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Abstract: Speech Activity Detection (SAD) aims to accurately classify audio fragments containing
human speech. Current state-of-the-art systems for the SAD task are mainly based on deep learning
solutions. These applications usually show a significant drop in performance when test data are
different from training data due to the domain shift observed. Furthermore, machine learning
algorithms require large amounts of labelled data, which may be hard to obtain in real applications.
Considering both ideas, in this paper we evaluate three unsupervised domain adaptation techniques
applied to the SAD task. A baseline system is trained on a combination of data from different domains
and then adapted to a new unseen domain, namely, data from Apollo space missions coming from
the Fearless Steps Challenge. Experimental results demonstrate that domain adaptation techniques
seeking to minimise the statistical distribution shift provide the most promising results. In particular,
Deep CORAL method reports a 13% relative improvement in the original evaluation metric when
compared to the unadapted baseline model. Further experiments show that the cascaded application
of Deep CORAL and pseudo-labelling techniques can improve even more the results, yielding a
significant 24% relative improvement in the evaluation metric when compared to the baseline system.

Keywords: Speech Activity Detection; unsupervised domain adaptation; Fearless Steps Challenge

1. Introduction

Speech Activity Detection (SAD) aims to determine whether an audio signal contains
speech or not, and its exact location in the signal. This constitutes an essential preprocessing
step in several speech-related applications such as speech and speaker recognition, as well
as speech enhancement. In many cases, SAD is used as a preliminary block to separate the
segments of the signal that contain speech from those that are only noise. This way, enabling
the overall system to process only the speech segments. A large number of approaches
have been proposed for the SAD task. Traditionally, statistical approaches have been used
with relevant results under the assumption of quasi-stationary noise. Several works rely
on the extraction of specific acoustic features [1,2]. Conversely, other methods are model-
based [3,4], aiming to estimate a statistical model for the noisy signal. Additionally, some
unsupervised approaches can also be cited: based on energy [5], or based on the estimation
of the signal long-term spectral divergence [6]. Recently, deep learning approaches are
becoming increasingly relevant in the SAD task. The research presented in [7] implements
a SAD system based on a multilayer perceptron with energy efficiency as the main concern.
A deep neural network (DNN) approach is used in [8] to perform SAD in a multi-room
environment. In [9], new optimisation techniques based on the area under the ROC curve
are explored in the framework of a deep learning SAD system.

Recurrent neural networks (RNN) are significantly useful when dealing with tem-
poral sequences of information because they are able to model temporal dependencies
introducing a feedback loop between the input and output of the neural network. Several
applications of long short-term memory (LSTM) networks [10] can be cited in the SAD
task [11,12]. Some of our latest solutions for SAD in the context of diarisation applications
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obtained competitive results applying a bidirectional LSTM-based classifier [13,14]. Con-
volutional Recurrent Neural Networks (CRNN) combine the capability of convolutional
networks to capture frequency and time dependencies simultaneously seeking to extract
discriminative features, and the capability of recurrent networks to deal with temporal
series. A number of examples of the use of CRNN models in audio processing can be
found in the literature [15,16]. CRNN models have been also applied to the SAD task with
relevant results [17].

In the last few years, a number of international evaluation campaigns have been propos-
ing the SAD task as one of their challenges, seeking to advance this kind of systems in a
variety of challenging domains. In this context, the National Institute of Standards and Tech-
nology (NIST) introduced the OpenSAT evaluations starting in 2017 [18]. Three domains were
proposed for the SAD task: public safety communications, low resource languages and audio
extracted from YouTube videos. Post-evaluations analysis revealed a significant difference in
performance among the three domains for most participant teams. Similarly, aiming to moti-
vate the research effort on a demanding domain such as audio from Apollo space missions, a
series of annual challenges has been held since 2019 [19] proposing the SAD task among other
speech related tasks. This initiative has resulted in the digitisation of the original analogue
recordings from the space missions. Part of this data has been made available through the
Fearless steps (FS) corpus, consisting of a cumulative 19,000 h of conversational speech coming
from the Apollo 11 mission [20]. Audio data belong to 30 different communication channels,
with multiple speakers in diverse locations. Most channels show a strong degradation with
transmission noise or noise due to tape ageing.

