system of partial differential equations 
[10]. This computational model has been validated with data corre-
sponding to experimental GBM cell cultures in a microfluific device, 
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under hypoxic conditions, in different situations: the formation of a 
necrotic core [13], of a pseudopalisade [12] and of a double symmetric 
pseudopalisade [10]. 

The model governing equations, describing the evolution of both 
alive and dead cell concentrations (Cn, Cd) and of the oxygen concen-
tration (O2), are expressed as: 

∂Cn

∂t
=

∂
∂x

(

Dn
∂Cn

∂x
− KnΠch(O2)Fch(Cn)Cn

∂O2

∂x

)

+
1

τgr
Πgr(O2)Fgr(Cn,Cd)Cn −

1
τap

Fap(O2)Cn,

(5)  

∂Cd

∂t
=

1
τap

Fap(O2)Cn, (6)  

∂O2

∂t
= DO2

∂2O2

∂x2 − αnFc(O2)Cn, (7)  

where Πch, Fch, Πgr, Fgr, Fap, and Fc are nonlinear corrections accounting 
for different mechanisms of cell behaviour [10]. In particular, Πch and 
Πgr define the go or grow behaviour of GBM cells [31,62]. The underlying 

assumption is that cells spend their resources either in proliferating or in 
migrating, depending on whether they are above or below a certain 
hypoxia threshold OH

2 . 

Πch
(
O2;OH

2

)
=

{
1 − O2

/
OH

2 if 0 ≤ O2 ≤ OH
2

0 if O2 > OH
2

, (8)  

Πgr
(
O2;OH

2

)
=

{
O2

/
OH

2 if 0 ≤ O2 ≤ OH
2

1 if O2 > OH
2

. (9) 

Besides, Fch is a chemotaxis correction accounting for cell concen-
tration. Cells may migrate only when the cell concentration is below the 
saturation capacity Csat. In the same way, Fgr is a logistic growth 
correction accounting for space and nutrients availability, decreasing 
growth as cell concentration approaches Csat: 

Fch(Cn;Csat) =

{
1 − Cn/Csat if 0 ≤ Cn ≤ Csat

0 if Cn > Csat
, (10)  

Fgr(Cn,Cd;Csat) =

(

1 −
Cn + Cd

Csat

)

(11) 

Fig. 1. Image processing procedure. The different stages are indicated with blue numbers. Fluorescence images from Ayensa-Jiménez et al. [10].  
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Also, Fap is a death activation function, incorporating both death 
mechanisms, necrosis due to hypoxia (below a certain oxygen threshold 
OA

2 ) and apoptosis, a stochastic phenomenon also regulated by a spread 
parameter ΔOA

2 . It is defined as: 

Fap(O2;OA
2 ,ΔOA

2 ) =
1
2

(

1 − tanh
(

O2 − OA
2

ΔOA
2

))

(12) 

Finally, oxygen consumption is modelled using a Michaelis-Menten 
correction Fc, depending on the Michaelis-Menten constant OM

2 [44], as, 

Fc(O2;OM
2 ) =

O2

OM
2 + O2

. (13) 

When working with machine learning techniques, using dimen-
sionless variables offers much more robust and generalisable results. 
Therefore, it is important to carry out a non-dimensionalisation of this 
mathematical model. 

First, the dimensionless variables are defined as: 

X =
x
L
, T =

t
τ, N =

Cn

Csat
, D =

Cd

Csat
, B =

O2

OM
2
, (14)  

where L is the size of the microfluidic device and τ is the simulation time. 
Eqs. (5)–(7) are therefore reformulated in terms of the dimensionless 

variables as: 

∂N
∂T

=
∂

∂X

(

DN
∂N
∂X

− KNΠch(B;H)F∗
ch(N)N

∂B
∂X

)

+GNΠgr(B;H)F∗
gr(N,D)N − GDFap(B;A,ΔA)N, (15)  

∂D
∂T

= GDFap(B;A,ΔA)N, (16)  

∂B
∂T

= DB
∂2B
∂X2 − αNF∗

c(B)N, (17)  

with the following dimensionless parameters: 

DN =
Dnτ
L2 , KN =

KnτOM
2

L2 , GN =
τ

τgr
,

GD =
τ

τap
, DB =

DO2 τ
L2 , αN =

αnCMτn

OM
2

H =
OH

2

OM
2
, A =

OA
2

OM
2
, ΔA =

ΔOA
2

OM
2
,

(18)  

and the following dimensionless functions: 

F∗
ch(N) =

{
1 − N if 0 ≤ N ≤ 1

0 if N > 1 , (19)  

F∗
gr(N,D) = 1 − (N +D), (20)  

F∗
c =

B
B + 1

. (21) 

Once the model has been established, it is possible to identify the 
proliferative and migratory features of the cell culture with the model 
parameters GN, KN and H:  

• GN is an indicator of the cell proliferative activity, associated with 
tumour growth.  

