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Abstract

There are abundant contagion processes taking place on networks, such as
the spreading of diseases, rumors, information and other nonlinear phenom-
ena in complex human systems. From the perspective of mathematical mod-
elling, contagion processes in networked populations are becoming increasingly
sophisticated with various types of nontrivial interactions involved. Models
have evolved from the relatively simple compartmental methods to structured
frameworks with heterogeneities of populations taken into account. In addi-
tion, to portrait the hierarchies and heterogeneities in complex human sys-
tems, we also consider the multilayer representative of the populations. In
this thesis, we attempt to explore the tip of the iceberg in contagion processes
occurring in populations by conceptualizing them with various mathematical
models. We aim at understanding the intricacies of contagion dynamics in
multilevel and structured populations.

In the first chapter, we focus on recalling the development of the theory
to study complex systems. The discovery of nonlinear interactions made the
method of reductionism questionable since the overall behavior can not be de-
scribed by the simple superposition of small scales. Network science is aimed
at characterizing the interactions of complex systems’ constituents at various
scales to understand their macroscopic behavior. At the same time, graph
theory provides a mathematical tool that can be used to describe realistic
networks. We discuss some of the fundamental quantities and relevant mea-
surements developed to characterize the network structure as well as several
typical network models. Moreover, we briefly overview the basic principles
of multilayer networks that break the limitation of “one-type” connection in
single-layer networks, laying the groundwork for subsequent explorations and
generalizations.

Next, the studies of dynamical processes are addressed starting with a brief
introduction of some mathematical methods used later on. In the case of the
master equation, we emphasize the Markov process framework as well as the
mean-field approximation scheme, rather than diving into their complete so-
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ii ABSTRACT

lutions. Modelling methods and updating rules in numerical simulations are
also presented in detail. In this thesis, we focus on the problem of epidemic
spreading on networks, an enduring hot topic in the field of spreading and
contagion processes. After reviewing the properties and theoretical results
of some typical epidemic models with specific assumptions from the mathe-
matical point of view, we explore several important quantities in the field of
epidemiology, i.e., the reproduction number and herd immunity. Then, we im-
plement a classical epidemic model on multilayer networks to explore the role
of directionality with the generating function approach. We end up Chapter
2 with modelling a kind of social contagion process, namely, the evolution of
corruption behaviors, with a compartmental approach. We pay attention to
the critical conditions for the emergence of corruption behaviors by developing
in detail its mean-field theory and comparing its predictions with simulations.
Furthermore, we extend the corruption model to a duplex system where dif-
ferent flows occur in a specific layer to investigate the effect of edge overlap
and interlayer degree correlations on the evolution of honesty and corruption
activities.

It is clear that the complexity of real-world human systems definitely affects
the accuracy of epidemic forecasts and of some specific properties existing in a
given system. However, due to the development of data science, massive and
informative data sources could conduce to enrich the network topology so that
it gets closer to real systems. In the third part of this thesis, we first outline
the challenges and opportunities regarding the rise of data science. Then, we
try to yield a close real picture of the underlying structure of contact networks
from the collected data. Moreover, we illustrate the importance of data-driven
network modelling on studying disease transmission on contact networks by
incorporating real data. In this case, the variance of contact patterns that stem
from population heterogeneities, social behaviors, etc. can be well-portrayed.

Along with this theoretical framework, we consider the age of individuals
and social contact patterns to generate a data-driven age-structured multi-
layer representation of the population to estimate the SARS-CoV-2 herd im-
munity threshold and evaluate the impact of three vaccination strategies on
suppressing the pandemic transmission. Then, to explore the dynamics of
healthcare-associated infections (HAIs) that people get while receiving treat-
ment in healthcare settings, we make use of spatio-temporal data collected
from three hospitals in Canada to generate networks of interactions among
healthcare workers (HCWs). We focus on quantitatively assessing the risks
of HAIs spreading in spatial units and occupational groups of HCWs, respec-
tively. We conduct the risk assessment of spatial units by calculating the
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disease hitting time and the number of infections produced in each unit. For
the HCWs case, the probability of getting infected and effective reproduction
number are used as the indicators of HCWs risks.

We round off this thesis by presenting our conclusions and discussing some
remaining challenges to be explored in the future.





Resumen

Existen numerosos procesos de contagio sobre redes, como la propagación de
epidemias, los rumores, la información u otros fenómenos no lineales propios
de los sistemas complejos humanos. Desde la perspectiva de la modelización
matemática, los procesos de contagio en poblaciones estructuradas se están
volviendo cada vez más sofisticados en lo que respecta al tipo de interacciones
no triviales involucradas en ellos. Los modelos han evolucionado desde los sim-
ples métodos compartimentales a modelos estructurados en los que se tienen
en cuenta las heterogeneidades de la población. Además, para visualizar es-
tas jerarquías y heterogeneidades de los sistemas complejos humanos, también
consideramos la representación multicapa de las poblaciones. En esta tesis,
intentamos explorar la punta del iceberg en lo que respecta a procesos de con-
tagio sobre poblaciones basándonos en varios modelos matemáticos. Nuestro
objetivo es entender la complejidad de las dinámicas de contagio en pobla-
ciones estructuradas y multinivel.

En el primer capítulo, nos centramos en presentar el desarrollo de algunas
de las teorías principales que se utilizan para estudiar los sistemas complejos.
El descubrimiento de las interacciones no lineales hizo que le método del re-
duccionismo fuese cuestionado, dado que el comportamiento general no puede
describirse como una simple superposición de pequeñas escalas. La ciencia de
redes busca caracterizar los sistemas complejos de diversos campos. Al mismo
tiempo, la teoría de grafos proporciona las herramientas matemáticas nece-
sarias para describir redes realistas. Discutiremos algunas de las cantidades
fundamentales y las métricas más relevantes para la caracterización de la es-
tructura de la red, así como varios ejemplos de modelos de red. Además,
repasaremos brevemente los principios básicos de las redes multicapa que
rompen la limitación de un solo tipo de conexión existente en las redes mono-
capa, estableciendo la base para explorar y generalizar estos conceptos.

A continuación, estudiaremos procesos dinámicos comenzando por una
breve introducción a los modelos matemáticos que se usarán durante el resto
de la tesis. En el caso de la ecuación maestra, resaltaremos el rol de los pro-
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vi RESUMEN

cesos de Markov así como la aproximación de campo medio, sin centrarnos en
sus soluciones completas. Los métodos de modelización y las reglas de actu-
alización que se utilizan en las simulaciones numéricas también se presentan
en detalle. En esta tesis, nos centraremos en el problema de la propagación
de epidemias sobre redes, un tema que despierta gran interés en el campo de
los procesos de propagación y contagio. Después de revisar las propiedades
y los resultados teóricos de algunos de los modelos epidemiológicos típicos,
con varias simplificaciones desde el punto de vista matemático, exploraremos
varias medidas importantes en el campo de la epidemiología, i.e., el número
reproductivo básico y la inmunidad de grupo. Después, implementaremos un
modelo clásico de epidemias sobre redes multicapa para explorar el papel que
juega la direccionalidad utilizando funciones generatrices. Terminaremos el
capítulo 2 modelizando un tipo especial de procesos de contagio social, en par-
ticular, utilizaremos un modelo compartimental para estudiar la propagación
de la corrupción. Prestaremos atención a las condiciones críticas para que
surja este tipo de comportamiento desarrollando la aproximación de campo
medio y comparando sus predicciones con simulaciones. Es más, extendere-
mos el modelo de corrupción a un sistema de dos capas en el que los flujos
de contagio pueden ser diferentes en cada capa para investigar el papel que
juega el solapamiento de enlaces y las correlaciones de grado entre capas en
la evolución de las actividades honestas y corruptas.

Resulta evidente que la complejidad de los sistemas humanos del mundo
real afecta la precisión con la que se pueden predecir las epidemias y algu-
nas propiedades específicas de los sistemas. Sin embargo, debido al desarrollo
de la ciencia de datos, fuentes de datos masivas y muy informativas pueden
utilizarse para enriquecer la topología de la red de forma que se acerque a
los sistemas reales. En al tercera parte de esta tesis, comenzaremos describi-
endo los retos y las oportunidades que han surgido durante el desarrollo de la
ciencia de datos. A continuación, intentaremos conseguir una imagen más re-
alista de la estructura interna de las redes de contacto utilizando datos reales.
Además, ilustraremos la importancia de utilizar una perspectiva conducida por
los datos en lo que respecta a la modelización de redes a la hora de estudiar la
propagación de epidemias en redes de contacto. En este caso, la variabilidad
de patrones de interacción que surge de la heterogeneidad de la población, sus
comportamientos sociales, etc. puede ser capturada correctamente.

Bajo este mismo desarrollo teórico, consideraremos la edad de los indi-
viduos y sus patrones de interacción social para generar redes multicapa con
estructura de edad para estudiar el problema de la inmunidad de grupo del
SARS-CoV-2 y evaluar el impacto que tres estrategias de vacunación pueden
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tener a la hora de eliminar la transmisión de la panedmia. Después, para
explorar la dinámica de las enfermedades que se propagan en entornos hospi-
talarios (HAI, por sus siglas en inglés) cuando los pacientes están recibiendo
tratamiento en ellos, utilizaremos una colección de datos espacio-temporales
recogida en tres hospitales de Canadá para generar las redes de interacción
entre los trabajadores hospitalarios (HCWs). Nos centraremos en determinar
cuantitativemente el riesgo de que las HAIs se propaguen por las diferentes
unidades de un hospital y los varios grupos de HCWs, respectivamente. Cal-
cularemos el riesgo de las unidades espaciales usando el tiempo de llegada de
la enfermedad y el número de infecciones producidas en cada unidad. En el
caso de los HCWs, la probabilidad de infectarse y el número de reproducción
efectivo son usados como indicador del riesgo de HCWs.

Concluiremos la tesis presentando nuestras conclusiones y discutiendo al-
gunos de los restos que quedan por explorar en el futuro.
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Introduction 1

1.1 Complexity in Complex Systems

The universe and everything in it can be regarded as Complex Systems com-
posed of intricately connected segments. Since Newton established the three
laws of mechanics, it is generally believed that as long as we can figure out
the properties of the components of a system and their interactions between
them, then the future behaviors of these systems can be accurately predicted,
which makes the primary argument of early methodology Reductionism [1, 2]
for the analysis of the real-world systems. Thereafter, the famous quotation
by Laplace emerged:

“An intelligence knowing all the forces acting in nature at a given
instant, as well as the momentary positions of all things in the uni-
verse, would be able to comprehend in a single formula the motions
of the largest bodies as well as of the lightest atoms in the world, pro-
vided that its intellect were sufficiently powerful to subject all data
to analysis; to it nothing would be uncertain, the future as well as
the past would be present to its eyes.”

— Laplace, 1814

which is well-known as Laplacian determinism. Accordant with the belief
expressed in reductionism, it is possible to give a precise prediction of future
states at an arbitrary time according to the fundamental equations of the
evolution of a system and the initial states [3].

However, there exists a plethora of systems that are not suited to be dis-
cussed with the reductive method. In addition, the great success of reduction-
ism in physics does not mean that it can achieve the same success in different
disciplinary fields, such as in social sciences, biological sciences and so on [4].
Admittedly, the interaction of basic elements involves an immense amount of
complicated factors which are intricately interlinked. Therefore, not only is
it impossible to carry out an analytical discussion of dynamics, but it is also
impossible to calculate from scratch with “ideal precise” values without con-
sidering approximations. Moreover, as the “organization” of the elementary
units of such a system will present many emergent properties that will not be
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1. Introduction

exhibited by a considerable number of discrete individuals, it is impossible to
make predictions about the rich behavior of the entire system solely based on
the characteristics of an independent unit, such as the typical adaptive sys-
tem. Broadly speaking, the above-mentioned circumstances have contributed
to the Complexity of Complex Systems simultaneously.

In 1984, George Cowan and a group of young scientists in a variety of fields
founded the famous Santa Fe Institute, committed to exploring the method-
ology of Complexity and the general laws that govern Complex Systems by
means of ideas from multiple fields [5]. Several representative definitions of
Complexity are derived from Santa Fe Institute. Holland, the father of ge-
netic algorithms, believes that complexity arises from the adaptive behavior
of systems with famous assertion adaptation builds complexity. Another sci-
entist, Melanie Mitchell defines complex systems in her book as: “a system in
which large networks of components with no central control and simple rules
of operation give rise to complex collective behavior, sophisticated information
processing, and adaptation via learning or evolution”.

Although there is still no unambiguous and formal definition of Complex-
ity or Complex Systems that is widely accepted, there is a largely unified
understanding of the property characteristics of complex systems, including
nonlinearity, chaos, emergence, self-organization, self-adaptability, and so on.
Particularly, nonlinear interactions make it impossible to obtain the overall
behavior of a system by a simple superposition of individual behaviors. More-
over, the existence of nonlinear factors makes it impossible to obtain answers
to problems at large scales simply by superposition of small scales. The prop-
erties that emerge at higher levels cannot be explained directly from those
at lower levels. Therefore, the method of reductionism is ill-suited to study
complex systems. [6–8].

In a nutshell, complex systems must be explored from a holistic perspec-
tive with individual behaviors and their interaction mechanisms taken into
account. Broadly speaking, an abundance of complex systems can be mod-
elled as networks which are the essential abstraction of their interaction struc-
tures [9–12]. In this sense, exploring the relationship between network struc-
ture and function is closely linked to understanding the nature of systems.
In a special issue on complex systems published in Science [13], there is an
enlightening quote from Barabási who points out that since the underlying
structure has a crucial effect on the behavior of the system, there is no way to
understand complex systems unless the network structure is explored, which
also fuels our passion to explore in depth the topics in next sections.
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1.2. A Tentative Discussion on Network Science
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Figure 1.1: Illustration of the problem of the Seven Bridges of Königsberg. This
problem can be easily solved by interpreting it as a graph, in which vertices and edges
represent land portions and bridges, respectively.

1.2 A Tentative Discussion on Network Science

There is no denying that networks have certainly become the most ubiquitous
and powerful tool to characterize Complexity in Complex Systems. Any given
system can be rendered as a network composed of a group of components and
connections. Therefore, a system can be reduced to an abstract structure, only
capturing the basic patterns of interactions which are crucial to comprehend
the behavior of systems. Put in the simple terms, a network is a collection of
discrete objects joined together, usually described as nodes connected by links
in the jargon of the field [14]. In the subsequent sections, we will present a
brief overview of the mathematical foundations of Network science.

1.2.1 The role of graph theory

To conduct complex network research, the knowledge from different fields, such
as statistical physics, game theory, probability and mathematical statistics is
required. Among them, graph theory is recognized as the mathematical basis
of complex network research. In the following, the essential knowledge of
graph theory will be introduced.

Currently, it is widely accepted that the first theorem in graph theory is
specifically originated from the solution of the Königsberg bridge problem
solved by great Swiss mathematician Leonhard Euler [15, 16]. In Fig. 1.1,
we present a depiction of Königsberg in the time of Euler, with four regions
separated by a river and connected by seven bridges over the river. The
mathematical puzzle Euler contemplated is simply expressed as: is it possible
to have a path that allows the people to go through all four areas by crossing
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each bridge once and only once? Euler published an important article in 1736
and proposed that the bridge crossing problem can be abstractly reduced to
the combination of points and lines on the plane. He considered the land
portions as four points and the seven bridges as connections between them,
as shown in the right side of Fig.1.1. In graph representation, each point is
referred to as vertex, also called node. The connection relation between them is
abstracted into an edge, or link. With this simplified approach, he analytically
proved that there is no such path for going through the seven Bridges at a
time.

From 1736 to 1950s, the field of graph theory was substantially expanded,
but it was limited by the lack of tools for large-scale computation. With the
invention of modern computers, the matrix description of graphs attracted a
lot of attention. Afterwards, massive problems sprung up about using graph
to describe the large real networks, e.g. power grids, traffic networks, com-
munication networks and so on. In the decades that followed, a remarkable
collection of scientists introduced ideas, methods and analysis tools of statis-
tical physics into graph theory, giving birth to network science [17, 18].

1.2.2 Networks representation & statistical characterization

We can encode real-world systems into a mathematical object using graph
theory. This way, a network is referred to as G = (V,E) consisting of a set of
nodes (vertices) V (G) and links (edges) E(G) in which each edge, eij, joins a
pair of nodes (i, j), with i, j ∈ V (G).

There are two fundamental mathematical representations of a network,
adjacency matrices and adjacency lists. In general, adjacency matrix, A, is
the most common representation, reflecting the adjacency relations between
nodes, in which the topological properties of networks are encoded. The ad-
jacency matrix is a square matrix of size |V | × |V |, where each cell aij = 1 if
there is an edge between node i and j, i.e., eij ∈ |E| and aij = 0 otherwise.
The undirected network is the most commonly seen case (see Fig. 1.2A), in
which A is a symmetric matrix. Note that the adjacency table representation
of a graph is not unique because for each vertex, the order of linking the other
end of edge can be arbitrary which depends on the algorithm used to build the
adjacency matrix and the input order of edges. In terms of directed networks,
any given pair of nodes (i, j) and (j, i) does not correspond to the same link
leading to an asymmetric matrix as shown in Fig. 1.2B.

If we allow the aij elements to take any real value, we say that it is a
weighted network. These networks have a broad range of applications. For
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Figure 1.2: Graphical representation of undirected and directed networks with
their respective adjacency matrices. The adjacency matrix for the undirected network
is symmetric since the relationship between any two nodes is reciprocal. Instead, the panel
below indicates that there is no reciprocal relation among nodes in the case of a directed
network.

example, the edges in traffic networks might have weight representing the
flow between two stations and the level of intimacy between friends in social
networks can be represented by the weight of edges. Similarly, the weighted
networks are displayed by an adjacency matrix W where each element wij
specifies the weight between nodes i and j.

When looking at a network, the research task of interest usually can be
phrased in terms of its topological properties reflected by its unique connec-
tion patterns. Hence, the statistical summaries of network structure can sup-
port us in comprehending their topology and, consequently, understanding the
mechanisms behind their dynamical processes. There are many fundamental
quantities and corresponding measures developed to characterize networks,
such as, degree, clustering, path and so on. However, they are far too many
to cover all of them in the thesis. Thus, we will introduce the metrics most
relevant to our research interests.

1. Degree and centrality

The degree of a node is one of the most basic geometric quantities, provid-
ing the most important statistical description of connection relations between
nodes. Besides, its simplicity makes it analytically tractable. Suppose that
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A

B

C

Figure 1.3: Comparison of three different types of degree. The differ-
ent types of degree are visualized in a network which consists of 35 countries where
22 soccer teams had contacts, extracted from Pajek datasets (http://vlado.fmf.uni-
lj.si/pub/networks/data/sport/football.htm). The network is constructed by counting how
many soccer players are exported from country i to country j, forming a valued, asymmetric
graph where some countries only import players, while some countries are only exporters.
The nodal size is scaled to A) the overall degree of the node, B) the in-degree of the node
and C) the out-degree of the node, respectively.

the number of nodes in an undirected network is N , the degree of node i
is defined as the number of adjacent edges it has, denoted by ki. It can be
mathematically indicated by the elements of its adjacency matrix as

ki =
∑
j

aij. (1.1)

We define m as the total number of links in the network, which is equivalent
to |E| and can be measured as the sum of the degrees of all nodes, ∑N

i=1 ki =
2m. The average degree is conceived to indicate the way in which nodes are
connected to each other, given by:

〈k〉 = 1
N

∑
i

ki (1.2)

In the case of directed networks, the degree of nodes is generalized as in-
degree (kini ) and out-degree (kouti ), defined by the number of incoming links
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and outgoing links from node i, The formulas are as follows:

kini =
N∑
j=1

aij, kouti =
N∑
j=1

aji. (1.3)

In Fig. 1.3, we show these different types of degree in a small network. The
network here is composed of 35 nodes, describing the 22 soccer teams who
constitutes a players market within 35 countries. As players in soccer teams
often have contacts in other countries where some countries only import play-
ers, while some countries are only exporters, the highly asymmetric network
is formed. In the graphical representation of the network where the position
of nodes is fixed, we can observe different patterns by looking at the size of
nodes which is proportional to each type of degree, i.e., A) overall degree ki,
B) in-degree kin and C) out-degree kout. We observe that the apparent impor-
tance of each node depends on the type of degree we consider. This provides
a stark reminder that the role of different types of degree should be taken into
account in the analysis of network dynamics.

Considering weighted networks, each node has not only degree but also
strength according to the variable wij from the weight matrix W , written as:

si =
∑
j

wij (1.4)

There is a great deal of research associated with the concept of node de-
gree, essentially trying to understand its importance in the network. The
quantity centrality is proposed as an indicator of the influence of nodes in a
network. There are many definitions of importance from different perspec-
tives developed by many scholars [10, 19, 20]. Accordingly, many measures of
node centrality have appeared successively. The simple and straightforward
view of measuring centrality is the degree of a node. The degree occasion-
ally is referred to as degree centrality which can be used in some practical
applications, especially in the context of social networks where an individual
with more connections (“large degree”) perceives information more easily and
might have more influence. To answer the question whether there is a central
node in the entire network, there are other ways for measuring centrality, such
as betweenness centrality, closeness centrality, PageRank (see the differences
between them in Fig. 1.4) and so on.

2. Degree distribution
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Figure 1.4: Comparison of three methods for degree centrality calculation. We
calculate the degree centrality in a social network between members of a university karate
club, led by president John A. and karate instructor Mr. Hi. The datasets named “karate”
is from the datasets in “igraph” package of R language [21]. It shows the differences be-
tween three methods, A) betweenness centrality, B) closeness centrality and C) PageRank,
respectively.

Another fundamental property, which particularly has a profound effect on
characterizing empirical network data, is the frequency degree distribution of
nodes. Based on the definition of degree we mentioned in eq. 1.1, we define
P (k) as the proportion of nodes whose degree is k. That is, the probability
of selecting a node at random in the network with degree k. Obviously, the
information of average degree has been embodied in degree distribution, which
gives

〈k〉 =
∞∑
k=0

kP (k). (1.5)

The concept, degree distribution, will recur repeatedly throughout this the-
sis, considered as a conductive viewpoint in the discussion for the theoretical
network models.

It is instructive to visualize how the degree distribution of a network with
large-scale structure looks like, which is also a common starting point to an-
alyze network data. In most real-world networks, the frequency distribution
of degrees as a function of k turns out showing a long tail effect, namely
right-skewed pattern, which will be explored deeply in the next section.
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Figure 1.5: Two simple graphs with identical degree distribution. A) The graph
is composed of two subgraphs. B) The graph is a connected graph. The difference between
the structure of two graphs is particularly visible even though they have the same degree
sequence.

Technically, degree distribution in a directed network can also be calcu-
lated, just separated into in-degree distribution and out-degree distribution,
respectively. The measure of the degree distribution in more sophisticated
network, such as multilayer networks we are interested in which will be de-
fined in section 1.3, is realized by using the joint degree distribution 1 with
degree correlations taken into consideration . It is worth underlining that
the knowledge of degree distribution is just a preliminary tool to delve into
the structure of the network, but one can not grab the complete topological
information through it.

3. Degree correlations and mixing patterns

The average degree of a network is a rough description of the network, and
the degree distribution gives us a more specific understanding of the network.
However, it can not completely describe the structural characteristics of the
network. In some cases, networks may exhibit distinct properties or behaviors
even though they have the exact same degree of distribution. To this end, we
need to dig a little deeper and investigate another indicator degree correlation.

Basically, the degree correlation is depicted by the two-point conditional
probability P (k′|k) that any edge emanating from a node with given degree k
is connected to a node with degree k′, expressed as

1See [22] for the original use of terms “joint-degree matrix”, “joint-degree sequence” and “joint-degree
distribution”
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P (k′|k) = 〈k〉P (k, k′)
kP (k) , (1.6)

where P (k, k′) represents the joint probability of the nodes at both ends of a
randomly picked edge in the network whose degree is k and k′, respectively [23–
25]. The term joint probability is introduced due to the common phenomena
shown in Fig. 1.5, where the structure of graph A is obviously different from
that in graph B even though they have same degree sequence.

As we shall see, it is too complicated to measure the degree correlation
directly by the formula with empirical network data. Therefore, a quantity
with better practical applicability is defined by the average closest neighbors
degree of the nodes with degree k,

knn(k) =
∑
k′
k′P (k′|k). (1.7)

The handy way to get this quantity is to start with calculating the average
nearest neighbors degree of a node i, give by

knn,i(k) = 1
ki

∑
j∈Ni

aijkj, (1.8)

where Ni is the set of neighbors of node i. Then, the behavior of degree
correlation can be characterized by

knn(k) = 1
N

∑
i∈Mk

knn,i(k), (1.9)

where Mk is the number of nodes whose degree is k.
In general, to visualize the pattern of degree correlations, it works well

by plotting knn(k) as a function of node degree k. If the value of slope is
positive, it means that on average, the nodes with higher degrees show a
strong tendency to link with those with higher degrees, and vice versa. This
is called assortative mixing [20, 25, 26]. Conversely, disassortative mixing can
be encountered when the value of slope is negative. It points out a complete
reversal of the previous trend, in the sense that nodes with high degrees have
a large probability to associate with those with low degrees.

In addition to give us a deeper understanding of the network structure,
studying the degree correlation and mixing patterns on the network also has
important practical significance, especially employed on the subsequent dy-
namics studies. Social networks and scientist collaboration networks are all

14



1.2. A Tentative Discussion on Network Science

typical example with assotative mixing patterns [27]. People with great in-
fluence preferentially connect to others with similar influence, while many
biological networks exhibit the presence of disassortative mixing patterns. It
is an important topic in complex network analysis to investigate the causes
and effects of the properties yielded by different degree correlations.

1.2.3 Network models

In the last section, we focused on statistical characteristics of static nature in
networks. As differences in network topology will lead to different properties,
in this section, we will introduce some fundamental models to generate net-
works showing those specific statistical properties. Moreover, graph models
provide a basic structural framework for modelling the complex dynamics of
systems. For instance, epidemic models on different networks are employed to
describe phenomena of the spread of contagious diseases, the transmission of
rumors among population and so on.

1. Random graphs and Erdős-Rényi model

Traditional physics and many other scientific studies have long believed
that a variety of complex systems in human life are composed of some basic
units. They expect to comprehend the dynamics of systems indirectly by
exploring the relationship between them. They assume that basic units are
distributed on grid of regular space making the forces between them along the
direction of connecting grid points, which is the original description of regular
network.

The regular graph stated in graph theory refers to a graph in which each
node shares the same degree connecting with m nodes adjacent to it. There-
fore, the average degree of regular graph is 〈k〉 = m independent of the network
scale and the degree distribution is given by a delta distribution:

P (k) =
1 if k = m

0 if k 6= m
(1.10)

As early as 1959, Hungarian mathematicians Paul Erdős and Alféd Rényi
proposed a random graph model, commonly known as Erdős-Rényi random
graph [28, 29]. In general, there are two ways to generate the ER model.
The simplest way is to fix the size of network, N and randomly add M edges
initially determined to form the ER graph, denoted as G(N, p) 2. Therefore,

2It was first mentioned and studied by Solomonoff and Rapoport [30] which is currently linked to
Erdős-Rényi graph
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Figure 1.6: Degree distribution and graphical representation of an Erdős-Rényi
graph. A) The degree distribution of an Erdős-Rényi graph with N = 104 and average
degree 〈k〉 = 10. B) The visualization of a small ER graph with N = 102, 〈k〉 = 5.

the connection probability between two nodes is

p = M(
N
2

) (1.11)

The maximum possible number of edges is
(
N
2

)
. The expected number of

graphs will be
((N2 )
M

)
. The other equivalent definition is known as the binomial

model. Firstly, the total number of nodes in the network is set to N . Then,
every pair of nodes is connected with probability p. In this way, the mathe-
matical expectation of the total number of edges is pN(N − 1)/2. These two
definitions are exactly equivalent when the network has reached a sufficient
size.

The average degree of ER networks is p(N − 1). The degree distribution is
strictly proved to be:

P (k) =
(
N − 1
k

)
pk(1− p)N−1−k '

N→∞
e−〈k〉

〈k〉k

k! (1.12)

In the case of a large network with constant average degree, the degree
distribution can be approximated by a Poisson distribution as seen in Fig. 1.6.
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Figure 1.7: Degree distribution and graphical representation of a Barabási-
Albert model. A) The degree distribution of a network produced by the Barabási-Albert
model with N = 105, m = 3. The blue line fitting the degree points corresponds to a line
with slope 3. B) The visualization of a small BA graph with N = 102, where the size of
nodes is proportional to its degree.

Therefore, the ER random graph is also known as Poisson random graph
[31,32].

2. Barabási-Albert model

In 1998, Watts and Strogatz introduced small-world networks whose prop-
erties lay between regular and random graphs [33]. This model reflected better
the structure of real networks, but there were still areas of doubt about “ad-
vanced” features real complex networks have.

It is an indisputable fact that degree distribution is the most notable prop-
erty. The degree distribution of regular graph and Erdős-Rényi random graph
all show some kind of “homogeneity”. In 1999, Albert-László Barabási and
Réka Albert published a quite influential paper, indicating that the degree
distributions in the real complex networks present strong “hetergeneity” [34].
Lots of examples were given in the article that those degree distributions ex-
actly or approximately follow a power-law distribution with the expression
P (k) ∝ k−γ. Since for this distribution for certain values of γ, the second mo-
ment diverges. Then, networks with this degree distribution are denominated
scale-free networks [35–37]. Typically, the index of power law is 2 ≤ γ ≤ 3 [20].
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A dynamic network model (also well-known as Barabási–Albert (BA) model)
was presented, including two simple assumptions: growth and preference at-
tachment [34]. The mechanism of generating the model is that they take the
initial m0 vertices to be arbitrarily joined or completely joined. In each step,
a new vertex is added based on the original network G(t − 1) and m edges
starting from that vertex are added simultaneously, forming a new network
G(t). Note that the other end of the newly created edge is in proportion to
the degree of the existing vertex i, that is the connection probability, Π(i),
given by

Π(i) = ki∑
j kj

(1.13)

The process of adding new vertex is terminated until the degree distribution
of the network satisfies P (k) ∝ k−3, as shown in Fig. 1.7A. Note that the power
exponent γ is independent of the model parametersm0 andm. Moreover, from
the visualization of a small BA model (see Fig. 1.7B), we can clearly observe
the typical characteristic of this model that only a few vertices in the graph
have extremely large values of degree, called hubs, while most vertices have
only a very small number of connections.

3. Configuration model

The preferential attachment model or namely BA model characterizes the
mechanism of network evolution with a power-law degree distribution as the
key focus. The links stay unperturbed in the network as soon as they are
established. Such simplifying assumptions make the models feasible for anal-
ysis, but fail to capture the complexity of real networks. In order to generate
scale-free networks conforming to different exponents (γ), we can use the con-
figuration model which was presented by Bender and Canfield [38], and Béla
Bollobás [39]. The specific steps to generate a scale-free network are as follows:

(1) Given the size of network N , we generate the N degrees, k1, k2, · · · , kN
with the formula, k = m/u1/(γ−1), where m is the minimum degree and
u is a random number between 0 and 1 from a uniform distribution.

(2) Generate another degree sequence in the same way. Then connect node i
and j which is randomly chosen from two sequences with p = ki/

∑N
j=1 kj.

The uncorrelated scale-free network with tunable exponent γ is created until
two lists are empty [11, 40]. Note that this algorithm ends up with an even
number for the sum of degrees. Additionally, the generation process is likely
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to produce multi-edges which occur if there is more than one edge between
two vertices or self-loop that is an edge connecting a vertex to itself. However,
when the condition N →∞ is satisfied, it is guaranteed to generate a simple
graph with 2 < γ ≤ 3 in which there are no loops and multi-edges [20, 41].

4. Random regular networks

Random regular networks (RRN) are a particular case of k-regular net-
works, where each node has the same degree [11, 42]. Therefore, the degree
distribution is simply, P (ki = k) = 1. It can be built following the algorithm
developed by Steger and Wormald [43], which is actually a natural refinement
of the above-mentioned configuration model algorithm. Similarly, we start
with N nodes and create N groups with size k in each group. Then, two
random nodes i and j which are not in the same set are chosen, i.e., i ∈ I and
j ∈ J (I 6= J). Once they are connected, all the ends of edges belonging to set
I and J are not considered in the next step. The edge will be picked following
the uniform distribution until we obtain a random regular graph where the
maximum degree is always bounded above by k [44]. The simplicity of the
model serves the purpose of exploring the dynamical processes on networks
without considering lots of cumbersome details.

5. Square lattice

The lattice graph or grid graph is also known as an Euclidean lattice on
account of the fact that the graph is embedded in some Euclidean space Rn.
The square lattice is a common type of lattice graph in a two-dimensional
Euclidean space [45]. Mathematically, the vertices in the graph correspond
to integer coordinate points in the plane with the range of 1. As long as
corresponding vertices are located at a distance of 1, an edge is produced to
connect the two points.

1.3 Multilayer Networks

So far, real-world complex systems have been mapped into classical graphs
or single-layer networks. However, the simple abstraction into single-layer
networks ignores the contribution of multiple types of interactions in com-
plex systems. In fact, complex systems composed by the interactions of sev-
eral networks are commonly found, such as society with different types of
social relationship, infrastructure systems including different means of trans-
portation and brain systems containing different functional areas [24, 46–49].
Moreover, the nonlinear interactions and interdependencies between different
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subsystems give rise to various forms of correlated structures, exhibiting the
temporal-spatial multiscale characteristics [47, 50]. In order to tackle prac-
tical problems and break through the limitation of “one-type” connection in
single-layer networks, research on complex networks is gradually turning the
focus from single-layer networks to multilayer networks, which are nowadays
enjoying immense popularity [24,47].

In this section, we will highlight the definition and basic topological prop-
erties of multilayer networks. In the previous methodology, all nodes and
edges in a network are considered to be homogeneous, that is, only one type
of relationship existing in the network. To embody the diverse properties of
nodes and edges more accurately, the interactions with their specific nature
in a system can be grouped into a set of different networks connected to each
other, forming the structure, namely multilayer networks, where each network
is called layer [47, 51].

There are two cases of multilayer networks generally used to model the real
systems. The first one is the multiplex networks where each layer contains
exactly the same set of nodes. And there may be overlapping links, i.e., two
nodes which are linked in one layer may be linked in other layers [24,52]. The
most noteworthy feature of this type of network is that any node can only find
its counterpart in the other layer. Social networks could be a representative
example of this case where individuals (nodes) can be linked due to their social
relationships, like friendship, working relationships and so on [53].

Another specific case is known as interconnected networks where each node
in a multilayer network belongs to merely one layer. It is impossible to have
self-interactions across different layers. The computer-power network is a typ-
ical interconnected multilayer network where one layer represents the power
transmission between power stations, while another layer represents informa-
tion exchange between computers. The transmission of power between power
plants is controlled by computers, and the communication between computers
depends on the plants to provide the necessary power.

Here, we introduce the universal concept of multilayer networks proposed
by S. Boccaletti et al [24]. which is a set of networks composed of M single
networks, i.e., M layers. And each layer α consists of Nα nodes. There are
two ways of mathematical modelling the multiplex networks, supra-adjacency
matrices and tensorial representation [47,54]. As we are used to encoding the
single network by the adjacent matrix, similarly, we will give a brief descrip-
tion of supra-adjacency matrices to represent multilayer networks in the next
section.
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Figure 1.8: Schematic representation of multiplex networks. The respective ad-
jacency matrix of each layer is shown with Aα, where α = 1, 2. The connection between
two layers is represented by the adjacency matrices, denoted by Cα,β . Then, the supra-
adjacency matrix is formed with intralayer adjacency matrix Aα and interlayer adjacency
matrix Cα,β .

1.3.1 Supra-adjacency matrix representation

In a multilayer network, denoted by M made up of a set of graphs G =
{Gα, {α = 1, . . . ,M}}, where Gα = (Vα, Eα) in layer α and the nodes in
network Gα are represented by the set Vα = (vα1 , . . . , vαNα), the adjacent matrix
Aα is written:

Aα = {aαij} ∈ RNα×Nα , (1.14)
where each element in the matrix describing the intralayer connection relations
is:

aαij =
1 if (vαi , vαj ) ∈ Eα

0 otherwise.
(1.15)

Note that node i, j ∈ [1, N ] and α ∈ [1,M ]. In addition, there exists a
matrix representing coupling relationship, called interlayer adjacent matrix,
C, where each element is given by:

aα,βij =
1 if (vαi , v

β
j ) ∈ Eα,β(α 6= β)

0 otherwise.
(1.16)

Therefore, the multilayer networks are mapped into a supra-adjacency ma-
trix, defined as:
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Figure 1.9: The representation of two specific multilayer networks. A) The
example of three-layer multiplex network. B) The example of three-layer interconnected
network.

A = ⊕αAα + C. (1.17)

We show the schematic representation of a simple multiplex network with two
layers in Fig. 1.8. The intralayer adjacent matrix of each layer is presented
in the upper panel, represented as A1 and A2, respectively. The interlayer
adjacent matrices are denoted as C12 and C21 labeled with shaded area of the
supra-adjacency matrix A.

For the two special cases we mentioned, the distinctiveness of the multiplex
networks is that the node set is fixed, i.e., V1 = · · · = VM = V , connected by
various types of links where each type is represented by each layer. Here the
interlayer links can be re-written as Eα,β = {(v, v), v ∈ V }.

In the case of interconnected networks where a set of networks intercon-
nect with each other, it can be projected into a multilayer network with a
set of layers G1, G2, . . . , GL. Then, the interactions between any two layer
Gα and Gβ is denoted by Eα,β. In Fig. 1.9, we show an illustration of the
difference between multiplex networks (A) and interconnected networks (B),
respectively. It is clear to see the slight differences between these two specific
cases of multilayer networks.

After discussing the multilayer formalism mathematically, we come back
to a paradigmatic interconnected network to understand its practical applica-
tions [48]. As shown in Fig. 1.10, we illustrate a multilayer representation of
London railway network. In this case, the network is composed of 369 nodes
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DLR stations

Overground 

stations

Underground 

stations

Figure 1.10: A real-world example of multilayer representation. The London
multilayer transportation network consists of 369 nodes (train stations in London) and
edges which encode existing routes between stations (https://www.tfl.gov.uk/). The bottom
layer represents the networks of stations (purple) corresponding to each underground line.
The nodes (orange) in the middle layer represent the overground stations. The top layer
corresponds to the network of stations (blue) connected by DLR.