Whereas current SAD state-of-the-art solutions rely on the use of deep learning tech-
niques, these applications depend strongly on the amount of labelled data available. In
some specific scenarios, obtaining labelled data can be significantly expensive or even im-
possible, which is why unsupervised domain adaptation techniques are an active research
topic [21,22]. Domain adaptation techniques aim to transfer the knowledge obtained from
a source domain and transfer it to a target domain. In addition, unsupervised domain
adaptation techniques work under the constraint that no labels are available in this new
target domain. Inspired by our previous experiences participating in the Fearless Steps
Challenge [23,24], that introduced a new audio domain in the research community, in this
paper we aim to explore unsupervised domain adaptation techniques in the context of
the SAD task. Considering a SAD model trained on different well-known domains in the
SAD task, such as broadcast or meetings, with huge amounts of labelled data available,
we evaluate three possible ways to adapt the SAD model to a new unseen domain in an
unsupervised way. Results are presented using the data provided in the Fearless Steps
Challenge; however, the techniques and methods described in this paper are described in a
general way so that domain adaptation could be done on any possible scenario. Unlike
the work presented in [25], where the key idea is to perform a pretraining process on DNN
models using unlabelled data, seeking to obtain a shared representation, this work aims to
perform unsupervised domain adaptation directly on the model space, with the objective
of fine tuning a given model trained previously with labelled out of domain data.

The remainder of the paper is organised as follows. Section 2 introduces the domain
adaptation problem, presents some approximations found in the literature on how to solve
it, and introduces different methods evaluated. Section 3 presents the experimental setup,
describing the neural network architecture, datasets considered and metrics used in the
evaluation. In Section 4, results for the baseline SAD system and unsupervised adaptation
techniques are described. Finally, a summary of the work and conclusions are presented in
Section 5.

2. Domain Adaptation

Usually machine learning algorithms require large amounts of manually labelled
training examples in order to train a reliable model. In real applications, however, obtaining
labelled data requires huge efforts and, in some cases, it is even impossible. A simple and
straightforward solution is to train a model on a labelled dataset which is somehow related
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to the target data and then apply it to the data being considered. This approach is likely
to lead to substantial drops in performance caused by the domain shift, observed in the
different feature and label distributions [26]. In order to solve this problem, several domain
adaptation techniques have arisen, aiming to learn from a source dataset and transfer
that knowledge obtained to a target dataset. Domain adaptation is currently an active
research topic in the machine learning community [27,28]. Focusing on speech technologies
applications, several works have also investigated the domain adaptation problem for
speech recognition [29], speaker recognition [30] or speech enhancement [31].

2.1. Problem Formulation

In the following lines, a formal introduction to the domain adaptation problem and
some definitions relevant to the topic are provided. In order to formulate the domain adapta-
tion problem, two domains need to be defined: the source and the target domain. The source
domain, Ds, represented by a source dataset Πs = {Xs, Ys} where Xs = {xs1 , . . . , xsN} is
the set of acoustic features with N examples, and Ys = {ys1 , . . . , ysN} the speech labels
defining each of the elements in Xs as speech or non-speech examples. Similarly, the target
domain, Dt, is represented by a target dataset Πt = {Xt} where Xt = {xt1 , . . . , xtM} is the
set of acoustic features with M examples. In the case of unsupervised domain adaptation
problems, such as the ones described in this work, no ground-truth labels Yt are available
for the target dataset.

Traditionally, in supervised learning problems training samples are assumed to be
available. This is the case for the source domain. Accordingly, the learning problem is to
determine a classifier fs(Πs, θs) that allows obtaining high classification accuracy for test
samples by exploiting the available training set Πs. The classifier is described by a set of
parameters θs specific for each family of classifiers.

In the domain adaptation framework, the problem becomes more complex as test
samples are drawn for a target domain distribution different from the source domain
distribution of training samples. Considering the ideas described, the goal of domain
adaptation techniques should be to develop a new classifier ft(Πs, θs, Πt, θt) that obtains an
accurate prediction of test samples coming from the target domain by exploiting labelled
training samples Πs from the source domain Ds and unlabelled samples Πt from the target
domain Dt. As for supervised classifiers, this new model adopted for classification is
described by a set of parameters θs specific for each family of classifiers, and by a set of
parameters θt which is specific to each domain adaptation technique.