• KN is an indicator of the cell migratory activity, associated with 
tumour aggressiveness.  

• H is a threshold parameter indicating the cell metabolism switch 
between the proliferative and migratory behaviour, related to the 
local oxygen level. 

2.3. Convolutional neural network set-up and training process 

2.3.1. Dataset generation 
We used the previously described mathematical model to generate n 

= 12000 virtual results recreating the formation of a necrotic core in a 
device of L = 0.2 cm with a simulation time of τ = 3 days. The mesh 
element size was Δx = 4 ⋅ 10− 3 cm, the time step was Δt = 518 s, and the 
initial cell concentration was C0 = 4 ⋅ 107 cell/mL. The boundary con-
ditions used to simulate this experiment correspond to the consideration 
of two channels open to continuous medium entrance, as detailed in 
Ayensa-Jiménez et al. [10]. Briefly, oxygen concentrations at both 
channels was fixed at 7 mmHg, while full impermeability was assumed 
for dead cells and Robin boundary conditions for alive cells, with 

Cn(x = 0, L) + J(x = 0,L)
∂Cn

∂x

⃒
⃒
⃒
⃒

x=0,L
= 0. (22) 

In Eq. (22), J(x = 0, L) is a flux control parameter for the boundary at 
x = 0, L, that was adjusted during the fitting process to get optimal 
values [10], obtaining: 

J
(
x = 0

)
= − J = − 1⋅106 s

/
cm,

J
(
x = L

)
= J = 1⋅106 s

/
cm.

(23) 

We aim to determine the behaviour of cells in terms of proliferation 
and migration due to lack of oxygen. This behaviour is determined by 
the parameters regulating the go or grow functions, i.e. GN, KN and H, 
that determine the tumour aggressiveness in response to hypoxia. 

The rest of the parameters were considered to have a constant value 
(shown in Table 1), obtained by substituting in Eq. (18) the fitted value 
of the parameters given in Ayensa-Jiménez et al. [10]. 

The values of GN, KN and H used for generating the training data were 
obtained using three independent uniform distributions. Maximum and 
minimum values for each parameter are detailed in Table 2. 

The minimum value for the hypoxia threshold, H, was selected as 0.5 
instead of 0 because, in the latter case, cells only proliferate, even when 
there is a complete lack of oxygen. This is an unrealistic situation, which 
makes it impossible to appropriately estimate the chemotaxis 
coefficient. 

2.3.2. Convolutional neural network 
A Convolutional Neural Network (CNN) was built to predict the three 

parameters mentioned above from the cell evolution profiles. CNNs have 
several features of which we can take advantage: i) they are commonly 
applied to image processing; ii) they are less likely to present overfitting; 
and, thanks to their structure, iii) they reduce the number of parameters 
needed, accelerating the training process; and iv) they may infer hier-
archical patterns. This is useful when dealing with cell concentration 
profiles, since the information on model parameters is likely to be locally 
distributed in them, when using advection-diffusion-reaction equations. 

CNNs typically consist of convolutional layers, composed of a num-
ber of kernels of a determined size that convolve the input, and pooling 
layers, which reduce the dimensions of the data. Fully-connected layers 
are also used to perform the regression or classification tasks. A scheme 
of the CNN used in the proposed problem is illustrated in Fig. 2. As can 
be observed, the network receives a two-channel input, corresponding to 

Table 1 
Values of the constant dimensionless 
parameters.  

Parameter Value 

DN 0.032 
GD 1.5 
DB 64.8 
αN 5184 
A 0.64 
ΔA 0.04  
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both alive and dead cell profiles at the end of the simulation time (t = τ 
= 3 days), each discretised with 51 points. 