(i.e., train stations) in London and the edges which encode existing routes be-
tween stations. Each layer represents the networks of stations corresponding
to each underground line, overground line and DLR line, respectively. More
specifically, nodes in each distinct layer represent stations of different trans-
portation modes [55]. The interlayer links connecting the stations in different
layers make a lot of sense as there exists the possibility of commuting in these
means of transportation in London.

1.3.2 Structural metrics

The topological properties of multilayer networks can quantitatively describe
the basic characteristics of complex systems, as in single-layer networks. There-
fore, it appears necessary to firstly comprehend the properties of topology
encoded in multilayer networks before proceeding the in-depth study. In the
previous exploration of monolayer networks, some metrics characterizing net-
works have been introduced. Among all the basic statistical characteristics,
there is no way around the fact applying to all networks that the node degree
plays a foundational role in exploring the network dynamics. Here, given a
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multilayer network, the degree of node i ∈ V can be extended into a vector:

ki = (k1
i , k

2
i , . . . , k

M
i ), i = 1, . . . , N, (1.18)

where kαi = ∑
j
aαij, α ∈ [1,M ], denotes the degree of node i within the layer

α. In the case of weighted multilayer networks, the corresponding concept of
node strength refers to the sum of the weights of a node in each layer, defined
as:

si = (s1
i , s

2
i , . . . , s

M
i ), i = 1, . . . , N. (1.19)

Certainly, compared with single-layer networks, the multilayer networks
have more abundant topological properties. In particular, the interactions
between layers have attracted considerable attention. In this thesis, two salient
aspects in multiplex networks will be especially important: edge overlap and
degree correlations. In Ref. [50], the authors proposed the definition of the
edge overlap of any pair of nodes (i, j) between layer α and β as:

oα,βij = aαij + aβij. (1.20)
Therefore, the edge overlap for any edge i − j is written as oij = ∑

α a
α
ij,

leading to oij ∈ [0,M ]. The matrix O = oij is the aggregated overlapping
adjacency matrix. In [56], the authors proposed the method for measuring
the edge overlap by counting the fraction of edges between layers, obeying:

os =
∑N
i,j oij

M
∑N
i,j Θ(oij)

, (1.21)

where Θ(oij) is the Heaviside step function. The Θ(oij) is taken as 1 when
oij > 0. The value of os goes from 1/M to 1, where the maximum value 1
represents that all layers coincide completely, while os is set to 1/M when there
is no common edge between any two layers. In the specific case of two-layer
networks, also namely duplex networks, the edge overlap can be obtained based
on the above equation by setting M = 2. Meanwhile, the overlapping degree
of node i can be defined by the edge overlap, given as oi = ∑

j oij = ∑
α k

α
i .

In addition, the overlap of nodes between layers, denoted by Qα,β, can be
calculated by the proportion of nodes that are common between any two layers
α and β:

Qα,β = 1
N

N∑
i=1

vαi v
β
i , (1.22)
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Figure 1.11: Schematic representation of different interlayer degree correlations.
The black dotted line shows the case of assortatively (or positively) correlated duplex net-
works, where the node with high degree is connected to the similar high-degree node. The
red dotted line shows the reverse case, leading to the duplex networks with negative degree
correlations.

where vαi is an integer with a value of 0 or 1. The value determines whether
node i is active in layer α, where 0 represents inactive, while vαi = 1 if nodes
are active.

In real-world multiplex networks, the values of edge overlap appear to be
comparatively large [50, 56], which reveals the fact that there exist nontrivial
correlations between two layers. The degree correlations that we explored for
single-layer networks can also appear in the connected access layers. Fig. 1.11
shows how different interlayer degree correlations may appear. If the hubs
in one layer tend to be connected with hubs in another layer, the degree of
networks is positively correlated (see black dotted line). Such networks are said
to be assortative networks, which are quite common in real life. For instance,
in social networks, people have a tendency to be friends with those with similar
characteristics, like hobbies, age, jobs, etc, showing the phenomena called
homophily (see Fig. 1.12). Conversely, if the hubs in one layer have a tendency
to connect to the leaves in another layer, we have negative degree correlations
(see red dotted line).

To evaluate degree correlations, multiple ways from coarse to fine have been
proposed. The relative coarse-grained measure is based on the joint degree
distribution between two layers. Given a duplex network with layers α and
β, we can compute the average degree of a node on layer α conditional to the
degree of the corresponding node on layer β as:
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Figure 1.12: Phenomena of homophily in the social life of ancients. It shows
that there is a tendency that people would like to make friends or socialize with those with
similar age or interests.

k̄α(kβ) =
∑
kα k

αP (kα, kβ)∑
kα P (kα, kβ) , (1.23)

where P (kα, kβ) = N(kα, kβ)/N . The term N(kα, kβ) is the number of nodes
whose degrees are kα on layer α and kβ on layer β. This function presents
the different degree correlations relying on the increase and decrease in kβ. Of
course, the networks have no degree correlations if the function is independent
of kβ.

There are some widely known methods for measuring degree correlations,
such as Pearson correlation, Kendall rank correlation, Spearman correlation,
the Point-Biserial correlation, etc. These methods are called correlation coef-
ficient collectively which are not of our following research interest [56]. Hence,
we will not go into too much detail here. It is worth to mention that the level
of degree correlations can be tuned by replacing the labels of the nodes. By
reassigning the new labels, the degree sequences in both layers can be changed
according to the increasing or decreasing rank of the degree. For instance, if
we have four nodes labelled 1, 2, 3, 4 with degree 5, 8, 2, 3, we can re-label them
in ascending order of the degree, i.e., 3, 4, 1, 2. There are two extreme cases
called maximally positive correlations when the nodes in two degree sequences
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ranked as degree increases are connected, and maximally negative correlated
case where the nodes in one degree sequence arranged in ascending order of
degree connect to others relabelled as degree decreases.
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Dynamical Processes on Networks 2

“The whole history of science has been the gradual realization
that events do not happen in an arbitrary manner, but that they
reflect a certain underlying order, which may or may not be divinely
inspired.”

— Stephen Hawking

In the previous chapter, we focused on the topological properties of net-
works, but one of the key topics in network science is to elucidate the re-
lationship between the structure of the underlying network topology and its
function. The humongous amount of research in the last decades has revealed
that network function is usually associated with the dynamic behaviors and
processes on the network, such as the dissemination of information on the
Internet [57,58], rumor spreading on social networks [59–62], synchronization
problems [63–65] and so on.

Complex networks generated by some representative models have replaced
random graphs to provide a more accurate description of the structure of
complex systems. The ultimate goal of studying complex networks is to un-
derstand how the various dynamical processes on the network are affected by
the topology of networks [10,19,66]. Through the study of the dynamic prop-
erties of complex networks, not only we can better understand and explain
the various complex dynamic phenomena presented in real networks, but also
we can build models that more truly reflect the characteristics of real-world
networks.

In this chapter, the first and the most primary question is to figure out what
the “dynamics” is and how it is represented on complex networks. Generally,
people dive straight into the analysis of the dynamics on various network
systems from power grid [67, 68] to neural systems [69, 70], instead of giving
an unambiguous definition for dynamics. Here, let us find out “how the wind
blows” first and get to the bottom of it.

Dynamics in traditional physics generally is interpreted as finding a uni-
versal law about the relationship between interactions of basic elements of
systems and their evolution to gain a deep insight into the complexity of the
real-world system. From the perspective of network science, complex networks
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have been widely regarded as a promising and powerful framework to study
and characterize complex systems by mapping them into a relational network
with nodes and edges [10, 71]. Therefore, dynamics can be interpreted to be
the changes of node status or the connection relationship between nodes (i.e.,
growth or degradation reflected in the network topology) driven by “external
stimulus” or triggered by “inside information”, leading to obvious or non-
obvious “qualitative changes” occurring in the whole network, which can be
performed randomly or under some kind of rule constraints [20,72].

The state space and updating rule are the key parts to study dynamical
systems in the statistical theory [10, 66, 73]. The state space contains all the
different kinds of complex paths executed by complex systems under external
or internal stimulus. From the mathematical point of view, the state space
is associated to a set including finite number of states, denoted as K. In
the modelling of systems, it is necessary to define an appropriate state space,
forming a mapping relationship with a probability distribution function, which
reflects the statistical characteristics of the system [74]. To study the state
space, it is enlightening to explore the information hidden in the deterministic
processes in which the next execution can be inferred according to the current
action, that is so-called updating rule [10, 75]. Its mathematical definition is
to give the conditional probability of getting some value for xn giving the
previous state xn−1 at state n− 1, statistically characterizing the evolution of
systems.

In this chapter, we will first scratch the surface of the methods to analyze
the dynamical processes in section 2.1. From the microscopic scale, the mas-
ter equation (ME) approach is used to describe the dynamical phenomena of
systems with the disadvantage of being difficult to gain a complete solution.
In this thesis, we do not aim to dive into the mathematical representation of
ME. Instead, we will focus on the definition and formalism of Markov process
which is an effective framework used to understand the underlying mechanism
of stochastic process for dynamic systems as well as the mean-field approx-
imation method most frequently used to get a solvable form of the ME. In
addition, we will present the modelling and simulation methods which will be
implemented on resolving the disease dynamics of our interest in this thesis.

With the further development of complex network theory, the problem of
epidemics on networks has gradually become an attractive topic in the field
of spreading and diffusion processes. The dynamical systems generally can
be represented by ordinary differential equations. In brief, the mathematical
framework for an arbitrary dynamical system consists of relationship between
its states, inputs, and their derivatives, denoted by ẋ = f(x, t). In section 2.2,
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we will start from the introduction of some typical epidemic models, which
portray the probability of each node being in each state at each time from a
microscopic point of view to provide a more accurate description of the conta-
gion processes. We will analyze the epidemic threshold and the steady-state
condition after the disease outbreak. Additionally, we will explore the prop-
erties and theoretical results of typical epidemic models on homogeneous and
heterogeneous networks as well as the measurement of reproduction number
and herd immunity for the preparation of applications in the next chapter. In
section 2.3, we will implement the SIS model on multilayer networks to ex-
plore the role of directionality on the dynamics with the generating function
approach, following the article

• X. Wang, A. Aleta,D. Lu, and Y. Moreno, Directionality reduces the im-
pact of epidemics in multilayer networks, New Journal of Physics, 21(9),
093026, 2019.

Most of the existing approaches to microscopic dynamics of the system are
based on mean-field theory and its optimization. In section 2.4, we will end
up the chapter with the application of compartmental models on exploring the
dynamics of a kind of social contagion process, i.e., the evolution of corruption
behaviors. We will put the emphasis on deriving the conditions under which
corruption activities emerge by developing its mean-field theory in full detail,
corresponding to the work

• D. Lu, F. Bauza, D. Soriano-Paños, J. Gómez-Gardeñes, and L.M.
Floría, Norm violation versus punishment risk in a social model of cor-
ruption. Physical Review E, 101(2), 022306, 2020.

Moreover, to get further insights into the mechanism behind driving the
dynamics of honesty and corruption behaviors on multiplex networks, we apply
the compartmental model on duplex networks where different flows take place
separately on a specific layer with two salient structural properties taken into
account, i.e., edge overlap and interlayer degree correlations.

2.1 Methods

Here, we give a brief introduction of the methods used in the theoretical
analysis of dynamical processes from a microscopic perspective. They enable
us to better understand and explain the various dynamics of complex networks
in the real world. Then, we can apply the theoretical results of the study on the
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dynamic properties of complex networks to specific problems. For example,
we can design networks with better characteristics.

In this section, we will systematically explore the theoretical tools used
in the study of dynamics, going from stochastic processes to deterministic
processes. Stochastic processes are handled by probabilistic calculus, which
describes the statistical properties of each state and their statistical correla-
tions, ignoring individual properties [76, 77]. In this case, even when given
the same set of parameter values and initial conditions, the evolution may
lead to an ensemble of different outputs. Deterministic processes are gov-
erned by dynamic rules described by differential equations, which belong to
a fine-grained description with exact relationship between the response and
explanatory variables.

In addition, we will discuss modelling methods that are generally proposed
to approximately represent a system, satisfying the need to understand com-
plicated evolving dynamical processes taking place on networks. Then, Monte
Carlo simulations will be introduced, allowing for the implementation of large-
scale computational experiments.

2.1.1 Master equation

We start with the introduction of master equation (ME) which is an important
method to model stochastic process and plays an essential role in statistical
physics. Actually, it is almost universally applicable and has been widely ap-
plied to a variety of fields, such as chemistry, biology, finance, etc. [10,78–83].
Here, we consider particular systems which can be modelled as a probabilistic
combination of multiple configurations at any time. The probability that the
system occupies in a particular configuration X at a given time t is denoted
as P (X, t) which satisfies the normalization condition, ∑X P (X, t) = 1. The
transitions from one configuration X to another configuration Y with the rate
W (X, Y ) represent the dynamical process. The time evolution of the probabil-
ity distribution can be described in the form of a master equation. Therefore,
the master equation composed of a set of time-dependent differential equations
for P (X, t) is given by

∂P (X, t)
∂t

=
∫

[P (Y, t)W (Y,X)− P (X, t)W (X, Y )] dY

or ∂P (X, t)
∂t

=
∑
Y

[P (Y, t)W (Y,X)− P (X, t)W (X, Y )].
(2.1)

As we discussed in Chapter 1, complex systems can be modelled as a net-
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work by mapping microscopic interactions into an abstract structure. Given
a network of size N under a specific configuration at time t, the dynamical
description can be denoted by the state variable X(t) for each node i, where
X(t) = (X1(t), X2(t), ..., XN(t)). In the context of networks, there is a sim-
plified consideration of the transition rate that the switch of node state only
depends on the interaction with its neighbors instead of considering all the
configurations X = (X1, X2, ..., XN) and Y = (Y1, Y2, ..., YN). Therefore, the
transition rate is rewritten as:

W (Y,X) =
N∏
i=1

w(Y,Xi|Xj), (2.2)

where nodes j are the neighbors of node i. It indicates that the dynamical
processes on networks are strongly affected by their topology.

1. Markov process

Specifically, we can employ the master equation to describe the Markov
process, which can be understood as the process without time memory. The
master equation in Eq. 2.1 represents the differential form of Markov process.
In simple terms, Markov process is a stochastic process that future outcomes
can be predicted solely based on the current state and are independent of past
states. For example, if we keep casting a dice, past results do not affect future
results.

The more accurate mathematical definition of a Markov process [84, 85] is
as follows. Assume that there is a stochastic process {X(t), t ∈ T} with state
space K, where X(t) is referred to as the state of the process at time t and
K = {x1, x2, . . . , xn} (x ∈ K). At each time t (t1 < t2 < · · · < tn) for ∀n ≥ 1,
the conditional probability satisfies:

P{X(tn) = xn|X(t1) = x1, . . . , X(tn−1) = xn−1} = P{X(tn) = xn|X(tn−1) = xn−1},
(2.3)

where {X(t), t ∈ T} is said to be a Markov process. The above equation is
equivalent to:

Pn−1|1(x1, t1;x2, t2; . . . ;xn−1, tn−1|xn, tn) = P1|1(xn−1, tn−1|xn, tn), (2.4)

where the left term represents the function of joint conditional probability
density, defined as
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Pn−1|1(x1, t1;x2, t2; . . . ;xn−1, tn−1|xn, tn) = Pn(x1, t1;x2, t2; . . . ;xn−1, tn−1;xn, tn)
Pn−1(x1, t1;x2, t2; . . . ;xn−1, tn−1) .

(2.5)
The term Pn(x1, t1;x2, t2; . . . ;xn−1, tn−1;xn, tn) denotes the joint probability
density, that is, the probability of taking x1 at time t1, x2 at time t2, ..., xn
at time tn. The right term of Eq. 2.4 is the conditional probability density,
given by

P1|1(xn−1, tn−1|xn, tn) = Pn(xn−1, tn−1;xn, tn)
Pn−1(xn−1, tn−1) . (2.6)

According to the interpretation of the terms on both sides of Eq. 2.4, it is
obvious to conclude that the joint conditional probability of taking xn at time
tn is completely determined by the value of xn−1 at time tn−1.

The Poisson Process and Wiener process are two paradigms of continuous-
time Markov process [86, 87]. Regarding each transmission process on com-
plex networks, there always exist randomized connections between nodes and
edges. This probability property determines that the density of each node
state is characterized by random fluctuations which can be analyzed by the
continuous-time Markov process.

2. Markov chain

Markov chain is one of the simplest examples of Markov processes which
can be deemed to be a transition between discrete random variables occurring
at a discrete time [88, 89]. In this sense, it is the discrete-time version of
the recurrence relations for Markov process. The accurate definition in a
mathematical way is the following: suppose that {Xn, n = 0, 1, 2, . . . } is a
stochastic process with the state space K = {i0, i1, i2, . . . } where Xn is the
state at time n. If the corresponding random variables X0, X1, X2, . . . , Xn+1
for ∀n ≥, ∀i, j and all states i0, i1, . . . , in−1 satisfy:

P{Xn+1 = j|Xn = in, Xn−1 = in−1, . . . , X0 = i0} = P{Xn+1 = j|Xn = in},
(2.7)

then, {Xn, n = 0, 1, 2, . . . } is said to be a discrete-state and discrete-time
Markov process, or Markov chain for short.

The probability characteristics of Markov chain can be completely de-
scribed by the initial distribution and the transition probability [90]. The
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Figure 2.1: A simple representation of Markov chain. Markov chain is a discrete-
state and discrete-time Markov process, denoted as {Xn, n = 0, 1, 2, ...}. The condition
probability shown on the arrows is known as transition probability as the updating rule for
Markov chain.

one-step transition probability at time n is defined as the condition probabil-
ity of being in state j at next step n+ 1 given that a Markov chain is in state
i at time n. That is :

pij(n) = P{Xn+1 = j|Xn = i}, i, j ∈ K, (2.8)

with the following two properties:

pij(n) ≥ 0, ∀i, j ∈ K and
∑
j∈K

pij(n) = 1, ∀i ∈ K. (2.9)

Since the elements pij of transition matrix P meet above conditions, we can
call it a right stochastic matrix 1. If the Eq. 2.8 goes into the following form:

pij = P{Xn+1 = j|Xn = i}, i, j ∈ K, (2.10)

it indicates that the transition probability is independent of time steps, i.e.,
the transition matrix P is time-invariant. Then, {Xn, n = 0, 1, 2, . . . } is called
time-homogeneous Markov chain.

For a Markov chain {Xn, n = 0, 1, 2, . . . }, if a pair of states i, j belonging to
the state space K can communicate with each other, they can be noted as i↔
j. If any state i, j ∈ K can communicate with each other, this Markov chain
is referred to as irreducible. In this case, if there is a distribution of the state
space, denoted as π = (π1, π2, ..., πN), satisfying πj = ∑N

i=1 πipij, π is called
the stationary distribution. There exits a theorem that irreducible Markov
chains in finite state space must have stationary distributions. Furthermore,
if there exists a π so that

πipij = πjpij, (2.11)

then this Markov chain is reversible with stationary distribution bound to
exist. This condition is also known as the detailed balance condition [92]. Let

1It is also called probability matrix, Markov matrix or substitution matrix in the literature [91].
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us recall the master equation in the discrete form (see Eq. 2.1). For stationary
processes, we have ∂tP (X, t) = 0, leading to the detailed balance condition 2

Peq(X)W (X, Y ) = Peq(Y )W (Y,X), (2.12)
where Peq(X) is the probability density function of the system at stationary
state. Even if the system is initially in a non-equilibrium state (when the
probability density function is time-dependent), the system will gradually en-
ter the equilibrium state after a sufficiently long period of time. This is the
theoretical basis for Monte Carlo simulations which will be discussed in section
2.1.3.

3. Mean-field approximation

It must be stressed that the master equation is rarely solvable to obtain
the complete solutions unless we have a case with quite simple dynamical
rules. Therefore, to obtain the approximate form of the master equation for
interpreting the system behaviors, suitable approximation methods have been
proposed. Here, we focus on a typical approximation approach, namely mean-
field theory [93,94]. The core idea is that the overall effect of the interactions
between all fundamental units across all scales plays a dominant role, while the
local information about contact conditions of each basic unit is not important
and can be neglected. Specifically, in master equation, there is no relevant
relationship between micro-state variables, presenting an average interaction
for all nodes instead. Hence, instead of precisely deriving the master equation,
the general considerations on effective interactions are used to rewrite the
equations with the mean-field approximation in which the probability of an
arbitrary element i to be in a given state σi = x is a quantity px independent
of i.

As a first step in the analysis of a collective phenomenon, a sensible mean-
field approximation is a well-known and recommended practice in statistical
physics, due to both its simplicity and unbiased character [95]. Often, though
not always, it provides a qualitatively correct description of the observed be-
havior, and, moreover, it reveals basic mechanisms that trigger the collective
changes of state for large systems. In the realm of network science, Barabási
and Albert as the pioneers came up with a mean-field method mainly used to
compute analytically the connectivity distribution (i.e., degree distribution).

In this thesis, we apply the mean-field theory on solving the differential
equations used to describe the dynamical behaviors of contagion processes,

2Note that this is a sufficient condition to reach ∂tP (X, t) = 0, not a necessary one. We can get the
same result by a more complex cancellation among ME terms.
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like epidemic spreading. Since the spread of epidemics is obviously full of
the influence from the disparate interaction of each individual, we will make
use of this method by just considering the global and average propagation
possibility beyond specific details. The specific implementation of the method
will be discussed in the forthcoming sections.

2.1.2 Compartmental modelling and agent-based modelling

In this section, we introduce two common framework used for exploring dy-
namical processes of a system, namely compartmental modelling and agent-
based modelling.

1. Compartmental modelling

Compartmental modelling is to model the system by dividing it into distinct
compartments. This approach is applied to describe the transition of individ-
uals among different compartments over time with deterministic equations.
In terms of large-scale systems, the shortcoming of compartmental modelling
appears for solving complicated differential equations.

The compartmental modelling approach is commonly applied to model in-
fectious diseases in mathematical epidemiology. According to the the stage
of the disease, the population is separated into various compartments. In
this way, a wide class of epidemic models has been developed (see the further
discussion in section 2.2.1) [96].

2. Agent-based modelling

In terms of complicated models, it is likely that even the deterministic com-
partmental modelling can not yield tractable equations as well as neglect the
heterogeneity between individuals. Here, we introduce an approach, namely
Agent-based modelling (ABM) for exploring the dynamics of large-scale sys-
tems. The agent-based modelling is a simulation-based method, convenient
to incorporate some rules that are not easy to be mathematically represented,
setting it apart from compartmental modelling methods [97].

A basic agent-based modelling must contain three elements, i.e., a certain
amount of agents, a complete set of topological relations and action rules,
and environment of agents. The fundamental idea of ABM is to assume each
individual node, denoted as an agent to be in one of all possible states. Each
agent is conferred with a kind of behavior rules which is likely to affect other
agents or surroundings. The future state of each agent can be influenced by
its present state and the present state of its neighbors. The dynamics occur
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as a result of microscopic interactions among agents. In addition, we can
obtain macroscopic characteristics of the system from average or aggregate
quantities. At the microscopic level of agent-based modelling, the specific
rule of each agent follows is relatively simple. However, at the macro level,
agents can produce the collective behavior that is not usually visualized intu-
itively [98]. This method can also be used to model transmission processes of
infectious diseases [99]. It allows researchers to specifically analyze patterns
of population movement and the ways in which people come into contact with
each other through social relationships, which are the fundamental pathways
of disease transmission.

3. Comparisons

The main difference between these two modelling methods is that the com-
partmental modelling approach usually uses the macroscopic variables, like
density, while the ABM method describes systems by taking into account au-
tonomous individuals. To be more specific, the compartmental modelling is
an “up-bottom” approach by partitioning the population into compartments
relying on some assumptions. However, in the case of ABM approach, complex
interactions are modelled in a “bottom-up” way by representing self-organizing
individuals that are similar to each other as autonomous agents.

In following sections, the dynamical processes we mainly focus on are con-
tagion processes, especially epidemic transmission. Therefore, in this context,
the framework of epidemic models can usually be described in the same manner
for these two methods. The compartmental modelling split the population into
compartments, each reflecting a typical health state associated with epidemic
propagation. The transition rates, capturing dynamical processes, represent
the rate by which an average transmission between compartments. However,
the ABM approach models the disease transmission by tracking state changes
of each individual (agent). The transition rates are generally approximated
by the rates derived from compartmental models, but are applied at the indi-
vidual level, i.e., when individuals interact with each other. Although many
studies found that they sometimes behave the same and sometimes differently,
which depend on formulated assumptions, the conclusion is drawn that two
methods usually yield similar results [100–102]. In addition, the advantages
of both models can be combined into hybrid models to analyze global effects
and local effects as well [103,104]. It is worth to state that neither one of them
can be referred as a “gold standard” approach. It is regarded as an advisable
modelling approach once it is appropriate for tackling the problem at hand.
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2.1.3 Monte Carlo simulations

In this section, we focus on the computational methods used for modelling
dynamical processes on networks. Classical statistical methods alone can not
describe the dynamics of each individual. As statistical regularities character-
izing macroscopic behaviors of systems are obtained by observing aggregate
or average quantities, they actually can not be used to describe the dynamics
which are expressed by the microscopic interactions among individuals. How-
ever, computer simulation methods can largely compensate for deficiencies in
the theoretical analysis process. In addition, computer simulations can be
more applicable to social systems with complex structures and large scales,
and can take into account the influence of actual social factors on the dynam-
ical processes. As a consequence, simulation methods with computers turn
out to be an important tool to study complex realities that are not accessible
with analytical methods.

1. Monte Carlo methods

The stochasticity of modelling methods we discussed in section 2.1.2 can
be introduced with Monte Carlo simulations. Here, we first introduce Monte
Carlo methods which are computational methods based on random numbers.
Generally, Monte Carlo methods can be roughly divided into two categories.
One type is that the problem to be solved is inherently stochastic in nature.
This kind of stochastic processes can be directly simulated with the computing
power of the computer. The other is that in order to obtain the probability of
a certain event occurring, or the expected value of a certain variable, one can
count the frequency of the occurrence of required events or the average value
of the variable by performing numerous experiments as solutions [105,106].

Monte Carlo methods facilitate the use of microscopic numerical simula-
tions with computers to study macroscopic properties of large-scale systems.
Technically, this kind of methods replicate the system within the computer by
mimicking the transition probabilities between events, providing access to the
microscopic dynamics of the system [10]. In the following, we will provide the
detailed introduction of two methods applied in computer simulations.

2. Synchronous and asynchronous updating methods

Synchronous updating methods and asynchronous updating methods are
the two most commonly used computer simulation schemes in the study of
dynamics occurring on networks. However, for the same dynamical process,
the variability of these two simulation methods in updating the node states
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may lead to quantitative and qualitative differences [107,108]. The variability
between synchronous and asynchronous updating methods stems from their
different perspectives on actual dynamical processes [107]. If we look at dy-
namical changes from a long time scale, the state changes of all individuals can
be considered to be updated synchronously. The synchronous updating simu-
lations can exactly mimic discrete-time processes where the time is discretized
into uniform time steps ∆t. To put it differently, if we focus on continuous-
time changes and only one event is allowed to occur at each instant, the state
updates of different nodes are performed asynchronously. It implies that in
the limit ∆t→ 0, the discrete-time process is counterpart to the continuous-
time Markov process [109]. For many studies on continuous-time Markov pro-
cess models, one avenue is to use the discrete-time approximation [110–112].
Nonetheless, it is notable that given a finite ∆t, discrete-time approach ap-
pears significantly different from its continuous-time counterpart [111].

Here, we briefly introduce the mechanistic description of these two methods.
The specific application on studying contagion dynamics will be presented in
detail in section 2.2.6. The main idea of synchronous updating methods is that
each node updates its current state according to the previous state of itself
and its neighbors. The state updating processes of all nodes are performed
simultaneously in unit time. While, in the implementation of asynchronous
updating methods, a node updates its state independently and its neighbor
nodes can observe its new state at that moment [113]. Asynchronous update
methods are widely used in various dynamics simulations, including voting
models, game theory, epidemic propagation, etc. The Gillespie algorithm is a
typical representative of asynchronous updating methods, simulating efficient
reaction processes in biochemistry, as well as Markov processes and Poisson
processes [114, 115]. The most important thing in the implementation of the
Gillespie algorithm is how to assign to each time step the occurrence process
and the time update interval τ . Assume that there are N independent random
discrete processes in the system, each with probability of occurrence pi, i =
1, 2, ..., N . For a Poisson process, {X(t), t ∈ T}, the probability of a process
i to occur between t and t + ∆t is pi(X(t))∆t. The probability of the next
process to occur in the time interval (t + τ, t + τ + ∆t) and be process i, is
denoted as P (τ, i)∆t

P (τ, i)∆t = P0(τ) · pi(X(t))∆t, (2.13)

where P0(τ) = e−τ
∑N

i=1 pi(X(t)). Therefore, the above equation is rewritten as:
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P (τ, i) = pi(X(t))e−τ
∑N

i=1 pi(X(t)). (2.14)

In the Markov process, the probability P (τ, i) is given by

P (τ, i) = P (τ |X(t))P (i|τ,X(t)), (2.15)

where P (τ |X(t)) is the updating time distribution conditioned to the state of
the system at time t be X(t), given by

P (τ |X(t)) =
N∑
i

pi(X(t)) · e−τ
∑N

i=1 pi(X(t)). (2.16)

Another term on the right side of Eq. 2.15 is the probability of process i to
happen conditioned to the updating time interval be τ and the state of the
system at time t be X(t), denoted by

P (i|τ,X(t)) = pi(X(t))∑N
i pi(X(t))

. (2.17)

The stochastic simulation with Gillespie algorithm is as follows:

(1) Initialize time and system state, X(t = 0) = X0 .

(2) Compute the probability of all processes i = 1, ..., N to occur, pi(X(t)).
Then get the p(X(t)) = ∑N

i=1 pi(X(t))).

(3) Generate random numbers r1 and r2 falling within the interval [0, 1].
Then, the updating time interval τ is calculated by

τ = 1
p(X(t)) log( 1

r1
). (2.18)

(4) Calculate which process happens by choosing j, down to

j−1∑
i=1

pi(X(t)) ≤ r2p(X(t)) ≤
j∑
i=1

pi(X(t)). (2.19)

Then, the change of the system caused by the jth reaction is stored in a
state-change vector, denoted as vj.

(5) Update the time t ← t + τ and replace the state of the system with
X(t+ τ)← X(t) + vj.
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(6) Return to the first step and iterate following steps. The procedure is
stopped until the condition t ≥ T is satisfied.

The Gillespie algorithm is highly applicable and practical which can be
used not only for simulating reaction processes, but also for non-equilibrium
dynamics [116]. In section 2.2.6, we will present this algorithm applied for
simulating the epidemic spreading on networks.

2.2 Epidemics on Networks

“As a matter of fact, all epidemiology, concerned as it is with the
variation of disease from time to time or from place to place, must
be considered mathematically, however many variables as implicated,
if it is to be considered scientifically at all.”

— Ronald Ross

Human society has been repeatedly threatened by a variety of serious epi-
demics, some of which have had a profound impact on the course of human
history, such as the plague of Athens in 430 B.C., the Black Death in the 14th
century and so on. It was claimed that the plague of Athens which was the
first major infectious disease documented in detail not only led to the death
of Pericles, ruler of the city state and famous reformer, but also killed nearly
half of the population. Another devastating pandemic disaster is the Black
Death, a plague that once swept across Europe, killing about one-third of
its population and striking a huge blow to Western civilization [117]. There
are countless such examples, as the American historian McNeill argues in his
book [118], “epidemics predate mankind in history, will coexist with mankind
for a long time to come, and will be a fundamental parameter and determinant
of human history, just as they have been in the past.”

Although the insights into epidemics have progressed relatively slowly, the
description and prediction of epidemics has been a long-standing but flourish-
ing topic. The earliest studies of epidemic transmission started in 1760 when
Swiss mathematician, Bernoulli, studied the effectiveness of smallpox inocula-
tion [119,120]. By the early 20th century, Hamer and Ross used a quantitative
approach to study the spread of measles disease and applied the famous law
of mass action 3 to explain epidemic behaviors [122]. This work became a his-
torical precedent for using precise mathematical language to study epidemic

3It was first used to describe the reaction rate between chemical reactants. It later became one of the
main concepts of mathematical epidemiology, which assumes that the net transmission rate of infection
(how many people are newly infected per unit time) is proportioned to the multiplication of the density of
the susceptible population and the density of the infected population. See [121] for nice explanation.
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transmission. In 1927, inspired by previous work, Kermack and Mckendrick
first developed the well-known “compartmental model” to obtain a threshold
theory for an epidemic to start 4 [123]. In the following decades, almost all
relevant studies with compartmental models refer to the homogeneous mixing
assumption, i.e., individuals are uniformly mixed in space, which is actually
not in line with reality [124,125].

In order to study the dynamics of epidemic transmission, it is necessary
to explore in depth how the transmission process of specific infectious dis-
eases takes place. For the mechanism of disease spreading in populations, the
pathogen exits from an infected individual at one point in time and space, by
direct or indirect contact, and penetrates into a susceptible person at another
spatio-temporal point. Then, people who are susceptible will be infected with
a certain probability and continue to spread the disease. It has to be said that
epidemic spreading is a quite complicate process, depending on the specific
scenarios. For example, some diseases enable individuals to acquire immunity
after a recovery which means that people who have been infected can not get
infected again, like mumps, measles, etc. However, some other diseases can
infect people repeatedly, such as tuberculosis, flu, etc. In practice, it is defi-
nitely a formidable and large task to consider all biological information in the
population [124, 126]. Consequently, mathematical modeling became an im-
portant tool for early studies of infectious diseases, with the aim of reflecting
their dynamics realistically and devising ways to control or possibly eradicate
them. The simplified mathematical models could reveal the main character-
istics of infectious diseases by means of assumptions, parameters, variables,
and the connections between them. In the beginning, several simple mathe-
matical models were developed to model dynamics of epidemics. It was not
until the decade of 1940 that differential equation models began to be taken
seriously and a series of great contributions emerged, like those described in
the theoretical books by Bailey [127,128], and in the practical ones written by
Anderson and May [129, 130]. The analytical results of mathematical models
have provided many strong theoretical foundations that contribute to effec-
tively predicting disease outbreaks or controlling the spread of diseases, such
as chicken pox, tuberculosis, smallpox, measles and so on [131–134].

With the discovery of small world networks and scale-free networks at
the end of the 20th century [33, 34], a new era in the study of epidemic
transmission was ushered in [82]. The mathematical epidemiologists have

4It says that the introduction of a small number of infected individuals into a population full of suscep-
tible individuals does not trigger an epidemic outbreak unless the initial number of susceptible individuals
in the population is above a certain threshold.
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Figure 2.2: Transmission process of epidemics. The epidemic process is mainly
dominated by three elements, i.e., infection source, transmission routes and susceptible
population.

shifted their attention to network modelling of disease transmission, driven
by the maturation of complex network theory [20, 32]. The human systems
can be abstracted into networked populations using the framework of com-
plex networks. The interactions between individuals that underlie the disease
transmission show some complex network characteristics as we discussed in
section 1.2 [135, 136]. The theoretical framework of complex networks not
only captures the essential characteristics of real human systems by consid-
ering their heterogeneities, but also has good mathematical properties, i.e.,
it can perform rigorous mathematical calculations. Using ideas from statis-
tical physics and other disciplines, researchers have proposed many different
theoretical approaches, such as mean-field theory, point-pair approximation,
message-passing approach, etc., to study the behaviors of epidemic trans-
mission on complex networks [137–141], and have achieved many insightful
results [10, 142, 143], which can even provide some important rationales for
policy formulation in public health institutions.

The spread of infectious diseases is mainly determined by infection source,
transmission routes and susceptible population (see Fig. 2.2), which are con-
trolled by their biological characteristics, contact behaviors and environmen-
tal factors. Consequently, those aspects find their manifestation on an im-
pressive array of epidemic models. The compartmental models have become
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increasingly sophisticated over time by incorporating more details, like vari-
ous contact patterns between individuals and different structures of underly-
ing networks. From this perspective, studies of epidemic spreading on com-
plex networks can be broadly classified into the following two categories: (1)
contact-based network models that emphasize the influence of the structure of
interactions between individuals on epidemic transmission [137,144–147]. (2)
metapopulation models [148–152]. Some representative work in this context
incorporates transportation networks (e.g., global airline networks) to study
the spread of epidemics at the population level, yielding impressive results in
the study of global epidemic transmission [153–155], especially in the explo-
ration of COVID-19 we are suffering from [156–159].

From the above discussion, it is known that the spread of epidemics in real
systems can be observed at different scales, and the corresponding network
structure needs to be considered at the respective scale. Studies have revealed
that the network structure has a great influence on the dynamics of epidemic
transmission [137,144,160]. On the other hand, the spread of epidemics can in
turn affect the network structure. For example, during an epidemic outbreak,
healthy individuals who are conscious of precautions may actively dissociate
from infected individuals [161–163]. It is evident that there is an interac-
tion between network structure and the dynamics of epidemic transmission.
Therefore, in this section, in addition to introducing several of the most com-
mon compartmental models in epidemiology, we will explore some theoretical
analysis methods that facilitate accurately understanding and describing the
dynamics of disease transmission on complex networks from a multilevel per-
spective. As we stated in section 1.2.3, complex networks can be categorised
into homogeneous networks and heterogeneous networks in terms of degree dis-
tribution. In the case of homogeneous networks, the dynamics can be given by
means of mean-field theory or mixing uniformly, while for the heterogeneous
ones, the impact of degree distribution must be taken into account. Hence,
we will look in more detail at contagion dynamics to better understand these
models applied on different types of networks.

2.2.1 Introducing basic epidemic models

The next point to be covered has to start with the work from Kermack and
McKendrick who put forward the first compartmental model when they stud-
ied the Black Death in London in 1927, that is the well-known SIR model [164].
In 1932, they proposed another famous model, called SIS model [165]. On this
basis, the more elaborate models have been developed by more and more re-
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searchers, which mainly adopt the deterministic modeling method composed
of differential equations [10,82,166].

The assumptions in compartmental modelling (see section 2.1.2) are spec-
ified in the field of disease transmission that the population is separated
into several “compartments” for a certain type of disease, and each compart-
ment corresponds to the specific state of individuals in relation with the dis-
ease [164]. For example, the compartment “infectious” represents a group that
has been infected and is contagious. Meanwhile, it assumes that individuals
in each compartment are identical. Then, differential equations are used to
define the dynamic evolution processes of the number of individuals in each
group. As we shall see, the number of variants in the class of compartmental
models is far beyond what can be covered in this space. Therefore, we will
only introduce the compartmental models that will play an important role in
this thesis.