2.2. Approaches to Domain Adaptation

In order to better understand the domain adaptation problem, a variety of works over
the years have tried to categorise the diverse conditions found for the problem. We refer
the reader to the following survey for a more detailed description of this categorisation [32].
The first level of categorisation refers to the relation between source and target domains.
Under the assumption that the source and target domain are directly related, transferring
knowledge can be performed in a single step. This is usually called one-step domain
adaptation. In case that assumption fails, one-step domain adaptation may not be effective.
Multi-step domain adaptation [33] aims to connect two unrelated domains via a series of
intermediate bridges, and then perform one-step domain adaptation.

In this work, as human speech has characteristics that may not vary among domains,
we assume that source and target domains are related. Because of that, we focus on one-
step domain adaptation solutions. In this scenario, domain adaptation approaches can be
summarised intro three big cases according to the work in [34]:

• Discrepancy-based: this family of solutions works under the assumption that fine-
tuning a model using labelled or unlabelled data can reduce the shift between source
and target domain. Under this idea, several criteria can be used to perform domain
adaptation: some authors use class information to transfer knowledge between two
domains [35]. The authors of [36,37] seek to align the statistical distribution shift be-
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tween source and target domain. Other approaches also aim to improve generalisation
by adjusting the architectures of DNNs, such as the work presented in [38].

• Adversarial-based: in this case, a domain discriminator tries to identify whether a
data point belongs to the source or the target domain. This is used to encourage
domain confusion through an adversarial objective that minimises the distance be-
tween source and target domain distributions. Two main groups can be observed
when implementing this idea: those relying on generative models such as generative
adversarial networks (GAN) [39], or those that rely on non-generative models that
aim to obtain domain invariant representation through a domain confusion loss [40].

• Reconstruction-based: This approach is based on the idea that data reconstruction
of the source or target samples may be helpful in order to improve the domain
adaptation process. This way the reconstructor is able to ensure both specificity of
intra-domain representations and indistinguishability of inter-domain representations.
Some examples of these methods can be cited, such as the use of an encoder-decoder
reconstruction process [41], or an adversarial reconstruction obtained via a cycle GAN
model [42].

2.3. Unsupervised Domain Adaptation Techniques

Following the categorisation previously explained, in this paper we focus our efforts on
the evaluation of one-step, discrepancy-based domain adaptation techniques. Additionally,
the three methods presented are fully unsupervised, meaning that no labels for the target
domain are needed in order to obtain an adapted model. Descriptions of these methods are
presented in the next subsections.

2.3.1. Pseudo-Labelling

The goal of pseudo-labelling (PL) [43] is to generate a set of predicted labels for
unlabelled samples with a model trained on labelled data. This idea is an intuitive and
straightforward application that can help overcome the challenge of collecting large la-
belled datasets. Several works in the literature have explored different algorithms for
creating pseudo-labels. In [44], pseudo-labels are assigned to unlabelled samples using
neighbourhood graphs. The idea of pseudo-labelling is extended in [45] by incorporating
confidence scores for unlabelled samples. The authors of [46] present a new optimisation
framework to iteratively update the obtained pseudo-labels. Our approach is inspired by
the works in [43,47], where pseudo-labels are generated directly as the predictions of a
trained neural network.

Our solution for pseudo-labelling domain adaptation can be described according to
the three following steps:

1. Train source model: first, an initial model is trained in a supervised way on the
source domain.

2. Predict target labels: the initial model is then used to predict speech presence or
absence for the unlabelled target domain.

3. Adapt using predicted labels: finally, the initial model is retrained in a supervised
way using the pseudo-labels as if they were true labels.

Furthermore, besides performing a fine tuning of the initial source model to obtain
the target model, this solution could also be used to train a target model from scratch
using the obtained pseudo-labels or a combination of the source labelled data and the
obtained pseudo-labels. Pseudo-labelling techniques have been used in several audio
processing applications ranging from acoustic classification problems [48], diarisation [49]
or speech recognition [50] with relevant results. In this work, we aim to extend the pseudo-
labelling techniques to the SAD task and evaluate its performance in the framework of
domain adaptation.