In particular, the proposed CNN is composed of four convolutional 
layers, each followed by batch normalization and average pooling 
layers. An average pooling layer divides the input into rectangular re-
gions and computes the average value in each region, while batch 
normalization layers normalize each input channel across a mini-batch. 
Activation functions are Rectified Linear Units (ReLUs). At the end, 
there is a fully connected layer, followed by a regression layer, which 
returns the predicted parameters. A detailed enumeration of all layers is:  

1. Convolution Layer: 12 convolutions with kernel size [1,30], 
stride [1,1] and same padding.  

2. Batch normalization with 12 channels.  
3. ReLU layer.  
4. Average pooling with stride [2,2] and zero padding.  
5. Convolution Layer: 32 convolutions with kernel size [1,30], 

stride [1,1] and same padding.  
6. Batch normalization with 32 channels.  
7. ReLU layer.  
8. Average pooling with stride [2,2] and zero padding.  
9. Convolution Layer: 64 convolutions with kernel size [1,30], 

stride [1,1] and same padding.  
10. Batch normalization with 64 channels.  
11. ReLU layer.  
12. Average pooling with stride [2,2] and zero padding.  
13. Convolution Layer: 64 convolutions with kernel size [1,50], 

stride [1,1] and same padding.  
14. Batch normalization with 64 channels.  
15. ReLU layer.  
16. Fully-connected layer with 3 neurons.  
17. Regression Layer. 

2.3.3. Training procedure 
From the n = 12000 virtual results (consisting on cell profiles and go 

or grow parameters) available in the dataset, we used ntrain = 8000 for 
training the network, nval = 2000 for validation during the training, and 
the remaining ntest = 2000 for testing the network once trained. The 
output parameters were normalised in advance. 

For the training procedure, we selected the Adam optimiser [39] 
with a learning rate of β = 1 ⋅ 10− 3. Every 20 epochs, the learning rate is 
decreased by a factor of 0.1 to avoid the stagnation of the loss function. 
The weights initialisation was performed by means of a Glorot initialiser 
(also known as Xavier initialiser) [28], while the biases values were 
initially set to zero. 

The training consisted on 50 epochs, with batches of 30 virtual ex-
periments. The loss function is the half-mean-squared-error (HMSE): 

HMSE =
1
2n

∑n

i=1

∑3

j=1
(ŷi

j − yi
j)

2
, (24)  

where ŷi
j is the prediction of the jth parameter, corresponding to the ith 

observation (i = 1, …, n, with n the number of data); and yi
j is the real 

value. 
The CNN model and training procedure were implemented in the 

Deep Learning Toolbox of Matlab [45]. 

3. Results 

3.1. Network convergence 

Fig. 3 shows the evolution of the loss function for both training and 
test datasets. It can be seen that both decrease as the iterations increase, 
converging to a low value of the cost function, showing no overfitting. 

3.2. Network performance 

For each pair of concentration profiles of the test dataset, the 
network predicts the value of the corresponding parameters, which was 
then compared to the real one (Fig. 4), showing good agreement for all 
three parameters. Indeed, the linear correlation coefficient between the 
real yi and predicted ŷi values, ρ, and the Root Mean Squared Error 
(RMSE), 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

, (25)  

were calculated for each parameter, and the corresponding results are 
shown in Table 3. 

As can be seen in Table 3, ρ is above 0.99 in all cases and RMSE is 
below 0.1, confirming the good results obtained. 

Table 2 
Range of the dimensionless parameters used in the simulations.  

Parameter GN KN H 

Minimum value 0 0 0.5 
Maximum value 0.72 0.243 5.6  

Fig. 2. Convolutional Neural Network scheme.  

Fig. 3. Network convergence.  
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To illustrate the performance of the network and its sensitivity to 
noisy input data, virtual profiles with different levels of noise were 
generated. We added a Gaussian white noise to each cell concentration. 
More specifically, the input profiles at each point Nj, Dj, with j = 1, …, 51 
referring to the spatial discretisation nodes, were perturbed using a 
normal distribution with mean Nj and standard deviation r ⋅ Nj where r ∈
[0, 1] is the noise fraction, in the case of alive cells and proceeding 
likewise for dead cells. We repeated this procedure for no noise (r = 0), a 
noise level of 1% (r = 0.01) and a noise level of 10% (r = 0.1). The 
parameters predicted by the network for each case are shown in Table 4, 
together with the relative error e in the prediction, calculated as e = |ŷ −

y|/y. 
As expected, the higher the noise level, the higher the relative error. 