1. SIS model

Let us firstly consider a paradigmatic model, known as the susceptible-
infected-susceptible model or SIS model [128]. The population is divided into
two groups: one that is free from the disease but can be infected, Susceptible
(S), and one that is infected and can transmit disease to others, Infected (I).
In SIS model, people who are infected can transmit the diseases to susceptible
neighbors with probability β. The infected can be cured with probability
µ and become susceptible again without conferring immunity [137, 167–169].
The effective infection rate is denoted by λ = β/µ. The infection mechanism
of SIS model illustrated in Fig. 2.3A can be expressed in the following form:

S(i) + I(j) β−→ I(i) + I(j)
I(i) µ−→ S(i)

(2.20)

To represent the number of susceptible and infected individuals may change
over time, we consider the precise number of individuals in any of the two
states at time t, denoted as S(t) and I(t), respectively. Here, we consider
the model which assumes that vital dynamics (birth and death) are not taken
into account. Thus, the total population remains a constant at any time, i.e.,
S(t) + I(t) = N . The model assumes that each individual in the population
makes contact with others randomly and uniformly, i.e., homogeneous mixing
assumption [11, 124]. The infectivity rate is defined as β/N . Therefore, the
whole number of susceptible individuals infected by infected persons per unit
time is β/NS(t)I(t). The equations describing the systems are written:
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Figure 2.3: Illustration of transmission process with two typical epidemic mod-
els. A) Flow chart for the SIS model. B) Flow chart for the SIR model.


dS(t)

dt = − β
N
S(t)I(t) + µI(t)

dI(t)
dt = β

N
S(t)I(t)− µI(t)

(2.21)

In most literature associated to the introduction and application of epi-
demic models, there is another version for the above set of equations which is
presented in terms of the fraction of individuals in two states, given by

s(t) = S(t)
N

, i(t) = I(t)
N

, (2.22)

Then, Eqs.(2.21) can be written:
ds(t)

dt = −βs(t)i(t) + µi(t)

di(t)
dt = βs(t)i(t)− µi(t)

(2.23)

where the normalization constrain s(t) + i(t) = 1 is always valid. Then, we
obtain the most common model used in the analysis of epidemics on networks
known as frequency dependent approach [170]. There is another approach
referred as density dependent where the infectivity rate is defined as β, yielding
a set of equations slightly different from Eqs.(2.23). The expression for the
infected individuals as a function of time is

di(t)
dt = βNs(t)i(t)− µi(t). (2.24)
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Figure 2.4: Comparison results of the two models. A) Time evolution of the SIS
model based on the equations (2.23) with β = 0.25 and µ = 0.1 and the steady fraction of
infected individuals a function of β/µ. B) The fractions of individuals in SIR model obtained
from the equations (2.26) as a function of time. The fraction of recovered individuals in
equilibrium conditions as a function of β/µ.

The dynamics of the disease in later approach rely on the population size N ,
leading to the faster propagation at larger N . It should be noted that these
two approaches are valid. Moreover, an in-depth discussion and their specific
applications which largely depend on the disease under consideration can be
referred in the literature [170].

In the epidemiology jargon, the quantity measured straightforwardly from
the differential equations is the steady fraction of infected individuals in the
sufficiently long time limit, called endemic disease state 5 in epidemiology
[172]. The stable solution is i(∞) = 1 − µ/β by calculating di(t)/dt = 0,
assuming i(t) 6= 0. It can be seen from the solution that the dynamics of

5In epidemiological jargon, it is interpreted as when an infection persists at baseline levels in a geographic
area without external input, the infection is said to be endemic in the population, a term originally derived
from the Greek έν (en) “in or within” and δη̃µoς (demos) “people”. See [171] for more details.
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epidemic is governed by the value β/µ:

β/µ ≤ 1⇒ lim
t→∞

i(t) = 0,

β/µ > 1⇒ lim
t→∞

i(t) = 1− µ/β.
(2.25)

Thus, the critical value β/µ determining whether there always exists a finite
fraction of infected individuals is known as epidemic threshold. When β > µ,
an example showing how the epidemic spreads out is numerically visualized
in the left panel of Fig. 2.4A. The right panel of Fig. 2.4A, where we show the
final fraction of infected individuals as a function of the ratio β/µ, renders the
critical role of β/µ = 1 clearly observed.

2. SIR model

In this model, some infected individuals may obtain immunity to the disease
or may die. Thus, those people can neither be infected nor infect others, falling
into a new third state, the removed state (R). We refer to this model as
susceptible-infected-removed model or SIR model, which was firstly presented
in a paper written by Reed and Frost in 1920 [96].

The SIR model developed by Kermack and McKendrick in 1927 is one of
the most common used epidemic model, proposed for the number of people in-
fected with a contagious disease in a closed population over time. It is assumed
that the total population with constant size N is divided into three compart-
ments 6. As shown in Fig. 2.3B, Susceptible individuals (S) become infected
by contacting with infected neighbors at a transmission rate β. Infected (I) is
said to be those individuals who can spread the disease. Recovered individuals
(R) who leave the infected group with the recovery rate µ will be removed from
the disease and possess the permanent immunity. Therefore, they no longer
have any effect on the corresponding dynamic behaviors. The SIR model is
suitable for describing diseases in which the infected individuals can acquire
lifelong immunity after cure, such as chickenpox, mumps, etc. [173–176].

Based on the above assumptions, the SIR model proposed by Kermack and
McKendrick [177] uses coupled differential equations for S(t), I(t) and R(t)
to describe the system with frequency dependent approach presented as:

6It is called class in its original reference [164]

49



2. Dynamical Processes on Networks



dS(t)
dt = − β

N
S(t)I(t)

dI(t)
dt = β

N
S(t)I(t)− µI(t)

dR(t)
dt = µI(t)

(2.26)

where the three variables satisfy the condition, S(t) + I(t) +R(t) = N . If we
define the fraction of individuals in three states as we did in SIS model, we
obtain the expression for the time evolution of infected individuals

di(t)
dt = βs(t)i(t)− µi(t), (2.27)

As shown in Fig. 2.4B, the fraction of susceptible individuals has a mono-
tonically decreasing trend, while the fraction of population who are recovered
increases monotonically. The proportion of infections goes up at first and then
decreases as they recover to zero when the time t→∞ due to lack of enough
susceptible individuals.

Here, the asymptotic value of the fraction of recovered individuals, r, carries
a major implication in practical terms. It represents the number of individuals
who ever got infected, i.e., the total size of an outbreak. Therefore, the final
infection density can be measured with quantity r(T ), where T is the time at
which the infection process is over, i.e., i(T ) = 0. The value of r(T ) can be
obtained by setting dr(t)/dt = 0, giving:

r(T ) = 1− s(0)e−β/µ(r(T )−r(0)) = 1− s(T ), (2.28)
which illustrates that there are still some susceptible individuals remaining
unless s(0) = 0. If we assume that the population is almost fully susceptible in
the beginning with extremely small proportion of infected individuals, denoted
as ε, the initial condition for the fraction of three compartments satisfies

(s(0), i(0), r(0)) = (1− ε, ε, ε). (2.29)
Then, at this point, we can obtain

di(t)
dt

∣∣∣∣∣
t=0
≈ β − µ. (2.30)

It demonstrates that there exits the epidemic threshold β/µ. There is no
epidemic at all if β/µ ≤ 1, while infected individuals continue to reproduce,
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Figure 2.5: Illustration of transmission process with two epidemic models. A)
Flow chart for the SIRS model. B) Flow chart for the SEIR model.

giving rise to disease outbreaks, which can be clearly seen in the right panel
of Fig. 2.4B.

3. SIRS model and SEIR model

Here, we introduce two variants of epidemic model which will be useful
later. The first is the SIRS model with reinfection phenomena taken into
account [144,178]. In this model, the removed individuals can not permanently
disappear from the system. Instead, after some duration of time, they will lose
immunity and become susceptible at a rate, δ (see Fig. 2.5A), that can be used
to explain seasonal virus transmission [179–181]. One can well perceive that
the parameter δ provides transformation from SIR model with δ → 0 to SIS
model when δ tends to infinity.

Generally, the actual situation is more complicated where susceptible peo-
ple will experience an incubation period in which they have already been
infected without onset of symptoms. Therefore, the exposed state (E) is in-
troduced on the basis of SIR model, known as SEIR model [10, 182]. Once
the infection has progressed to a point after a period of time, the exposed
individuals will become infected with the rate ε (see Fig. 2.5B). This model,
albeit simplistic, can already capture many properties of the current COVID-
19 pandemic, attracting a lot of popularity [157,183,184].

There are far more than the epidemic models we mentioned above. How-
ever, discussing more variants is beyond the scope of this thesis. These math-
ematical compartmental models under the homogeneous-mixing assumption
simplify the complex process and transmission factors of epidemic transmis-
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sion and only focus on the description of general macroscopic law in epidemic
spreading. Although these homogeneous-mixing compartmental models have
been proved to be successful in disease prediction [166], they can not directly
reflect diverse contact patterns between individuals. Gradually, mathematical
epidemiologists turned to use a network perspective to consider interactions in
a population. In this case, as we discussed in section 1.2.2, complex networks
are generalized into homogeneous and heterogeneous networks according to
the degree distribution [20]. In next sections, we will investigate how the clas-
sical epidemic models (SIS model and SIR model) behave on these two types
of structured networks.

2.2.2 Epidemic models on homogeneous networks

In homogeneous networks, the degree of each node is approximately equal to
the average degree, i.e., k ≈ 〈k〉. The incidence per capita for susceptible
individuals depends on the average number of infected neighbors, denoted ki.
In numerical simulations from the microscopic point of view, each infected
individual spreads the epidemic to a connected susceptible node with a per-
individual rate βdt during an infinitesimal time interval dt. Then a suscepti-
ble node in the network will get infected with the probability 1− (1− βdt)ki,
approximated as βki if βdt� 1 [10]. By employing the mean-field approxima-
tion which considers an average effect to approximate the effect of all the other
individuals, the average density of individuals being infected as a function of
time for SIS model can be described as:

di(t)
dt = −µi(t) + β〈k〉i(t)[1− i(t)], (2.31)

where higher order terms are neglected. In the long time limit, the system
finds a stable state by setting di(t)/dt = 0 to give:

ρ[−µ+ β〈k〉(1− ρ)] = 0, (2.32)
where ρ is the endemic state of the infected fraction ρ = i(t → ∞). The
epidemic threshold is given by the solution, λc = 〈k〉−1. In addition,

ρ = 0, if λ < λc

ρ ∼ λ− λc, if λ ≥ λc
(2.33)

In the case of the SIR model mapped to homogeneous networks, the density
of three types of individuals reads as:
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ds(t)
dt = −β〈k〉i(t)s(t)

di(t)
dt = β〈k〉i(t)s(t)− µi(t)

dr(t)
dt = µi(t) ,

(2.34)

where the three variables satisfy the condition, s(t) + i(t) + r(t) = 1. Then,
the equations are solved to get the solution:

s(t) = s(0)e−β〈k〉r(t)/µ, (2.35)

where s(0) is the initial fraction of susceptible individuals at t = 0.
As discussed in section 2.2.1, the final infection density can be measured

in terms of the final fraction of recovered individuals r∞ which represents
the total number of infections during the entire course of the epidemic. If
we incorporate Eq.(2.35) into the normalization condition, we can obtain the
description of r∞, giving:

r∞ = 1− e−β〈k〉r∞/µ. (2.36)

So as to obtain a nonzero solution, it meets the following condition,

d
dr∞

(
1− e−β〈k〉r∞/µ

) ∣∣∣∣∣
r∞=0

≥ 1. (2.37)

The condition corresponds to the critical limit β/〈k〉µ ≥ 1. From the equation,
we can see that the size of epidemics depends on the infection and recovery
rate, β and µ and the epidemic dies out under the condition of β〈k〉/µ ≤ 1.

2.2.3 Epidemic models on heterogeneous networks

To characterize the influence of heterogeneous topology of networks induced
by the different connectivity between nodes on epidemic spreading, we con-
sider the degree-based mean-field theory (or heterogeneous mean-field (HMF)
theory) in which the nodes of networks can be classified into different groups
according to their degree [137, 167, 168, 185]. Here, we denote by ρk(t) the
density of infected individuals in the groups of degree k at time t, similarly
sk(t) for susceptible nodes in SIS model. These two variables are connected
by means of the normalization condition, i.e., ρk(t) + sk(t) = 1. In the case
of uncorrelated networks, let P (k) represent the general degree distribution.
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Then, global quantities are represented by the average over various connec-
tivity groups, e.g., s(t) = ∑

k P (k)sk(t). At the mean-field level, the dynamic
evolution of ρk satisfies the following differential equation:

dρk(t)
dt = −µρk(t) + βk[1− ρk(t)]

∑
k′
P (k′|k)ρk′(t). (2.38)

The first item on the right of equation describes the decrease of the infected
population due to recovery rates. The second one is proportional to the density
of the susceptible population 1− ρk(t) at time t, the transmission rate β, the
number of neighbours k and the probability of any neighbour being infected.
The latter P (k′|k)ρk′(t) is the probability of being in contact with a node of
degree k′ which is infected. The item ∑

k′ P (k′|k)ρk′(t) can be denoted by
Θk(t), transforming the equation into:

dρk(t)
dt = −µρk(t) + βk[1− ρk(t)]Θk(t). (2.39)

In the stationary state, the density of infected individuals ρk is only a
function of βk/µ (λ = β/µ). Then, the probability that an edge leads to an
infected node becomes the implicit function of λ, denoted by Θk(λ) [137,185].
The solution in the steady state of Eq.2.39 is obtained by setting dρk(t)/dt = 0:

ρk = βkΘk(λ)
µ+ βkΘk(λ) . (2.40)

For uncorrelated networks, the probability P (k′|k) is equal to k′P (k′)/〈k〉.
This relation simply states that the probability that a node with k′ links can
be reached by one randomly selected link of its k′ links is proportional to
k′P (k′). Therefore, Θ can be written as:

Θ =
∑
k′
P (k′|k)ρk′(t) =

∑
k

kP (k)∑
s sP (s) ·

βkΘ
µ+ βkΘ , (2.41)

where 〈k〉 = ∑
s sP (s) denotes the average degree in the network. Here, we

can estimate the order parameter ρ using the relation ρ = ∑
k P (k)ρk. In order

to have the nontrivial solution with the condition 0 < Θ ≤ 1, it is equivalent
to fulfill the condition

d
dΘ

(
1
〈k〉

∑
k

kP (k) βkΘ
µ+ βkΘ

) ∣∣∣∣∣
Θ=0
≥ 1. (2.42)

Then, the epidemic threshold on SIS model can be obtained by solving the
Eq.2.41:
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Figure 2.6: Comparison of the epidemic threshold with different topologies.
The total fraction of recovered individuals in equilibrium conditions as a function of β/µ
with SIR model is calculated on different types of graph. In the case of random graph
with N = 104 and 〈k〉 = 3, the epidemic threshold βc/µ = 1/3. While, the critical value
is approximate to 0.1 when the SIR model is applied on a scale free graph with N = 104

where 〈k〉 ≈ 3 and 〈k2〉 ≈ 29. In the homogeneous mixing condition as described in the last
section, the epidemic threshold is 1.

(
β

µ

)
c

= λc = 〈k〉
〈k2〉

. (2.43)

For large enough scale-free networks (N → ∞) with degree distribution fol-
lowing P (k) ∼ k−γ and γ ≤ 3, it leads to 〈k2〉 = ∞ and λc = 0 correspond-
ingly [141]. It has a practical meaning that the epidemics always exist no
matter how small the infection probability is on scale-free networks. This re-
sult explains why virus or opinions can spread so fast on Internet and social
networks.

Regarding the SIR model, we define sk(t), ik(t) and rk(t) to be the density
of individuals with degree k that are susceptible, infected or recovered, re-
spectively at time t, together with the normalization condition: sk(t)+ ik(t)+
rk(t) = 1. Applying the analytical method as for the SIS model, we obtain
the following dynamic evolution equations:
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dsk(t)
dt = −βksk(t)Θ(t)

dik(t)
dt = βksk(t)Θ(t)− µik(t)

drk(t)
dt = µik(t) .

(2.44)

The above equations can be solved under the initial conditions rk(0) = 0,
ik(0) = i0 and sk(0) = 1 − i0. In the limit of i0 → 0, we let ik(0) ≈ 0 and
sk(0) ≈ 1. Under this approximation, the equation can be directly integrated:

sk(t) = e−βkφ(t)/µ, (2.45)
where φ(t) is the auxiliary function:

φ(t) =
∫ t

0
Θ(t′) dt′ = 1

〈k〉
∑
k

(k − 1)P (k)rk(t). (2.46)

Note that the expression of the probability Θ is different from that we stated
in the SIS model. In the SIR model, the infected node with k links catches the
disease through one of them which can not spread the disease anymore [137].
It means that the probability Θ only needs to consider k − 1 links, while the
mechanism of the state transition in SIS model allows the disease to spread
back along the same link.

Then, we can get the derivative of φ(t) versus time by substituting the
obtained expression of Eq. (2.45) into it:

dφ(t)
dt = 1− φ(t)− 1

〈k〉
∑
k

(k − 1)P (k)e−βkφ(t)/µ. (2.47)

The total fraction of recovered individuals r∞ which measures the overall
size of the outbreak of the disease is a function of φ∞ = limt→∞ φ(t). Taking
rk(∞) = 1− sk(∞), we get:

r∞ =
∑
k

P (k)(1− e−βkφ∞/µ). (2.48)

The self-consistent equation of φ∞ can be solved since ik(∞) = 0 and limt→∞
dφ(t)

dt =
0:

φ∞ = 1− 1
〈k〉

∑
k

(k − 1)P (k)e−βkφ∞/µ. (2.49)
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To get a non-zero solution, the following criteria must be satisfied:

1
〈k〉

∑
k

(k − 1)P (k)(βk/µ) = β

µ
· 〈k

2〉 − 〈k〉
〈k〉

> 1. (2.50)

Finally, the epidemic threshold in SIR model is given by:

λc = 〈k〉
〈k2〉 − 〈k〉

. (2.51)

Let us proceed a limited extrapolation of the epidemic threshold by con-
sidering the networks with correlated structure that are widely present in real
systems [186, 187]. We go back to the original form of factor Θ in the SIS
model, giving:

Θk(t) =
∑
k′
P (k′|k)ρk′(t). (2.52)

The epidemic threshold can be extracted by analyzing the stability of the
solutions in the stationary state. As the evolution of the infection density can
be linearized, we get:

dρk(t)
dt '

∑
k′
Lkk′ρk′(t), (2.53)

where Lkk′ is the elements belonging to the Jacobian matrix L. The term Lkk′
is given by

Lkk′ = −µδkk′ + βkP (k′|k) = −µδkk′ + βCkk′ , (2.54)
where another matrix, namely connectivity matrix C is introduced, composed
of the elements Ckk′ = kP (k′|k). Given the largest eigenvalue of C, Λmax, the
condition causing the instability of the solution ρk = 0 is

β

µ
>

1
Λmax

. (2.55)

Analogously, in the SIR model, under the situation that one less edge, i.e.,
only k − 1 free links is considered, the form of Θk(t) is written as

Θk(t) =
∑
k′

k′ − 1
k′

P (k′|k)ρk′(t). (2.56)

Performing a linear stability analysis like in the SIS model, we obtain an
identical relation for the destabilization of the solution ρk = 0:
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− µ+ βΛ̃max > 0, (2.57)
where Λ̃max is the largest eigenvalue of the connectivity matrix C̃ = {C̃kk′}.
And the elements C̃kk′ are denoted by

C̃kk′ = k
k′ − 1
k′

P (k′|k). (2.58)

Then, we can get the epidemic threshold for SIR model, i.e., λc = 1/Λ̃max

[188]. In the case of scale-free networks, it has been numerically validated that
as N tends to infinity, the epidemic threshold still vanishes in the thermody-
namic limit, independent of the existence of the positive correlation [174]. The
value of the critical point mainly depends on the definition of the matrix C̃.
For example, the expression of C̃kk′ is simplified to kk′ − 1P (k′)/〈k〉 for uncor-
related networks, yielding a unique largest eigenvalue Λ̃max = 〈k2〉/〈k〉−1 [10].
Thus, the epidemic threshold corresponds to the previous results as Eq.2.51
says.

The heterogeneous mean field (HMF) method is generally applicable to
networks with infinite topological dimensions [54,189]. However, this method
does not completely describe the structure of the contact network, instead of
roughly describing it in terms of degree distribution. In addition, the kinetic
correlation between the nodes is neglected. These simplifications allow this
method to describe the propagation dynamics on annealed networks more
accurately, in which edges are continuously reconnected at a much faster rate
than that of the epidemics with the degree distribution preserved. However,
they are not applicable to quenched networks in which the degree of each node
is fixed. For the first drawback, an improved approach is based on individual
mean-field theory (or quenched mean-field theory) [190,191]. The core idea of
the quenched mean-field (QMF) approach is to represent the network structure
completely in terms of the connections of each node, denoted by Aij and
describe the time evolution with a set of N equations taken into consideration.
The equations are given as:

dρi(t)
dt = −µρi(t) + β[1− ρi(t)]

N∑
j=1
Aijρj(t). (2.59)

Similarly, we can obtain the epidemic threshold λc = 1/Θ, where Θ is the
maximum eigenvalue of the adjacency matrix 7. It can be seen that for a

7Here we only briefly describe the method and the results. The specific derivation process can be found
in the literature [54]
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scale-free network without degree correlation, when γ ≤ 2.5, the epidemic
threshold is λc ' 〈k〉/〈k2〉 consistent with that obtained with HMF approach.
Moreover, when γ > 2.5, we get is λc ' 1/

√
kmax, which also tends to 0 in

the thermodynamic limit. This conclusion is obviously different from the the-
oretical results of HMF. Although QMF yields results more accurately than
HMF, it still ignores the dynamical correlation between the node states in the
network. In other words, it neglects the fact that the probability of a sus-
ceptible node being infected will increase due to the presence of its infected
neighbors [191]. Then, a more accurate method to portray the dynamical
correlation between node states is proposed, known as the point-pair approx-
imation method [192,193]. However, we will not enter into details since these
more advances and techniques will not be necessary for the rest of this thesis.
A more comprehensive description of these theoretical analysis methods based
on contact-network models is available in the literature [54, 141].

2.2.4 The basic reproduction number

In previous sections, we have explored the theoretical results of some typical
epidemic models implemented on networks with different topologies. In reality,
as a new infectious disease is identified, it is an important theoretical basis for
disease prevention and control to clarify the ability of pathogen transmission
among people. Here, we will introduce an epidemiological concept, R0, first
proposed as a threshold quantity by Ross in the study of malaria control [194].
Since then it has become a core idea in mathematical epidemiology. It was not
until 1957 that this quantity was officially named as basic reproduction number
[195] with the explicit definition that the expected number of additional people
(or new infections) an infected individual passes the disease to infect during
an entire infection cycle. Note that, this definition is based on the assumption
that the population is full of susceptible individuals. After decades of silence,
the real popularity of this concept was driven by the book of Anderson and
May [196], and the exploration of its computational methods flourished under
the influence of Diekmann et al. [197].

There is a famous and well-known threshold criterion for this quantity that
the disease can spread out if R0 > 1 whereas it can not if R0 < 1. There-
fore, R0 = 1 can be regarded as an indicator of stability between disease-free
equilibrium and endemic equilibrium, drawing a line between the growing and
shrinking behaviors [198]. It is used to describe the same concept mentioned
earlier, i.e., epidemic threshold, where separate the scenarios where the epi-
demic dies out or spreads over the population. The larger the value of R0
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is, the more contagious a disease is, leading to greater difficulty to control it.
Before considering the measurement of R0, it is worth noting the three main
factors that determine its value:

(i) Infectious period
The so-called infectious period refers to the time span of a patient from
infection to recovery, or from infection to death. Obviously, the longer
the infection cycle of the disease, the more opportunities for patients to
contact healthy people, and the higher the R0. In this way, although
those infectious diseases that can quickly cause death are fierce, they
are not the most infectious. The most typical is the pneumonic plague,
because the host dies too quickly, which prevents the yersinia pestis from
spreading to other hosts [166].

(ii) Transmission route
Different diseases have different transmission routes, resulting in very
different efficiency of disease transmission. For example, SARS-CoV-2
can be transmitted by droplets, and, as a consequence, the phenomenon of
person-to-person transmission is very common [199]. Yet, AIDS can only
be transmitted through blood, mother-to-child, and similar pathways,
rendering it non-transmissible to healthy people in most cases [200].

(iii) Contact frequency
In different countries and regions, the population density varies greatly.
Obviously, in first-tier cities with concentrated populations, person-to-
person contacts are more frequent and diseases are more likely to spread,
while in sparsely populated areas, where human contact is limited, the
spread of diseases will be hindered to some extent.

1. Measuring R0

Although accurately measuring the basic reproduction number R0 is not a
simple task, the above influencing factors allow us to orient to its measure-
ment. According to its definition [201, 202], the described factors expressed
in the evaluation of R0 mathematically correspond to the duration of the in-
fectious period, the probability of infection resulting from a contact between
an infected and susceptible individual, and the contact rate. Here, we will
introduce some derivation methods.

The definition proposed by Diekmann et al. in 1990 [197], which is probably
the most general one, is given by:
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R0(η) =
∫

Ω
S(ξ)

∫ ∞
0

A(τ, ξ, η)dτdξ. (2.60)

This expression can be interpreted by taking out each quantity. The familiar
term S(ξ) is the density function of susceptible where individuals are charac-
terized by the variable ξ. The expected infectivity of an individual that was
infected τ units of time ago, in infectious state η, towards to a susceptible ξ is
denoted by A(τ, ξ, η). Hence, the expected number of infections in a complete
period of infectiousness, R0, generated by an individual infected τ steps ago
in state η depends on the amount of individuals in susceptible state where size
is denoted by Ω in the expression and the infectivity of individuals.

Let us simply discuss its application in the SIR model to calculate the value
of R0. Referring to the Eq.(2.26), the quantity A(τ, ξ, η) is simplified to βe−µτ .
Hence, the formula for R0 is rewritten as:

R0 = S(0)
∫ ∞

0
βe−µτdτ, (2.61)

where S(0) is the initial amount of susceptible individuals in the population,
usually considered as N at the beginning of infection. As a result,

R0 = N
β

µ
, (2.62)

where the equation is R0 = β/µ in the application of frequency dependent
approach, exactly consistent with the result obtained from the linear analysis
of SIR model.

In addition, another method based on the local stability of disease free
equilibrium, x0, is proposed by Diekmann et al. [197] and advanced by van
den Driessche and Watmough [203] to derive R0, namely the next genera-
tion matrix approach. Here, the model is composed of n compartments with
m infected compartments (m < n). Let x = (x1, x2, ..., xn), where xi > 0
(i = 1, 2, ..., n), represent the number or proportion of individuals in each
compartment. For the sake of calculation, x is divided into two parts, the
first m items (xi, ..., xm) denote the number of infected individuals in the
corresponding infected compartments, and the remaining (xm+1, ..., xn) rep-
resent the non-infected group of individuals. The division of infected and
non-infected individuals should be based on biological significance of epidemi-
ology, rather than simply by mathematical equations. The model is expressed
as:
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dxi
dt = Fi(x)− Vi(x), (2.63)

where Fi(x) is the rate of newly infected individuals in the ith compartments
and Vi(x) = V−i (x)−V+

i (x) represents the transfer rate for individuals out of
the compartment (with minus sign) or from other sources in the compartment
(with plus sign) respectively. At the disease-free equilibrium point x0, we
define:

F =
[
∂Fi
∂xj

(x0)
]
, V =

[
∂Vi
∂xj

(x0)
]
, (2.64)

where 1 ≤ i, j ≤ m and they are m × m matrices. The matrix FV −1 is
so-called next generation matrix. Then, the basic reproduction number R0 is
equal to the spectral radius of the this matrix, ρ(FV −1), that is, the maximum
of the eigenvalue modulus of FV −1, which has been applied in a variety of
disease studies, such as tuberculosis, malaria and so on [198,204,205].

For a completely susceptible population with a tiny number of infected
individuals, when R0 > 1, i.e., the number of infected individuals who can
be infected during the average infection period is greater than 1, the number
of infected individuals gradually increases. Let us recall the analysis of SIS
model on heterogeneous networks in section 2.2.3. The necessary and sufficient
condition for the autonomous equation Θ to have the only positive solution
on (0, 1) is when Θ = 0, obtaining

R0 = β〈k2〉
µ〈k〉

, (2.65)

Similarly, the results for R0 can be derived in the SIR model, given by

R0 = β(〈k2〉 − 〈k〉)
µ〈k〉

. (2.66)

For epidemic models on networks, R0 is also related to the transmission
parameters (e.g., transmission rate β, recovery rate µ) other than the relevance
to the network topology. It is worth pointing out that the existing calculation
methods are not accurate for many real applications. Moreover, due to the
diversity of disease transmission modes and network topology, we have no way
to fully derive the exact R0 for every disease, that is, it is model-dependent.
In section 3.3, we will describe its specific calculation with real data.

2. The effective reproduction number
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R0 measures the capability of an epidemic to spread in natural conditions.
However, people are bound to step in to contain the spread of the disease.
Some individuals are probably granted life-long immunity due to prior in-
fection or vaccinated to get immunity. Therefore, the average number of
secondary cases per infectious case will be lower than R0. This introduces
another important quantity with more extensive practical application, the ef-
fective reproduction number, generally mentioned as R(t), also called Re, Rt

or Reff in some literature [206–209]. The effective reproduction number is
defined as the average number of new infections caused by an infectious indi-
vidual in a population where some people are protected against the disease.
It indicates the ability of an epidemic to spread when there is some immunity
or some intervention measures are in place. The most straightforward way
to estimate R(t) mathematically with simple homogeneous models is based
on the basic reproduction number and the fraction of susceptible individuals,
s(t) [210], leading to:

R(t) = R0s(t). (2.67)
According to the definition of R0 in Eq.2.62, the mean infectious period, 1/µ,
can also be denoted as D and the transmission rate in some cases is a time-
varying quantity as β(t) [209, 211, 212]. Therefore the Eq.2.67 can be given
as:

R(t) = β(t)s(t)D, (2.68)
which is named instantaneous reproductive number in the case of homogeneous
populations. It reveals that the sooner the number of susceptible falls due
to death or gained immunity, the smaller R(t) will be. The expression also
implicates that the value of effective reproduction number is affected by the
number of susceptible individuals with whom infected people contact. Another
way proposed by Cori et al. [209, 211] to measure the effective reproduction
number depends on the number of new infections occurring at time t and the
current generation interval g(s) 8, as

R(t) = I(t)∑t
s=1 I(t− s)g(s) , (2.69)

where the denominator of the equation describes the total infectivity of the
infected at time t, that is the cumulative sum of the number of infections
incident in the past s days and the infectiousness g(s) on day s. The point

8The quantity is also referred to as generation time in some literature [201,213]
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Figure 2.7: Estimation of the reproduction number R with empirical data. A)
The temporal distribution of cases for the pandemic influenza in Germany from 1918–19
(see ref [217]). B) The calculated values of R with 95% confidence interval as a function of
different mean values in generation time distribution.

of interest here is that the the generation interval g(·) is a probability den-
sity function, allowing any type of distribution, such as gamma distribution,
negative binomial distribution and Weibull distribution [156,211,214].

There is another algorithm to be presented compatible with both kinds of
reproduction numbers, R0 and R(t). For the sake of simplicity, we refer to
them as R, given by:

R = 1 + rTc, (2.70)

where r is the exponential growth rate, Tc indicates mean duration of gener-
ation interval, g(t), defined as the interval between the onset of an infected
individual and the infection time of the next person he or she infects [196,215].
See the direct source of this expression [216], followed by:

R = 1
M(−r) , (2.71)

where M(·) is termed as moment generating function of the distribution of
g(t) in the context of statistics [218]. The relation between M(·) and g(t),
where t represents the number of days since being infected, can be expressed
as:

M(−r) =
∫ ∞
t=0

e−rtg(t)dt. (2.72)
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If the functional form of g(t) are assumed ahead, then it can immediately be
reduced to a simpler form. For example, assuming that the generation interval
g(t) follows an exponential distribution:

g(t) = ge−gt. (2.73)

Taking it into Eq.2.72 and Eq.2.71, we obtain R = 1 + r/g, where Tc = 1/g
corresponds to Eq.2.71 [219]. The linear relationship between the growth
rate r and the reproduction number R exclusively represents the shape of
the generation interval distribution, and in turn, the shape of the generation
interval distribution is responsible for the appropriate relationship between
them.

Furthermore, if we consider the existence of a latent period TL in the case
of SEIR epidemic model, then we assume that the two components of g(t), TL
and TI , each obeys an exponential distribution with mean g1 and g2, where
g2 = g − g1 The generation interval then becomes a “superposition” of two
exponential distributions, the expression of R [213,216] is obtained as:

R = (1 + r/g1)(1 + r/g2). (2.74)

It is also possible, of course, to assume a normally distributed generation
interval [220] or gamma-distributed generation interval [221]. In addition to
assuming a strictly mathematical distribution, the approximate distribution of
generation interval can be attained by fitting a set of real observations. Then,
we can get the mean generation interval g and mean duration of incubation
period g1 from the empirical distribution.

To sum up, according to the application of this approach, there are several
crucial points needed: 1) At the beginning, it is assumed that the number of
newly infected people increases exponentially every day. 2) The growth rate
r of the number of newly infected persons must be calculated. 3) There must
be an assumption about the distribution of generation interval. Certainly,
the parameters must be able to be obtained after assuming the corresponding
distribution. Here, we put this method into practice based on the extracted
data [217] that contains the daily number of pandemic influenza deaths in
Prussia, Germany for five months from 1918–1919. The epidemic curve is
shown in Fig. 2.7A. Then, we estimate the value of R with exponential growth
rate. To explore the impact of generation time on the estimation of R, mul-
tiple mean values of the distribution of generation time are given with fixed
value of standard deviation (sd = 1) for the sake of simplicity (see Fig. 2.7B).

65



2. Dynamical Processes on Networks

Moreover, the distribution of generation time can be obtained from the ob-
served duration in empirical studies. Therefore, the reproduction number R
is given by:

R = r∑n
i=1 yi(e−rai−1 − e−rai)/(ai − ai−1) , (2.75)

where yi is bounds of the relative frequencies and ai represents the category
bounds in the histogram of generation time. The specific application of this
method combined with real data will be presented in section 3.3.4.

2.2.5 Vaccination and herd immunity

Providing the guidance on the prevention of disease transmission is one of the
purposes in the study of diffusion processes on complex networks. Therefore,
an important direction in the study of transmission dynamics on complex net-
works is the search for effective and appropriate vaccination strategies. The
most typical immunization strategies include random immunization which im-
munizes a portion of nodes selected completely at random in the network [222],
targeted immunization which selectively immunizes a class of nodes based on
a certain criterion [223], and acquaintance immunization which immunizes the
neighbors of randomly selected nodes [224].

After a long period of exploration, both in the mathematical [10] and biolog-
ical [166] context, the random immunization has been proved to be an overly
expensive and largely inapplicable immunization strategy, since for scale-free
networks with infinite size, immunization of all nodes in a network is called for
to eliminate the virus. The targeted immunization strategy initially received
much attention, implemented by immunizing highly-connected nodes in the
network, increasing the network resilience to epidemics. The drawback is that
it relies on the global structural knowledge of the network, or at least a better
understanding of the degree of each node to identify key nodes with large de-
grees for immunization, which is difficult to achieve in many cases, such as for
the complicated and constantly evolving human society. To avoid the problem,
the acquaintance immunization strategy was proposed by Cohen et al. [222]
in which only local knowledge (i.e., directly connected neighbour nodes) of
randomly selected nodes is sufficient to achieve relatively cost-effective immu-
nization [223,225,226]. In recent years, many immunization strategies similar
to those discussed or further improved have been continuously put forward
and have exhibited favorable effect [227,228].

The practical implication of the implementation of those immunization
strategies is that once a part of the population is immunized or vaccinated, it
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means that they will be disconnected from the interpersonal network with
other people, leaving the transmission route of disease cut off. Although
widespread vaccination offers many benefits, such as reduced prevalence of
pathogens, a significant decline in the number of cases, and a possible exten-
sion of the epidemic cycle [229,230], the costs and benefits arising from vaccine
coverage need to be weighed against each other, raising a thought-provoking
question that whether it is possible to contain an outbreak or eliminate infec-
tious disease by vaccinating only a small fraction of susceptible individuals.
The term herd immunity can provide the answer, which seems to have been co-
created by George Potter, Adolph Eichhorn, and W. J. MacNeal in 1911 [231]
to fight against the epidemics of “contagious abortion” in the livestock with the
idea that more cows could be protected by immunizing a certain number of cow
to achieve herd immunity instead of killing the sick [232]. In the early days,
this term was primarily applied in response to epidemics in animal herds [233].
It was not until 1924 that Dudley applied “herd immunity” to human for the
first time to enable the transition from animal to human. Subsequently, as
more effective vaccines were developed and vaccine coverage increased, the
buzz around the language of “herd immunity” increased [234]. Currently, a
new disease induced by the SARS-CoV-2 coronavirus spread around the world
with dramatic disastrous effects. To thwart its continued prevalence, the de-
velopment of Covid-19 vaccine was highly anticipated, while herd immunity
is brought to the forefront as the focus of discussion [232,235–237].

During the development of herd immunity, different interpretations have
emerged and it has been widely addressed in a variety of fields [229, 233,
234, 238]. Currently, in the context of epidemiology, herd immunity plays a
significant role in protecting unvaccinated individuals from the spread of a
contagious disease since there is a sufficient proportion of people who have
been immune through infection and recovery or through vaccination. Recall
the previous question, what share of population has to be immune to prevent
an epidemic. Let us answer it with the theorem established by Smith [239]
and Dietz [240] that if individual immunization occurs randomly within a
randomly mixed population, so that each individual is exposed to additional
R0 individuals on average, then the fraction of population who has to be
immunized must be greater than 1−1/R0 to control or eradicate the epidemic.
Much of the early theoretical work on herd immunity has since been grounded
in this assumption as a consequence that the herd immunity threshold (HIT )
9, is mathematically defined by

9According to the definition of the herd immunity threshold, some literature also use the critical coverage
level of vaccination, denoted by Vc or ρc, to express the same meaning [241–243].
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HIT = 1− 1
R0

or R0 − 1
R0

. (2.76)

Considering the different effectiveness of vaccines, the vaccine coverage re-
quired to achieve the same protection also may be different. Therefore, the
quantity E is proposed to measure the vaccine effectiveness, leading to a re-
alistic expression for the level of vaccine coverage as (1 − 1/R0)/E [242]. It
is particularly to be noted that the reproduction number R0 in the formula
highly depends on the contact patterns of population in response to different
types of pathogens. Hence, in the construction of contact network to simu-
late the epidemic transmission, the previous randomly-mixed assumption is
no longer valid, since the mixing behaviors in heterogeneous population must
be described by various parameters that characterize how human groups in-
teract with each other. The interactions within high-risk groups could lead to
an increase in R0, the average number of secondary infections arising from an
infected, subsequently increasing the herd immunity threshold.