Appl. Sci. 2022, 12, 1832 5 of 23

2.3.2. Knowledge Distillation

The knowledge distillation (KD) [51] framework was originally proposed as a model
compression method in which two DNNs are involved. These two models are usually
known as teacher and student model in an analogy to the education process. The main
idea of this philosophy is that the teacher model produces soft labels which are used to
train the student model. Consequently, the student model should imitate the predictions
of the teacher model. In order to do so, Kullback–Leibler Divergence (KLD) loss between
student and teacher distributions is minimised. KLD loss can formulated according to the
following expression:

KLD = −
I

∑
i=1

pt(yi|xi) log(
ps(yi|xi)

pt(yi|xi)
) , (1)

where i is the example index, xi is the input example, pt(yi|xi) is the output posterior
probability of the label yi from teacher model and ps(yi|xi) is the output posterior prob-
ability of the label yi from student model for the same example. As done in most KD
methods [52,53], the teacher model is usually frozen, relying on a pretrained model, in
order to reduce complexity. In this case, where only the parameters of the student network
need to be optimised, minimising KLD loss expressed in Equation (1) is equivalent to
minimising the expression shown in the following equation:

LKLD = −
I

∑
i=1

pt(yi|xi) log(ps(yi|xi)) + const , (2)

where const is a constant term as defined in [54]. As it has just been explained, knowledge
is transferred via the minimisation of a loss function whose target is the distribution of
class probabilities predicted by the teacher model. This is the output of a softmax function
applied on the teacher model logits. However, in most cases, this distribution provides a
high probability for the correct class, with the other class probabilities close to zero. In order
to address this issue, the authors of [51] introduced the concept of softmax temperature.
The probability pi of the class i is calculated from the neural network logits z according to
the following equation:

pi =
e(

zi
T )

∑i e(
zi
T )

, (3)

where T is the temperature parameter. For the case of T = 1 the standard softmax function
is obtained. As T grows, the probability distribution generated becomes softer, providing
more information as to which classes the teacher found more similar to the predicted class.

The proposed experimental setup for KD based domain adaptation is shown schemati-
cally in Figure 1. It can be seen that both models—teacher and student—receive target data
examples Xt as input. Predictions from both models are obtained via softmax activations
using the same temperature parameter t. Soft predictions from the teacher network are
used to transfer knowledge to the student network, aiming at mirroring those predictions
using the mentioned KLD loss. In this process, the teacher model is frozen and only pa-
rameters of the student model are updated. In order to test the system, the teacher model
is discarded, and final predictions are obtained using the student model with a standard
softmax activation with T = 1. As it is implemented, this version of KD can be interpreted
as a soft version of the pseudo-labelling method previously described.

Several examples of the use of KD techniques for solving the domain adaptation task
can be found in the literature. The authors of [55] apply KD to improve acoustic models
for automatic speech recognition (ASR) in application-specific conditions. Something
similar is done in [56], that uses KD algorithms to improve ASR performance in noisy
environments. Concerning the SAD task, we can also see several examples of the teacher
student architecture being used in domain adaptation solutions [57,58].
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Target data

LKLD

Teacher
model

Student
model
softmax(T=t)softmax(T=t)

backpropagate

update weights

Figure 1. Schematic description of the proposal for the knowledge distillation domain adaptation technique.

2.3.3. Deep CORAL

The recently proposed Correlation Alignment (CORAL) method [37] is an unsuper-
vised adaptation technique that is performed by aligning the second-order statistics of the
source and the target distributions. However, this technique relies on a linear transforma-
tion and is not end-to-end. In order to address those issues, an extension on the CORAL
method named Deep CORAL was proposed [59] with the idea of incorporating the CORAL
technique directly into deep neural networks by constructing a differentiable loss functions
that minimises the difference between source and target correlations.

The CORAL loss between two domains for a single feature layer is described in
the following lines. Suppose a set of training examples coming from the labelled source
domain, Ds, described by Us = {us1 , . . . , usN} with u ∈ Rd, and unlabelled target data
Vt = {vt1 , . . . , vtM}, with v ∈ Rd. The number of source and target data are N and M
respectively. As described in the original paper, Us and Vt represent the d-dimensional deep
layer activations of a deep neural network model. Considering the provided definitions,
the covariance matrices of the source and target data are given by the following equations:

Cs =
1

N − 1
(UT

s Us −
1
N
(1TUs)

T(1TUs)) , (4)

Ct =
1

M− 1
(VT

t Vt −
1
M

(1TVt)
T(1TVt)) , (5)

where 1 is a column vector with all elements equal to 1. The CORAL loss is then defined as
the distance between the second-order statistics of the source and target features. This is
shown in Equation (6):

LCORAL =
1

4d2 ‖Cs − Ct‖2
F

, (6)

where ‖ · ‖2
F

denotes the squared matrix Frobenius norm.
The idea behind Deep CORAL adaptation technique is to obtain a set of deep features

that are both discriminative enough to train a strong classifier and invariant to the change
observed between source and target domains. Minimising a classification loss by itself,
as usually done in supervised learning approaches, may lead to overfitting on the source
domain and a reduced performance on the target domain. By contrast, minimising the
CORAL loss alone may lead to degenerated features. In order to match the conditions
stated above, the final loss to be optimised is a combination of both a classification loss and
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the CORAL loss. The representation of the neural architecture needed to implement Deep
CORAL adaptation technique is shown in Figure 2.