Nevertheless, we used our mathematical model with the predicted pa-
rameters to simulate the outcome of the experiment in each of the sit-
uations, plotting the results in Fig. 5. The results were able to reproduce 
the trends of the original data in all cases, showing that our network, 
despite having been trained with noise-free data, is able to make accu-
rate predictions also for noisy profiles. 

3.3. Network soundness 

Two different validation procedures were followed to assess the CNN 
soundness. First, the network convergence soundness (the optimisation 
algorithm) was tested by changing the weights initialisation, and, 

second, cross-validation was performed to evaluate the model 
generalisability. 

3.3.1. Network convergence 
As commented before, weight initialisation was carried out using a 

Glorot initialiser, which assigns each weight a value independently 
sampled from a uniform distribution [28]. Therefore, there is a random 
component in the initial weights selection, which can influence the re-
sults. Nevertheless, if a model is sufficiently good, it is expected that the 
choice of the initial weights of the CNN layers would not have a sig-
nificant influence on the results, so that the minimum reached is actually 
the global one. To test the network soundness regarding this aspect, the 
CNN was trained with 100 different sets of initial values, randomly 
selected, and the results were evaluated with the same test dataset. 

The boxplot of the RMSE values obtained for each parameter is 
shown in Fig. 6. The values are small and present small variability, as 
expected. 

3.3.2. Model generalisability 
Cross-validation is another test used to assess whether the proposed 

CNN model is able to generalise. The aim is to prove that the results 
obtained when predicting values for the test dataset are independent of 
the dataset used during the training process. We used a k-fold random 
subsampling cross-validation scheme, represented in Fig. 7, with k = 10 
iterations. From the considered n = 12000 dataset, the test dataset (of 
size ntest = 2000) remained constant throughout the process, so that the 
results from the different iterations could be objectively compared. In 
each iteration, the remaining 10000 pieces of data were randomly split 
into a training dataset (size ntrain = 8000) and a validation dataset (size 
nval = 2000). Then, the CNN was trained and its performance was 
evaluated by predicting the parameters corresponding to the virtual 
experiments of the training dataset. The RMSE for each parameter was 
computed at each iteration, and its boxplot is depicted in Fig. 8. 

The correlation coefficient ρ was computed for both validation pro-
cedures, and its mean for each parameter, together with the corre-
sponding standard error, are shown in Table 5, proving again both the 
accuracy and the precision of the network. 

3.4. Application: predicting the evolution of GBM cultures 

In this section, we illustrate the application of the methodology 
proposed to real images of GBM evolution microfluidic devices. In 
particular, we use an image of a necrotic core experiment [13], the 
experiment with which the network has been trained, to predict the 
parameters; and an image of the pseudopalisade experiment [12] to 
explore whether the obtained parameters are also valid for other ex-
periments with the same cells. A general scheme of the procedure is 
depicted in Fig. 9. 

The procedure is next explained in more detail. Once the CNN is 
trained, a real image of the formation of a necrotic core (from Ayuso 
et al. [13]) is processed using the procedure described in Section 2.1. 
The resulting cell profiles are non-dimensionalised (dividing the cell 
profile by Csat and the spatial coordinate by L) and given to the CNN as 
input. As a result of this process, the CNN predicts the value of the pa-
rameters GN, KN and H, which determine the tumour behaviour for this 
particular cell culture (or eventually for a particular patient). The values 
obtained are GN = − 0.615, KN = 0.293 and H = 2.624. We can now 

Fig. 4. Predicted vs. real value of the estimated parameters.  

Table 3 
Correlation coefficient ρ and RMSE for the output parameters.  

Parameter GN KN H 

RMSE 0.0842 0.0270 0.0506 
ρ 0.9976 0.9996 0.9987  

Table 4 
Predicted values and relative errors for different noise levels.    