Once the herd immunity threshold is achieved, the intensity and duration
of immunity play an important role on its efficiency. For example, in the case
of measles and smallpox, people receive lifelong immunity after vaccination
enabling herd immunity to be practiced smoothly. However, the level of pro-
tective antibodies produced by the pertussis vaccine decays over time, causing
individuals to regain susceptibility and therefore increasing the incidence in
adolescents or adults, which considerably affects the efficacy of herd immu-
nity [235, 244]. For the ongoing SARS-CoV-2 pandemic, since we still do not
have a complete picture of its pathological characteristics and transmission dy-
namics, it remains unclear whether the Covid-19 vaccine can offer protection
against infection [235]. In reality, there are many other factors that can affect
the success of herd immunity, such as the efficacy of vaccines, the efficiency
of vaccine roll-out, people’s willingness to be vaccinated, etc. In addition,
people’s behavior may change after vaccination, and frequent communication
will increase the risk of infection leading to weakened protection [242, 245].
Although there are many difficulties to conquer in order to attain herd im-
munity, it is still a rewarding path for human society to continue to explore,
especially for the biggest challenge we are facing, COVID-19. We will rely on
empirical data in the next chapter to do our part in exploring the estimate of
SARS-CoV-2 herd immunity.
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2.2.6 Numerical simulations of epidemic spreading

In modern studies of epidemic transmission, most scholars use a combination
of theoretical analysis and computer simulation to reveal its mechanisms. It
is noteworthy that theoretical methods to analyze epidemic spreading usually
involve some assumptions. For example, the heterogeneous mean-field theory
we discussed in section 2.2.3 assumes that there is no difference between nodes
with the same degree and states of neighbor nodes are independent of each
other [137]. In the face of complicated epidemic transmission processes, these
basic assumptions might lead to some differences between theoretical predic-
tions and actual propagation processes, greatly hindering the wide application
of theoretical methods. Fortunately, numerical simulations with computers
allow for more accurate modelling of epidemic spreading processes. In this
section, considering the SIS epidemic model as an example (see section 2.2.1),
we describe in detail the specific implementation steps of discrete-time simula-
tions and continuous-time simulations which are performed with synchronous
and asynchronous updating methods as we discussed in section 2.1.3.

1. Discrete-time simulations

In the case of performing discrete-time numerical simulations on SIS dy-
namics, we apply the commonly used scheme, synchronous updating method,
also propagation with SIS model, a fraction of nodes ρ0 are selected randomly
or according to some strategy initially as infected, and the rest of nodes are
in susceptible state. We denote the state of node i at time t as Xi(t) where
Xi(t) = 1 represents that node i is infected and 0 otherwise. Then, at each
time step, the spreading process where nodes change their states with syn-
chronous updating methods proceeds as follows:

(1) We first copy the state of every node, Xi(t + 1) = Xi(t). Each infected
node at time t, denoted as Xi(t) = 1, is recovered with the probability
µ, resulting in Xi(t+ 1) = 0.

(2) We iterate through all infected nodes. Each infected node tries to infect
all its susceptible neighbors j with probability β in the reactive process
(RP) [148, 246], while in the case of contact process (CP), a stochastic
contagion is expanded from an infected node to one neighbor per unit
time [116,247]. If the infection succeeds, then Xj(t+ 1) = 1.

(3) The system time is updated to t′ = t+ 1. Then, we repeat steps from (1)
to (3) until t = tmax or there are no infected nodes in the system.
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Figure 2.8: Fraction of infected individuals as a function of the spreading state.
We perform discrete-time simulations and continuous-time simulations for the SIS dynamics
on a Erdős-Rényi network with 〈k〉 = 10 and N = 104. The spreading rate is λ = β/µ
where recovering rate µ = 1.

Note that this algorithm allows reinfections to occur since the changes of node
state are not achieved in the same time window and the spreading process
happens after the recovery process.

2. Continuous-time simulations

We still consider the classical SIS scenario to specify the Gillespie algorithm
in which the state is switched with asynchronous updating methods. As the
focus of our research in this thesis is mainly on the multilayer networks, we
here adapt the method to the case of multilayer networks. Due to the existence
of interlayer links and intralayer links, we assume two spreading probabilities:
the interlayer spreading probability γ, and the intralayer spreading probability
β [248]. The recovery process occurs with the probability µ. We assume that
the number of infected nodes is Ni and the number of active intralayer and
interlayer edges emanating from them are Nk and Nm respectively. Then, at
each moment, the SIS spreading process is modelled according to the following
steps:

(1) One randomly selected infected node recovers and becomes susceptible
with the probability µNi

µNi+βNk+γNm .

70



2.2. Epidemics on Networks

(2) One infected node, selected with a probability proportional to its in-
tralayer degree, passes the disease to an edge chosen in a uniformly ran-
dom way with the probability βNk

µNi+βNk+γNm .

(3) One infected node, chosen with a probability proportional to its interlayer
degree, spreads the disease to an edge chosen uniformly at random with
the probability γNm

µNi+βNk+γNm .

(4) The time of each process in the system is updated to t′ = t + τ , where
τ = 1

µNi+βNk+γNm . We repeat the all above steps until the time t reaches
to tmax or the system does not have any infected node.

Note that, both synchronous and asynchronous updating methods on the
SIS dynamics involve the time parameter tmax which directly affects final trans-
mission results. The reason is that there exits an epidemic threshold λc we
discussed in section 2.2.1. When λ ≤ λc, the number of infected nodes decays
rapidly at an exponential rate with time. On the contrary, there will always
be nodes in the infected state in the system. In a finite system, close to the
critical point, there are usually high fluctuations that lead the system into the
absorbing state. In this case, infected nodes will be presented in the system
for a long time [249]. If tmax we set is too small, the system remains in the
relaxation state. However, if it is set too large, the system is more likely to
get into an absorbing state, resulting in only a few simulation processes being
active [250].

To analyze the impact of these two simulations on the SIS dynamics, we
perform simulations with synchronous and asynchronous updating methods,
respectively. The results are obtained on a ER network with 〈k〉 = 10 and
N = 104. In the case of discrete-time simulations, all infected state nodes try
to infect all their susceptible neighbors before they may recover. However,
two events in continuous simulations, i.e., the infection process along active
edges and the recovery process, occur randomly with a certain probability.
Therefore, the increase in the number of infected nodes produces more active
edges, leading to a greater probability for the occurrence of infection events.
Then, as the spreading rate increases, the difference of the fraction of infected
individuals obtained in the stationary state continues to increase (see Fig. 2.8).

3. Quasi-stationary algorithm

In the numerical simulations, the average fraction of infected nodes in the
steady state is counted only for those simulation processes that survive, i.e.,
the system does not fall into the absorbing state. As time is incremented,

71



2. Dynamical Processes on Networks

Figure 2.9: Susceptibility as a function of spreading rate λ. We apply the quasi-
stationary algorithm for the SIS dynamics on a Erdős-Rényi network with 〈k〉 = 10 and
N = 1000, 5000, 10000. The spreading rate is λ = β/µ where recovering rate µ = 1.

the probability that the system is active becomes smaller, implying that more
simulations need to be implemented. In particular, near the critical point, the
probability of the system being active is even smaller. The question about
how to prevent the system with SIS model from getting trapped into the
absorbing state and obtain more accurate steady-state values with only a small
number of experimental simulations is well addressed by the quasi-stationary
algorithm [251,252].

The main mechanism behind the approach is to keep the system in the
active state by using the previously visited state to replace the current state.
It is worth to note that updating the node state can be done either using
synchronous updating methods or asynchronous updating methods. In the
implementation, it is necessary to use a list Q to keepM active configurations
which is constantly updated. Given a certain time when a process tries to
visit an absorbing state, an active configuration previously visited is randomly
selected from the list Q and is replaced by the present one with the probability
pr∆t. The probability that the system is not driven into the absorbing state
is given:

P (t) =
∑
n

pn(t) n ≥ 1, (2.77)

72



2.3. The effect of directionality on epidemic threshold

where P (t) is called survival probability [253] and pn(t) is the probability that
there are n infected nodes in the system at time t. Then, the quasi-stationary
distribution (QS), is defined:

pn(t) = P (t)p̄n, (2.78)

where p̄n is independent of time. And we have p̄0 ≡ 0 and the normaliza-
tion condition ∑n≥1 p̄n = 1. From a computational point of view, after the
relaxation time tr, we obtain the QS probability p̄n that there are n infected
nodes in the system during an average time ta. Further, the infection density
is derived as:

ρs = 1
N

∑
n≥1

np̄n. (2.79)

The epidemic threshold can be determined by the susceptibility [252]:

χ = N
〈ρ2
s〉 − 〈ρs〉2

〈ρs〉
. (2.80)

Here, we apply the quasi-stationary algorithm to calculate the susceptibility
χ as a function of λ on the Erdős-Rényi network with different network sizes.
Given the average degree of ER networks is 〈k〉 = 10, the epidemic threshold is
expected to get λc = 0.1 with mean-field theory. In Fig. 2.9, as we change the
network size, the peak of susceptibility corresponds to the same point on the
x-axis, i.e., λp(N) = λc = 0.1 and scales with N . This practical application of
the QS algorithm presents its usefulness in getting the epidemic threshold on
the SIS dynamics.

2.3 The effect of directionality on epidemic threshold

Directionality reduces the impact of epidemics in multilayer networks [254].

X. Wang, A. Aleta, D. Lu, and Y. Moreno

In this section, we will explore the dynamical processes on multilayer net-
works, especially the processes of disease transmission. In Chapter 1, we
introduced the framework of multilayer networks. In practice, there are con-
siderable examples of two or more dynamics that are interdependent. The
introduction of multilayer networks could help to unveil the mechanism be-
hind these multiple paradigms of dynamic interactions [47,51,54].
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Generally speaking, there are two ways to study the dynamic process on
multilayer networks. One is that the multiple interaction mechanism operates
at different layers of networks with different dynamics in each layer, such as
modelling the interaction between public opinion and disease in social contact
networks. The other is that various interaction patterns may be presented in
different layers while the same dynamics are in all layers [24, 255]. For exam-
ple, rumors can spread on multiple social media such as Facebook, Twitter,
and Instagram, forming a multilayer network. On the one hand, the rumor
propagation process on these social media sites modelled as different network
structures has a similar dynamic mechanism. On the other hand, rumors can
also be transmitted by word of mouth among real people offline. By this
time, it is necessary to model it with a transmission mechanism different from
that online. Therefore, diverse network patterns at each layer of multilayer
networks effectively depict common phenomena.

Here, we will focus on investigating the same dynamic behaviors under dif-
ferent network structures in detail regarding our work. In most studies, the
underlying networks are usually considered undirected while studying diseases
spreading processes [54, 82]. However, directionality not only can not be ig-
nored, but also is a very important property in a lot of scenarios, such as
meerkats in which transmission varies between groomers and groomees [256]
and the transmission of HIV between humans, with male-to-female transmis-
sion being 2.3 times greater than female-to-male transmission [257]. When
dealing with the problems of diseases spreading among different species, we
need to consider the fact that disease transmission is more likely to happen
from an infected host to the other through an appropriate entry point with
an unchangeable direction. For example, the bubonic plague can be endemic
in rodent populations and spread to humans and other animals under certain
conditions. If it evolves to the pneumonic form, it may then spread from
human to human [258]. Analogously, Andes virus usually spreads within ro-
dent populations, but it can be transmitted to humans and then spread via
person-to-person contacts [259]. In addition, it is not just the nature of dis-
eases that can cause non-symmetrical transmission. Human behavior by itself
can also introduce asymmetric patterns of disease spreading [260]. For in-
stance, vaccination might induce asymmetric interactions among vaccinated
and unvaccinated individuals [261]. There are also diseases with long latent
periods that induce complicated dynamics between individuals who develop
further the disease and those who do not, such as the interaction between
individuals in the primary infection phase of Tuberculosis and those in the
active state [262, 263]. For those cases, multilayer networks might be able to
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help disentangling dynamics that would be otherwise hidden.

2.3.1 The generating function approach

In this work, we focus on investigating how the epidemic threshold is influenced
by the directionality of both interlayer and intralayer links. In addition to
numerical simulations, we will analytically derive the epidemic thresholds. To
this end, we will introduce an approach based on the application of generating
functions. The description of the generating function formalism in the context
of epidemic spreading was introduced by Callaway and Newman [19,264,265],
which can be adapted specially for the analysis of directed networks.

Here, we consider a general directed network where contacts between indi-
viduals are distinguished in undirected and directed links [255, 266]. Hence,
the crucial point in this methodology is the joint probability pjlm that a ran-
dom node has j incoming edges, l outgoing edges, and m undirected edges (or
called in-degree j, out-degree l and inter-degree m, respectively). Then, the
generating function G for the degree distribution of a node is defined to be:

G(x, y, z) =
∞∑
j=0

∞∑
l=0

∞∑
m=0

pjlmx
jylzm. (2.81)

For normalized pjlm, the function has the property:

G(1, 1, 1) =
∑
j,l,m

pjlm = 1. (2.82)

Here, the average in-degree for directed intralinks in multilayer networks is
〈kd〉. Note that G(r,s,v) represents differentiation of G according to the three
parameters r, s, v times. This gives:

〈kd〉 = ∂G(1, 1, 1)
∂x

= G(1,0,0)(1, 1, 1). (2.83)

Likewise, the out-degree of a node is necessarily same with 〈kd〉 since every
incoming edge is also the outgoing edge at some nodes. Then, we can get
〈kd〉 = G(1,0,0)(1, 1, 1) = G(0,1,0)(1, 1, 1). Whereas, the average degree for the
undirected edges is:

〈ku〉 = ∂G(1, 1, 1)
∂z

= G(0,0,1)(1, 1, 1). (2.84)

The excess degree distribution is another quantity related to the nodal
degree distribution which indicates the degree distribution of nodes arrived at
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by following a randomly selected link. Therefore, the probability to arrive at
a node by following a directed edge in the direction of a randomly chosen link
is jpjlm/

∑
jlm jpjlm. So, we can get the corresponding generating function:

Hd(x, y, z) =
∑
jlm jpjlmx

j−1ylzm∑
jlm jpjlm

= G(1,0,0)(x, y, z)
〈kd〉

. (2.85)

Then, the generating function obtained by following a directed link in the
reverse direction is written as:

Hr(x, y, z) =
∑
jlm lpjlmx

jyl−1zm∑
jlm lpjlm

= G(0,1,0)(x, y, z)
〈kd〉

. (2.86)

Lastly, the excess degree distribution at a node arrived at by following an
undirected link is:

Hu(x, y, z) =
∑
jlmmpjlmx

jylzm−1∑
jlmmpjlm

= G(0,0,1)(x, y, z)
〈ku〉

. (2.87)

Next, we take into account the probability of an edge being “infected” by
a disease which means that a node i being susceptible gets infected with the
disease transmitted by node j along that edge, denoted by T . The probability
that exactly m of the k edges of a vertex are occupied is given by the bino-
mial distribution, i.e.,

(
k
m

)
Tm (1− T )k−m. Hence, in terms of the edge being

directed and undirected, the average probability is represented by Td and Tu,
respectively. Then, we consider the generating function for the distribution of
the number of infected links of a randomly selected node which is modified in
the following form:

76



2.3. The effect of directionality on epidemic threshold

A B

Figure 2.10: The schematic of generating function method. A) The generating
function for the excess degree, denoted by H(x), gives the degree distribution of the node
reached by following a randomly selected link. B) The generating function for the degree of
the node is G(x). Therefore, for an outbreak starting from a random node i, the generating
function of the degree distribution on the first layer can be calculated by G(H(x)). Then,
on the second layer, the generating function can be obtained by G(H(H(x))).

G(x, y, z;Td, Tu) =
∑
a,b,c

 ∞∑
j=a

∞∑
l=b

∞∑
m=c

pjlm

(
j

a

)
T ad (1− Td)j−a

(
l

b

)
T bd (1− Td)l−b(

m

c

)
T cu(1− Tu)m−c

]
xaybzc

=
∑
jlm

pjlm

 j∑
a=0

(
j

a

)
(Tdx)a (1− Td)j−a

l∑
b=0

(
l

b

)
(Tdy)b (1− Td)l−b

m∑
c=0

(
m

c

)
(Tuz)c (1− Tu)m−c

]
=
∑
jlm

pjlm (1− Td + Tdx)j (1− Td + Tdy)l (1− Tu + Tuz)m

= G(1− Td + Tdx, 1− Td + Tdy, 1− Tu + Tuz).
(2.88)

We similarly derive the generating function for the number of infected links
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emanating from a node arrived at by following a randomly chosen links so that
we get

Hd(x, y, z;Td, Tu) = Hd(1− Td + Tdx, 1− Td + Tdy, 1− Tu + Tuz)
Hr(x, y, z;Td, Tu) = Hr(1− Td + Tdx, 1− Td + Tdy, 1− Tu + Tuz)
Hu(x, y, z;Td, Tu) = Hu(1− Td + Tdx, 1− Td + Tdy, 1− Tu + Tuz)

(2.89)

The quantity that we are interested in is the outbreak size, that is, the
number of nodes infected in an outbreak that started from a randomly chosen
node. Firstly, the probability of the size s of an outbreak beginning at a single
infected node is denoted as Ps. Then, we define g(w;Td, Tu) as the generating
function for the size distribution, written as:

g(w;Td, Tu) =
∑
s

Ps(Td, Tu)ws. (2.90)

We need to evaluate the probability that an outbreak starting with an infection
event along a randomly chosen edge will be size s′. Furthermore, given the
size of an outbreak s′, we define the generating function hd(w;Td, Tu) for this
probability distribution to solve Eq. 2.90:

hd(w;Td, Tu) =
∑
s′
Ps′(Td, Tu)ws

′
. (2.91)

The left panel in Fig. 2.10 illustrates that the generating functions for the
size of an outbreak starting with a randomly chosen directed edge satisfying
a condition of the form:

hd(w;Td, Tu) = wHd(1, hd(w;Td, Tu);hu(w;Td, Tu);Td, Tu). (2.92)

We also can get the expression for undirected case:

hu(w;Td, Tu) = wHu(1, hd(w;Td, Tu);hu(w;Td, Tu);Td, Tu). (2.93)

Given the above-defined expression Eq. 2.89, the distribution of the size
of an outbreak, s′, can be obtained combined with the two equations we just
mentioned. If the infection starts from a randomly selected node (shown in
Fig. 2.10), the generating function of the size distribution is given by:

g(w;Td, Tu) = wG(1, hd(w;Td, Tu);hu(w;Td, Tu);Td, Tu). (2.94)
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Finally, the average size of an outbreak beginning from a randomly chosen
node is

〈s〉 =
∑
s

sPs(Td, Tu) = g′(1;Td, Tu). (2.95)

Note that the prime shown in the equation represents differentiation concern-
ing w. Here, setting w = 1, we get the following expressions after implement-
ing the derivatives:

g′(1;Td, Tu) = 1 +G(0,1,0)h′d +G(0,0,1)h′u, (2.96)

h′d(1;Td, Tu) = 1 +H
(0,1,0)
d h′d +H

(0,0,1)
d h′u, (2.97)

h′u(1;Td, Tu) = 1 +H(0,1,0)
u h′d +H(0,0,1)

u h′u, (2.98)
where the arguments of all generating functions are (1, 1, 1;Td, Tu) and the
fact hd(1;Td, Tu) = hu(1;Td, Tu) = 1 is applied. Eqs. 2.97 and 2.98 can be
rewritten as:

h′d(1;Td, Tu) = 1−H(0,0,1)
u +H

(0,0,1)
d

(1−H(0,1,0)
d )(1−H(0,0,1)

u )−H(0,0,1)
d H

(0,1,0)
u

,

h′u(1;Td, Tu) = 1−H(0,1,0)
d +H(0,1,0)

u

(1−H(0,1,0)
d )(1−H(0,0,1)

u )−H(0,0,1)
d H

(0,1,0)
u

.

(2.99)

Then, we insert these expressions into Eq. 2.96, obtaining the average size of
outbreak:

〈s〉 = 1 + G(0,1,0)(1−H(0,0,1)
u +H

(0,0,1)
d ) +G(0,0,1)(1−H(0,1,0)

d +H(0,1,0)
u )

(1−H(0,1,0)
d )(1−H(0,0,1)

u )−H(0,0,1)
d H

(0,1,0)
u

.

(2.100)
For the sake of simplicity, we assume that the probability is the same

about the the direction of edges along which the disease transmits, that is,
Td = Tu = T . In this case, G(0,1,0)(1, 1, 1;Td, Tu) is replaced by the form
G(0,1,0)(1, 1, 1;T ). Meanwhile, we make use of the conditions:

G(0,1,0)(1, 1, 1;T ) = TG(0,1,0)(1, 1, 1) and H
(0,1,0)
d (1, 1, 1;T ) = TH

(0,1,0)
d (1, 1, 1),

(2.101)
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Consequently, the size of the outbreak is written as:

〈s〉 = 1+TG
(0,1,0)(1− T (H(0,0,1)

u +H
(0,0,1)
d )) + TG(0,0,1)(1− T (H(0,1,0)

d +H(0,1,0)
u ))

(1− TH(0,1,0)
d )(1− TH(0,0,1)

u )− T 2H
(0,0,1)
d H

(0,1,0)
u

.

(2.102)
where the arguments in the expression are set to (1, 1, 1).

As the expression diverges when denominator of the above equation is equal
to zero, which characterizes a phase transition from small size of outbreaks
with tree-like structure to the occurrence of large-scale outbreaks, we end up
with:

(1− TH(0,1,0)
d )(1− TH(0,0,1)

u )− T 2H
(0,0,1)
d H(0,1,0)

u = 0. (2.103)
Next, the only step to get the epidemic threshold is to substitute the proper
values of Hd and Hu. Then, the epidemic threshold can be expressed as
the derived critical value, Tc. In what follows, the formalism of generating
functions will be adapted slightly according to network configurations and
employed to derive the analytical epidemic threshold.

2.3.2 The model considering directionality

Here, we will introduce the model for the disease transmission in multilayer
networks with directionality taken into account. Let us firstly take a step
back into the basic components constructing multilayer networks. Among
those, the interlayer links connecting nodes within each layer and the inter-
layer links representing the connection relationship of nodes between layers
are the main subjects undertaking the proposed research problem. Particu-
larly, we will choose the multiplex networks composed of two layers as the
study model where a node can only be connected to its counterpart in the
other layer. Moreover, we will analyze several combinations of directionality:
(i) Directed layer - Undirected interlinks - Directed layer (DUD); (ii) Directed
layer - Directed interlinks - Directed layer (DDD); and (iii) Undirected layer -
Directed interlinks - Undirected layer (UDU). For the sake of comparison, we
also include the standard scenario, namely, (iv) Undirected layer - Undirected
interlinks - Undirected layer (UUU) [254]. To define the degree distribution in
the layers, we use Poisson and power-law distributions, which are the typical
representatives of homogeneous and heterogeneous distributions, correspond-
ing respectively to Erdős–Rényi (ER) and Scale-Free (SF) network models.

Here, we also need to define how many links point from one layer to another
layer, either in the opposite direction for the configurations (UDU and DDD)
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a

b c

d a

b c

d
Layer 1

Layer 2

(I) probability p (II) probability 1-  p

Figure 2.11: Diagram for two types of closed loops. In the case of DDD and UDU,
two types of closed loops coexist, type I with probability p and type II with probability
1 − p. Starting from a randomly chosen infected node a in layer 1, the disease in type I
spreads to the opposite layer 2 via the directed interlink a→ b from layer 1 to layer 2 (with
probability p) and loops back to the started node a via the directed path b → c → d → a.
The spreading diagram in type II is the reverse of the diagram in type I, but with probability
1− p for a randomly chosen node to have an interlink directed from layer 2 to layer 1

in which the interlinks are directed. Indeed, if all interlinks have the same
direction, the epidemic threshold would be trivially the one of the source layer
and thus the multiplex structure would play no role. For this reason, for each
directed link connecting layers u and v, we set the directionality to be u→ v
with probability p and u ← v with probability (1 − p), shown in Fig. 2.11
with a simple schematic. Consequently, in networks with directed interlinks
the epidemic threshold will be given as a function of this probability p.

2.3.3 Numerical results

To study the evolution of the epidemic threshold as a function of the direction-
ality and the coupling strength between layers, we implement a susceptible-
infected-susceptible (SIS) model on these networks. In our model, we use same
parameters for characterizing the intralayer and interlayer spreading processes,
β and γ, as we denoted in section 2.2.6. Hence, an infected node transmits
the disease with probability β to those susceptible neighbors of the same layer
and with probability γ to those located in other layers. The recovery rate
is denoted as µ for all the nodes. As previously stated in section 2.2.2, the
epidemic threshold is defined as β/µ in the single layer network. Here, in this
work, it is possible to find a critical value of βc by exploring its value as a
function of γ. For simplicity, we set the recovery rate is to µ = 1 in the sim-
ulations. Thus, we define the epidemic threshold in this project as a function
of β and γ.
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Figure 2.12: Evolution of epidemic threshold for the four configurations. Epi-
demic threshold for the spread of a disease within layers, βc, as a function of the probability
of interlayer contagion, γ. Panels (A) and (B) show results for the UUU and DUD config-
urations with ER (A) and SF (B) degree distributions in the layers. Panels (C) and (D)
exhibit results for the DDD and UDU configurations built up using the p-model with ER
(C) and SF (D) degree distributions in the layers, where p = 0.5. In all cases, µ = 0.1, the
number of nodes is N = 2×104 and for each directionality configuration, there are two sets
of networks: in the ER case one with 〈k〉 = 6 in both layers and another one with 〈k〉 = 12
in both layers; in the SF case one with kmin = 4 and α = 2.7 (average degree 〈k〉 = 7.85)
and another one with kmin = 10 and α = 2.8 (average degree 〈k〉 = 18.50).

Here, we conduct numerical simulations with asynchronous updating meth-
ods, that is, continuous-time simulations (see section 2.2.6). All the nodes in
the system are initially susceptible. The spreading starts when one node is set
to the infectious state. Then, at each time step, each infected node spreads
the disease through each of its links with probability β if the link is contained
in a layer and with probability γ if the link connects nodes in different layers.
Besides, each infected node recovers with probability µ at each time step. The
simulation runs until a stationary state for the number of infected individuals
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is reached.
To determine the epidemic threshold, we fix the value of γ and run the

simulation over multiple values of β, repeating 103 times the simulation for
each of those values. The recovery probability in the simulations is set to
µ = 1. The minimum value of β at which, on average, the number of infected
individuals in the steady state is greater than one determines the value of
the epidemic threshold, βc/µ obtained with the quasi-stationary algorithm
(see section 2.2.6). This procedure is then repeated for several values of γ
to obtain the dependency of βc with the spreading across layers. Lastly, this
dependency is evaluated for 102 realizations of each network considered in the
study and the curves of βc/γ are averaged.

We first present results of numerical simulations of a stochastic SIS model
on ER and SF networks with different average degrees. In Fig. 2.12, we show
the evolution of the epidemic threshold, βc, as a function of γ for the four con-
figurations. We can see that for networks with 〈k〉 = 6, the epidemic threshold
is very similar in both UUU and DUD configurations. This effect is again seen
for denser networks, 〈k〉 = 12, implying that it is the directionality of the in-
terlinks, and not the one of the links contained within layers, the main driver
of the epidemic in these networks. On the other hand, in Fig. 2.12(B), we
can see that this behavior is not replicated for SF networks. Certainly, there
is a large difference between the curves of the UUU and DUD configurations,
implying that the directionality of intralinks is much more important in this
type of networks. In agreement with these observations, when the interlinks
are those that are directed, we found the same difference between ER and
SF networks observed in Fig. 2.12(C) and (D). Besides, the evolution of the
epidemic threshold as a function of γ is again quantitatively similar for the
configurations (UDU and DDD). So far, in all the cases considered, the epi-
demic threshold is always lower for those configurations with undirected links
within the layers, compared to those in which those links are directed, given
the same interlink directionality.

2.3.4 Theoretical results

In order to obtain theoretical insights into the mechanisms driving the spread-
ing process on directed multiplex networks, we analytically derive the epidemic
threshold for all the configurations considered in this work. To this end, we
extend the generating function formalism, which has been used previously for
directed monolayer networks in section 2.3.1 to multiplex networks. Within
the generating function formalism, we assume a node has an in-degree j, out-
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t=1 t=2 t=3 t=4

Figure 2.13: The future transmission diagram on multilayer networks. The
transmission starts from a single infected node reached by following the direction of a
randomly chosen link. Solid lines represent the disease transmission on directed links and
dashed lines depict the bidirectional disease transmission on undirected links.

degree l and inter-degree m with probability pjlm, being the first two related
to the links contained in each layer and the latter to links connecting nodes in
different layers. The generating function for the degree distribution of a node
is denoted by G(x, y, z) same with what we discussed before. Note that the
combinations of directionality to be considered lead to different forms. In the
case of UXU (UUU and UDU), we regard j as an indicator for the number
of undirected links. The generating function is changed to G(x, z) instead of
G(x, y, z) for the DXD case, where z represents the interlayer links.

The quantity needed for the derivation of the epidemic threshold is excess
degree whose distribution of the generating function is same as we described
in section 2.3.1. To obtain the epidemic threshold, as well as the size of
an outbreak, we need to compute the fraction of the occupied links in the
network. Here, the difference appears when we consider the occupied link
which refers to a link along which the disease was transmitted. Since there
are different parameters (β and γ) indicating the intralayer and interlayer
spreading probability, respectively, we regard the probability of a link within
layers being infected as T and the probability of a link across layers being
infected as Tuv. Therefore, the generating function for the distribution of the
number of infected links of a randomly selected node is given by:

G(x, y, z;T, Tuv) = G(1 + Tx− T, 1 + Ty − T, 1 + Tuvz − Tuv). (2.104)

In the SIS epidemic model, we assume both the spreading process and
the recovering process are independent Poisson processes with rate β and µ,
respectively. The time, denoted as τi, that an infected node i remains infected
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is a random variable, whose distribution follows an exponential distribution
with rate µ. The probability 1 - Tij that the disease will not transmit from
an infected node i to a susceptible node j is e−βτi . As τi is a random variable,
the probability Tij of disease transmission is also a random variable. When
assuming a homogeneous recovering rate for each node, the average of disease
transmission probability between infected and susceptible individuals is the
average over the distribution of infectious time, which follows:

T = 1−
∫ ∞

0
e−βτµe−µτdτ, (2.105)

from which we obtain

T = 1− µ

β + µ
. (2.106)

Analogously, the average transmission probability of individuals between
different layers reads, given that the spreading rate between layers is γ,

Tuv = 1− µ

γ + µ
. (2.107)

To get the generating function for the distribution of the size of an outbreak,
we first show the transmission diagram in the Fig. 2.13. It shows the future
transmission diagram starting from a single infected node reached by following
a randomly chosen link within layers. Solid lines represent the disease trans-
mission on directed links and dashed lines depict the bidirectional disease
transmission on undirected links. The possible ways of future transmission
are: the disease spreads along an intra-link in the same layer, it spreads along
an inter-link to the opposite layer, it spreads along two intra-links, it spreads
along one intra-link and one inter-link. To account for all the transmission
possibilities, we construct the corresponding recursive relation of generating
functions for the size distribution of outbreaks by following four types of links
shown in Fig. 2.14. Hence, we use h1, h12, h2, h21 to denote recursive relations
if link is in layer 1, link is pointing from layer 1 to layer 2, link is in layer 2 and
link is going from layer 2 to layer 1, respectively. The generating functions
satisfy recursive relations:

h1(w;T, Tuv) = wH1(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv),
h12(w;T, Tuv) = wH12(1, h2(w;T, Tuv), h21(w;T, Tuv);T, Tuv),
h2(w;T, Tuv) = wH2(1, h2(w;T, Tuv), h21(w;T, Tuv);T, Tuv),
h21(w;T, Tuv) = wH21(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv).

(2.108)
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Figure 2.14: Scheme of the generating functions. The recursive relation of generating
functions for the size distribution of outbreaks by following four types of links which are (i)
intralink in layer 1, (ii) interlink pointing from layer 1 to layer 2, (iii) intralink in layer 2
and (iv) interlink pointing from layer 2 to layer 1.

Similarly, generating function for the distribution of the size of an outbreak
along a randomly chosen node in layer 1 follows:

g(w;T, Tuv) = wG(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv). (2.109)
Then, we calculate the average size of an outbreak starting from a randomly
chosen node:

〈s〉 =
N∑
s=1

sPs(T ) = dg(w;T, Tuv)
dw

∣∣∣∣∣
w=1

. (2.110)

After performing the derivative with respect to w on both sides of Eqs. 2.109
and 2.108, we get the expression for the average size 〈s〉 of an outbreak in terms
of the generating functions. Likewise, the expression goes to infinity when the
denominator equals zero. Therefore, the critical equation that determines
epidemic threshold reads

0 =
[(

1−H(0,1,0)
1

)
H −H(0,0,1)

1 H
(0,0,1)
12 H

(0,1,0)
21

]
×
[(

1−H(0,1,0)
2

)
H −H(0,0,1)

2 H
(0,0,1)
21 H

(0,1,0)
12

]
−H(0,0,1)

1 H
(0,0,1)
2 H

(0,1,0)
12 H

(0,1,0)
21

(2.111)

The expression applies to all the configurations (UXU and DXD). Under
each configuration, we only need to obtain the derivatives of the generating
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function H1, H12, H2, H21 to derive the epidemic threshold. For example,
considering the directed multilayer network with DUD configuration composed
of two ER networks. If both the in-degree and out-degree follow a Poisson
distribution with the same average degree 〈k〉, the generating function for the
excess degree Hd follows:

Hd (x, y, z) =
∑∞
j=0

∑∞
l=0

〈k〉je−〈k〉
j!

〈k〉le−〈k〉
l! jxj−1ylz

〈k〉
, (2.112)

from which we obtain the partial derivative with respect to y evaluated at the
point x = y = z = 1 as:

H
(0,1,0)
d (1, 1, 1) = 〈k〉, H(0,1,0)

u (1, 1, 1) = 〈k〉. (2.113)
The generating function H1 for layer 1 is substituted by Hd which reads

H
(0,1,0)
1 = H

(0,1,0)
d (1, 1, 1;T, Tuv) = TH

(0,1,0)
d (1, 1, 1). (2.114)

Similarly, the generating functions H2 in layer 2 following:

H
(0,1,0)
1 = H

(0,1,0)
2 = T 〈k〉, (2.115)

As two layers of graphs are connected by undirected or bidirected interlinks,
the disease thus can be transmitted with probability Tuv from layer 1 to layer
2 and, meanwhile, with probability Tuv to be transmitted from layer 2 to
layer 1. The bidirectionality for disease transmission of undirected interlinks
is reflected by the generating functions:

H
(0,1,0)
12 = H(0,1,0)

u (1, 1, 1;T, Tuv) = T 〈k〉,
H

(0,0,1)
12 = Tuv +H(0,1,0)

u (1, 1, 1;T, Tuv) = Tuv.
(2.116)

Then, we get all the derivatives of the generating functions H1, H2, H12 and
H21 needed for deriving the epidemic threshold:

H
(0,1,0)
1 = H

(0,1,0)
2 = T 〈k〉,

H
(0,1,0)
12 = H

(0,1,0)
21 = T 〈k〉,

H
(0,0,1)
1 = H

(0,0,1)
2 = Tuv,

H
(0,0,1)
12 = H

(0,0,1)
21 = Tuv.

(2.117)
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Substituting these generating functions into the Eq. 2.111, which characterizes
the critical point of phase transition, we derive the epidemic threshold for DUD
configuration as:

Tc = 1− Tuv
〈k〉

. (ER-DUD)

Analogously, we can get the epidemic threshold for other configurations:

Tc = 1− Tuv
〈k〉+ 1− Tuv

, (ER-UUU)

Tc = 2
〈k〉

(
2 +m+

√
m(m+ 8)

) , (ER-DDD)

where m = p(1− p)T 2
uv.

Tc =
2 (1 + 〈k〉) +m′ −

√
m′ (4 + 8〈k〉+m′)

2
(
(1 + 〈k〉)2 −m′〈k〉

) , (ER-UDU)

where m′ = 〈k〉p(1− p)T 2
uv.

We further present the generalization to directed multilayer networks con-
sisting of scale-free networks with power-law degree distributions. For a power-
law degree distribution with an exponential cutoff, the degree distribution is
written as

Pr[D = k] = Ck−αe−k/κ, (2.118)
where C = [∑kmax

kmin k
−αe−k/κ]−1 is a normalization constant to ensure condition∑kmax

kmin Pr[D = k] = 1. The constant kmin is the minimum degree and kmax
denotes the maximum degree and κ is a constant determining the cutoff.

Assume both the in- and out- degree in each layer are independently and
identically power-law distributed. The generating function for the degree dis-
tribution of a node with in-degree i, out-degree j and inter-degree m reads

G(x, y, z) =
∞∑
j=0

∞∑
k=0

∞∑
m=0

j−αe−j/κk−αe−k/κpm∑jmax
jmin j

−αe−j/κ
∑kmax
kmin k

−αe−k/κ
xjykzm, (2.119)

with pm = 1 to have an undirected interlink.
Then, the distributions of excess degree by following a randomly chosen

link within a layer is accordingly modified by the power-law degree distribu-
tion. With the same method, we can obtain derivatives of the set of generating
functions (H1, H2, H12 and H21) under different configurations. In the case of
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DUD with directed interlinks, the in-degree and out-degree are distinguishable
and H(0,1,0)

1 (1, 1, 1) = H
(0,1,0)
2 (1, 1, 1) = T 〈k〉. As the interconnection topology

between different layers remains unchanged, the generating functions regard-
ing interconnections are the same with generating functions of XUX in ER
networks (see Eq. 2.117). Therefore, the epidemic threshold for DUD con-
figurations with scale-free layers remains unchanged with the ER case, which
reads

Tc = 1− Tuv
〈k〉

, . (SF-DUD)

For the multiplex networks of UUU, The difference emerges in deriving the
generating function H1 for the excess degree of a node reached by following a
randomly chosen intra-link is modified as

H1(1, y, z) =
∞∑
l=0

∞∑
m=0

lpjlmy
l−1zm

〈k〉
, (2.120)

from which

H
(0,1,0)
1 (1, 1, 1) =

∞∑
l=0

∞∑
m=0

l(l − 1)pjlm
〈k〉

= 〈k
2〉 − 〈k〉
〈k〉

, (2.121)

instead of H(0,1,0)
1 (1, 1, 1) = 〈k〉 for the case of ER networks with Poisson

degree distribution. Therefore, we obtain:

H
(0,1,0)
1 (1, 1, 1;T, Tuv) = T + T

〈k2〉 − 〈k〉
〈k〉

, (2.122)

where the term T represents the backward spreading along the undirected
intralink that we came along and the term T ((〈k2〉 − 〈k〉)/〈k〉) represents the
spreading along the excess neighbors of the node that we reached. Thus, the
epidemic threshold is

Tc = 〈k〉 (1− Tuv)
〈k2〉 (1− Tuv) + 〈k〉2Tuv

, (SF-UUU)

On the other hand, using the p-model, the epidemic threshold for DDD
and UDU with scale-free layers as:

Tc = 2
〈k〉

(
2 +m+

√
m(m+ 8)

) , (SF-DDD)
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Figure 2.15: Comparisons between simulations and analytical results for UUU
and DUD configurations. The epidemic threshold βc as a function of γ. It shows the
results for UUU and DUD configurations with A) ER degree distribution (〈k〉 = 12) and
B) SF degree distribution (kmin = 10, α = 2.8 (average degree 〈k〉 = 18.50)) in both
layers. In all cases, µ = 0.1, the number of nodes is N = 2× 104 and for each directionality
configuration.