DNN
Model

DNN
Model

Source data

Target data

Lclassif

LCORAL

sh
a
re

d
Figure 2. Schematic representation of Deep CORAL adaptation technique.

As shown, source features are forwarded through the DNN model and then a classifica-
tion loss is computed using source labels. Similarly, target features are used in combination
with source features to compute CORAL loss. Network parameters are shared among the
two DNN models. Considering the described architecture, the joint optimisation target of
classification loss and CORAL loss is described in Equation (7):

L = Lclassif +
z

∑
i=1

λiLCORALi , (7)

where Lclassif is any traditional classification loss function such as cross entropy, z is the
number of CORAL loss layers in a deep network and λi is a weight that trades off adap-
tation and classification accuracy on the source domain. The sum term depicted aims to
represent the possibility of incorporating the CORAL loss on additional layers of the DNN
architecture. However, as described in the original paper, authors apply the CORAL loss
only to the last classification layer in the DNN architecture. In our experiments, we apply
CORAL loss in the same way, simplifying Equation (7) to become Equation (8) in the case
where z = 1:

L = Lclassif + λLCORAL . (8)

More recently, further work has proposed a new approach built upon the Deep CORAL
method. The authors of [60] argue that the Euclidean distance used in the original Deep
CORAL proposal may not be the most appropriate way to measure the distance between
the source and target domains. Knowing that covariance matrices are positive semi-definite,
they can be seen as two points lying on a Riemman manifold, and the metrics defined
therein should consider its non-Euclidean structure [61]. Therefore, the Euclidean distance
as defined in Equation (6) may be seen as only suboptimal in such a space. Considering this
information, the log-Euclidean distance is instead a Riemannian metric that better captures
the manifold structure. This metric is defined according to the following equation:

dlog(X, Y) = ‖ log(X)− log(Y)‖F , (9)

where log(X) is the matrix logarithm of X [62]. Similarly as the CORAL loss, the log
CORAL loss can be obtained by replacing the Euclidean distance in Equation (6) with the
log-Euclidean distance. This is shown in Equation (10).

Llog CORAL =
1

4d2 ‖ log(Cs)− log(Ct)‖2
F

. (10)
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Through the eigenvalue decomposition of matrices Cs and Ct in Equation (10) we obtain
the final expression for Log Deep CORAL loss:

Llog CORAL =
1

4d2 ‖Sdiag(log(s1), · · · , log(sd))S
T − Tdiag(log(t1), · · · , log(td))T

T‖2
F

, (11)

where d denotes the dimension of the features whose covariances are intended to align, as
previously explained; S and T are the matrices that diagonalise Cs and Ct, respectively;
and si and ti are the corresponding eigenvalues. The final setup for the log CORAL loss
is the same as the one explained for the original CORAL loss, being described in similar
terms as the ones presented in Equation (7): a classification loss is combined with the log
CORAL loss to obtain the global loss term.

3. Experimental Setup
3.1. Data Description

The idea behind the baseline model training is to obtain a generic model exposed to a
huge variety of data, so that an adaptation to new unseen domains can be performed later
by transferring that general knowledge to a target dataset. Table 1 summarises datasets
used for training and evaluating the baseline SAD system.

Table 1. Data description for baseline SAD training.

Domain

Broadcast Telephonic Meetings

Train data

Albayzín 2010—TV3 [63]

SRE08 Summed

AMI [64]
Albayzín 2018—RTVE [65]

ICSI Meetings [66]
MGB [67]

Test data Albayzín 2020—RTVE [68] CALLHOME [69] RT09

As it can be observed, the baseline SAD is trained on a combination of data coming
from three domains: broadcast, telephone channel and meetings. For the broadcast domain,
the system is trained on a combination of data from previous Albayzín evaluation cam-
paigns (2010 and 2018) and data from the Multi-Genre broadcast (MGB) challenge. For the
meetings domain, AMI and ICSI meetings corpora are used. Finally, in order to represent
the telephonic domain, the summed partition of NIST 2008 speaker recognition evaluation
(SRE) is incorporated into training. In addition, 10% of each training dataset considered is
reserved to generate a validation subset containing data across the three domains consid-
ered. As described in Table 1, we also reserve an additional dataset from each domain to
evaluate the obtained results in that domain with the baseline SAD system. These datasets
are the Albayzín 2020 evaluation partition for broadcast domain, CALLHOME dataset for
telephonic domain and the dataset originally released for NIST Rich Transcription (RT)
2009 evaluation for meetings domain.