Noise level = 0% Noise level = 1% Noise level = 10% 

Parameter True value Predicted value Relative error Predicted value Relative error Predicted value Relative error 

GN 0.3966 0.3764 0.0510 0.3659 0.0775 0.3176 0.1993 
KN 0.1721 0.1720 0.0003 0.1695 0.0150 0.1651 0.0403 
H 1.9836 1.9556 0.0141 1.9936 0.0051 2.4866 0.2536  
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introduce the predicted parameters in our mathematical model and 
simulate the evolution of the tumour, contrasting the experimental re-
sults with the simulated ones. It is worth remarking here that neither the 
input image nor any similar image has never been seen by the network, 

which has been trained exclusively with synthetic data. The simulated 
results, compared to the experimental profiles (input of the CNN) are 
shown in Fig. 10. Good agreement is shown both for alive and dead cell 
populations. 

Besides, the values obtained from the CNN can be re-dimensionalised 
(see Eq. (18)) and compared to those fitted with traditional techniques 
in Ayensa-Jiménez et al. [10]. In Table 6, we compare the values (with 
dimensions, for easier interpretation) of the grow characteristic time τgr, 
the chemotaxis coefficient Kn and the hypoxia threshold OH

2 . 
As revealed by Table 6, the values of Kn and OH

2 are fairly similar, but 
the value of τgr is completely different. The CNN even predicts a negative 
value. Despite this fact, the experimental results are well reproduced 
with the parameters obtained from the CNN (Fig. 10), as they also were 
with the parameters from Ayensa-Jiménez et al. [10]. This indicates that 
the behaviour in this experiment is basically migratory, with low effect 
of the proliferation. To reinforce this hypothesis, a parametric sweep 
was performed considering 100 necrotic core simulations, varying the 
values of the rate of proliferation (1/τgr) following a normal distribution 
with mean and standard deviation equal to the value fitted in Ayensa--
Jiménez et al. [10] (μ = σ = 1/7.2 ⋅ 105 1/s). The median values of both 
cell profiles together with their 90% confident intervals are shown in 
Fig. 12a. These results demonstrate the low influence of the proliferation 
rate in this particular experimental configuration, even when it reaches 
negative values. The parametric sweep was repeated for the other two 
parameters (chemotaxis coefficient and hypoxia threshold), following 
the same procedure. These parameters clearly have much more influ-
ence on the results (Fig. 12c,e). 

Finally, we can use these parameters to reproduce other experimental 

Fig. 5. Simulations for different noise levels. Predicted (Pred.) data were obtained by means of the mathematical model with the output of the CNN. Experimental 
(Exp.) data refer to the input profiles given to the CNN for prediction. 

Fig. 6. RMSE box plot for the predicted parameters through 100 different 
initialisations. 

Fig. 7. Repeated random sub-sampling cross-validation scheme.  
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results performed with the same U-251 cell line (which is expected to have 
similar behaviour). In particular, we reproduced the formation of a 
pseudopalisade (experimental data from Ayuso et al. [12]). In this 
experiment, the initial cell concentration was lower than in the necrotic 
core experiment, being C0 = 4 ⋅ 106 cell/mL. The device’s length was L =
0.0916 cm and the simulation time was τ = 6 days. Regarding boundary 
conditions, one of the channels was closed, to simulate an occluded vessel, 
contrary to what happened in the necrotic core experiment. Thus, in the 
sealed channel oxygen impermeability was imposed, while in the open one 
the oxygen concentration was fixed to 2 mmHg. Regarding cell pop-
ulations, impermeability was assumed for the dead cells and Robin 
boundary conditions for the alive cells, with J = 1 ⋅ 109 s/cm. 

When simulating the experiment with the presented mathematical 

model, the initial and boundary conditions detailed above and the pa-
rameters predicted by the CNN, the obtained results are shown in 
Fig. 11. Again, good agreement is shown between the experimental and 
the simulated results. In this case, the behaviour of the cells is also 
mainly migratory, as the whole chip is under hypoxic conditions (note 
that both oxygen concentrations in the channels are well below the 
hypoxia threshold, which is 7 mmHg). 

Parametric sweeps were also performed for each of the three pa-
rameters as previously explained for the necrotic core experiment. As 
expected, the rate of proliferation has a minimum influence in the results 
(Fig. 12b), while both the chemotaxis coefficient and hypoxia threshold 
significantly influence the resulting cell profiles (Fig. 12d,f). It must be 
noted that the parametric sweeps related to the pseudopalisade experi-
ment are shown for completeness purposes, as this experiment was not 

Fig. 8. RMSE box plot for the predicted parameters through the 
cross-validation. 

Table 5 
Linear correlation coeficient ρ in both validation procedures (mean ± standard 
error).  