Tc =
2〈k2〉〈k〉+ 〈k〉2

(
〈k〉m−

√
m(4〈k2〉+ 〈k〉2(4 +m))

)
2(〈k2〉2 − 〈k〉4m) , (SF-UDU)

where m = p(1− p)T 2
uv.

Relying on these analytically derived thresholds, we first compare them
with numerical simulations for two configurations (UUU and DUD) as shown
in Fig. 2.15, showing favorable analytical predictions. We also explore the
evolution of βc as a function of γ for the whole range of possible values of
the latter parameter (see Fig. 2.16). In this case, we can see that the value
of the epidemic threshold of the DUD configuration in SF networks tends to
the value of the UUU case for large values of the spreading probability across
layers, mimicking the behavior of ER networks. Besides, we reach the state
in which both networks exhibit the same properties when γ → 1. Hence, in
general, we can conclude that the directionality (or lack of) of the interlinks is
the main driver of the epidemic spreading process. The exception is the limit
of small spreading from layer to layer, as in this scenario, the directionality of
interlinks makes SF networks much more resilient, see the dashed–dotted line
in Fig. 2.16(B).
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Figure 2.16: Comparison of the analytically derived epidemic thresholds for
four configurations. For each network configuration UXU or DXD (X = U or D), we
perform simulations on the networks with different degree distributions. A) ER networks
with 〈k〉 = 6 and p = 0.5. B) SF networks with kmin = 3, α = 2.6, resulting in the
theoretical average degree 〈k〉 = 6.1 and p = 0.5.

2.3.5 Discussion

Our results show that the presence of directed links results in larger epidemic
thresholds with respect to the case of undirected networks, and that the sys-
tem is more resilient when the interlayer links are directed. Therefore, our
conclusions are in line with previous works [267, 268] in that directionality is
a key topological feature that should not be disregarded as it can lead to new
phenomenology and sizable dynamical effects.

In addition, it is important to note that these results are not only rele-
vant for the situations we just described. These results are not restricted only
to epidemic modeling, as these kind of diffusion processes can be applied to
a broad range of systems. For example, the generating function approach
has been proposed as a tool to identify influential spreaders in social net-
works [269]. One particularly interesting and open challenge is to quantify
the effects that the interplay between different social networks could have on
spreading dynamics. The theoretical framework developed here is particularly
suitable to study this and similar challenges related to the spreading of infor-
mation in social networks. On the one hand, social relations are, by default,
directed. For instance, in social platform, a user is not necessarily followed
by her followings. On the other hand, disease-like models have been widely
used to study information dissemination, or in other words, simple social con-
tagion [112,270].

Then, we have analyzed the dependence of the epidemic threshold with
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Figure 2.17: Epidemic threshold measured in a multiplex social network. The
multiplex network is composed by users of two different social platforms: FriendFeed and
Twitter. A) The original network has directed intralinks and undirected interlinks, thus it
corresponds to the DUD configuration. B) The four configurations studied in this paper
are considered to explore the effects of directionality. For those configurations with directed
interlinks we used the p-model to generate them, setting p = 0.5.

the inter-spreading rate in a real social network composed by two layers, see
Fig. 2.17(A). The first layer of the multilayer systems is made up by the di-
rected set of interactions in a subset of users of the now defunct FriendFeed
platform, whereas the second layer is defined by the directed set of interactions
of those same users in Twitter. Even though this multiplex network originally
corresponds to a DUD configuration, we have also explored the other config-
urations, i.e., DDD, UDU and UUU. Note that in contrast with the synthetic
networks studied in the previous section, in this network the layers have dif-
ferent average degrees. In particular, the FriendFeed layer has 4768 nodes and
29501 directed links, resulting in an average out-degree of 6.19, and the Twitter
layer is composed by 4768 nodes and 40168 directed links, with an average out-
degree of 8.42. Nevertheless, their degree distributions are both heavy tailed,
although the maximum degree in the FriendFeed network is much larger than
in the Twitter network [271]. The results, Fig. 2.17(B), confirm those findings
for synthetic networks. In particular, for the range of γ under consideration,
the configurations with some directionality are always more resilient against
the disease. These results imply that information travels much more easily in
undirected systems than in directed systems. To sum up, directionality has
a positive impact on the system’s resistance to disease propagation and that
the way in which interdependent social networks are coupled could determine
their ability to spread information. Furthermore, our results could be applied
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to a plethora of systems and show that more emphasis should be put in study-
ing the role of directionality in diffusion processes that take place on top of
them.

2.4 Another Application of Compartmental Models

Norm violation versus punishment risk in a social model of corruption [272].

D. Lu, F. Bauza, D. Soriano-Paños, J. Gómez-Gardeñes, and L.M. Floría

There are a variety of applications for compartmental models besides epi-
demic modelling. Certainly, compartmental models are not only applied on
analyzing the dynamics of disease spreading but also used to model social
behaviors and information dissemination with more details taken into consid-
eration.

In this work, we adopt the compartmental model to tackle the analysis of
the corruption behaviors, a ubiquitous kind of social-norm-violating behaviors.
The existence of social norms whose violation is socially agreed to deserve some
punishment is perhaps one of the most widespread features across the history
of human cultures and societies, to the point that its absence seems a most
unexpected observation [273–276]. Not surprisingly, the conceptual frame of
social norm (and its enforcement) is transversal across socio-economical disci-
plines, ranging from experimental (e.g., human behavior, experimental econ-
omy) to deeply theoretical (e.g., norms ancestry, their evolution and relation
to modern social and political institutions) research [277–282].

Corruption, explicitly realized as bribery practices in public administration,
has received academic attention in social and economical mathematical mod-
eling research [282–289], a field of much recent interest for interdisciplinary
physicists [290]. Most of literature is framed in either classical or evolutionary
game theory, a modeling frame for tackling the analysis of corrupt behaviors
which is clearly prevalent in modern theoretical economics, where, in brief, be-
haviors are formally represented by game’s strategies, each earning a payoff,
and economic behavior that optimizes benefit [291]. In the simplest game-
theoretical settings, the honest vs corrupt behavioral dilemma is somewhat
identified with the cooperator vs defector strategic dilemma. Nonetheless, the
generalization to n ≥ 3 strategies is needed if punishment (the hallmark of
norm violation) to defectors has to be introduced in a stronger way than a
mere fine to wrongdoers, such as a penalty in their benefit.
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Figure 2.18: Chart flow representation of the model. Four flows between population
compartments are possible. The flow O → H (reinsertion) occurs at a constant rate r. The
flow C → H (conversion) is fueled by the perception of the delation risk that we simply
quantify by 〈o〉. However, only pairwise social contacts C → H determine the other two
flows, say, corruption flow at an infection rate fHCα and delation flow at a delation rate
fCOβ .

With this simple compartmental model [10,292], the population is divided
into three possible states, say, H (honest),C (corrupt), and O (out of society)
with flows among them. In this setting, corrupt behavior is not assumed to
be a greedy strategy in a population game dynamics but a simpler general
formal entity, an infectious state, that nevertheless allows a game-theoretical
perspective. This can be seen from the consideration that what makes a
behavior spread socially to the point of becoming endemic is the likelihood
it is copied, transmitted, imitated, or diffused following any game dynamics
perspective [293, 294] that might be found more appropriated, e.g. adaptive,
best response, evolutionary, etc.

These three “compartments” contains the corresponding fractions, say, 〈h〉,
〈c〉, and 〈o〉, in the population. In this work, we attempt to capture some
essential ingredients such as the contagion of corrupt behaviors to honest
agents, the delation of corrupt individuals by honest ones, and the warning
to wrongdoers (fear like that triggers the conversion of corrupt people into
honesty).

Let us start with formulating the sensible hypothesis on the population
flows among compartments to complete the definition of the compartmental
flow model. That means to postulate the microscopic dynamics. Our modeling
assumptions are summarized in the next items, where general structured (in
terms of social contacts) populations are being considered:
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(i) Our first assumption is that corruption is a socially infective event: Hon-
est individuals become corrupt only by infection from their corrupt neigh-
bors, at an infection rate fHCα , that is a function of their local microstates.
This assumption for the corruption flow, H → C formalizes the corrupt
behavior as an infective state, a certainly simpler and less elaborate con-
cept than that of a game strategy, without excluding its consideration,
because it is the (social) infectious power of a strategy that allows its
diffusion. It is this aspect of corrupt behavior that this assumption tries
to capture in its simplest form.

(ii) We also assume that the flow C → O is exclusively the result of the
delation of corrupt individuals by their honest neighbors, at a delation
rate fCOβ , also a function of their local microstates. Note that this flow is
not the consequence of, e.g., administrative inspection or police investi-
gation; Only interaction with honest agents is the source of this C → O
flow that we call delation (or punishment) flow. Also note that from the
honest agents perspective, delation is not optional. This avoid the need
of introducing subtypes of agent states.

(iii) Our third assumption is that, at a given constant rate r, the O individuals
are reinserted into social population as H individuals. The flow O → H
is called reinsertion flow.

(iv) Finally, we consider a fourth flow, the conversion flow C → H, which
simply incorporates the warning-to-wrongdoers effect of social punish-
ment. The rate at which this flow takes place is controlled by the social
perception of risk to be delated, which we simply quantify as the fraction,
〈o〉, of population in the O compartment.

It is worth emphasizing that corruption and delation flows are the only
ones that have their origin in the pairwise interactions among individuals of
the socially active population. Both the reinsertion and conversion flows do
not: individuals in the O state are socially inactive (i.e., noninteracting), and
we only use its fraction (in the fourth assumption above, when implementing
the warning-to-wrongdoers effect of social punishment) as the only available
information for the estimation of the level of risk that corrupt people perceive.
In other words, an O agent does not influence the eventual conversion of its
corrupt neighbors more than it does on other far away corrupt agents. How-
ever, it is a sort of (temporary) hole in the network of contacts among agents.
In Fig. 2.18 for a chart flow graphical representation of the model, where our
assumptions for the flow between any two compartments are illustrated.
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To seek for generality, we assume that the interactions (corruption and
delation) among socially active agents define transition probabilities for the
corresponding compartmental flows through some functions fα (for corruption
of a honest agent) and fβ (for the delation of a corrupt one), whose argument
is the configuration of agent states in the local neighborhood of the focal agent
i, say {σj(i)}, where σj (j = 1, . . . , k(i)) denotes the state (H, C, or O) of the
neighbor j of i, and k(i) is the degree, i.e., the number of neighbors, of the
focal agent i.

Due to our assumption on the corruption flow that it originates exclusively
from interaction among individuals in different (H,C) states, the function
fHCα (i, {σj}), which gives the transition probability H → C, has to satisfy:

fHCα (i, {σj}) = 0 if σj 6= C for all j = 1, . . . k(i) . (2.123)

A similar consideration on the delation flow C → O leads to

fCOβ (i, {σj}) = 0 if σj 6= H for all j = 1, . . . k(i) . (2.124)

In addition, for the sake of simplicity, we will use fα and fβ for the notation
of infection rate and delation rate instead of those with superscripts HC and
CO later. A simple scheme for Monte Carlo discrete-time simulations of the
dynamics (see section 2.1.3) is the following: At each time step (t), we choose
uniformly at random an agent i. Then, we have the following:

(i) If σi(t) = H, then σi(t + 1) = C with probability fα, a (yet unspecified)
function of the local configuration around i. The agent remains honest
with probability 1− fα.

(ii) If σi(t) = C, then σi(t+1) = H (warning to wrongdoers effect) with prob-
ability 〈o〉, the fraction of population in O state. Then if not converted
(probability 1− 〈o〉), the corrupt agents will be delated to O state with
transition probability fβ, a (yet unspecified) function of the local config-
uration around i. Thus, agent i is still corrupt at t + 1 with probability
(1− 〈o〉)(1− fβ).
Note that an equally acceptable scheme would try first delation, then
conversion, which produces different transition probabilities for C → H
and C → O. We will comment on this later on.

(iii) If σi(t) = O, then σi(t+1) = H with conditional probability r, remaining
out with probability 1− r.
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One can associate to this dynamics on agents’ state configurations, a non
linear Markov process in the following way [110,111]. Assign to each agent i,
and at time t, a real vector ~ρ(i; t) whose components are the probabilities (at
time t) that the agent is in each of the possible states, namely ρh(i; t), ρc(i; t),
ρo(i, t). The transition probabilities (i)-(iii) introduced above define a non-
linear Markov process for the time evolution of these probabilities ~ρ(i; t+1) =
Q ~ρ(i; t), where

 1− fα 〈ρo〉 r
fα (1− fβ)(1− 〈ρo〉) 0
0 fβ(1− 〈ρo〉) 1− r


is the matrix representation of Q, and 〈ρo〉 is the fraction of population in O
state, i.e.

〈ρo〉 = N−1∑
i

ρo(i) . (2.125)

Note our choice of relative order of trial, conversion before eventual delation,
in the second column of the matrix Q above written. The alternative choice
would correspond to Qhc = (1−fβ)〈ρo〉 (instead of 〈ρo〉) and Qoc = fβ (instead
of fβ(1− 〈ρo〉)), the rest of elements being unchanged.

To complete the model formal setting, one has to specify the functions fα
and fβ, for the conditional probabilities of corruption and delation, respec-
tively. They define the specific social interactions postulated, and also incor-
porate the information on the social network, that we assume it is encoded
in the neighborhood matrix, whose i-th row tells us who the k(i) neighbors of
the agent i are. The following choice mimics the familiar implementation of
infective interactions in Monte-Carlo simulations on compartmental epidemic
models as SIS, SIR, etc.:

fα(i, {σj}) = 1−
k(i)∏
j=1

(1− αδσj ,C) , (2.126)

fβ(i, {σj}) = 1−
k(i)∏
j=1

(1− βδσj ,H) , (2.127)

where δx,y is the Kronecker’s delta. The rationale for (2.126) is that a honest
focal agent contacts all its corrupt neighbors, and in each one of these con-
tacts, the probability of infection is α. Similarly, for (2.127) a corrupt focal

97



2. Dynamical Processes on Networks

Figure 2.19: Schematic visualization of the simplex S2 and flows directions. The
directions of the contributions in the simplex S2 (left panel) for each of the four compart-
mental flows to the (flow vector) ~F field is shown in right panel. The arrows on the face
boundaries of the simplex visualize that there is no flow outwards, and thus the simplex is
an invariant set, as required by consistency. If one excludes the conversion flow, the model
(HCO) becomes a (non-standard) version of the epidemic SIRS model.

agent contacts all its honest neighbors, and in each contact is delated with
probability β.

For the associated Markov process of an honest agent i, the transition prob-
ability, fα is related to the current probability of its neighbours j ∈ [1, k(i)]
who are in the corrupt state, i.e., ρc(j). Similarly, the other transition prob-
ability fβ is transformed according to the previous definition. Therefore,
Eqs. 2.126 and 2.127 translate into

fα(i, {~ρ(j)}) = 1−
k(i)∏
j=1

(1− αρc(j)) , (2.128)

fβ(i, {~ρ(j)}) = 1−
k(i)∏
j=1

(1− βρh(j)) . (2.129)

Although in the computations shown below we have used these specific
forms for fα and fβ, other alternative forms, based on some different corruption
and delation schemes are, no doubt, of potential interest. The microscopic
mechanisms of “becoming corrupt” should inform the appropriate functional
form of fα, as much as those of “delating corrupts” must inform that of fβ.

For the choice made in equations (2.126,2.127), or (2.128,2.129), and if
the conversion flow channel is suppressed (see Fig. 2.19 and section 2.4.2 be-
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low), the model admits to be interpreted (by the identifications S ≡ H, I ≡
C, R ≡ O) as a kind of SIRS model where the recovery rate is mediated by
the interaction of the susceptible neighbors with the infected agent, as if the
recovery from infection would crucially depend on the assistance from healthy
neighbors [295].

2.4.1 Analysis under mean-field approximation

In the language of population dynamics, well-mixed population approximation
is the usual term employed for revealing the basic mechanism of the corruption
dynamics. In the corruption model, homogeneity of both field (agent state; H,
C or O), and structure of contacts (environment) is the essential assumption
of a mean-field (MF) approximation.

1. Mean-field dynamics

If every agent behaves as the average of all (“average” agent), i.e.: ~ρ(i) =
〈~ρ〉 (for all i) for the associated Markov process, and the neighborhood of size
k(i) = k is “indifferent” regarding i, so that it can be selected at random
among the population at each time step (well-mixed population assumption),
one arrives to the following mean field discrete time evolution equations for
the probabilities ρh, ρc, ρo (or alternatively, for the compartmental fractions
(〈h〉, 〈c〉, and 〈o〉):

~ρ(t+ 1) =

 1− fα ρo r
fα (1− fβ)(1− ρo) 0
0 fβ(1− ρo) 1− r

 ~ρ(t) ,

where suitable changes (see paragraph just below equation (2.125)) in the
second column of the matrix have to be made for a different order of “trial for
flow” out from the C compartment.

Due to the normalization constraint, ρh + ρc + ρo = 1, the mean field
discrete time dynamics is a non linear two-dimensional map of the simplex
S2 (i.e., 0 ≤ ρh, ρc ≤ 1, ρh + ρc ≤ 1) onto itself. This simplex is visualized
on the left panel of Fig. 2.19, as the triangle defined by the vertices (H ≡
(1, 0), C ≡ (0, 1), O ≡ (0, 0)), in the (ρh, ρc) plane (say, ρh = 1, ρc = 1, ρo = 1,
respectively).

The associated two-dimensional flow (continuous time dynamics) is defined
by the velocity (2d vector) field on the simplex ~F (~ρ),

~F (~ρ) = ~̇ρ
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whose components are:

Fh(~ρ) = −(fα + r + ρc)ρh + (r + ρc)(1− ρc)
Fc(~ρ) = (fα + (1− fβ)ρc)ρh + ((1− fβ)ρc − 1)ρc (2.130)

In the right panel of Fig. 2.19, we indicate the direction of the contribution
to the total flow vector field on the plane (ρh, ρc) of each of the four compart-
mental flows. The preliminary step of the analysis is to check that the simplex
is an invariant set of initial conditions, as obviously required by consistency.
Indeed, see left panel of Fig. 2.19, one easily realizes that

(i) On the hypothenuse of the simplex, where ρh+ρc = 1, both the reinsertion
and the conversion flow are null (ρo = 0); the corruption flow is co-linear
to this boundary, and the delation flow points vertically inwards.

(ii) On the vertical (ρc)-axis, where ρh = 0, both the delation and the cor-
ruption flows are null; both the non-zero remaining flows point inwards.

(iii) On the horizontal axis, where there are no corrupt people, only reinsertion
flow is non-zero, which is co-linear to this boundary, and points towards
the full honesty corner of the simplex, with the proviso that r > 0, the
generic case.

From now on in this section we will consider the generic case (r > 0)
where reinsertion flow does not vanish. Also, we restrict the analysis to one-
dimensional functions fα(ρc) and fβ(ρh). This simplifying restriction amounts
to saying that, e.g. the probability that a honest agent becomes corrupt at
time t only depends on the agent contacts with corrupt agents, and its contact
with others have no influence on its corruption.

It is important to realize that a direct consequence of the model assump-
tions, namely that infection and delation flows originate exclusively from agent
interactions, is that the functions fα and fβ have to be such that fα(ρc = 0) =
0 (i.e., no corruption flow without corrupt agents) and fβ(ρh = 0) = 0 (no
delation flow without delators). Indeed this has been implicitly used in the
previous simple vector field analysis, when we considered in item (ii) above
that delation flow was null when ρh = 0, and in item (iii) that corruption flow
vanished at ρc = 0.

Now we look for possible existence of boundary fixed points. From the
previous analysis, they can only be located at corners. While ρo = 1 (i.e. (ρh =
0, ρc = 0), the origin), is a fixed point only in the limit r → 0, when reinsertion
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flow vanishes, the two other corners of the simplex, say full honesty (ρh = 1),
and total corruption (ρc = 1), are always fixed points of this dynamics (i.e.:
zeroes of the field ~F (~ρ)), irrespective of the parameter values. These are the
only fixed points on the simplex boundary.

Let us now analyze, in the linear regime of perturbations, the stability of
these corner fixed points, by looking at the “restoring forces (flows)” induced
by perturbations.

ρh = 1 : The full honesty cornerH, provided r > 0, is clearly stable against a small
increase, δρo, in the population fraction of O compartment, for it just
induces a (stabilizing) reinsertion flow. However, a small perturbation δρc
generates an infection flow fα(δρc) ' f ′α(0)δρc, which unless overcome by
the (also induced by perturbation) delation flow fβ(1)δρc, would render
unstable the full honesty state. In other words, the full honesty state is
a local attractor of (nearby) trajectories provided the following stability
condition holds:

f ′α(0) < fβ(1) . (2.131)

Note that the rate r of reinsertion has no influence on this stability condi-
tion. Only the balance among corruption and delation flows determines
the instability of the full honesty state, because inactivity (δρo) fluctua-
tions induce restoring flow, and have no linear effects on the instability
driving this corruption transition.

ρc = 1 : Regarding the full corruption corner, also for r > 0, a small perturba-
tion of component δρh generates a restoring corruption flow fα(1)δρh,
which, to keep this fixed point stable, has to overcompensate the sum
of the (destabilizing) delation flow fβ(δρh) ' f ′β(0)δρh, and conversion
flow δρo × 1 ' fβ(δρh)/r, generated by perturbation. Thus, the linear
stability condition for the total corruption is

(
1 + 1

r

)
f ′β(0) < fα(1) . (2.132)

Note that now, the balance corruption/delation is interfered by the in-
fluence of ρo, which helps small honest fluctuations to further develop.
We see that the stability condition of the full corruption state depends
on the rate r of reinsertion, via the conversion flow induced by linear
perturbation, and then this honesty transition is not exclusively driven
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by agent-agent interactions, but also by the (self-consistent, global field)
value of the fraction of agents in O state.

Here, we use a linear approximation to the competing flows that a generic
small fluctuation induces, i.e., by analyzing the linear response to generic fluc-
tuations. In general systems of differential equations this physically appealing
approach is rarely doable in such a simple way. A more formal, and easier
to generalize, method of analysis of a fixed point is provided by the spectral
analysis (eigenvalues and its associated eigen-subspaces) of the Jacobian ma-
trix of the flow at this invariant point. This matrix is the linearized flow in the
tangent space of the fixed point. We will use it here to show that both tran-
sitions, corruption and honesty, are unaffected if the relative order or priority
of channels (delation and conversion) flowing out from the C compartment is
reversed.

In the channels’ priority scheme used before, the trial for conversion is prior
to delation, where from the velocity field, ~F (~ρ) = ~̇ρ, is given by equations
(2.130), while if conversion is conditional on evading delation, the correspond-
ing equations of motion are slightly different:

ρ̇h =− (fα + r + (1− fβ)ρc)ρh
+ (r + (1− fβ)ρc)(1− ρc)

ρ̇c = (fα + (1− fβ)ρc)ρh + ((1− fβ)ρc − 1)ρc (2.133)

The Jacobian matrix, at a point (ρh, ρc) in phase space is defined as

J(ρh, ρc) =
 ∂ρ̇h(ρh,ρc)

∂ρh

∂ρ̇h(ρh,ρc)
∂ρc

∂ρ̇c(ρh,ρc)
∂ρh

∂ρ̇c(ρh,ρc)
∂ρc

 . (2.134)

Though at an arbitrary point of the simplex the Jacobian matrices of the
flows (2.130) and (2.133) are generally different, a direct calculation shows
that at the full honesty corner, (ρh = 1, ρc = 0), both are equal:

JH =
(
−r −r − f ′α(0)
0 f ′α(0)− fβ(1)

)
.

Being this matrix triangular, the eigenvalues are just the diagonal elements,
λH1 = −r, and λH2 = f ′α(0) − fβ(1). The H corner is stable whenever both
eigenvalues are negative, thus requiring the inequality f ′α(0) < fβ(1), as we
already know.
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At the full corruption corner, the Jacobian matrices of the flows (2.130)
and (2.133) are also equal:

JC =
(
−r − 1− fα(1) −r − 1
fα + 1− f ′β 1

)
.

The eigenvalues of JC are the roots of the characteristic polynomial λ2 −
λT + D, where T = Tr(JC), and D = Det(JC) are respectively the trace and
the determinant of the Jacobian matrix, explicitly given by

T = −r − fα(1) < 0 , D = rfα(1)− (r + 1)f ′β(0) . (2.135)

Thus, the stability of the fully corrupt state requires that D > 0, that is(
1 + 1

r

)
f ′β(0) < fα(1) .

We should note that the irrelevance of the priority of channels out from
C regarding the onset of stability of both, H and C, corners, by no means
imply that in the parameter region where the attractor is an interior point
of the simplex, this mixed population state is unaffected by the chosen prior-
ity; our numerical investigations clearly show that the surfaces of asymptotic
equilibrium, ~ρ(α, β, r) are (in general, slightly) different for different choices.

In the final stage of our search for absorbing states of the dynamics, we pay
attention to the ~F field nulclines, i.e. the loci where each of its components
vanishes, Fh(~ρ) = 0 and Fc(~ρ) = 0, given explicitly by equations (2.130). An
interior fixed point will exist whenever these loci intersect in the interior of
the simplex.

Fh = 0 : The equation of the Fh nulcline is

− (fα + r + ρc)ρh + (r + ρc)(1− ρc) = 0 . (2.136)

Note, in the first place, that this locus is independent of fβ, because the
delation flow leaves ρh unchanged; next, one quickly convinces oneself
that it contains both C andH corners. Finally, one realizes that, provided
fα is independent of ρh, equation (2.136) defines, inside the simplex, a
unique function ρc(ρh) whose graph joins those corners.

Fc = 0 : The Fc nulcline satisfies the following equation

(fα + (1− fβ)ρc)ρh + ((1− fβ)ρc − 1)ρc = 0 . (2.137)
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One easily realizes that the horizontal axis, ρc = 0 belongs to this set.
This is one of the (curve, in general) branches that are solutions of this
nonlinear implicit equation. The rest of them must solve for the equation
obtained by dividing (2.137) by ρc:

(fα/ρc + (1− fβ))ρh + ((1− fβ)ρc − 1) = 0 . (2.138)

It is also straightforward to check that the C corner always belongs to
some of these branches. Another simple general result is the following.
There is always one of these branches that crosses the horizontal axis.
The argument is simple if one assumes that fα is an analytic function
of ρc at 0+. By keeping second order terms in the power expansion of
fα(ρc) ' f ′α(0)ρc + (1/2)f ′′α(0)ρ2

c , one obtains the following (nonlinear)
approximation to the solution of (2.137) close to the horizontal axis:

ρc = 1− (f ′α(0) + 1− fβ)ρh
1− fβ + (1/2)f ′′α(0)ρh

, (2.139)

which intersects ρc = 0 at the abscissa value ρh = ρ∗h, the solution of the
nonlinear equation

(f ′α(0) + 1− fβ(ρ∗h))ρ∗h = 1 . (2.140)

Whether the curve branch of the Fc nulcline that intersects the horizontal
axis at ρ∗h is the same one that passes through the C corner, or it is a
different branch, both are possible situations (conditional to the specific
functions fα and fβ). In fact, we will show numerical examples of both
situations below, for a single one-parametric functional form of them
(equations (2.143,2.144) below).

The stability of the states of full honesty and full corruption is closely tied to
the nulclines’ geometrical configuration around them. Indeed, using (2.131)
we easily conclude that the stability condition of the full honesty corner is
equivalently expressed as “ρ∗h is not in the simplex”, where ρ∗h is the intersection
of the curve branch of the Fc nulcline with the horizontal axis, defined by
(2.140) above.

H corner is unstable ≡ ρ∗h < 1 , (2.141)
that is to say, the difference in relative position of Fh and Fc nulclines (from
the fixed point perspective) determines the stability of the full honesty state.

In a similar, though geometrically very different, way one can see that if
the slope of the curve branch of the Fc nulcline at the C corner is lower than
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the slope of the Fh nulcline, i.e.

1 + fα(1)− f ′β(0) > 1 + fα(1)
1 + r

, (2.142)

then the C corner is stable, see equation (2.132), and viceversa. Again, the
change of the relative position of nulclines at C marks the instability of the
full corruption state.

In the next subsection we show numerical and analytical results for the
phase portraits and phase diagrams, for the particular choice, inspired by
epidemic analogy, that we made above for the flows originated from social in-
teractions C−H (2.126,2.127,2.128,2.129); the expressions for the conditional
probabilities fα and fβ in the mean field approximation are:

fα(k, ~ρ) = 1− (1− αρc)k, (2.143)
fβ(k, ~ρ) = 1− (1− βρh)k . (2.144)

It should be kept in mind the “epidemic”, or “contact interaction”, charac-
ter of this choice for both transition probabilities, corruption and delation. On
one hand, the knowledge from closely related epidemic models can be capital-
ized on here, while on the other, the results that we analyze could plausibly be
of use in some epidemiology contexts of potential interest, wherever recovery
needs assistance from susceptible neighbors.

2. Mean field phase portraits and diagrams

For the particular contact interaction functions (2.143,2.144), the instabil-
ity of the full honesty state, from equation (2.131), occurs at the value of the
(infection) corruption rate αc:

αc(β) = 1− (1− β)k
k

, (2.145)

for all values of the reinsertion rate r (i.e., it is independent of this parameter
value). This value of the infectivity power of corruption is the benchmark
for the appearance of observable corruption, under the mean field, well-mixed
population, assumptions. Also, from equation (2.132), the instability of the
state of full corruption occurs at a value βc of the delation rate given by

βc(α) =
(

r

1 + r

) 1− (1− α)k
k

. (2.146)

From (2.145) and (2.146), it is easily seen that the stability regions, in
the (α, β) parameter plane, of corner fixed points (H and C) do not overlap,
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Figure 2.20: The nullclines Fh = 0 (red line) and Fc = 0 (yellow line) with r = 0.5.
The infection rate is given as α = 0.1, 0.5. The delation rate is set as β = 0.1, 0.5, 0.9. In
each of plane, color level used to represent the numerical value of the flow.

meaning that there is neither bi-stability region in the phase diagram of the
model, nor hysteresis behavior. In other words, no discontinuous change full
C - full H can occur by tuning a model parameter, for our choices (2.143)
and (2.144) of fα and fβ. In the region of the parameter plane (α, β) where
both fixed points are unstable, an interior (stable) fixed point ~ρ(r, α, β) is the
unique global attractor of phase space flow. By no means this conclusion is
forcefully valid for more general choices of the corruption, fα, and delation, fβ,
transition probability functions, for multiple interior nulclines crossing cannot
be discarded in general cases.

In Fig. 2.20, we show the phase portraits for a reinsertion rate r = 0.5, and
values of α = 0.1, 0.5, and β = 0.1, 0.5, 0.9. Arrows indicate the local direction
of the ~F field, the flow, while its modulus is color encoded. The Fh nulclines
are plotted in red color; one sees that they are independent of β, and that
they deviate away from the simplex hypothenuse for increasing values of α.

The branches of the Fc nulclines are plotted as yellow lines. Note that the
horizontal axis is always one of them. When no other branch is visible (as
for α = 0.1 and β = 0.5, 0.9), meaning that ρ∗h > 1, the full honesty state
H is stable, and it is the global attractor. For the other cases shown in Fig.

106



2.4. Another Application of Compartmental Models

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

H

α

β

ρh

β

α

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

C

�

�

C

�

�

�
c

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

O

�

�

O

�

�

	
O

Figure 2.21: Visualizations of the equilibrium surfaces. We plot surfaces
ρm(α, β, r = 0.5), m = h, c, o, on the (α, β) parameter plane with a constant value of
the reinsertion rate r = 0.5. The sections of these surfaces at cutting planes corresponding
to values of α = 0.2, 0.5, 0.8, 1 and β = 0.5, 1., are also plotted to help a three-dimensional
mental image. The stability regions of full C and full H states are red colored.

2.20, the trajectories evolve asymptotically to the interior fixed point where
the Fh nulcline and a curve branch of the Fc nulcline intersect. While for
β = 0.1 and α = 0.1, 0.5 the yellow curve passes through the full corruption
corner, for α = 0.5 and β = 0.5, 0.9 it does not. In these cases, there is a
different curve branch of the Fc nulcline, passing through the C corner, from
outside the simplex. The transition between these two qualitatively different
phase portraits of the entire plane (ρh, ρc) occurs when the two yellow curve
branches “anti-cross” far outside the simplex; this is a bifurcation on the whole
plane phase portrait which has no qualitative effects (no local influence) on
the interior of the simplex.

In the three panels of Fig. 2.21 we try to summarize the effect of parametric
variation of α and β (in the mean field dynamics) on the mixed population
absorbing state, through perspective visualizations of the compartmental frac-
tions at the equilibrium (attractor) for a fixed arbitrary value of r = 0.5, i.e.,
of the surfaces ~ρ(α, β, r = 0.5) of the asymptotic equilibrium. The regions
colored in red in the three panels of this figure correspond to the respec-
tive regions of stability of the full honesty (α ≤ αc(β)) and full corruption
(β ≤ βc(α)) absorbing states, where the transition lines are given by (2.145)
and (2.146). We hope that the simple inspection of this figure is more in-
formative than lengthy and wordy explanations of the general trends of the
model behavior.

2.4.2 Comparison with a SIRS-type model

Here, leaving aside the fourth of model assumptions we proposed before, we
will take out from the model the conversion flow (warning to wrongdoers
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effect). The number of flow channels is thus reduced from four to three
(contagion, delation and reinsertion), and thus the “flow chart” between the
three compartments is now that of a SIRS model, with the identifications
S ≡ H, I ≡ C, and R ≡ O.

While in the standard SIRS model the rate of recovery (I → R) is a con-
stant, in this variant of the SIRS model the recovery of an infected individual
is only possible through contact interaction with its susceptible neighbors. A
plausible epidemic situation leading to it, may be e.g., one in which the recov-
ery from disease requires, sine qua non, imperatively the assistance (care) from
relatives [295]. Though the consideration made above may certainly add some
interest in the following results by themselves in plausible epidemic contexts,
our main purpose in this subsection is to make a precise assessment on the
warning to wrongdoers effect in the HCO model, by revealing the aspects on
which its presence makes a difference, and how much this difference amounts
to.

The mean field analysis goes along the same lines as explained previously,
and one arrives to the following 2d flow on the simplex:

Fh(~ρ) = −(fα + r)ρh + r(1− ρc)
Fc(~ρ) = fαρh − fβρc (2.147)

Both ρh = 1 and ρc = 1 corners are fixed points, whose linear stability
analysis we now summarize. The stability condition for the full honesty corner
is the same as it was in the presence of “warning to wrongdoer” (conversion
flow):

f ′α(0) < fβ(1). (2.148)
This is an expected result, because we already saw previously that the con-
version flow has no influence on this transition, which is only determined by
the competition of corruption and delation flows generated by linear pertur-
bations.

On the other hand, now the stability condition of the total corruption state
no longer depends on the reinsertion rate r:

f ′β(0) < fα(1). (2.149)
The stability of both homogeneous population states is unaffected by the value
of the reinsertion (R → S) rate in this SIRS model. In other words, the rate
r of reinsertion is an irrelevant parameter regarding both, corruption and
honesty, transitions.
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Figure 2.22: The nullclines Fh = 0 (red line) and Fc = 0 (yellow line) with r = 0.5
in the SIRS model. The infection rate is given as α = 0.5, 0.9, while the delation rate is
β = 0.5, 0.9.

We first pay attention to the nulclines (see Fig. 2.22 for examples). The
Fh nulcline connects the corners C and H, is independent of fβ. Indeed, it
is qualitatively very similar to that of the HCO model. On the contrary, the
Fc nulcline (whose relevant branches are plotted as yellow lines in Fig. 2.22)
shows important differences. The equation of this nulcline is

fβρc = fαρh . (2.150)

Two branches of this nulcline are easily obtained, namely ρc = 0 (horizontal
axis) and ρh = 0 (vertical axis). Note that the latter is incompatible with the
warning to wrongdoers (or conversion) flow, and thus it is absent in the HCO
model. The rest of branches of this nulcline must solve for the equation

fβ
ρh

= fα
ρc
. (2.151)

For the infective type of fα and fβ functions in Eqs. (2.143) and (2.144),
this equation has a useful symmetry: It is invariant under the simultaneous
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interchange α ↔ β and ρc ↔ ρh. This symmetry of the Fc nulcline is illus-
trated in Fig. 2.22. A simple consequence of this symmetry is that if α = β,
then the Fc nulcline is ρc = ρh, the main diagonal. Furthermore, ρh ≤ ρc if
and only if β ≤ α. We will later on discuss some other features of the model
that are associated to this symmetry.