The main goal of this work is to adapt SAD models trained on a variety of domains to a
new unseen domain. This new domain is the one introduced in the Fearless Steps Challenge,
with audio from Apollo mission featuring quite degraded channels and several kinds of
transmission noises. In the following lines, we describe partitions provided originally in the
second phase of the challenge (FS-02) and explain how they have been used in this work:

• Train: Training subset is made of 125 files of approximately 30 min duration each. This
makes a total of approximately 62.5 h of audio. Despite the ground truth labels for this
partition are available, in the experiments we consider the target domain unlabelled,
so we make no use of those labels in our systems. The audio is used then as target
data in order to adapt SAD models to this new unseen domain.
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• Development: There are available 30 files of 30 min length for development purposes,
resulting in around 15 h of audio. In this work, this subset is used to evaluate our
systems, in terms of the particular metrics introduced.

Note that the evaluation partition provided by the organisation was not used in this
work. The scoring of this subset was performed by organisers while running the challenge
and labels have not been released publicly, making it impossible to obtain comparable
results on this subset at the moment of developing this work. Furthermore, all the obtained
results in this work for the Fearless Steps data are under the challenge conditions because
participants were allowed to use any available data in addition to the data provided by the
organisation to train and tune their systems.

3.2. Feature Extraction

As a first preprocessing step, all audio considered for this work was downsampled
to 8 kHz and converted to a single-channel input. As input features for the proposed
neural network-based SAD system, we consider log Mel-filter bank energies. We use 64 log
Mel-coefficients concatenated with the log energy of the frame. Considering an audio input
sampled at 8 kHz, Mel filters span across the frequency range between 64 Hz and 4 kHz.
Features are computed every 10ms using a 25 ms Hamming window. As a final step, the
mean and variance at feature level are used to normalise the corresponding file. The set of
features described in this section is shared among all experiments described in this paper.

3.3. Neural Network Model

As the main element for the SAD system we opt for a CRNN based classifier. Partic-
ularly, we use the variant using 2D convolutions from the models already presented in
our previous work [23]. The schematic representation of the proposed CRNN model is
described in Figure 3.

Figure 3. Convolutional recurrent neural network model proposed for the SAD task.

As it can be observed in the figure, the model is mainly composed of two elements.
First, three 2D convolutional blocks are used to process input features. Each of these blocks
is integrated by a 2D convolutional layer with 3 × 3 kernel size and 64 filters. Then, it is
followed by a batch normalisation layer [70] and the application of a rectified linear unit
(ReLU) [71] activation function. Finally, a max-pooling mechanism is applied considering
a 4 × 1 stride, so that only the frequency axis is downsampled. Then the output of the
last convolutional block is fed to the RNN block, generated by stacking three bidirectional
LSTM layers with 128 neurons each. This block is then followed by a linear layer that
generates the speech class score as a single neuron output.

3.4. Evaluation Metrics

Two possible errors can be considered when dealing with SAD systems: a false positive
(FP), this is the identification of speech in a segment where the reference identifies non-
speech, and a false negative (FN), this is the missed identification of speech in a segment
where the reference identifies speech. Using these two errors, the false positive rate (FPR)
and false negative rate (FNR) can be computed according to the following equations:
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FPR =
TFP

Tnon-speech
, (12)

FNR =
TFN

Tspeech
, (13)

where TFP and TFN are, respectively, the total false positive time and total false negative
time for the SAD hypothesis, Tnon-speech represents the total annotated non-speech time in the
reference, and Tspeech represents the total annotated speech time in the reference. Following
the evaluation protocol originally proposed in the Fearless Steps Challenge [72], results are
reported according to the detection cost function (DCF), as shown in the following equation:

DCF = 0.75 · FNR + 0.25 · FPR . (14)

As it can be observed, false negative errors were considered more important than false
positive errors in the original evaluation. In addition to FPR, FNR and DCF, which are
metrics depending on the chosen threshold, results of the system are also reported using the
area under the ROC curve (AUC) metric, measuring the area underneath the entire receiver
operating characteristics (ROC) curve, and the equal error rate (EER), the error rate at which
the FNR and FPR is equal. Both metrics provide an overall measurement of performance
for all the possible threshold applied to the neural networks scores. Furthermore, the
desegregated performance for all possible operating points is described using the detection
error trade-off (DET) curve, showing FPR values versus FNR values.