Parameter GN KN H 

Weight 
initialisation 

0.99743 ±
0.00006 

0.99962 ±
0.00001 

0.99849 ±
0.00002 

Cross validation 0.9978 ± 0.0001 0.99959 ±
0.00004 

0.99850 ±
0.00008  

Fig. 9. Procedure followed in the application to real images. BC1 and BC2 refer to the different boundary conditions used to simulate the necrotic core and the 
pseudopalisade experiments, respectively. Fluorescence images from Ayensa-Jiménez et al. [10]. 

Fig. 10. Simulation of the formation of a necrotic core using the parameters 
predicted by the CNN from a real image. Predicted (Pred.) data were obtained 
using the mathematical model with the output of the CNN. Experimental (Exp.) 
data refers to real experimental data obtained from Ayuso et al. [13]. 

Table 6 
Comparison between parameters obtained from the CNN and fitted with tradi-
tional techniques [10].  

Parameter CNN Literature [10] Units 

τgr − 4.2 ⋅ 105 7.2 ⋅ 105 s 
Kn 1.8 ⋅ 10− 8 7.5 ⋅ 10− 9 cm2/mmHg ⋅s 
OH

2  6.6 7.0 mmHg  
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used as input for the CNN. Therefore, the fact that the influence of the 
rate of proliferation is low in the pseudopalisade experiment does not 
give any information about the quality of the network performance. It is 
merely a confirmation that this is also a migratory experiment, thus 
justifying the use of the network predicted parameters for forecasting. 

4. Discussion 

The work here presented combines two areas of high research interest 
nowadays, microfluidics and deep learning. However, according to recent 
studies [53], the combination of them remains almost unexplored while it 

offers a great potential and a wide variety of emerging opportunities. In 
this line, we present an approach for parameter identification from cell 
culture images using deep learning techniques. Once trained, neural 
network models are fast to be evaluated, allowing the characterisation of 
the cell cultures in real-time. When combined with mathematical models, 
they can be used for forecasting, for evaluating trends and for testing 
different scenarios, thus enabling efficient decision-making regarding 
treatment strategies. This real-time evaluation, a characteristic of deep 
learning models, differentiates this approach from traditional fitting 
techniques, as once the CNN is trained, predictions can be made for 
different patients and tumours with no need of performing a costly para-
metric fitting for each patient and without extra mathematical software 
solutions. 

It should be pointed out that this approach requires the existence of a 
mathematical model to generate pairs of data and parameters for the 
Deep Learning training process. However, there exist plenty of validated 
models, which can support this methodology, not only for GBM evolu-
tion [6,21,32,51], but also for other tumours [36]. Consequently, our 
methodology is only a first step towards a patient-specific tool able to 
predict, from a cultured patient sample under controlled oxygenation, 
the parameters determining a particular metabolic switch, such as the go 
or grow behaviour of GBM cultures. This is determinant for the tumour 
prognosis and response to treatment. 

In our case, these three parameters (proliferation rate, chemotaxis 
coefficient and hypoxia threshold) are part of a mathematical model [10], 
where the go or grow is modelled with two Rectified Linear Unit activation 
functions (ReLUs). This simulates that cells spend their resources either in 
proliferating when they have enough oxygen, or in migrating when the 
conditions are hypoxic, according to the dichotomy reported in GBM 
literature [32]. Nevertheless, the methodology is limited to learning pa-
rameters, and therefore the functional forms of the parametric de-
pendencies must be defined a priori. That is, we must take for granted that 
the behaviour is sufficiently well defined with the two ReLUs already 
mentioned, or, in general, that the underlying biophysical hypotheses for a 

Fig. 11. Simulation of the formation of a pseudopalisade using the parameters 
predicted by the CNN from a real image. Predicted (Pred.) data were obtained 
using our mathematical model with the output of the CNN. Experimental (Exp.) 
data refers to real experimental data obtained from Ayuso et al. [12]. 

Fig. 12. Median and 90% confident band of results obtained varying each parameter.  
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particular mechanism and their mathematical description are accurate 
enough. Even if this is a reasonable assumption, supported by experi-
mental results and previous works, there could exist a better approxima-
tion to the go or grow, with another parametric dependence, more complex 
or involving more parameters. Consequently, it would be of great interest 
to exploit the potential of this combination of deep learning and micro-
fluidic techniques to unravel cell behaviour in a more general way, not 
limited to the parameters’ value. In this line, there are recent works which 
have introduced physical constraints in the deep learning schemes to give 
physical meaning to the internal layers [8,9]. These methodologies could 
be further developed to learn such cell behaviour in a non-parametric way. 