After (2.149) and (2.148), the transition lines, βc(α) and αc(β)

αc(β) = 1− (1− β)k
k

(2.152)

βc(α) = 1− (1− α)k
k

(2.153)

are mirror symmetric around the line α = β in the (α, β) plane, and as we
already remarked, they do not change with the value of r. However, when the
attractor is an interior point of the simplex, and thus the flow through the
three channels is, at equilibrium, the same:

fβρc = rρo = fαρh , (2.154)
the reinsertion flow rate r regulates the S − I (H − C) balance. In particular:

• For r = 1, meaning that the recovery time is just one time step (the
shortest possible time scale), we are as closer as the model can be to the
limit of zero (instantaneous) recovery time.
In the strict instantaneous recovery limit the R ≡ O state ceases to exist,
it just disappears; the feasible region is in this limit case reduced to the
hypothenuse (ρo = 0) of the simplex, and the model becomes a variant
of the (kinetic two-states) SIS model, with I → S rate mediated by S.
For our choice of the functions fα and fβ there is now a strict symmetry
of the dynamics (equations of motion) under simultaneous interchange of
parameters α↔ β and labels h↔ c. Note that though the existence of R
(O) state breaks this symmetry, the broken symmetry is still manifest in
the Fc nullcline symmetry discussed above. However, even when recovery
takes just one step of time, the instantaneous fraction ρo of inactive in-
dividuals does not affect infected (do not delate corrupt) neighbors, and
the balance infection-recovery is biased towards infection.

• For 1 > r > 0, the larger the characteristic stay time, 1/r, at the O state
the easier the infective state can spread.

• For r = 0 the model becomes a variant of the SIR model.
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We conclude that the reinsertion rate r, though being irrelevant regarding
the onset of instabilities that operate at both, corruption and honesty, tran-
sitions, is a determinant factor regarding the stationary values of the com-
partmental fractions of the SIRS model when the dynamic equilibrium is a
mixed population macro-state. Finally, we pay now a closer attention to the
symmetry that a unique choice of the functional form for the corruption and
delation transition probabilities, fα and fβ, induces on this version of the SIRS
model: if one assumes that both transition probabilities are given by a unique
function g(x, z) in the sense that fα(ρc) = g(α, ρc) and fβ(ρh) = g(β, ρh), a
general simple argument concludes that in the mixed population stationary
state regime of this model, the fractions (ρh, ρc) of corrupt and honest people
are such that

ρc(α, β) = ρh(β, α) and ρh(α, β) = ρc(β, α) , (2.155)
in other words, the equation of stationary state ~ρ(α, β) is symmetric under the
simultaneous interchange α ↔ β and ρc ↔ ρh. This might be at a first sight
unexpected, because the equations of motion, and then the phase portraits
(see Fig. 2.22), are by no means invariant. In the extent that there is no fun-
damental reason why delation and corruption transition probabilities should
be described by the same function, this is an accidental (non-fundamental)
symmetry. As already stated, both models, HCO and SIRS, exhibit the same
corruption transition lines:

αHCOc (β) = αSIRSc (β) , (2.156)
for all values of β, because the conversion flow has no influence on the onset
of corruptive fluctuations. On the contrary, honest instabilities in the full C
state are enhanced by the warning to wrongdoers, thus shrinking the full C
stability region, see (2.146) and (2.153), in the HCO model:

βHCOc (α) < βSIRSc (α) , (2.157)
for all values of α > 0.

As expected, removing the conversion flow closes an input channel of the H
compartment, and favors higher levels of corruption, thus leading to a decrease
of the fraction of honest agents in the SIRS model with respect to the HCO
model.

For a comparison of both models in their mixed population equilibria
regimes, we show in Fig. 2.23 the mean field predictions for the fraction of
corrupt agents ρc. The upper panels on this figure show the graphs of ρc(α) at
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Figure 2.23: Fraction of C agents as a function of α and β. Top: Fraction of corrupt
agents as a function of the corruption rate ρc(α) fixing the delation rate to β = 0.1 and
β = 0.9. Bottom: ρc(β) for α = 0.1 and α = 0.9. The mean field predictions for SIRS
model are represented with dashed lines whereas solid lines correspond to the HCO model.
The reinsertion rate is fixed to r = 0.1 (Left panels) and r = 0.9 (Right panels).

several fixed values of β (0.1, 0.9) and r (0.1, 0.9). Beyond the transition point
αc, one could intuitively expect that the fraction of corrupt agents is always
higher for the SIRS model due to the lack of the conversion flow forcing cor-
rupt agents to recover honesty. This holds for low β values since the evolution
of corruption is clearly much more boosted in the SIRS model and, as a re-
sult, the system undergoes the second transition towards a full corrupt society
much before than for the HCO model. Interestingly, for very high values of the
delation flow β, this phenomenon is reversed as clearly seen on the curves for
β = 0.9 (upper panels), where ρHCOc (α) > ρSIRSc (α). To heuristically explain
this surprising result, we must realize that, for β values very close to 1 (and
in the absence of conversion flow), corrupt agents are very likely to be delated
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Figure 2.24: Fraction of O agents as a function of α and β. Top: Fraction of agents
in Ostracism as a function of the corruption rate ρo(α) fixing the delation rate to β = 0.1
and β = 0.9. Bottom: ρo(β) for α = 0.1 and α = 0.9. The mean field predictions for SIRS
model are represented with dashed lines whereas solid lines correspond to the HCO model.
The reinsertion rate is fixed to r = 0.1 (Left panels) and r = 0.9 (Right panels).

and go to ostracism; this is a dynamically inactive state, and thus immune to
infection, thus preventing the diffusion of corruption for a typical reinsertion
time r−1. In this sense, the existence of the warning to wrongdoers in the
HCO model partially prevents the emergence of ostracism, thus facilitating
the unfolding of corruption. Obviously, this effect is reinforced as r decreases,
for it makes the staying time in the inactive state longer.

The lower panels on Fig. 2.23 show the graphs of ρc(β) at several fixed
values of α(0.1, 0.9) and r(0.1, 0.9). One sees there how the honesty transition
occurs at lower delation values for the HCO model, and the detrimental effect
on corruption of the warning to wrongdoers, provided the delation rate β is
not very large. Finally, the undesired effect of the warning to wrongdoers is
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observed for values of β close to maximum, when corruption better spreads
for the HCO model.

In Fig. 2.24 we show, for both models, the mean field predictions for the
fraction of agents out of active population, i.e. in the O compartment. The
upper panels in this figure show the graphs of ρo(α) at several fixed values of
β (0.1, 0.9) and r (0.1, 0.9). We see that close above the corruption transition,
α & αc(β), ostracism increases faster for the SIRS model than for the HCO
model, because in the latter converted corrupt agents can no longer be delated.
This trend is obviously overcompensated, at very low values of β, before the
SIRS transition to the full C state is reached for α < 1, because ρo should then
decrease to zero for the SIRS model, while the HCO model still remains in a
mixed population equilibrium. The graphs of ρo(β) represented on the lower
panels of Fig. 2.24 illustrate further this change of trend in the ρo evolution
between transitions, for α = 0.1. On the other hand, the comparison between
left (corresponding to r = 0.1) and right (r = 0.9) panels of this figure shows
the important effect of increasing the reinsertion rate on the ρo fraction at
equilibrium.

2.4.3 Validation of theoretical results

The theoretical analysis of the mean field equations for both HCO and modi-
fied SIRS dynamics has shed light into the interesting phenomena arising from
mechanisms which drive the presence of corrupt agents in the society. Some
of these phenomena are the existence of two critical transitions or the crucial
role that social interactions like delation or the warning to wrongdoers play
in the evolution of corruption. Here we aim at validating these theoretical
results by performing extensive Monte Carlo simulations on networked pop-
ulations. At this point, for the sake of simplicity, we consider homogeneous
networks (random regular networks or lattices) as the backbone for corruption
and delation processes. To carry out the simulations, we start with a 10% of
corrupt agents and we let the system evolve, following the microscopical rules
defined in Sec. 2.4.1, until the stationary state is reached. In this sense, to
reduce stochastic fluctuations, we compute the equation of (stationary) state
~ρ(α, β, r) by averaging them over 400 realizations.

Let us first analyze the evolution of the fraction of honest agents as a
function of both delation and corruption probabilities. For this purpose, we fix
the reinsertion flow to r = 0.5 and we represent the curves ρh(α) for several β
values and its counterpart. Regarding the topologies for the contact networks,
we make use of a RRN of N = 104 agents and 〈k〉 = 4 and a square lattice of
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Figure 2.25: Fraction of H agents as a function of α and β with HCO and SIRS
model. We calculate ρh, as a function of α and β, for Mean-field approximation (red solid
lines) and Monte Carlo simulations. Parameter r is fixed to 0.5 for all graphs. Simulations
are performed on random regular networks with 〈k〉 = 4 (black empty points) and lattice
networks (green filled points), whose size is N = 104. Top panels correspond to HCO model
and bottom ones to SIRS model.

N = 104 vertices with periodic boundary conditions. Fig. 2.25 contains the
comparison between theoretical predictions obtained via mean field equations
and the results yielded by simulations for both lattices and RRN. There we
confirm that the mean field theory developed above correctly predicts the
existence of the two aforementioned transitions: the first one related to the
destabilization of a honest population at αc(β) and the second one associated
with the irruption of honest agents in a totally corrupted society at βc(α).

Although we are able to reproduce most of the phase diagrams, some rele-
vant differences appear between theory and simulation, especially in the region
of the parameters space close to the full honesty corner. In particular, it be-
comes evident that the value αc is underestimated by our formalism. These
discrepancies are mainly rooted on two facts: the so-called “echo chamber”
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effect [138,141] and the influence of structural correlations [296–298]. On the
one hand, the “echo chamber” effect is caused by the reinforcement of agents
corruption from neighboring agents who have been previously corrupted by
them. On the other hand, the formalism here presented is constructed by ne-
glecting the possible dynamical correlations existing in the contact network.
However, the existence of strongly correlated agents can be of great impor-
tance for the evolution of the system, especially close to the transition points.
In particular, it has been shown recently that the presence of high-order struc-
tures like cycles or motifs tends to make the network more resilient to diffusion
processes [298]. In our case, this is reflected in Fig. 2.25 where it becomes clear
that spatially structured topologies (lattices) display a larger value of αc than
uncorrelated ones (RRN).

Interestingly, these structural correlations do not have any impact at the
full corrupt corner, since mean field equations accurately capture the value
of βc for both topologies. To explain this, we must realize that, apart from
the delation processes caused by local interactions with honest agents, corrupt
agents are also influenced by the warning to wrongdoers. This way, our hint
is that having access to information about the global state of the network
hinders the role of local interactions, thus giving rise to the same threshold
for both topologies.

To confirm this statement, we now remove this effect and perform Monte
Carlo simulations using the rules of the modified SIRS model. As observed in
Fig. 2.25 , the local nature of delation processes regains its relevance, leading
to a splitting of the thresholds βc(α) (see inset). This separation is much
smaller than for the former αc(β) splitting, given that the transition from a
full corrupt population to the honesty is not affected by any “echo chamber”
effect.

In section 2.4.1, we have motivated the use of a simple compartmental
population-flow model consisting of three states (compartments) and four flow
channels connecting them, as a highly stylized model for the social dynam-
ics of corruption, a punishable, and infectious, norm-violating behavior. The
model may also be viewed as an epidemic model, and thus one can capitalize
on recent advances in contagion dynamics in complex social nets. However,
two major differences respect to usual epidemic models are at work. First,
recovery from infectious state (delation) requires the interaction with suscep-
tible people in the local neighborhood, which might, however, be a plausible
situation in epidemics. Second, the conversion flow, implementing the warning
to wrongdoers effect of punishment, has no obvious counterpart in epidemic
contexts.
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The mean-field analysis reveals a phase diagram (in the three-dimensional
space of model parameters) with three generic absorbing states: (i) full hon-
esty, (ii) full corruption, and (iii) a mixed state with nonzero flow through all
the channels. There is no coexistence of stable absorbing states (no multista-
bility). The transition from full honesty to the mixed state is continuous, with
a linear increase of the fraction of corrupt population, and is not influenced by
the warning to wrongdoers. The transition from full corruption to the mixed
state is also continuous, and the fraction of honest people increases linearly,
as well; however, the warning to wrongdoers (wtw) plays a very important
role regarding the onset of honest instabilities. On the one hand, wtw reduces
the stability region of the full corrupt state. On the other hand, because the
rate of conversion flow is assumed to be the fraction of punished population
(not a local quantity), the mean-field prediction for the locus (a surface in the
parameter space) of this transition becomes exact for random and nonran-
dom regular (homogeneous) networks. Both features are in contrast with the
irrelevance of the wtw regarding the transition from full honesty to a mixed
state and the (network dependent) shift of the locus of this transition that we
observe in homogeneous graphs due to the presence of dynamical correlations
induced by the existence of higher-order motifs in the structure of the network.

2.4.4 Further results on multilayer networks

In the previous sections, social contagion dynamics of the HCO model have
been analyzed with simulations conducted on several simple networks which
are applied to the single layer. However, in view of recent studies on the
spread of social contagions, the complexity of network configurations and
the existence of multiple relations between agents should be taken into ac-
count [299, 300]. Here, we will focus on exploring the dynamics of honesty
and corruption activities on multiplex networks, where nodes connected by
interlayer links represent the same entity [47].

Fruitful results have been achieved in modelling multiplex networks and
exploring their structural properties [11,24]. As we described in section 1.3.2,
degree-degree correlations as well as the edge overlap between layers are two of
the main topological properties of multilayer networks. The effects on stability
of collective and dynamical behaviours on multiplex networks have been found
to be linked to both characteristics [301]. Those findings give us an insight to
explore their impacts on the dynamics of honesty and corruption behaviors.

Therefore, we extend the HCOmodel to a two-layer interdependent network
where different flows only occur on a specific layer. As shown in Fig. 2.26, we
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Figure 2.26: The schematic of the HCO model applied on a duplex system. (A)
The graphical representation of the HCO model. The four flows among three agents are
shown by the direction of the arrows. (B) The schematic of a duplex system. The agents
on the layer 1 are connected to themselves on the layer 2 by the dotted edges. The agents
with different colors in each layer represent the possible states they could be, i.e., H, C and
O, at a given time. The corruption flow, H → C, only takes place in the layer 1, while the
delation flow, C → O, only occurs in the layer 2. The reinsertion and conversion process
can be performed on the whole duplex system.

represent the schematic of the HCO model applied on a duplex network. The
system is made up of two undirected networks with N agents respectively on
layer 1 and 2, where the corresponding nodes in two layers are transformed
simultaneously. We assume that the corruption flow only takes place on the
first layer, which means the honest agents are “infected” only by the corrupt
neighbours, i.e., H → C on layer 1. The corrupt agents are particularly
delated by their honest neighbours of the network on layer 2, where delation
flow (C → O) occurs. The reinsertion flow and the conversion flow take place
on both two layers.

Hence, the corresponding transition probability of node i, where the state of
its neighbour j is denoted as σj(i), is defined based on the interactions among
agents in different H or C states. The functions fα(i, {σj}) and fβ(i, {σj})
supporting the implementation of corruption and delation flow have to satisfy:

fHCα (i, {σj}) = 0 if σj 6= C for all j where A1
ij = 1 (2.158)

fCOβ (i, {σj}) = 0 if σj 6= H for all j where A2
ij = 1. (2.159)

For the stochastic Monte Carlo simulations, we assume that the scheme is
implemented in the following way. The state of agent i at each time step t is
denoted as σi(t):
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(i) If σi(t) = H, then σi(t + 1) = C due to the corrupt neighbours of the
network on layer 1 with the transition probability fHCα . And the state of
agent keeps unchanged with the probability 1− fHCα .

(ii) If σi(t) = C, then σi(t + 1) = H with the probability 〈o〉, quantified
by the fraction of O individuals at this time step. If not turned into
H state with the probability 1 − 〈o〉, the corrupt agent will be delated
by the honest neighbours in the network on layer 2 with the transition
probability fCOβ . The corrupt agent remains its state with probability
(1− 〈o〉)(1− fCOβ ).

(iii) If σi(t) = O, then σi(t+1) = H with the probability r. The agent i holds
its state with probability 1− r.

In Monte Carlo simulations, transition probabilities fHCα and fCOβ (fα and
fβ for short) in Eqs. 2.126 and 2.127 are rewritten correspondingly:

fα(i, {σj}) = 1−
N∏
j=1

(1− αA1
ijδσj ,C) , (2.160)

fβ(i, {σj}) = 1−
N∏
j=1

(1− βA2
ijδσj ,H) , (2.161)

where, A1
ij and A2

ij are the adjacency matrix of the network in layer 1 and
layer 2, respectively.

It is worth to mention that in single-layer network (monoplex), the prob-
ability density function (p.d.f for short) of node degree is denoted as P (k),
while in duplex networks, the degree of nodes is a vector. Therefore, the p.d.f
is written as P (~k) (~k = (k1, k2)). The specific form for the p.d.f in each layer
is as follows:

P1(k) =
∑
k2

P (k, k2) , (2.162)

P2(k) =
∑
k1

P (k, k1) . (2.163)

In this work, we aim at understanding the impact of edge overlap and inter-
layer degree correlations on the evolution of honesty and corruption activities
on multiplex networks. To this end, we consider the role of edge overlap plays
on the uncorrelated and correlated duplex networks, respectively. Further-
more, we explore the effect of various values of edge overlap caused by the
correlated coupling on social dynamics.
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Figure 2.27: Phase diagrams for H individuals on scale-free duplex networks.
The fraction of H individuals in the stationary state as a function of A) corruption rate
α and B) delation rate β. The value of r is set to 0.5. The results obtained based on
Markovian process (dotted line) are compared with Monte-Carlo simulations with m = 0.1
and m = 0.9, performed on a duplex network composed of scale-free networks with γ = 3,
kmin = 2 (〈k〉 ≈ 3.5), N = 104 for each layer. The numerical results have been averaged
over 300 realizations.

1. Scale-free duplex networks

To build the uncorrelated duplex networks with desired values of edge over-
lap, m, we first generate a network with an arbitrary 〈k〉 for layer 1. Then,
we copy the network to layer 2 and rewire the edges with the probability
p = 1−m [50]. We first perform discrete-time simulations (see section 2.2.6)
on scale-free duplex networks with γ = 3, k = 2 (〈k〉 ≈ 3.5). The results
for the fraction of honest individuals as a function of α and β are shown
in Fig. 2.27. We find that the individual-based Markovian approach yields
the same results with different values of m. This is due to the fact that the
P (~k) remains the same as edge overlap changes. In addition, the predictions
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A B

Figure 2.28: Joint degree distribution for the MPC case and the MNC case.
The joint degree distribution on a duplex system made of scale-free networks with γ = 3,
kmin = 2 for (A) the MPC case and (B) the MNC case are visualized graphically in three
dimensions.

associated to the Markov process are basically consistent with numerical sim-
ulations. However, in the case of small values of α and β, there exist slight
differences in simulation results between different m close to the total honest
state (ρh = 1). It can be explained that the connection between nodes C
and H is quite important when approaching the full H state. Therefore, the
small m induced by rewiring many links greatly increases the probability of
disconnecting links C−H, delaying the transition of H individuals at the full
honesty corner when α and β are relatively small. Conversely, large transition
rates hinder those discrepancies, yielding same phase diagrams.

Taking into account of different patterns of degree-degree correlations be-
tween layers, we generate three representative correlated structures, maxi-
mally positive correlations (MPC ), maximally negative correlations (MNC )
and structure in between, namely MIX. In this case, we apply the approach
(see section 1.3.2) that allows to tune the level of interlayer degree correla-
tions. The detailed steps to generate a duplex system with an arbitrary joint
degree distribution are described as follows:

(1) Construct a scale-free network with desired parameters for layer 1. Copy
this network to layer 2.

(2) Sort the node list of the above-built network on layer 2 in the degree’s
descending order. Select two sets of nodes with a specific number (np)
from the degree-ordered node list for permutation.
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Figure 2.29: Phase diagrams for the MPC case and the MNC case. The fraction
of population in H state, ρh, obtained in the steady state, as a function of (A) α and (B)
β. Monte-Carlo simulations are performed on duplex networks with two extreme cases,
MPC and MNC, composed of scale-free networks with γ = 3, kmin = 2 (〈k〉 ≈ 3.5). The
numerical results are compared with those obtained from the associated Markov process.

(3) Permute the selected nodes. The metric, edge overlap m, is measured as
the number of repeated edges in both layers.

Through permuting different number of nodes, we can generate underly-
ing structures with three patterns of interlayer degree correlations mentioned
above. When the nodes in two degree sequences ranked as degree increases are
connected with np = 0, the two layers in the duplex system have maximally
positive interlayer degree correlations with the joint degree distribution shown
in Fig. 2.28A. Note that the above exploration on the effect of edge overlap is
conducted on the basis of the MPC case. In the maximally negative case (also
called maximally disassortative, MNC ), the system is constructed by permut-
ing half of the nodes, np = N/2, back and forth from the degree-ordered
node list. The three dimensional joint degree distribution of MNC case (see
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Fig. 2.28B) visualizes its structural features that the hubs in one layer are
connected to the leaves in the other layer. Obviously, maximally positive
and maximally negative interlayer degree correlations are two extreme cases,
resulting in m = 1 and m ≈ 0 respectively.

Here, we first investigate the relevance of these two cases on the honesty
dynamics. As shown in Fig. 2.29, we plot the curves ρh(α, r) and ρh(β, r)
obtained on scale-free duplex networks with γ = 3, kmin = 2. In the left panel
of Fig. 2.29, given a fixed reinsertion rate r = 0.5, the large corruption rate
α and delation rate β overshadow the influence of these two structural cor-
relations, producing the consistent results. However, there occurs an obvious
intersection as α increases with a relatively small value of β = 0.1. As shown
in Fig. 2.29A, when the value of α is small in the beginning, the MNC case fa-
vors the instability of full honesty state as a result of a smaller αc than that in
theMPC case. This is because the permutation process performed to generate
the MNC structure likely induces the hub node to be in the state C, accel-
erating the transition of neighbouring H nodes. However, as the corruption
rate α increases, the system with MNC undergoes the transition H → C more
slowly compared with the MPC case. It happens largely due to the increase
of the fraction of O individuals, some of which are delated by C hubs, driving
the reinsertion and conversion processes. Similarly, in the case of α = 0.1,
the curve ρh(β, r) shows that the total corrupt population is less resilient in
the duplex networks with MNC than that with MPC and the transition from
all-corrupt to all-honest with MNC are achieved more slowly, resulting in a
cross-point. In addition, the results obtained from the associated Markov pro-
cess are basically identical with the numerical simulations (see the right panel
of Fig. 2.29).

To explore the effect of the reinsertion rate, r, on honesty dynamics, we
first compare the time evolution of honesty with fixed α = 0.1 and β = 0.1 as
shown in Fig. 2.30A. Provided a constant value of r, we intuitively observe the
differences of honesty evolution between different m caused by edge rewiring
(left panel) and nodes permutation (right panel). The presence of correlated
structure, as m decreases especially in the extreme case of MNC, facilitates
the decrease of ρh in contrast to the behavior in uncorrelated networks. Under
the same network configuration, as we discussed in monolayer network (see
Fig. 2.23 in the section 2.4.2), the conversion flow as a warning to wrongdoers
in the HCO model triggers the unfolding of corruption. As r increases, the
effect is boosted, leading to a smaller ρh in the system. In particular, with
fixed β = 0.1, we observe that the structure with maximally negative interlayer
degree correlations under the condition r = 0.9 speeds up the decline of the
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Figure 2.30: Effect of the reinsertion rate under different network structures.
(A) The time evolution of H individuals given α = 0.1, β = 0.1 performed on the uncor-
related and correlated structure. (B) The fraction of population in H state, ρh, obtained
in the steady state, as a function of α (left) and β (right). Monte-Carlo simulations are
implemented on duplex networks with MPC and MNC cases made of scale-free networks
with γ = 3, kmin = 2 (〈k〉 ≈ 3.5). The reinsertion rate r is given by r = 0.1 (dashed line)
and r = 0.9 (solid line), respectively.

fraction of honest individuals in steady state compared with the MPC case as
α increases.

For the interlayer degree correlations between two extremes, denoted as
MIX, we randomly and specifically select the number of nodes np = 500 for the
permutation to reassign the labels of nodes. In the case of the MIX randomly,
the duplex network is constructed by randomly selecting two unrepeated lists
with 500 nodes to permute, yielding m ≈ 0.8. As expected in Fig. 2.31, the
results obtained from the duplex networks withMIX randomly are nearly close
to those with MPC as a result that the random selection is more difficult to
make hubs involved to permute. If we select the nodes np = 500 specifically
back and forth from the degree-ordered node list to generate the MIX specifi-
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Figure 2.31: Comparisons of three representative correlation patterns (MPC,
MNC, MIX). The total fraction of honest individuals in stationary state as a function
of α (A) and β (B) is obtained on the scale-free duplex networks with γ = 3, kmin = 2
(〈k〉 ≈ 3.5). The size of network for each layer is N = 104.

cally case, which produces the edge overlap m ≈ 0.55, the results get closer to
those with MNC. The curves of ρh(α, β = 0.1) and ρh(β, α = 0.1) present the
expected results that the dynamics on the correlated structure, MIX, between
two extremes also take place at a level between them.

To figure out the influence of the interplay between interlayer degree corre-
lations and edge overlap on the dynamics of HCO model, we tune the value of
edge overlap for the MNC and MIX specifically cases by rewiring links in one
layer. In this way, the joint degree distribution keeps unchanged. We begin
with the MNC case where m ≈ 0 in the beginning. Generally, the reachable
maximum value of edge overlap are determined by the degree sequences of the
network in each layer. According to this criterion, we rewire the links in one
layer to increase m until no further increase is achievable. Here, we choose a
value of m ≈ 0.4 which approximates the maximum to compare with the case
without rewiring links. In Fig. 2.32A, small discrepancies appear at the full
honesty state when α and β are small. The large m through edge rewiring
favors the unfolding of corruption, lowering the fraction of honest individuals
in the duplex system. The same procedure goes for the MIX specifically case
to get a m ≈ 0.65 close to the maximum and a representative small value
of m ≈ 0.1 with results presented in Fig. 2.32B. Those results are basically
in line with the scenarios observed in the case of MPC shown in Fig. 2.27.
It illustrates that different values of edge overlap due to links rewire under
the conditions of existing degree correlated coupling has a little influence on
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Figure 2.32: Effect of edge overlap on scale-free duplex networks. The fraction
of population in H state in equilibrium conditions, ρh, as a function of α and β with a
fixed r = 0.5 is performed on scale-free duplex networks with γ = 3, kmin = 2 (〈k〉 ≈ 3.5),
N = 104 for each layer. We get various values of m by rewiring links on the basis of (A)
the MNC case and (B) the MIX specifically case.

the evolution of honesty and corruption behaviors beyond at the full honest
corner.

2. Scale-free and RRN duplex networks

Here, we construct the duplex system composed of scale-free networks on
one layer and random regular networks on another layer to explore the effect
of edge overlap and interlayer degree correlations. The duplex networks with
tunable edge overlap, m, are specifically generated in the following way:

(1) Construct a scale-free network with given parameters on one layer and
copy it to another layer. The approximate average degree, 〈k〉, can be
calculated by the number of edges divided by the total number of nodes.

(2) Randomly choose two nodes (i and j), where ki ≤ 〈k〉−1 and kj ≥ 〈k〉+1.
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Figure 2.33: Phase diagrams for H individuals on scale-free and RRN duplex
networks. We perform numerical simulations to get ρh(α), ρh(β) (A) with a fixed r = 0.5
and (B) with different r, obtained in the stationary state. The curves with different values
of edge overlap, m ≈ 0.2, 0.5, 0.7, are obtained on duplex networks composed of scale-free
network in one layer with γ = 2.2, kmin = 2 (〈k〉 ≈ 8.7), γ = 2.8, kmin = 2 (〈k〉 ≈ 4),
and γ = 3.5, kmin = 3 (〈k〉 ≈ 4.5), respectively and the random regular network in another
layer with the approximate 〈k〉 correspondingly.

Exchange their neighbours until degrees of all nodes are approximately
equal to 〈k〉.

It is worth mentioning that, there exit differences between the value of m
computed from the generated duplex network and the one set initially. To
get the desired duplex network where the calculated edge overlap is nearest
to the target value, we set a termination criterion that in our simulations, we
iteratively create the network until m falls within 0.5% of the pre-determined
value.

Firstly, to characterize the influence of interlayer degree correlations present
in this kind of system on the honesty and corruption dynamics, we built the
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duplex networks composed of scale-free networks in layer 1 given γ = 2.2,
kmin = 2 (〈k〉 ≈ 8.7), γ = 2.8, kmin = 2 (〈k〉 ≈ 4), and γ = 3.5, kmin = 3
(〈k〉 ≈ 4.5), respectively and random regular networks in layer 2 with ap-
proximate 〈k〉 correspondingly. In this way, we generate the correlated duplex
networks with different values of edge overlap m ≈ 0.2, 0.5, 0.7 respectively.
Then, we implement simulations with a fixed r = 0.5 as shown in Fig. 2.33A.
The curves ρh(α) show that the largerm leads to a larger corruption threshold,
αc, and makes the fraction of honest individuals in population decline more
quickly as α increases. The results in the curves ρh(β, α = 0.1) state that the
larger m is beneficial to the presence of the full honesty state which is basi-
cally consistent with those (see Fig. 2.31) got on scale-free duplex networks.
However, the differences from those on scale-free duplex networks appear in
the case of ρh(α, β = 0.9) and ρh(β, α = 0.9). The small m facilitates the
instability of the full honest and full corruption state. The reason is most
likely caused by the fact that the smallest m corresponds to the system with
a large average degree.

Meanwhile, there are differences arising when investigating the effect of
reinsertion rate on the phase diagram of H individuals in Fig. 2.33B. As r
decreases, the large m still makes honesty stay in the inactive state longer,
but the transition occurs at a faster rate compared with those on scale-free
duplex networks. We also consider the impact of edge overlap on scale-free
and RRN duplex networks with m ≈ 0.5, 0.7. Similarly, we obtain different
values of m by rewiring links. The comparisons are shown in Fig. 2.34. The
scenarios remain in the similarity for the MNC case and the MIX specifically
case in Fig. 2.32 that the decrease in the value of edge overlap under the
circumstances of α = 0.1 and β = 0.1 makes the extension of stability region
of full honesty though not obviously noticeable.

3. Conclusions

In summary, to exclusively assess the role played by edge overlap, we
first perform Monte Carlo simulations on uncorrelated duplex networks with
different m got through rewiring links. In particular, the results obtained
from Markov chain equations which capture the structural heterogeneity show
that the analytical results are independent of the value of edge overlap since
rewiring links remain the joint degree distribution P (~k) unchanged. However,
It can be seen from the numerical results between different m that there occur
small discrepancies at the full honest corner in the case of small α and β.
This is because more links to rewire lead to a reduction in connections C−H,
allowing a late onset of instability.
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Figure 2.34: Effect of edge overlap on scale-free and RRN duplex networks.
Numerical simulations are performed to obtain ρh(α), ρh(β) with a fixed r = 0.5. The
various values of m are produced by rewiring links on the correlated scale-free and RRN
duplex networks with initial (A) m ≈ 0.5 and (B) m ≈ 0.7, respectively. The size of duplex
networks is N = 104 at each layer.

Then, we investigate the impact of interlayer degree correlations on the
dynamics of honesty and corruption behaviors by generating three kinds of
correlated duplex networks, MPC, MNC and MIX. The curves ρh(β, r) and
ρh(α, r) got on the scale-free duplex networks show that the evolution of hon-
esty is not subject to the edge overlap and interlayer degree correlations in the
case of large α and β. However, the outcomes got on maximally positive corre-
lated (MPC, m = 1) duplex networks display a larger value of αc and βc with
faster transition as well than that with MNC (m ≈ 0) when α or β is set to a
smaller value. Then, an intersection appears in both phase diagrams. In ad-
dition, the dynamical behaviors of MIX lies between two extremes. Similarly,
numerical simulations on a duplex system composed of scale-free network on
layer 1 and random regular network on layer 2 show that various values of m
caused by different correlated coupling make a difference on honesty dynam-
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ics. The larger m is beneficial to the presence of the stability region of the
full honesty state. However, in the case of large transition rates, the effect of
degree correlations on the dynamics remains the same as that with small α
and β which is distinct from the behaviors in scale-free duplex networks.

Moreover, we rewire the links on the basis of previously built duplex corre-
lated networks to explore the effect of edge overlap. The results with smaller
m given α = 0.1 and β = 0.1 indicate a role of edge overlap in promoting
the larger area of full H state though not clearly visible. In a nutshell, under
the same network structure, either correlated or uncorrelated, various values
of edge overlap caused by rewiring links have nearly negligible impact on the
evolution of honesty and corruption activities. However, the different edge
overlap due to interlayer degree correlations makes a great difference on their
dynamics.
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From the history of network science, the “six degrees of separation” small-
world experiment conducted by Stanley Milgram is one of the earliest empiri-
cal studies of network science [302,303]. On top of it, as we have discussed in
chapter 1, both the small-world model and the scale-free model were proposed
by researchers who have found certain patterns from many empirical networks
in the late twentieth century, representing the rise of network science in real
sense. Along with richer available data, the scientific interest has shifted from
the application of concepts developed based on graph theory to the investiga-
tion of the dynamical evolution of network topology, structural representation,
pattern recognition, etc [9]. It is thus clear that the most primitive driving
force behind the development of complex networks is the acquisition of the
new data as Barabási’s view [304] states:

“Fuelled by cheap sensors and high-throughput technologies, the
data explosion that we witness today, from social media to cell bi-
ology, is offering unparalleled opportunities to document the inner
workings of many complex systems.”

— Albert-László Barabási

Coincidentally, the term data science had also started to appear in the 1970s
when the random graph theory was developed. To be precise, in 1974, Turing
award winner, Peter Naur explicitly put forward the notion data science in the
preface of his book with a clear definition that “data science is a science based
on the processing of data” [305]. However, the real rise of data science has
been driven by the boom of big data which presents important development
opportunities and challenges to network science, and in the meanwhile, data
science centered on data processing requires the relevant theories of network
science as support [306]. Nowadays, online social networks, brain science and
traffic network analysis are some of the key areas of big data research in which
data science and network science can be immensely useful. Taking the research
of online social networks as an example, the theory in network science could
automatically regard each user as a node and the interaction between users as
a connected edge for dynamic analysis.
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Thanks to advances in high technology, it has become effortless and inex-
pensive to collect massive amounts of multi-relational data [307]. Neverthe-
less, for many complex systems, it has not been possible to obtain a complete
data of network structure through effective methods [9, 308]. Particularly, as
the data on web are generated randomly and dynamically, they have many
characteristics different from natural science data, such as multi-source hetero-
geneity, interactivity, time-sensitivity and high noise, etc. In addition, much
of data are duplicated and with low value density, increasing the difficulties
in generating an appropriate data-based mathematical model of complex sys-
tems [309]. To this end, in the face of the enormous volume of data, in addition
to mining the relational data that can serve to construct the basic structure
of the network, how to make good use of additional information sources to
enrich the topology of the network according to specific research demands is
something that requires in-depth consideration.

In chapter 2, we simply explored the influence of network structure on dy-
namics of transmission behaviors, especially on epidemic spreading processes.
However, the analysis was mainly performed with classical epidemic models
on top of synthetic networks in which the population is assumed to be ho-
mogeneous or heterogeneous, ignoring the demographic information, such as
age, occupation, location, etc. Furthermore, facing a complex social network
with billions of nodes and tens of billions of edges, the dynamical changes are
reflected in different scales of scenarios such as macro networks, mesoscopic
groups, micro user behavior, and dynamic propagation of information on the
network. Therefore, leveraging the data science, collecting data, processing
and extracting the desired information is now the driving force behind the de-
velopment of complex networks. In addition, the traditional dynamic models
are difficult to describe the dynamics of such complex social network systems,
fueling the development of theoretical framework for data-driven networks.

In this chapter, we first investigate how the development of data science
affects the study of complex networks, triggering the data-driven network mod-
elling in section 3.1. In section 3.2, we then put the emphasis on the infection
transmission on contact networks modelled with the real data. In particular,
the theoretical framework of age-specific contact networks will be introduced
with the data extracted from the POLYMOD study with heterogeneity of
mixing patterns and demographic information taken into consideration.

Along with the framework, we are capable to technically generate realistic
contact networks with age-dependent mixing patterns by incorporating the
data. In section 3.3, we will present a data-driven framework to estimate
the herd immunity threshold and evaluate different immunization strategies

132



3.1. From Big Data to Good Networks

against SARS-CoV-2 by making use of the collected data for several coun-
tries. To accurately describe the evolution of the incidence of COVID-19, two
determinants, namely age and contact patterns will be encoded in building
the multilayer network which represents the social interactions in the popu-
lation. Based on this framework combining with a SARS-CoV-2 stochastic
transmission model, we will conduct an extensive discussion of different vac-
cine prioritization from various aspects. Accordingly, the section corresponds
to the following work

• D. Lu, A. Aleta, M. Ajelli, R. Pastor-Satorras, M. E. Halloran, A. Vespig-
nani, and Y. Moreno, Data-driven estimate of SARS-CoV-2 herd immu-
nity threshold in populations with individual contact pattern variations,
medRxiv, 2021.

Then, we will focus on the applications of data-driven model about solving
a realistic problem. In section 3.4, we will explore in depth the dynamics
of healthcare-associated infections (HAIs) on the constructed networks and
quantitatively assess the risk of spatial units and individuals with the spatio-
temporal data collected in three hospitals in Canada. The section will mainly
based on the article

• D. Lu, A. Aleta, Y. Moreno, Assessing the risk of spatial spreading of
diseases in hospitals, In preparation, 2021.

3.1 From Big Data to Good Networks

With the rapid development of information technology, there are increasing
amounts of data that are more readily available than previously possible. Si-
multaneously, scientific research has also entered the era of big data [304,310].
In addition, as the scale and type of data we are able to collect continues to
grow, it is becoming increasingly imperative in complex network research to
discover the desired nodes relationship from the vast amount of data, to find
the patterns and “extra” features hidden in the data, and to use them ratio-
nally to build a close-to-reality networks [307]. Meanwhile, it is accompanied
by the emergence of some tough questions. For example, how to efficiently
extract information from large amounts of data sources. To what extent can
an analysis be based on incomplete network structure data be generalized to
the entire network?

Another major challenge in this regard is the sampling problem. In 2005,
the paper published by May et al. [311], proved that the sub-networks sampled
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from any strictly power-law distribution network are not strictly power-law.
Most of the data we actually use are the results of sampling. Yet, there are
many sampled networks with power-law distribution. The questions then, are:
what is the distribution form of the original network remains unclear? how can
we predict the properties of the original network from the sampling network?

To briefly summarize, there are two issues involved to address the way from
big data to good networks. One is “from big data to good data” in which the
focus is preprocessing the data, such as denoising and cleaning, mainly solved
by the knowledge of data science [312]. The other is “from good data to good
networks” where even with high-quality network data, it is still necessary to
process the data appropriately to generate a suitable network for the specific
research questions.