4. Results
4.1. Baseline System

As starting point for the experimentation, the main objective is to obtain a baseline
system so that further experiments could be compared against. This baseline model is
the one considered as the unadapted model, trained only with out of domain data. This
model is fine tuned in the following experiments using the methods previously explained
in order to obtain a model adapted to the unseen domain. The experimental setup is built
upon the description provided in Section 3. Concerning the details of the optimisation
process, adam optimiser is used with a learning rate that decays exponentially from 10−3

to 10−4 during 20 epochs. Minibatch size is chosen to maximise the GPU memory usage.
Model selection is performed by choosing the best performing model in terms of frame
classification accuracy on the validation subset. Unless stated otherwise, these optimisation
details are common among all the following experiments described in this paper.

Results for the baseline system trained on broadcast, telephonic and meetings domains
in terms of AUC and EER can be observed in Table 2. Additionally, we also report the
results of one of our submissions to the original FS02 challenge [23] that was trained using
the same experimental setup but with data coming from the training partition provided for
the challenge. This result is presented in order to provide an upper bound for the neural
architecture performance in case it was trained with in domain data.

First, we report results for the three domains that the SAD baseline system has seen
in the training process. In general terms, it can be observed that competitive results are
obtained on the three domains shown, with EER values in the range 6 to 7%. Focusing on
the obtained results for FS02 development partition, it can be observed that, as expected,
the baseline system underperforms when compared to the challenge submission trained
within domain data. Particularly, a drop in performance close to 50% can be observed in
terms of EER. In the following subsections, we aim to fill the gap between the baseline
model and the upper bound provided by the system submitted to FS challenge by using
unsupervised domain adaptation techniques.

Results shown in Table 2 are complemented with those presented in Figure 4. In
this figure, we show the DET curve and EER for the baseline system and the challenge
submission system on FS02 development partition.
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Table 2. AUC (%) and EER (%) on three in domain datasets and FS02 development partition compared
to a system submitted to the challenge rained using only data from FS challenge.

Model Train Domain Test Domain Dataset AUC (%) EER (%)

Baseline Broad. +
Tele. + Meet.

Broadcast Albayzín 2020 98.12 6.68
Telephonic CALLHOME 96.70 7.62
Meetings RT09 97.07 6.98

Baseline Broad. +
Tele. + Meet.

Apollo
missions FS02-Dev

97.57 6.55

Challenge
submission

Apollo
missions

Apollo
missions

99.56 3.28

Figure 4. DET curve and EER (%) on FS02 development partition comparing a baseline system
trained using out of domain data and our submission to the challenge trained using in domain data.

As it can be observed, a similar drop in performance measured by the EER metric is
applicable to all points in DET curve. Furthermore, the baseline system tends to provide
higher FNR values, whereas the challenge submission curve shows a relatively constant
slope in all the displayed range. As a point for comparison, for FPR = 1%, the challenge
submission provides FNR = 10% while the baseline unadapted system yields FNR greater
than 50%.

Now that the baseline system has been appropriately characterised and set in con-
text, in the following subsections we present the results for the three domain adaptation
techniques described in the paper.

4.2. Pseudo-Label Domain Adaptation

As described in Section 2.3.1, pseudo-labelling is a method traditionally used to
alleviate the need for labelled data. In the following experiments, we use it in order to
adapt a model to a new unseen domain. The first step needed to perform this technique is
to obtain a new set of pseudo-labels for the target data. To do so, we run the FS02 training
partition through the previously obtained baseline SAD model and store the speech scores,
that are then thresholded accordingly to obtain the final pseudo-labels. In the next step,
those pseudo-labels are considered as the ground truth for the target data and used to train
a new model in a supervised way.
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Even though labels for FS02 training partition data are not used in this paper to train
any model, those labels are still available and can be used to obtain an objective evaluation
of the pseudo-labels obtained via the baseline model. This evaluation is shown in Table 3 in
terms of AUC and EER. Furthermore, as this method relies heavily on the operating point
chosen for the pseudo-labels, we also report FPR and FNR for three operating points: one
with low FPR, one with balanced FPR and FNR, and one with low FNR. By using these
operating points, three sets of pseudo-labels are obtained. Experiments are performed
separately for each set of pseudo-labels in order to observe the influence of the operating
point in this domain adaptation strategy.