Another limitation of the present work is that the CNN is trained with 
a set of data from a particular experiment (in this case the formation of a 
necrotic core) with particular boundary and initial conditions. There-
fore, it would only be able to predict model parameters from images of 
this type of experiments, with the prescribed boundary conditions. This 
implies the need for a good control of the experiment. The benefit is that, 
once the parameters are obtained, they can be used to simulate the 
evolution of other similar experiments (as shown in this work for the 
pseudopalisade experiment). 

Regarding the predictive capacity of the network, there is a last issue 
that has also been illustrated in this work. As shown in Fig. 12a, not 
every experimental configurations is equally useful for parameter 
identification, which turns out to be critical when using the parameters 
for predicting the cell evolution under other experimental set-ups. 
Indeed, in the presented work, if the values predicted by the network 
were used in an experiment where proliferation was critical, the results 
would be misleading. This is not a problem of neither the mathematical 
model nor the network, but of the selected benchmark experiment, 
unable to isolate between the different effects and therefore to capture 
with sufficient accuracy the effect of the growth parameter. This shows 
the importance of a good design of experiments, isolating the different 
effects despite the parameter variability and possible correlations [11]. 

5. Conclusions 

Glioblastoma’s rapid progression and aggressiveness are triggered by 
cyclic hypoxia, causing cells to alternate between proliferation and 
migration depending on the oxygen level (they proliferate above a 
certain hypoxia threshold and migrate below it). Knowing the precise 
parameters governing this dichotomous behaviour is of great impor-
tance for predicting the response to therapies and the tumour prognosis. 

The methodology presented in this paper combines state of the art 
experimental techniques in cancer research, such as microfluidics, with 
deep learning techniques (in particular, convolutional neural networks), 
resulting in a tool able to predict, from a real culture image, the 
behaviour of the cultured cells in terms of migration and proliferation 
due to hypoxia. The CNN, trained with synthetic data of the formation of 
a necrotic core obtained from an experimentally validated mathematical 
model, shows excellent performance (ρ > 0.99 for the three predicted 
parameters) when used to predict parameters for the test dataset (Fig. 4). 
The network proves to be sound with respect to convergence (weights 
initialisation, Fig. 6) and generalisation (cross-validation, Fig. 8). The 
predicted parameters, which constitute the output of the CNN, can then 
be introduced in the model to simulate the tumour evolution. Good re-
sults have been obtained even for noisy profiles. Although the prediction 
error increases, the simulation reproduces the experimental trends 
observed in the formation of a necrotic core, so the network is able to 
filter the noise to some extent. 

Finally, we have tested the CNN for a real application, using a GBM 
culture image of a necrotic core from a previous experiment of our 
group. The simulations performed with the prediction’s resulting pa-
rameters are able to reproduce the experimental results not only for the 
formation of the necrotic core (Fig. 10), but also for a different experi-
ment, reproducing the formation of a migratory structure called pseu-
dopalisade (Fig. 11). Moreover, the parameters obtained from the 

network are similar to the ones fitted with the mathematical model using 
traditional techniques, except for the proliferation rate. Nevertheless, 
the experimental results are accurately reproduced in the present work, 
similarly to how they were using conventional fitting techniques. This 
informs us about the small relevance of proliferation in these experi-
ments, which last few days, are poorly oxygenated and in which the cells 
show a fundamentally migratory behaviour. 

The methodology shown herein combines the increasing power of 
microfluidic technologies and artificial intelligence tools in order to 
characterise cell culture behaviour, in what was recently baptized as 
Intelligent Microfluidics. This new paradigm opens the door to a more 
quantitative and systematic analysis of cell cultures, enabling a deeper 
understanding of the different mechanisms involved in tumour pro-
gression and, at the same time, glimpsing some directions towards 
personalized medicine. 
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[10] J. Ayensa-Jiménez, M. Pérez-Aliacar, T. Randelovic, S. Oliván, L. Fernández, J. 
A. Sanz-Herrera, I. Ochoa, M.H. Doweidar, M. Doblaré, Mathematical formulation 
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