3.1.1 The rise of data science

The term data science seems to have been introduced by Naur [305]. After-
wards, the research of data science underwent a long period of silence until
Cleveland in Bell labs published paper to advocate data science as an impor-
tant research direction [313]. Thereafter, it gradually plays an important role
in addressing the problems pertaining to complex network analysis, such as
community structure mining, link prediction in giant social networks [314,315].

In the field of complex network research, the development of network theory
is driven by a wealth of empirical observations. For example, the discovery of
small-world effect and scale-free nature are preceded by data recording. Those
network concepts firmly have practical implications in reality. Afterwards, a
great deal of theoretical findings are motivated by data collection. In par-
ticular, the study of epidemic propagation processes are fuelled by detailed
observations and analysis of real data [156,157,316].

In the course of the study, the advantages of data science are primarily
demonstrated in two aspects. Firstly, the abundant data resources enrich
the topology of networks and strengthen the expressiveness of the network
structure, rendering more characteristics. An example are given by multilayer
networks where different layers can be used to model different relations in the
domain of social networks [317] (see the discussion in section 1.3). On the other
hand, the rise of data science has prompted the improvement in dynamical
models. The classical epidemic models are no longer sufficient to describe the
transmission process of some novel infectious diseases, say the current hottest
research on the COVID-19 pandemic [221,318], as their specific characteristics
make it possible to classify population not only in a few compartments. The
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rise of data science enables the availability of multiple data to help extract the
transition probabilities between states, making the model more approximate
to the practical situation and thus yielding more accurate dynamic analysis
results.

3.1.2 Data-driven network modelling

In the early stage of statistical science and epidemiology, researchers could only
make mathematical assumptions about the distribution of a small amount of
data and then build some hypothetical mathematical models. They derived
some properties of the results obtained from these models through manual
calculations as the derivation of the properties of epidemic models in section
2.2.1, denoted by model-driven method. Obviously, the complexity of social
dynamics is far from being fully elucidated by those simplified models. There-
fore, the data-driven method was developed benefited from the proliferation
of data, advances in technology that contribute to rich data collection, and
the boom of data science that allows data to be further processed. The data-
driven network modelling approach aims to take advantage of representative
data to make the network structure continuously approach the real situation.

To understand human social dynamics, it is essential to construct a reliable
contact network. For this purpose, more and more real-world data reflecting
interactions between individuals are leveraged to augment the robustness of
network models. Additionally, with the increasing access to sufficiently de-
tailed data, in-depth studies on contact dynamics have been carried out on
networks from theory to practical application [319, 320]. For example, for
the online social networking services, the same user may have multiple so-
cial accounts, such as Facebook, Google, Twitter, etc. The interconnected
networks involving people behavioral patterns built with the rich data on dif-
ferent platforms can be employed to study social contagion processes, like
rumor spreading. Moreover, in the early days, research in network science fo-
cused on the single network, but in fact most networks do not remain isolated,
instead experiencing interdependent, cooperative or competitive relationships
with other networks [51]. Things like the failure of one network in infrastruc-
ture networks may trigger the successive failures of other networks [146,321].
For cases like the above, it is time for the data-driven modelling method to
come into play.

It is called data-driven approach because it takes advantage of available
data rather than a predefined model. In terms of large-scale transmission pro-
cesses, it is employed by the use of a small amount or real-time updated data to
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construct network models which can closely conform to the specific situation
as much as possible. This process includes data processing and some statistical
calculation methods, such as least squares method and Markov chain Monte
Carlo (MCMC) methods [322,323], so that unknown parameters of the model
are determined. For example, in the study of SARS-CoV-2 pandemic, the
data associated with spatially distributed population density, geographic con-
tact patterns, human mobility, etc., give rise to forming metapopulation net-
work models which offer a more realistic interpretation of its spatio-temporal
spread pattern [157, 159]. Furthermore, we can use the data-driven approach
to study multimedia content, user behavior and their local popularity patterns,
and propose corresponding deployment based on propagation prediction, risk
evaluation based on user behaviors, etc.

3.2 Infection Transmission on Data-driven Contact Networks

In the modern society with advanced information and technology, people are
constantly interacting and communicating with each other through face-to-
face contact or the Internet and other means. Such frequent population
movements are accompanied by the spread of various human behaviors, ideas
and diseases, inadvertently facilitating the transmission of new infectious dis-
eases [158, 324]. For example, in 2009, influenza A virus subtype H4N1 was
detected in Mexico, and in just three months, the disease swept the world
as humans moved around. More recently, COVID-19 did it in one or two
months. In addition, the proximity of interpersonal social behaviors con-
tributes to the spread of respiratory infectious diseases like influenza and tu-
berculosis [157,325].

In the previous section, we have explored some advantages of data-driven
approach in the context of social networks. We herein focus on exploiting it in
the domain of epidemiology. Human behaviors have become a salient aspect
to be considered in the study of modeling and simulation of infection trans-
mission [326–328]. However, classical epidemic models and the assumption of
homogeneity exhibit many deficiencies in describing the spread of infectious
diseases in real society [329]. First, most of epidemic models do not fully
consider the heterogeneity of individual attributes, and also fail to describe
the heterogeneous contact patterns among individuals, as individual behaviors
vary by time, occasion and contact frequency [330]. Second, the majority of
contagion models do not capture the adaptive changes in individual behav-
iors during an epidemic outbreak, which needs to be addressed by modifying
the model parameters. Therefore, in addition to the availability of more di-
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verse data to support the improvement of disease transmission models, the
construction of the underlying networks needs to take into account the social
contact patterns of populations.

Although infection transmission can vary differently depending on various
pathogens, it is also conditioned by the structure of contact networks [331].
The structure of the contact network may also vary considerably across dis-
eases in the same population, depending mainly on the route of transmission
of the infectious disease. For highly infectious diseases, which are transmit-
ted mainly by droplets, fomites, etc., the contact network for such diseases
forms a large number of edges. In contrast, for closely contact-transmitted
diseases or sexually transmitted diseases, the contact network is more sparse.
The complicated social network structure of a population largely determines
the likelihood of transmission of an infectious disease from one individual to
another [112, 332, 333]. In other words, the transmissibility of an infectious
disease is determined by the network of contacts in the population. In a
contact network, each individual is represented as a node, and the contacts
among individuals that may lead to infection transmission are denoted as links,
demonstrating the decisive impact of constructing realistic population contact
networks in understanding the transmission dynamics of infectious diseases.

The main difficulty in studying data-driven disease transmission processes
lies in obtaining the structure of the underlying contact network for the pop-
ulation under study. For diseases with small transmission rates caused by
specific modes of transmission or casual contact, such as HIV and other sex-
ually transmitted diseases, specific contact patterns between individuals can
be described more precisely by tracing transmission pathways, so that contact
networks may be reconstructed [334, 335]. Alternatively, when the popula-
tion size is rather small, detailed contact information between individuals can
be collected for network construction. Once the population size is relatively
large, one possibility is to select representative data and build a synthetic
contact network based on the characteristics of theoretical or numerical stud-
ies [336]. Another one is to structure the population with the contact data
aggregated according to the specific attributes or role of individuals, such as
age, occupation, etc. [332,337].

In addition, the shift of contact patterns in a population have an ex-
tremely large impact on the spread of infectious disease over the pathways
changes [338]. So far, there have been many empirical explorations of contact
patterns, involving various types of contacts [339, 340]. The contact patterns
generally depend on the life context or attributes to which people belong,
especially exhibiting age-specific or other setting-specific features related to
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the susceptibility and infectivity which are reflected by the effective contact
rate [341, 342]. In the following, we will discuss the construction of contact
networks and the characterization of contact patterns according to a collected
high-resolution contact data. Recalling back to section 1.2, one of the im-
portant characteristics of network structure is assortative mixing of nodes
attributes. Here, we will focus on capturing the role of age-specific mixing
patterns on the infection transmission by considering the likelihood of con-
tacts between different age groups.

3.2.1 Data collection

To perform the study of infection transmission on data-driven contact net-
works, we first need to obtain the data that reflects complex human inter-
actions in order to build a reliable contact network. Moreover, the study
on contact dynamics in contagious diseases, especially respiratory infections,
requires massive detailed data of human proximity. In this case, gathering
more and more accurate and high-resolution data plays a key role in in-depth
understanding the dynamics of contagion spreading.

Currently, there have been various methods to collect detailed information
on individual contact events (e.g., duration, location) and proximity interac-
tions between individuals, mainly by surveys and wireless sensors [343, 344].
Until now, the description of contact patterns have mostly relied on the data
gathered by conducting surveys [332, 345, 346]. This data collection mecha-
nism enable to distinguish various types of contacts (e.g. physical contacts in-
cluded), and collect human contacts in different settings, such as home, school,
etc. In addition, the survey answers from different age groups can provide valu-
able information, facilitating access to mixing patterns. Another informative
source of data can be provided by the recently developed wireless technol-
ogy. It has made it much more accessible to obtain relatively larger scale and
spatio-temporal contact data by mobile devices or other state-of-the-art wear-
able sensors, such as WiFi, GPS, RFID sensors, Bluetooth, etc [347–349]. For
example, the wearable wireless devices are useful to monitor and record close-
range contacts that potentially transmit infectious diseases. The portable
smartphones are possible to detect high fidelity information on the location
and frequency of contacts between individuals.

There is no one-fit-all way to gather highly satisfactory data due to their
exclusive drawbacks. For the answers from surveys, their accuracy might be
affected by the design of questions and the biases from respondents [345].
Although the resolution and scale of the data gathered by wireless devices
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are increased, there are still deficiencies in some cases. For instance, the data
collected by Bluetooth scanners is relatively coarse resolution for close-contact
transmitted disease [336]. The detection mechanisms throughWiFi suffer from
restricted communication protocols. Some limitations of wearable sensors lie
in the restricted duration of usage, high cost and exclusion of the information
on the events conducive to infection transmission [349]. Therefore, further
campaigns of high-resolution data collection are always essential to devise
models of disease spread in contact networks.

3.2.2 Characteristics of contact networks

The dynamics of infectious diseases are sensitive to the contact patterns which
are known to be highly heterogeneous. The variance of contact patterns stems
from social behavior, geographical features, population heterogeneity, etc. The
contact patterns underlying the disease transmission between hosts govern the
structure of the contact network [350, 351]. In a contact network, nodes rep-
resent the synthetic individuals labelled by their demographics, such as age,
gender, geographical location, etc., and links is representative of contacts be-
tween individuals, labelled by the conditional probability of contagion trans-
mission [335, 352]. In the case of airborne infections or sexually transmitted
diseases, differential contact patterns within each age group are closely re-
lated to the final size of epidemics. Therefore, the exploration of age-specific
or other setting-specific mixing patterns can assist in our interpretation of hu-
man behavior while also contributing to the design of epidemic models [353].

The contact patterns are generally embedded into contact matrices to de-
scribe the heterogeneity of contact behaviors which have a direct effect on
the transmission process of infections. Mathematically, the contact matrix
is generally denoted by Ca,b, characterizing the average number of contacts
between groups a and b given the specific setting [166, 354, 355]. Technically,
the mixing patterns can be presented in the form of a matrix proposed by
Anderson and May, termed “Who-Acquires-Infection-From-Who” (WAIFW)
matrix [196, 229]. Each element in the WAIFW matrix characterizes the in-
fection transmission rate between different groups, namely β(a, b) (i.e., the
rate at which an individual in group a conducts an effective contact capable
of yielding infection transmission with a person of group b). In the case of a
simple system with two groups, the matrix is denoted by

Ca,b =
(
βaa βab
βba βbb

)
. (3.1)
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Figure 3.1: Contact matrices of the Poland population in different locations.
The contact matrices extracted from the POLYMOD study [332] show the average number
of contacts for different locations, i.e., A) home, B) work, C) school and D) transport.
The diversity of contact patterns is dependent of the reality of each location.

Generally, it is necessary to assume a specific mixing pattern. The develop-
ment of methodology for the estimation has evolved according to the change
of transmission assumptions. For example, in the case of the well-known ho-
mogeneous mixing assumption, the transmission rate in WAIFW matrix is
assumed to be the same independent of group characteristics [356,357]. There
exist some deficiencies that hinder its further use in this methodology, such
as the need of pre-judgement on the underlying structure and extra infor-
mation needed. Another approach to estimate β(a, b), called contact surface
model fitted from large serological survey data, was proposed especially for the
common infections transmitted by direct contact and airborne droplets [358].
However, these two methods under ad hoc scenarios restrict the portrayal of
contact heterogeneity [349].

In addition, elements in contact matrix are specified parametrically based
on the empirical data about contacts, such as the number of contacts, contact
duration, etc. [359]. Over the last decade, inferring contact patterns from
census data or other sources of data has gradually developed as an important
direction for characterizing the infection transmission [219, 360, 361]. Along
with that, the hypothesis, namely social pattern hypothesis, was proposed to
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state the proportional relationship between transmission rates and contact
rates, i.e., βab ∝ cab, by applying self-reported social contact data [362]. It
has become a fundamental idea of combining the social contact data with
epidemic models. There is a landmark project, namely POLYMOD study,
that provides an informative dataset involving social mixing contacts. The
participants from eight European countries reported their socio-demographic
information, such as age, sex, education level, etc. Meanwhile, the contact
information during the specific time period between volunteers is recorded
using contact diaries [332]. Numerous studies were conducted by making use of
the POLYMOD contact data [361,363,364]. In Fig. 3.1, we show an example of
comparisons between contact matrices in different locations which are based on
the Poland data from the POLYMOD study. The mixing matrices describing
contact rates between different age groups exhibit varying contact patterns
under different settings that are compatible with the reality.

Under ideal circumstances, we should measure everything to the maximum
extent appropriate to gather the most complete and detailed information, and
to capture the most valuable part of the data that is indicative of infection
transmission. Nowadays, there are more granular contact data available that
provides the information on the relevant context for the occurrence of con-
tacts [332,365]. However, in practice, it is impossible to build an ideal contact
network that precisely characterizes the spreading processes, albeit with enor-
mous advances in the ability to measure all aspects of contacts in terms of
technology and mathematical theory. As a result, we have to exploit the data
available to make a certain degree of plausible hypothesis and simplifications
in line with our expectations [344]. In the following section, we will mainly
discuss the theoretical framework for the age-dependent contacts further.

3.2.3 Age-dependent mixing patterns in contact networks

In a heterogeneous mixing population, it is plausible to observe the phe-
nomenon that infected individuals in some age groups transmit diseases to
more susceptible agents than average. Age is a significant source of demo-
graphic heterogeneity. For example, in the case of measles transmission, con-
tact rates are perceived to be the highest among children [357]. In many
respiratory infectious diseases, such as influenza, pertussis, especially the on-
going COVID-19 pandemic, age differences in transmissibility and susceptibil-
ity to infections make a great difference on the transmission process [221,363].
Therefore, it is crucial to explore the formation of contact network consid-
ering the age-dependent heterogeneity of population in order to understand

141



3. Data-driven Social Networks

i

Figure 3.2: A simplified framework of the age-specific contacts. In the contact
network, each layer denotes the contacts of each individual in a specified age group which
means that the age of people in this layer falls within the age bracket. The node i has the
degree in layer α is kαi,α = 1, while kβi,α = 3 in layer β.

transmission dynamics of some specific infections diseases.
To accurately describe the process of infection transmission and effectively

predict outbreaks on an age-structured network, the measurement of age-
specific transmission parameters is a critical issue to be addressed. The
method to model the age-specific contact patterns has evolved from being
encoded in the form of WAIFW matrix, which is originally developed for char-
acterizing the infection heterogeneity between different age groups, to being
presented with social contact data, as in the POLYMOD study [332,366].

Let us formally describe the construction of an age-dependent contact net-
work with Poland data from the POLYMOD project. We firstly extract the
contact distribution and demographic structure (i.e., age) from the dataset.
Generally, the system with age-dependent mixing patterns is represented by a
multilayer network, shown in Fig. 3.2. Each age group [amin, amax) is encoded
in one layer l which means that the age of individuals in layer l is set in this
bracket. The degree of node i in layer α with total number of nodes Nα is de-
noted as kαi,α, while the layer-to-layer degree of i, representing the contacts of i
with nodes in layer β, is quantified by kβi,α. The element in the adjacency ma-
trix of age-structured multilayer networks is Aij which represents the number
of links between node i in layer α and j in layer β, given by
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Aij = ki,αpα(i),β(j)
kj,β∑
l∈β(j) kl

, (3.2)

where pα(i),β(j) is the probability to connect node i in age group α and node j
in age group β. It is time for the age-contact matrix to play a role in obtaining
this value, which reads:

pα,β = Mα,β∑
βMα,β

, (3.3)

The elementMα,β in contact matrix represents the average number of contacts
between age group α and β, which is the scale typically reported when contact
patterns are measured in an empirical way [332, 367–369]. There exists the
reciprocity condition:

Mα,βNα = Mβ,αNβ. (3.4)
Note thatMα,β is the relatively common form of describing the contact matrix,
which is called intensive scale [260]. There are another two magnitude usually
used which are namely extensive scale and density scale, denoted by Cα,β and
Fα,β, respectively. The extensive scale represents the total number of contacts
between two age groups with relation to matrix Mα,β, i.e.,

Cα,β = Mα,βNα, (3.5)
which is a symmetry matrix [370]. The density scale is also related to the
commonly used matrix Mα,β, written as:

Fα,β = Mα,β

Nβ

= Cα,β
NαNβ

. (3.6)

Similarly, the matrix is symmetric. Although these two scales are to be con-
structed more readily due to their non-reciprocal property, they are charac-
terized by the fact that they cannot remain unchanged as the total number
of people increases. Therefore, we mainly use Mα,β as the representation of
contact matrix to keep the shape of demographic structure in the following
section to model the real disease transmission.

To illustrate the procedure for generating a synthetic age contact network,
we take the Poland population from the POLYMOD study as a sample [332].
As previously mentioned, the first step is to perform the preparation of the
data that contains the degree distribution of the number of contacts, the de-
mographic information and the contact matrix (see Fig. 3.3(A), (B) and (C)).
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Figure 3.3: The construction of synthetic age contact network for the Poland
population. A) The distribution of number of contacts. B) The proportion of the popu-
lation within each age-group. C) The heatmap of contact matrix. D) The visualization of
age-specific network where each layer represents each age group.

For ease of calculation and presentation, we classify the population into four
age groups simply with 20 y.o. as a dividing line. In Fig. 3.3(A), the empiri-
cal contact distribution based on the reported data from the study is discrete
and right-censored. Here, the negative binomial distribution, that is the most
typical methods for the analysis of survey data [371], is used to fit the degree
distribution with mean value µ and size θ. In the process of generating age
contact networks, the number of nodes needs to be determined with specific
age assigned. In our case, we set the number is N = 104 with age sampled
in proportion to the demographic structure in Fig. 3.3(B). Then, the degree
of node in each age group is assigned by sampling from the negative bino-
mial distribution. The required parameters in the distribution are the average
number of contacts taken from the age-mixing matrix (see the heatmap in
Fig. 3.3(C)) and the dispersion (i.e., size) from the previous fit. Eventually,
we construct the synthetic contact network by connecting the nodes in differ-

144



3.3. Data-driven Estimate of SARS-CoV-2 Herd Immunity Threshold

ent layers with mixing patterns exhibited in Fig. 3.3(D). In the next section,
we will employ this framework to estimate the herd immunity threshold of
ongoing SARS-CoV-2 pandemic.

3.3 Data-driven Estimate of SARS-CoV-2 Herd Immunity
Threshold

Data-driven estimate of SARS-CoV-2 herd immunity threshold
in populations with individual contact pattern variations [372].

D. Lu, A. Aleta, M. Ajelli, R. Pastor-Satorras,
M. E. Halloran, A. Vespignani, and Y. Moreno

The SARS-CoV-2 pandemic has resulted in the implementation of non-
pharmaceutical interventions (NPIs) of different intensity with the aim of re-
ducing the burden of the disease on the healthcare system and minimize deaths
among the population. Preventive measures and severe restrictions alike strive
for a reduction of social mixing and contacts among individuals [373–379],
which help diminish transmission of the virus and ensure the proper function-
ing of health-care systems. Thus far, only a few countries have used NPIs to
pursue a suppression policy with long and strict lockdowns until community
transmission is locally eliminated followed by control at borders [373]. The de-
velopment of several efficacious vaccines against SARS-CoV-2 [380, 381] and
the start of vaccination campaigns open a new chapter in the fight against
COVID-19. At the center of the discussion about vaccine is the herd immu-
nity threshold, i.e., when the epidemic starts to decline after a critical fraction
of individuals in the host population is immune [382,383].

Herd immunity is the level of immunity in a population of hosts, in contrast
to an individual host. Herd immunity can be high if much of the population
is immune to infection, or low if a lower proportion of the population is im-
mune. The higher the herd immunity, the harder it is for a pathogen to find
susceptible hosts and to maintain chains of infection, and the epidemic slows.
When a certain level of population immunity, known as the herd immunity
threshold, is reached, the epidemic starts to decline, at least locally. The herd
immunity threshold can be achieved either because hosts become immune
once recovered from infection or via vaccination of susceptible hosts. These
two alternatives for the suppression of SARS-CoV-2 have been at the center
of policy and public debates [383], along with the discussion concerning the
calculation of the herd immunity threshold in realistic populations and trans-
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mission settings [382, 384, 385]. Furthermore, vaccine production constraints,
lack of definitive information on effectiveness properties of the vaccines, and
logistic issues in rolling out vaccination campaigns have raised the question of
what vaccination strategies should be implemented to avoid social disruption
and avert the largest possible number of deaths regardless of herd immunity
threshold considerations.

In this work, we focus on two important determinants for the evolution of
the incidence of COVID-19 that are encoded in the structure of the popula-
tion, namely, age and contact patterns. These two components shape indi-
viduals’ social mixing, hence, how chains of transmissions emerge and grow.
To this end, we will use modeling framework present in section 3.2.3 for gen-
erating contact network with age-dependent mixing patterns. The contact
network with the social interactions of populations will be represented in the
form a multilayer network, in which layers correspond to different age groups
and connectivity patterns are encoded in both intra- and inter-layer connec-
tions [51, 316]. The age-mixing matrices of 34 countries are obtained from
the Ref. [361] thanks to the advances in data science. Then, we will use a
SARS-CoV-2 stochastic transmission model [221] which is a SEIR-type epi-
demic model (see section 2.2.1) to estimate the infection-induced immunity
threshold. In addition, we will have in-depth discussions of different vaccine
prioritization strategies in the context of averted deaths and with respect to
the overall disease infections.

3.3.1 Data description

To estimate herd immunity threshold and vaccination coverage in popula-
tions with realistic individual contact pattern variations, we collected age and
behavioral mixing patterns for several countries from all continents except
Antarctica that are structurally different in at least one of the two ingredi-
ents i.e., age and contact patterns. The age mixing matrix of each region and
country was obtained from [361]. The 85 age-groups originally considered in
Ref. [361] were aggregated into 18 groups, going from age 0 to 84 in groups of
5 and a last group for 84 years old or older. For the degree distribution, we
rely on the survey on contact patterns that was carried out in Italy for the
POLYMOD project [332]. In such survey, the distribution of contacts per age-
group can be described using a negative binomial distribution, see Fig. 3.4.
For this reason, we choose a negative binomial distribution for the number of
contacts per individual in each layer. As previously mentioned, the average of
the distribution is fixed in each layer by the value of the age mixing matrix.
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Figure 3.4: Degree distributions for each age bracket with POLYMOD data for
Italy. The maximum number of contacts that could be reported in the survey was 45, as
such the empirical distributions are right-censored at that value.

However, the size of the distribution (also known as dispersion parameter) is
not, since this parameter depends on the individual variability, but the matri-
ces were obtained using data aggregated by age-group. To properly obtain the
distribution, it would be necessary to carry out surveys similar to POLYMOD
for each region under consideration, but this type of data is still scarce [386].

In this work, due to the we have parameterized the size of the distributions
based on the survey from Italy. This lack of data introduces a limitation for the
comparison of different countries, since the different socio-cultural elements of
each region might influence the variability of the distribution in some regions.
Here, in the construction of networks, we mainly apply the negative binomial
distribution.

3.3.2 Network construction

We assign to each node an age group and a number of contacts per unit of time,
both extracted from empirical distributions characterizing the demographic
structure and the behavioral (contact) pattern of the population. We have

147



3. Data-driven Social Networks

Figure 3.5: Model of population structure. The structure of the population is encoded
in a multilayer network, and consists of 18 layers, in which connections among nodes on
the same layer correspond to mixing between individuals belonging to the same age group
(diagonal elements of the contact matrix), whereas interlayer connections account for mixing
between different age groups.

considered 18 age-groups, which leads to a multilayer network made up by
that same amount of layers, with a number of nodes per layer, Nα, equal
to the total number of persons of the age-group of layer α in the synthetic
population.

To connect the nodes of the network while satisfying the age mixing pat-
terns, we employ the method introduced in section 3.2.3 to generate adjacent
matrix. Note that at each time-step we extract a new network realization
from the ensemble generated by 〈Aij〉. Fig.3.5 schematically represents the
resulting multilayer network for a single time-step [316].

3.3.3 SARS-CoV-2 transmission model

The dynamics of the infection can be described by a SEIR model like the
one we introduced in section 2.2.1. But, the compartments in SEIR are too
simple to mimic realistic scenarios. In this work, it has been modified to ac-
commodate COVID-19 natural history and the key aspects of SARS-CoV-2
transmission, including asymptomatic infectious individuals and several age-
dependencies [387,388] of the model parameters. We use a stochastic, discrete-
time compartmental model on top of the multilayer network in which individ-
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Figure 3.6: Compartmental model description. The different compartments and
transition times from one to another are shown.

uals transition from one state to the other according to the distributions of
key time-to-event intervals. The general structure of the model is depicted
in Fig. 3.6. A susceptible individual (S) will become infected with probabil-
ity βS if she contacts a pre-symptomatic (PS) individual, β if the contact is
with an infectious symptomatic individual (IS), and rβ if the contact is in the
infectious asymptomatic state (IA). Once infected, the individual will enter
the incubation compartment (L) for a period extracted from a gamma distri-
bution, ε, during which she will be infected but not infectious yet. A latent
individual will become infectious γ days before the end of the incubation pe-
riod, to account for pre-symptomatic transmission. Lastly, the individual will
be removed (R) from the infectious pool according to an exponential process
with rate µ−1, where µ is the average length of the infectious period in days.
In order to check on the parameters’ assumption we measured in the model the
generation time that is in agreement with the epidemiological data. Note that
the removed compartment does not imply recovery, only that the individual
is no longer infectious. To estimate the number of deaths we later apply the
empirical IFR to the set of removed nodes. When vaccination is taken into
account a new compartment, V , is created, to distinguish between removed
individuals who actually had the disease and those who did not.

3.3.4 Estimate of R0

In homogeneous populations, the basic reproduction number of this model can
be expressed as:

R0 = βrp

(γ + µ)−1 + β(1− p)
µ−1 + βS(1− p)

γ−1 , (3.7)
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Parameters Description Age group Value Ref.
r relative infectiousness of asymptomatic individuals - 50% †
k proportion of pre-symptomatic transmission - 50% [389]
ε incubation period (gamma distributed) - shape = 2.08 [390]

rate = 0.33
p proportion of asymptomatic - 40% [389]
γ pre-symptomatic period - 2 days [391]
µ time to removed - 2.5 days ∗
IFR infection fatality ratio 0-19 0% [392]

20-49 0%
50-59 0.35%
60-69 0.88%
70-79 5.59%
≥ 80 8.15%

Table 3.1: Set of parameters of the transmission model. †: assumed ;∗: calibrated to the
generation time Tg.
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Figure 3.7: Distributions obtained in the simulation. Numerical distributions of the
model parameters extracted from the simulations performed for Italy with R0 = 2.5. The
generation time distribution is well fitted by a gamma distribution with shape = 2.24 and
rate = 0.36.
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Figure 3.8: Estimation of R0. a) Temporal evolution of the logarithm of the prevalence.
b) Estimated growth rate. c) Generation time extracted from the simulation. d) R0
obtained using equation (2.75).

where βS = βγ−1k/µ−1(1 − k). The description and values of all the pa-
rameters is shown in table 3.1. Note that this expression is only valid for
homogeneous populations. In structured populations, the particular value of
R0 of each individual will depend on her connectivity. Furthermore, in layers 0
to 3, corresponding to age groups [0−5), [5−10), [10−15), [15−20), individu-
als have a susceptibility to the disease of 0.56 [388]. As such, in each network,
to select the appropriate value of β, we empirically estimate the dependency
of R0 with β. In Fig.3.7 we show some of these distributions directly measured
from the output of the model.

Our model does not allow a simple analytical calculation of the R0 as in the
homogeneous assumption. In order to match our simulations with a specific
R0 as measured in a real world setting, we consider the relationship between
the reproduction number, epidemic growth rate, and generation time [216].
As we mentioned in section 2.2.4, we follow [216] and estimate the value
of the basic reproduction number using the empirical (measured from the
simulations) generation time with Eq. 2.75. In Fig. 3.8, we show: (a) the
temporal evolution of the prevalence from which the growth rate, r can be
estimated (b); (c) the generation time obtained from the simulation; and (d)
the corresponding value of R0.

3.3.5 Estimate of SARS-CoV-2 herd immunity threshold

First, we consider the situation in which the infection circulates unmitigated
through the host population (with no mitigation policies in place) and calcu-
late the infection-induced herd immunity threshold (IHIT). This is defined as
the proportion of all infected individuals (symptomatic and asymptomatic) at
the inflection point (the maximum) in the curve of the incidence of latent indi-
viduals. This is the point in time at which the effective reproductive number
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Figure 3.9: Definition of IHIT and IOR. A) In orange, individuals in the latent state
as a function of time. Simulations are temporally aligned so that the maximum number
of latent individuals is reached a time equal to 0. In dark blue evolution of the effective
reproduction number computed using the number of newly infectious individuals and a
gamma-distributed generation time with shape 2.12 and rate 0.32. B) Cumulative fraction
of the population that has contracted the disease. We identify the IHIT and the IOR as
well as the overshoot fraction of infections.

for the generation of new infections (new latent individuals) decreases below
the epidemic threshold of 1 and the epidemic begins to wane, see Fig. 3.9(A).
The infection-induced overshoot attack rate (IOR) can then be calculated let-
ting the system evolve until the epidemic dies out naturally because there are
no more new infectious individuals circulating in the population, Fig. 3.9(B).

We executed stochastic simulations of the epidemic transmission model and
computed numerically the IHIT and IOR values associated with the multilayer
network of each country considered. In Fig. 3.10, we report the simulations
for the multilayer network built on the Italian data. Our estimate for the
infection-induced immunity level for the population of Italy in the case of
R0 = 2.5 is 41% [95% CI 38-44]. This value represents the minimal propor-
tion of the population that needs to acquire immunity through infection to
thwart circulation of the virus without any NPIs in place. In Fig. 3.10(C), we
report the estimated IHIT and IOR values for different R0 values. It is worth
remarking that the values obtained differ considerably from the values ob-
tained for the same R0 in a homogeneous model, because of the heterogeneous
connectivity patterns of individuals.

To simulate the epidemic behavior in a population that has achieved a spe-
cific infection-induced immunity level, we performed further numerical simula-
tions in which the system is evolved until a given proportion of the population
is infected. Then, we use the infection-induced immune and susceptible popu-
lation as the initial condition of a new epidemic started with a single infected
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Figure 3.10: Infection-induced immunity threshold (IHIT). A) Prevalence of the
infection in populations with different initial infection-induced immunity (III). In all plots,
solid lines represent the median value for 10,000 stochastic realizations and the shaded
area the 95% C.I. B) The number of secondary infections produced by the seed individual,
Reff, is measured in networks with different amounts of initial infection-induced immunity.
Results shown in panels A and B correspond to the population of Italy and R0 = 2.5. C)
Prevalence in the Italian population for different values of R0 at the peak (IHIT) and at
the end of the simulation the infection-induced overshoot attack rate (IOR). D) Infection
attack rate in each layer over the fraction of nodes that belong to that layer for different
countries worldwide versus age-group contained in the layer. Results in panel D correspond
to R0 = 2.5.

individual and record the OR reached by letting the epidemic spread unmit-
igated. This approach mimics a scenario in which the virus is circulating
through the population until strict measures cut transmission and reduce in-
cidence to vanishing values, which is followed by the reintroduction of new
infectious individuals once such restrictions are lifted. Fig. 3.10(A) shows the
results obtained for several values of infection-induced immunity (III) propor-
tion when the pathogen is seeded again. As can be seen, the OR depends
on how close the system is to the IHIT. For comparison, we consider as the
baseline the curve and IOR corresponding to the situation in which the epi-
demic spreads unmitigated in a fully susceptible population. The closer the
population is to the IHIT, the smaller the overshoot generated by a second
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epidemic and the final OR would be.

The previous observation can be further explored using a semi-analytical
argument. We may define the number of secondary cases that the seed in-
dividual can produce upon reintroduction of the pathogen in the community
as Reff (in contrast to R0, which applies only for the first introduction to
the community, i.e., when the whole population is susceptible). In classical
heterogeneous populations this value is known to be dependent on both the
mean and the variance of the number of contacts per individual [393]. Actu-
ally, in the classical SIR model on networks, this value can be expressed as
Reff = RH

0 ·
〈k2〉−〈k〉
〈k〉2 , where RH

0 is the reproduction number in the homogeneous
model and the second term is a function of the topological properties of the
network, its average degree 〈k〉 and the second moment of the degree distri-
bution, 〈k2〉 [10, 82]. In our model the previous history of infection affects
the terms depending on the moments of the degree distribution. Indeed, if
some individuals have been removed from the susceptible population after a
first wave of infections (either due to recovery or death), the structure of the
network changes, modifying the value of Reff. If the network is in a state such
that Reff < 1, then reintroduction of the pathogen in the community cannot
produce a large outbreak. However, if we remove nodes randomly the values
of 〈k〉 and 〈k2〉 assume a different value thus poising the population not at
the IHIT. In Fig. 3.10(B), we explore the value of Reff as a function of the
initial III. Note that even though for an III slightly smaller than 41%, the
average Reff is close to the threshold, it is possible to have large outbreaks.
To provide a better interpretation, we study the size distribution of outbreaks
produced in a hypothetical second introduction of the pathogen in popula-
tions that completely eliminated it within the III scenario shown in Fig. 3.11.
In panel a, we show the fraction of events leading to an outbreak of a given
size when the first wave infects 41% of the population (corresponding to the
IHIT value). In panels b and c we do the same but with 38% and 36% of
initial infection-induced immunity, respectively. Clearly, while outbreaks in
the situation close to IHIT are very small, once we move away from that point
a second peak in the distribution appears, reflecting the emergence of a giant
component in the network created by the infection path.

The preceding expression highlights the role the degree distribution plays
in the spreading of infection. Because this distribution is partially determined
by the age-mixing patterns of the population, it is expected that the path the
infection will follow should vary according to the specific socio-demographic
features of each population, which can influence the transmission in our model
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Figure 3.11: Outbreak size in III. Size of outbreaks produced with different values
of initial infection-induced immunity in the population. Panel a shows the results for an
initial immunity at the IHIT value, while b and c show examples of situations with slightly
smaller initial immunity.

in 3 ways: (i) by changing the degree distribution in each layer; (ii) by mod-
ifying the shape of the age mixing patterns; and (iii) through cultural or
environmental factors that influence how effective is the transmission of the
virus, i.e., the value of β in our model. Unfortunately, we cannot analyze
the differences induced by the first factor since that would require precise in-
formation on the individual variability of people in each region. The second
factor, on the other hand, can be easily studied thanks to the availability of
high resolution mixing matrices [361]. In Fig. 3.12(A), we present the value
of IHIT obtained in each available region with R0 = 2.5 in comparison to the
one obtained for Italy.

The previous factors, in essence, only modify the contact matrix. However,
there are multiple other elements that can modify the transmissibility of the
virus: the way in which individuals of a certain culture greet each other, the
distance at which individuals usually interact, the way in which they talk,
whether they are used to wear masks, as well as environmental factors that
could enhance or diminish the spreading of the virus. In terms of our model,
this would imply a different value of β for each region which, once applied
to each network (i.e., population structure), could in turn yield a larger or
smaller R0. Note that β and 〈k〉 are not necessarily correlated, and there
could be the case of regions with larger β and lower 〈k〉 having the same value
of R0 as regions with lower β, as long as their 〈k〉 were larger. In fact, in
the previous comparison we fixed R0 in all regions, so that the value of β was
adapted to the specific contact matrix.

Conversely, in Fig. 3.12(B), we fix the value of β to the one that sets the
value of R0 equal to 2.5 in Italy, and apply it to the rest of the regions. Hence,
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Figure 3.12: IHIT for several countries from all continents except Antarctica.
A) IHIT in each region with fixed R0. We set R0 = 2.5 and a dispersion parameter for the
distributions equal to the one in Italy. B) IHIT in each region with fixed β. We set the
value of β in all regions to the one that yields R0 = 2.5 in Italy. Relative difference of the
IHIT value obtained in each region in comparison with the one in Italy.

the value ofR0 will vary, being larger in those areas with larger 〈k〉, and smaller
in those with a smaller 〈k〉. In this case, we observe larger differences, up to
8%. However, note that in the extraction of the mixing matrices it is assumed
that the number of contacts in each setting is the same, regardless of the
country (see [361] for details). Thus, if more precise information on the degree
distributions in each country were available, the divergences could be much
higher. In Fig. 3.10(D), we can see that the path followed by the infection
is clearly different from region to region. This is revealed by looking at the
attack rate within each age-group (layer) over the fraction of the population
that belongs to that group at IHIT, which shows that some age-groups are
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more affected by the infection (values larger than 1) than what would be
expected if the infections were randomly distributed across the population.
In network terms, if there were no correlations between age and connectivity,
the normalized attack rate should be 1 for all age-groups. This, in turn, has
important implications for defining vaccine prioritization strategies if we aim
to reproduce the path the infection would follow in our population.

The above results are relevant to estimate the proportion of the population
that needs to be vaccinated for the remaining susceptible individuals to be
protected by the group immunity. Moreover, the vaccination coverage depends
on how the population is vaccinated. We considered three different scenarios
for vaccination: (i) the classical random mass vaccination; (ii) a behavioral
vaccine prioritization scheme in which the first individuals to be vaccinated
are those that are more likely to transmit the infection; and (iii) a fatality-
rate prioritization strategy that targets the eldest first and then vaccinates
individuals in decreasing order according to their age. Specifically, at the
initial state, a proportion v of the population is immunized. We consider an
all-or-nothing vaccine with 95% efficacy in preventing SARS-CoV-2 infection.
In scheme (i), the fraction v of vaccinated individuals is chosen at random
within the whole population. Scheme (ii) tried to mimic closely how infection-
induced herd immunity is produced. We first simulate the propagation of the
disease up to the IHIT to detect those individuals who are more likely to get
and transmit the infection in the early stages of the epidemic. Then, we reset
all individuals to the susceptible state and extract a random fraction v of those
previously identified individuals and vaccinate them. In this way, we mirror
how the infection confers natural immunity targeting the individuals that
would likely be infected during the natural course of the epidemic. Finally, in
scenario (iii) the first to be vaccinated are those in the eldest group (85 y.o. or
more) and the process continues down in age until the fraction v of immune
individuals is reached. In all cases, we start from a completely susceptible
population prior to vaccination.

In the light of each of the strategies defined above, we calculate the preva-
lence of the infection obtained when an initial proportion of the population
is first vaccinated and then SARS-CoV-2 spreading is simulated in the pop-
ulation shown in Fig. 3.13. We have considered the same values of Fig. 3.10
for v and a baseline scenario in which no individuals are immunized when the
epidemic emerges. As expected, the prevalence of infection in the vaccinated
populations decreases when the proportion of immunized individuals in the
population increases. However, as not everyone in the population contributes
equally to the transmission of infection, protecting the population as a whole
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Figure 3.13: Effect of different vaccine prioritization strategies. Solid lines repre-
sent the median prevalence of the infection as a function of time under the random (A),
behavioral-based (B) and risk-based (C) vaccine prioritization. The dashed lines account
for a baseline scenario in which there is no vaccination nor any non pharmaceutical inter-
ventions. D) Fraction of the population that is removed from the dynamics due to vaccine-
induced immunity, infection-induced immunity or death once the disease dies out, for the
different vaccination strategies as a function of the vaccine coverage. Results correspond to
the population of Italy for R0 = 2.5.

is contingent on the vaccination strategy. Specifically, our results show that
the best strategy in terms of reducing the prevalence of the infection is the
second scenario, Fig. 3.13(B), as our estimate for this scheme is consistent
with the infection-induced threshold computed previously, i.e., a vaccination
coverage close to the IHIT would protect the whole population from SARS-
CoV-2 infection. Interestingly, random vaccination (Fig. 3.13(A)) also leads
to lower prevalence values than the risk vaccination (Fig. 3.13(C)), as immu-
nized individuals are spread through different age groups, which contributes
to reducing the circulation of the virus with respect to the risk scenario, that
only protects, for most values of v, groups that in general play a secondary role
in transmission. Indeed, in Fig. 3.13(D) we also show (full colored dots) the
final proportion of removed individuals (i.e., all individuals that are not sus-
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Number of averted deaths per 10,000 | R0 = 2.5
Vaccinated(%) Random Behavioral Risk
41 33.5 [31.6 - 35.5] 49.5 [46.4 - 50.2] 49.0 [48.9 - 49.1]
36 29.6 [27.3 - 31.8] 41.0 [37.1 - 45.0] 48.4 [47.7 - 48.9]
30 25.3 [22.9 - 27.8] 32.6 [29.0 - 36.0] 47.1 [46.4 - 47.8]
25 20.9 [18.7 - 23.3] 25.5 [22.5 - 29.1] 45.7 [44.5 - 46.5]
20 16.8 [14.7 - 19.0] 19.6 [17.0 - 22.6] 43.3 [42.1 - 44.6]
15 12.9 [11.2 - 15.0] 14.7 [12.7 - 17.2] 41.1 [38.1 - 42.3]

Table 3.2: Median number of averted deaths [95% C.I.] for each strategy per 10,000. In
each strategy the population is initially immunized through vaccination under the rules
explained in the main text. Results correspond to the population of Italy and an assumed
R0 = 2.5.

ceptible at the end of the outbreak) for the different vaccination strategies and
percentage of vaccinated population. Random and risk vaccination schemes
lead to a final fraction of removed individuals that is greater than the IHIT,
yielding comparable or greater levels with respect to the final prevalence in the
baseline scenario. This also implies that the vaccine coverage needed to reach
the herd immunity threshold with those strategies is generally considerably
larger than the IHIT. The final proportion of infections instead depends on
v for the behavior-based vaccination that mimics the immunity produced by
the infection progression.

Remarkably, although the risk strategy leads to the highest prevalence lev-
els for any proportion of vaccinated individuals, it is the one that averts the
most deaths, even when the vaccine is extremely efficacious in blocking for-
ward transmission. We estimate from simulations the total number of averted
deaths for each vaccination strategy. Table 3.2 shows the number of averted
deaths for each vaccine prioritization strategy with respect to the counterfac-
tual unmitigated scenarios. Risk vaccination greatly reduces the number of
deaths due to COVID-19 even for a proportion of vaccinated individuals as
low as 15% -almost a factor 3 compared to the second best strategy. These
results apply as well to vaccines with lower efficacy 60% see in Fig. 3.14, al-
though they require higher coverage for the behavioral strategy to work. It
is important to stress that the results presented here could be relevant in the
context of other respiratory diseases. However numerical studies considering
vaccine efficacy and infection fatality rate specific to each disease should be
carried out.
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Figure 3.14: Effect of different vaccination strategies. Solid lines represent the
median prevalence as a function of time under the random (A), behavioral-based (B) and
risk-based (C) vaccine prioritization. The dashed lines account for a baseline scenario in
which there is no vaccination nor any non pharmaceutical interventions. D) Fraction of the
population that is removed from the dynamics due to vaccine-induced immunity, infection-
induced immunity or death once the disease dies out, for the different vaccination strategies
as a function of the vaccine coverage. The results correspond to the population of Italy for
R0 = 2.5 and a vaccine efficacy of 60%.

3.3.6 Conclusions

In this work, we have developed a data-driven multilayer population network
that takes into account two factors that play a key role in shaping SARS-
CoV-2 transmission and COVID-19 burden, namely, social mixing patterns as
given by the number of contacts and age of the individuals of a population.
Importantly, our framework needs information only at the population level,
from which the network encoding the social mixing is built up. We provide
numerical estimates of the IHIT and IOR in realistic populations and show
the effects of different vaccination strategies and rates on possible resurgences
of the epidemic. The estimates provided in this work refer to the historical
SARS-CoV-2 lineage emerged in Wuhan. Although the results hold in general,
quantitative estimate may be different for other SARS-CoV-2 variants with
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Figure 3.15: Effective reproduction number as a function of initial III. The im-
munity induced by the infection modifies the underlying structure of the contact network,
diminishing the average number of infections that can be produced by each infectious indi-
vidual. With R0 = 3.5 the IHIT value is close to 55%.

immune escape. Due to the more robust infectivity of the variants, we assume
that the effective number of transmissions reaches to R0 = 3.5 in contrast to
the one shown in the previous calculation (R0 = 2.5). In Fig. 3.15, we show
the effective reproduction number as a function of the initial III obtained
with R0 = 3.5. We observe that the decay is slower and that the value of
IHIT is above 50%. This implies that new variants of the virus might modify
the fraction of the population that needs to acquire immunity to reach the
herd immunity threshold. It is however important to stress that the proposed
framework is general enough to be used for the analysis of other infectious
diseases such as influenza, which may benefit from age-targeted vaccination
programs [394].

Our findings have the following important implications: (i) the variability
in social interactions of the population determines the herd immunity thresh-
old; (ii) Risk-based and random vaccination scenarios require higher levels of
vaccination coverage to suppress the circulation of SARS-CoV-2 compared to
the infection-induced herd immunity; it will thus be of paramount importance
to extend vaccination efforts well after reaching the theoretical herd immunity
threshold. The previous implications suggest that more research is needed to
determine the optimal vaccination strategy considering, and possibly adapting
to, the constantly evolving epidemiological situation and tailored to different
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populations as there is no one-fits-all solution. For instance, allowing for higher
prevalence of acute infection would keep health care systems under pressure
longer, which in turn entails the need to keep restrictions and interventions.
Additionally, it might have potential important consequences for virus evolu-
tion and the emergence of new variants as well as for public health systems
given that the long term health consequences of suffering SARS-CoV-2 infec-
tion could be severe [395]. Finally, our work also estimates that in many cases
the level of coverage needed to achieve the herd immunity threshold in the
population may be larger than the fraction of eligible population, especially
considering hesitancy and accessibility to vaccines [396,397]. In several coun-
tries this might imply shifting the focus on using vaccines to reduce mortality
rather than aiming at reaching the HIT.

3.4 Spatial Spreading of Diseases in Hospitals

Assessing the risk of spatial spreading of diseases in hospitals. (In preparation)

D. Lu, A. Aleta, and Y. Moreno

In recent years, the transmission of healthcare-associated infections (HAIs)
has led to substantial economic loss, extensive damage and many preventable
deaths. A hospital is a setting in which relatively confined spaces create the
conditions for constant exposure to infections. The risks related to HAIs are
however heterogeneous and spatially distributed, with some categories of spa-
tial units and healthcare workers (HCWs) showing particularly high risks due
to their function or mobility through the whole hospital. Despite the fact that
previous studies have shown the need to contain HAIs, their dynamics have
not attracted much scholarly attention. In this work, we aim at quantitatively
assessing the infection risks regarding spatial units and individuals.

To this end, we will make use of data collected with recorded-based meth-
ods, i.e., surveys as we mentioned in section 3.2.1. The surveys was designed
by three Canadian hospitals especially for recording the information about the
behavior of workers. According to the answers that are less granular though,
we will try to extract the relationship between individuals and attributes of
the study object from datasets so that we can generate a data-driven network
that allows us to realistically simulate the spreading of a disease in such a
setting. Our purpose is to address the issue “from data to good networks”
that we discussed in section 3.1. By exploring in depth the dynamics of HAIs
on the generated networks, we will be able to assess the risk of spatial units
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as given by the disease hitting time and the number of infections produced
in each unit. In addition, We will calculate both the probability of getting
infected and effective R0 and use them as indicators for risk assessment of
HCWs categorized by their occupations.

3.4.1 Description of the scenario

Healthcare-associated infections (HAIs), or nosocomial infections, are infec-
tions transmitted within healthcare settings. For every one-hundred patients
admitted to hospital, between seven to ten will acquire at least one type of
HAI [398]. Nosocomial infections also play an important role in the spreading
of pandemics, as the recent SARS-CoV-2 pandemic has shown [399, 400]. As
such, they have become an important public health concern [401–404]. The
prevalence of HAIs not only yields additional waste of financial resources, but
also causes substantial morbidity and mortality [405–407]. In the modern
healthcare systems, there exist a variety of potential risk factors contributing
to the spread of HAIs [408, 409]. In terms of environmental aspects, the rel-
atively restricted spaces in hospitals provide the conditions for the repeated
and prolonged exposure to HAIs. Moreover, the various categories of spatial
units play different roles in the transmission of HAIs as a consequence of their
function.

Given that previous studies have shown that close contact is a major
mode of transmission of healthcare-associated infections, the daily activities
of healthcare workers potentially increase the risk of infection to patients and
themselves [328, 410, 411]. The occupational nature of some healthcare work-
ers also contributes to a certain extent to the transmission of HAIs between
hospital units. Therefore, the risks associated to HAIs are heterogeneous and
can depend on the characteristics of the categories to which the units belong
and the various occupations of healthcare workers.

Over the last decade, effective measures in preventing and containing HAIs
have been developed, accounting for the variability of transmission routes
[412–414]. Increasing hand hygiene and the regular use of personal protec-
tive equipment (PPE) are the most basic infection prevention and control
strategies [409]. Although the implementation of disinfection measures has a
significant effect on the HAIs spread restraint, understanding the dynamics of
HAIs transmitted by respiratory microorganisms can open the path for opti-
mizing current strategies. In this work, our aim is to evaluate the infection
risks of certain occupations, and how they spread through the different units
of the hospital. To this end, we assess the infection risk of each spatial unit
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Figure 3.16: Distribution of the merged classification. A) The classification of
categories based on the function of units. B) The classification of occupations based on the
self-reported information of HCWs.

by calculating the disease hitting time and the number of infections produced
in each location. We also evaluate the risk of different HCWs by analyzing
the probability of getting infected and their potential infection capacities.

3.4.2 Network construction

To explore the propagation of respiratory infectious diseases in the hospital
settings, we use data collected from surveys carried out in three hospitals
on the behavior of workers. The site-specific surveys which use the specific
floor plans of each hospital, were created for three urban university-affiliated
tertiary care Canadian hospitals as part of the CONNECT I study (henceforth,
hospitals A, B and C, in order of size, being A the largest). In the survey,
employees were asked to provide information on the amount of time they spent
at each location of the hospital during a normal week. The survey identified
19 different HCW occupational categories and over 100 different locations in
each hospital (see [328] for a detailed description of the dataset).

In Figs. 3.16 and 3.17, we report some of the results of the survey from
hospital B. According to the specific description of areas in the questionnaire,
some units can be combined into one unit. Moreover, we group the merged
units into different categories based on their function. The distribution of units
categories in hospital B is summarized in Fig. 3.16(A). In addition, we have
performed the disambiguation based on the similarity between the answers of
HCWs’ occupation by aggregating them into a representative group. The dis-
tribution of occupational classifications in hospital B is shown in Fig. 3.16(B).
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Figure 3.17: Interaction patterns of HCW. A) Floors visited by 4 selected HCW
groups in Hospital B during a normal week. B) Number of direct contacts with other
HCWs reported by members of each category during a typical day. The distributions are
fitted to a right-censored negative binomial distribution.

The classification for units and individuals will be applied in the other two
hospitals. Furthermore, we explore the interaction patterns of HCWs (see
Fig. 3.17). We observe that there is an important heterogeneity in the weekly
routines of different HCW groups. For instance, nurses and physicians do not
visit the basement, while administrative assistants and those that reported
their category as “Other” can be easily found there. Similarly, while nurses
and “Other” do not visit the last floor, physicians and administrative assistants
do. Regarding their daily number of contacts with other co-workers, nurses
are the single-category reporting a larger number, followed by administrative
assistants and physicians. The category “Other” is highly heterogeneous and,
thus, for the rest of the paper we will ungroup it and then incorporate them
into other existing categories, whenever it is possible, by taking into account
the information they provided on their occupation.

Using the answers from the survey, we apply a data-driven approach to
construct the network of HCW interactions. Due to the lack of precise infor-
mation, we do not include any patient interactions. Therefore, rather than
analyzing the impact of a potential outbreak in the hospital, we focus on un-
derstanding how would a disease spread throughout the hospital. To do so,
we first assume that two individuals can interact only if they have reported
visiting the same unit. The connection relationship is denoted by

Auij = δi,uδj,u, (3.8)
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Figure 3.18: Schematic representation of the network. The spatial activities of each
individual allow us to determine if two individuals could potentially interact. We assume
that there is a link between two individuals if they visit the same unit. The weight of each
link depends on the time proportion spent by each individual in that unit.

where δi,u = 1 if the healthcare worker i has visited the unit u and δi,u = 0
otherwise. To leverage the detailed information contained in the survey, we
further take into account the amount of time that each individual spent in
said location to weight the interaction. As such, in the generated network,
each individual represents one node and the link weight between two nodes i
and j in unit u is given by:

wuij = Ti,u
Ti

Tj,u
Tj

, ∀i, j ∈ u (3.9)

where Ti,u represents the amount of time that individual i spent in a spatial
unit u and Ti represents the total amount of time in the hospital reported by
individual i. In Fig. 3.18, we schematically represent the connection relation-
ship among the healthcare workers in our network.

To simulate the spreading of an air-borne infectious disease, we implement
an SIR model on top of the network of HCW interactions. In the model, a
worker might be in one of three states: susceptible (S), infected (I), or recov-
ered (R). An infected individual, i, will transmit the disease to a susceptible
individual j with probability 1 − exp(−β ∗ wij), where β is the per-contact
transmission probability. This process is run synchronously for all infected
individuals at each time step t. Then, those individuals that were already
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infected at time t might recover with probability µ. We set β = 0.01 and
µ = 0.10. The average strength (sum of all the weights of each node) in each
network is 31, 23 and 18 for hospitals A, B and C, respectively, yielding a
value of R0 in the homogeneous approximation of 3.1, 2.3 and 1.8 [393].

3.4.3 Risk of units

In this section, we assess the risk of each location in terms of spreading the
outbreak. Note that this does not capture where the outbreak originates.
Instead, it is assumed that a HCW gets infected, either by a patient in the
hospital, or outside, and then the outbreak spreads to the other HCWs.

1. Hitting time

The hitting time is defined as the average amount of time that it takes for
the disease to reach a specific location [155]. In the case of hospital units,
we define it as the time until one HCW located in unit l gets infected, HTl.
Therefore, the smaller the hitting time, the more at risk a location is. We
then gauge the risk of each location in comparison to the rest by dividing
each HTl by the average hitting time in the hospital, 〈HT 〉. In Fig. 3.19(A),
we show the risk computed using this procedure for each type of unit. We
observe that in the three hospitals the disease will arrive sooner to units under
the category “inpatient area”. Note also that, even though most locations
categorized as “public area” are at an average risk, the riskiest locations belong
to this category. These are mainly cafeterias, which are visited by many
employees and, thus, it is easy for the disease to reach them.

2. Number of infections

We further explore the risk posed by each unit by computing the average
number of infections produced in each unit, NIl. As in the previous case, we
normalize this number by the average number of infections produced in any
unit 〈NI〉 in order to compare different hospitals. The results, Fig. 3.19(B),
agree with the previous observation that “inpatient area” is the highest risk
category. However, we observe an important contribution of some “medical-
staff rooms”. A closer inspection reveals that these locations are laboratories
and research locations, in which the number of different HCWs is not that
large, but the ones that visit those areas are likely to spend an important
amount of time there. Thus, even though it takes longer for the disease to
arrive, one it does, it can easily spread throughout the workers located in those
rooms.

167



3. Data-driven Social Networks

Figure 3.19: Spatial spreading of a disease across the units in a hospital setting.
In all cases, each boxplot represents the median and the interquartile range of the risk
associated to units under each category. Dots indicate the average risk of each individual
location within the category, with squares, circles and triangles representing hospitals A,
B and C respectively. A) The relative risk of is gauged with the hitting time. B) The
relative risk is measured by taking into account the number of infections produced within
each unit. The category of a unit was provided by the management of hospital A, and the
same grouping criteria was used for the other hospitals. The two groups on the left represent
patient-care areas (“inpatient area” or “outpatient area”) while the other four groups are
composed by units that are predominantly non-patient-care areas.

To briefly sum up, the results obtained from two methods reveal that the
risk of spatial units belonging to “inpatient care” and “public area” categories
are relatively higher than others in both methods. The units at lower risk are
“other-staff rooms” (accounting, administration, etc.) and “auxiliary rooms”
(laundry, housekeeping, etc.).

3.4.4 Risk of individuals

As we saw in Fig. 3.17, there is an important degree of heterogeneity across
HCW occupations and their roles on different units. In what follows, we ex-
plore the risk associated with each occupation category in order to better
understand the dynamics of the spreading. In [328], the 19 self-reported oc-
cupations identified in the surveys where grouped in 4 categories, but given
the results from the previous section, we extract two groups of HCW from the
“other HCW”, “Researcher” and “Technologist” (note that in hospital B no
one reported anything related to research as their occupation). We also split
the “Admin/Support” category into “Administration” and “Clerk” due to the
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Figure 3.20: Spatial spreading of a disease across HCWs. In all cases, each boxplot
represents the median and interquartile range of the risk associated to each group of HCWs.
Dots indicate the average risk of each worker within the category, with squares, circles and
triangles representing workers from hospitals A, B and C respectively. A) We show the
relative risk measured as the probability of getting infected during an outbreak. B) Risk
is gauged using the average number of infections produced by an individual during an
outbreak.

relative large number of individuals in each category.

1. The probability of getting infected

A basic observable of the risk carried by an individual is the probability of
getting infected. To obtain it, we run 10,000 stochastic simulations and com-
pute the probability that each individual gets infected, PIi. Then, we divide
it over the average probability of getting infected for all individuals, 〈PI〉, and
group them according to their occupation, Fig.3.20(A). In this case, we ob-
serve that nurses and technologists are the HCWs at higher risk. In contrast,
people working in administration are at lower risk of getting infected. Note
that interactions with patients are not included, and it is expected that nurses
will have more contact with patients than other occupations. Yet, the prob-
ability of getting infected is greater for them, purely based on their contacts
with other HCWs. These observations are largely consistent with the reality
in the hospital settings, highlighting the role of occupational heterogeneity
play on the risk of spread of HAIs.

2. Effective reproduction number
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Lastly, we compute the effective reproduction number of each individual.
That is, the average number of secondary infections they produce during an
outbreak, Ri. We divide this quantity over the average effective reproduction
number, 〈R〉, to gauge the risk posed by each individual. Then, we group
them again according to their occupation, shown in Fig. 3.20(B). Inline with
the previous observation, “nurse” is the category with the largest risk in terms
of the effective reproduction number. Thus, not only it is more likely for
nurses to get infected but also to spread the disease. As such, they should be
a priority when implementing new protection measures against HAIs. On the
other extreme, working under the “administration” category is relatively less
riskier.

3.4.5 Discussion

In the last part of the thesis, we consider the spatial and temporal information
self-reported by each healthcare worker in three hospitals in Canada to gener-
ate a data-driven network. In hospital settings, the functional characteristics
of some categories of units result in a particularly high risk of spreading the
healthcare-associated infections. The heterogeneity of the daily activities of
healthcare workers is also an important risk factor in the transmission of HAIs.
Therefore, the main purpose of our work is to provide quantitative assessment
of infection risks for spatial units and individuals, respectively. Accordingly,
we delve into the dynamics of HAIs by implementing an SIR model on the
generated network to simulate the spread of the disease within the hospital
setting.

In the case of assessing the risk of units, we propose two risk indicators
given by the disease hitting time and the number of infections generated per
unit. We find that the risk levels of units exhibit heterogeneous and spatial
distributed characteristics. In particular, the units belonging to “inpatient
care” and “public area” show a higher risk in spreading the diseases than
others under two assessment methods. Moreover, the “other-staff rooms” and
“auxiliary rooms” categories are at relatively lower risk levels to spread the
infections in hospitals.

Similarly, we quantitatively assess the risk of groups of HCWs with two
methods. We focus on the impact of the diversity of occupations on the risks
of HCWs by calculating the probability of getting infected and the effective re-
production number. The results indicate that HCWs belonging to the “Nurse”
category are the most susceptible to be infected and, at the same time, “Nurse”
is the occupation capable of infecting the largest number of people. In ad-
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dition, it is clear to see that most of the HCWs labeled as “Administration”
are comparatively difficult to get infected and transmit the disease to others
which is largely consistent with their occupational profile.

Lastly, a few remarks are in order. First, we observe that merely the
size of the hospital already produces denser and more connected networks,
which increases the value of R0 and thus facilitates the propagation of this
type of infectious diseases. Second, the networks were constructed using only
the self-reported information on the interaction patterns among co-workers,
disregarding the risk that some specific units might pose on the people working
there, or the possibility of patients contributing to the spreading. However,
we believe this limitation highlights something important. Based solely on
the amount of time spent at each location, we have identified which areas and
occupations are at highest risk in terms of HAIs. These, in turn, are precisely
areas with many patients and in which riskier activities take place, which can
only increase their role in spreading HAIs. Thus, special attention should
be paid to these interactions, rather than focusing only on patient-worker
interactions.

In this work, we finally presented the data-driven model by extracting the
nodes relationship from the spatio-temporal information recorded in three
surveys. Although data about the attributes of units and individuals are rela-
tively course-grained, we get the results that risk levels are apparently different
between categories classified by their specific characteristics. Our model pro-
vides insight into the dynamics of healthcare-associated infections in hospital
settings. The findings reveal the important influence of diverse categories of
units and various occupations of HCWs on the risk of disease spreading. In
terms of controlling the transmission of HAIs, we believe that appropriate
prevention measures can be developed through quantitatively assessed risks
for both units and individuals.
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“Only two things are infinite: the universe and human stupid-
ity,...and I am not sure about the former.”

— Albert Einstein

This dissertation details our research on exploring contagion dynamics in
multilevel and structured populations. It is of great significance to understand
dynamic processes in networked populations, like the propagation of infectious
diseases, the transmission of information and so forth. To this end, we tried to
yield a more articulated picture concerning this topic, albeit with incomplete
exploration. The concluding remarks of each Chapter are summarized as
follows.

By reviewing the development of complex network theory from the be-
ginning to the present, it is worth stressing that the structure plays a key
role in characterizing complex systems’ dynamics. Since a complex system
is composed of a large number of interacting microscopic units that interact
nonlinearly, we need the development of a set of mathematical methods to
link different scales as well as to explore their statistical characteristics.

In Chapter 2, we first provided a brief overview of the modelling and simu-
lation methods employed in this thesis. In a wide variety of dynamic processes,
we focused on exploring the dynamics of contagion processes, especially the
problem of epidemics on networks. The heterogeneity of epidemic propagation
is unlikely to be portrayed solely by the set of parameters of the differential
equations describing the dynamics of homogeneous systems. This needs to be
achieved by considering applications on multiple structural types of networks.
The basic assumption is that individuals capable of infecting or spreading epi-
demics are placed at each node of a network. The transmission only proceeds
through connections between nodes. We not only investigated the definitions
of some important quantities in the field of epidemiology but also compared
critical phenomena under different topologies of networks.

We developed a framework to extend the classical SIS epidemic model in
multiplex networks with the directionality of edges taken into account. We
focused on exploring the effect of directionality on disease contagion. We got
the general conclusion that the systems with some directionality have much

173



4. Conclusions

greater resistance to epidemics than those mapped as undirected networks.
Moreover, we made use of online social platforms to validate our findings
for synthetic networks. The framework can be easily implemented on many
types of systems, such as transportation systems, as well as on information
dissemination to illustrate the generality of our results.

Next, we adopted one of the most commonly used models for analyzing epi-
demic spreading, the compartmental model, to study a kind of norm-violating
behavior. We analyzed the dynamics of a highly stylized model consisting of
four flow channels between three compartments, C(corrupt), H(honest), and
O(ostracism). We revealed the phase diagram between the HCO model and
a modified SIRS model by mean-field predictions, showing that some social
interactions, like “warning to wrongdoers”, have a crucial impact on the evolu-
tion of corruption. Moreover, we applied the HCO model on duplex networks
where different flows among three states occur on a specific layer. Then, we
investigated the effect of edge overlap and interlayer degree correlations under
different underlying population networks on the corruption dynamics. The re-
sults demonstrated that various values of edge overlap as a result of rewiring
links barely affect the evolution of corruption activities given the same struc-
ture of networks regardless of whether they are uncorrelated or correlated.
However, high edge overlap due to interlayer correlated coupling can make a
difference in the dynamics, allowing for a fast evolution as transition rates
increase.

In chapter 3, we overviewed the influence of data science on capturing the
dynamics of complex networks. Here, we focused on the infection transmission
on contact networks modelled by real data. We developed a data-driven model
with age-dependent mixing patterns taken into account. We first made use
of this model with age-mixing matrices estimated from 34 countries in which
heterogeneous contact patterns between individuals are encoded. Then, we
executed simulations of the SARS-CoV-2 transmission with an SEIR-like epi-
demic model. We estimated quantitatively the infection-induced herd immu-
nity threshold (IHIT) and infection-induced overshoot infection level (IOR)
and explored the effects of three vaccine prioritization strategies on suppress-
ing the epidemics. The results show that the transmission-focused vaccination
strategy reaches the HIT at a coverage comparable to IHIT, but it has inferior
performance on averting deaths than the risk vaccination strategy.

Lastly, we considered the data collected from surveys especially designed in
three hospitals in Canada to record behaviors of healthcare workers. We made
use of the spatial and temporal information reported by healthcare workers
to build a data-driven network. We quantitatively assessed the infection risks
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for spatial units and individuals with two methods. The findings indicate that
diverse categories of units and various occupations of HCWs play an essential
role in the risk assessment of disease spreading in healthcare settings.

All in all, the purpose of this thesis was to explore some contagion processes
in networked populations from a multilevel perspective and to analyze their
contagion dynamics from the theoretical level to the practical application level
when real data is incorporated. Our results on this topic are still limited, and
we believe there are still plenty of directions and issues worth exploring in
future works.

4.1 Prospects

Regarding the future work for the corruption model, it would be interesting
to relax some of the assumptions incorporated in our model. For instance,
here we have assumed that (for fixed parameters) the rate of corruption is
a one-variable function of the local fraction of corrupt agents and that the
rate of delation is also a one-variable function of the local fraction of honest
agents. A most promising prospective is to build up general and well-informed
functions for the corruption and delation flow rates, so that the model in fact
allocates a game-theoretic formulation, i.e., that these flow rates correspond
to some game dynamics capable of incorporating fewer stylized ingredients
than the ones included here. In this regard, the consideration of flow rates
based on utility (benefit) functions not only requires many-variable functions
but also enlarges the “information horizon” to second neighbors’ shell, likely
expanding the scope of model potential applications.

In the case of the project about the spatial spreading of diseases in hos-
pital settings, since there are abundant and informative data collected from
the questionnaire in three hospitals, we are considering making use of other
information to generate different data-driven networks or develop other the-
oretical approaches. Hence, we could compare their differences in preventing
healthcare-associated infections.

In addition, as an extension of the work about quantitatively estimating
the infection-induced herd immunity threshold, we are currently leveraging the
collected information on the maximum number of residents at nursing homes in
Spain together with the age distribution of the population to estimate contact
patterns in such settings. We aim to explore the effect of incorporating this
information into SEIR epidemic models.

Although much of the existing work has been conducted considering the
structure of populations, both qualitatively and quantitatively, most of it has
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focused on static contact structures. In other words, the results are grounded
in the assumption that “social contact patterns of individuals do not change
over time”. However, this assumption is clearly not applicable in the real world,
where contact behaviors of individuals are not only influenced by individual-
initiated behaviors such as school vacations but also change in response to
government control strategies during epidemic outbreaks. The present detec-
tion and sensing technologies are not capable of achieving the task of tracking
large-scale contact behaviors over time. Therefore, how to model and dis-
cover spatio-temporal patterns of mass population exposure could be our next
research direction.
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Esta disertación detalla nuestra investigación sobre la exploración de dinámi-
cas de contagio en poblaciones estructuradas y multinivel. Resulta de gran
importancia entender los procesos dinámicos en poblaciones en red, como la
propagación de enfermedades infecciosas, la transmisión de la información,
etc. Con este objetivo, hemos intentado mostrar una imagen articulada con re-
specto a este campo, aunque con una exploración incompleta dado su tamaño.
Las conclusiones finales de este capítulo se resumen en lo siguientes puntos.

Al repasar el desarrollo de la teoría de las redes complejas desde su inicio
hasta el presente, es importante destacar que la estructura juega un papel
fundamental en la caracterización de las dinámicas de los sistemas complejos.
Dado que un sistema complejo se compone de un gran número de unidades
microscópicas que interactúan de forma no lineal, necesitamos desarrollar téc-
nicas matemáticas que sean capaces de unir diferentes escalas y estudiar sus
características estadísticas.

En el capítulo 2, primero dimos un breve repaso a los métodos de mod-
elización y simulación utilizados en esta tesis. En una gran variedad de pro-
cesos dinámicos, nos centramos en explorar las dinámicas y los procesos de
contagio, especialmente en lo referente a la propagación de epidemias en redes.
La heterogeneidad de la propagación de epidemias es difícilmente representable
simplemente utilizando un conjunto de parámetros de ecuaciones diferenciales
que describan la dinámica homogénea de las redes. La asunción básica es que
los individuos capaces de infectar o contagiar las epidemias se sitúan en cada
nodo de una red. De esta forma, la transmisión solo se produce a través de las
conexiones entre nodos. No solo investigamos la definición de algunas métricas
importantes en el campo de la epidemiología, sino que también comparamos
fenómenos críticos bajo diferentes topologías de redes.

También desarrollamos un marco teórico capaz de extender el modelo clásico
SIS en redes multicapa en la que la direccionalidad de los enlaces se tiene en
cuenta. Nos centramos en explorar el efecto de la direccionalidad en la propa-
gación de epidemias. Obtuvimos la conclusión general de que los sistemas
en los que hay algo de direccionalidad tienen mucha más resistencia a las
epidemias que aquellos que se pueden representar como redes no dirigidas.
Además, utilizamos datos de plataformas sociales en línea para validar nue-
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stros resultados obtenidos en redes sintéticas. Este marco teórico puede ser
extendido a otro tipo de sistemas, como los de transporte, así como a la dis-
eminación de la información, lo que da cuenta de la generalidad de nuestros
resultados.

A continuación, adoptamos uno de los modelos más comúnmente utiliza-
dos para analizar la propagación de epidemias, el modelo compartimental,
para estudiar un tipo de comportamiento que viola las normas. Analizamos
la dinámica de un modelo muy estilizado que poseía cuatro canales de trans-
misión entre tres compartimentos, C(corrupt), H(honest), y O(ostracism).
Mostramos el diagrama de fases del modelo HCO y una versión modificada
del SIRS utilizando predicciones de campo medio, mostrando que algunas in-
teracciones sociales, como el “castigo a los que lo hacen mal”, juegan un papel
fundamental en la evolución de la corrupción. Es más, aplicamos le modelo
HCO a redes de dos capas de forma que los flujos en cada capa fueran difer-
entes. Bajo esta premisa, investigamos el efecto que el solapamiento de enlaces
y las correlaciones de grado entre capas tienen sobre diferentes redes durante
la propagación de la corrupción. Los resultados demuestran que el valor del
solapamiento de enlaces obtenido tras reconectar los enlaces apenas afecta a
la evolución de las actividades de corrupción dada la misma estructura de
redes, independientemente de que sean correlacionadas o no correlacionadas.
Sin embargo, un algo solapamiento de enlaces debido a una alta correlación
entre las conexiones entre capas puede introducir diferencias en la dinámica,
permitiendo una evolución más rápida cuando se incrementan los ritmos de
transición.

In el capítulo 3, repasamos la influencia de la ciencia de datos en el estudio
de la dinámica de redes complejas. Aquí, nos centramos en la transmisión de
infecciones en redes de contacto modelizadas usando datos reales. En partic-
ular, desarrollamos un modelo conducido por los datos con patrones de inter-
acción que dependían de la edad. Utilizamos este modelo para crear matrices
de interacción por edad sobre 34 países diferentes en las que la heterogenei-
dad de los contactos entre individuos se tiene en cuenta. Después, ejecutamos
simulaciones de transmisión del virus SARS-CoV-2 utilizando un modelo epi-
demiológico semejante al SEIR. Estimamos cuantitativamente la inmunidad
de grupo inducida por la propagación (IHIT) y el exceso en el nivel de in-
fección inducido por la propagación (IOR) y exploramos los efectos que tres
estrategias de priorización de vacunación a la hora de suprimir las epidemias.
Los resultados muestran que la vacunación centrada en la transmisión es ca-
paz de conseguir una inmunidad de grupo comparable con el IHIT, pero tiene
una eficacia menor a al hora de prevenir muertes frente a aun estrategia de
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vacunación basada en el riesgo.
Finalmente, consideramos datos obtenidos en encuestas diseñadas específi-

camente para el estudio de los comportamientos de los trabajadores sanitarios
en tres hospitales de Canadá. Utilizamos información espacial y temporal
reportada por los propios trabajadores sanitarios para construir las redes. Es-
timamos cuantitativamente el riesgo de infección en las diferentes unidades
espaciales de los hospitales y de los propios trabajadores utilizando dos méto-
dos. Los resultados indican que varias unidades y categorías de trabajadores
juegan un papel fundamental en el riesgo de propagación de enfermedades en
los entornos sanitarios.

En resumen, el objetivo de esta tesis era explorar algunos procesos de con-
tagio en poblaciones en red desde una perspectiva multinivel para analizar la
dinámicas de contagio desde un punto de vista teórico y práctico cuando se
dispone de los datos. Nuestros resultados en este área todavía son limitados,
por lo que consideramos que todavía existen múltiples direcciones que seguir
y problemas por explorar en el futuro.

5.1 Perspectivas

En lo que respecta al modelo de corrupción, sería interesante relajas algu-
nas de las asunciones incorporadas en el modelo. Por ejemplo, aquí hemos
asumidos que (para un conjunto de parámetros fijos) la tasa de corrupción es
función de una variable local que depende de la fracción de agentes corruptos
y que la tasa de delatamiento también es una función de una variable que
depende de la fracción local de agentes honestos. Una dirección muy prom-
etedora sería construir funciones más generales y bien informadas para estas
tasas, de forma que el modelo se asemeje más a una formulación de teoría de
juegos, i.e., que estos flujos se correspondan a dinámicas de juegos capaces
de incorporar menos ingredientes estilizados que los utilizados aquí. En este
sentido, la consideración de que los flujos se basen en las funciones de utilidad
(beneficio) no solo requiere funciones de muchas variables sino también incre-
menta el horizonte de información a la segunda capa de vecinos, extendiendo
la aplicabilidad del modelo.

En el caso del proyecto sobre la propagación de epidemias en hospitales,
dado que existe bastante información en los cuestionarios de los tres hospitales,
estamos considerando explorar otra información para generar las redes con
otras aproximaciones, desarrollando nuevos modelos teóricos. Así, podríamos
comparar las diferencias a la hora de prevenir las infecciones asociadas a los
centros hospitalarios.
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5. Conclusiones

Así mismo, como una extensión del trabajo sobre estimar cuantitativa-
mente la inmunidad de grupo inducida por la infección, estamos actualmente
utilizando información obtenida sobre los residentes en centros geriátricos en
España para poder estimar la propagación en esos lugares. Nuestro objetivo
es explorar el efecto que puede tener incorporar esta información a los modelos
epidemiológicos tipo SEIR.

Aunque una gran parte del trabajo se ha realizado teniendo en cuenta la
estructura de las poblaciones, tanto cuantitativamente como cualitativamente,
la mayor parte se basaba en redes de contacto estáticas. En otras palabras, los
resultados se basan en la asunción de que los “patrones sociales de contacto
entre individuos no cambian con el tiempo”. Sin embargo, esta asunción es
claramente no aplicable al mundo real, donde el contacto entre individuos
no solo se ve influenciado por eventos como las vacaciones escolares, sino
que también pueden cambiar como respuesta a medidas de control que los
gobiernos impongan durante la propagación de una epidemia. Las tecnologías
de detección y de sensores existentes actualmente no son capaces de seguir
los comportamientos sociales a gran escala durante mucho tiempo. Por tanto,
cómo modelizar y descubrir estos patrones de interacción espacio-temporales
sobre grandes conjuntos de población podría ser una dirección de investigación
interesante para el futuro.
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