Table 3. AUC, EER, FPR and FNR on three operating points for the pseudo-labels obtained using the
baseline model on FS02 training partition.

Dataset AUC (%) EER (%) Operating Point FPR (%) FNR (%)

FS02–Train 97.36 7.28
Low FPR 5.78 10.00
Balanced 7.37 7.15
Low FNR 11.04 3.56

As it can be observed, the values for AUC and EER are in line with those obtained
with the baseline model on the development partition, yet the EER is slightly greater for
the training partition. Concerning the operating points considered, it should be noted
that, in general terms, by using these pseudo-labels the neural network is dealing with an
approximately 15% of wrong labels in the adaptation process.

Once pseudo-labels have been obtained using the baseline model, several alternatives
can be used to obtain a new adapted model. In this paper, we explore two of those alterna-
tives. On the one hand, we train a new model from scratch using the same experimental
setup as the one described for the baseline model but using FS02 training partition audio
and the obtained pseudo-labels as ground-truth. On the other hand, we also evaluate the
possibility of fine-tuning the baseline model via the obtained pseudo-labels for the FS02
training partition, using a learning rate ten times smaller than the one used in the original
training process. Table 4 describes the obtained results in terms of AUC and EER for each
possible operating point and for both training strategies.

Table 4. AUC (%) and EER (%) for FS02 development partition using the pseudo-label domain transfer
setup training a new neural network from scratch and fine tuning the baseline neural network.

Pseudo-Labels
From Scratch Fine Tuning

AUC (%) EER (%) AUC (%) EER (%)

Low FPR 98.06 6.43 98.03 6.20
Balanced 98.21 6.47 98.09 6.44
Low FNR 98.26 6.66 98.19 6.50

When compared to the unadapted baseline system, it can be observed that the results
presented using the pseudo-labelling method share two common characteristics: a minor
improvement in terms of AUC metrics, while the EER remains similar to the one reported
in the baseline system. No significant difference can be observed between the two training
strategies presented. Concerning the operating points for the pseudo-labels, the low FPR
operating point yields the lowest EER for both training strategies, while at the same time
also reporting the lowest AUC values.

In order to further understand the behaviour of the pseudo-labelling strategy, Figure 5
shows the DET curve and EER on the FS02 development partition for the baseline system
and the systems trained using pseudo-labelling domain adaptation methods.

From Figure 5, it can be seen that the pseudo-labelling technique provides no signif-
icant improvement in EER values. On the other hand, we can see that the improvement
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in AUC metric observed previously comes from the improvement compared to the base-
line system in DET curve in the areas with high FPR and FNR values. In general terms,
experimental results suggest that pseudo-labelling techniques can help obtaining a DET
curve with constant slope, reducing error in areas with high FPR and FNR values, while
not significantly modifying the EER value of the system used to obtain pseudo-labels.

Figure 5. DET curve and EER (%) on the FS02 development partition using the pseudo-label domain
transfer setup training a new neural network from scratch (left) and fine-tuning the baseline neural
network (right), both compared to the baseline system.

4.3. Knowledge Distillation Domain Adaptation

According to the theoretical explanation provided in Section 2.3.2, we aim to perform
domain adaptation using the knowledge distillation framework applied to the SAD task.
In the following, we describe the training process. First, teacher and student models are
initialised using the unadapted baseline model. Teacher model weights are frozen during
the entire training, and only student model weights are updated. The output of both models
is compared using KLD loss after going through softmax activation with a temperature
parameter T, shared for teacher and student models. At inference, the softmax layer is used
in its standard form with temperature T = 1. Obtained results in terms of AUC and EER
using knowledge distillation are shown in Table 5 for various values of the temperature
parameter T.

Table 5. AUC (%) and EER (%) on the FS02 development partition using knowledge distillation
domain adaptation setup with various softmax temperature values compared to the baseline system.

Softmax Temperature AUC (%) EER (%)

T = 1 97.79 6.41
T = 10 97.72 6.32
T = 20 97.80 6.27
T = 30 97.80 6.25
T = 40 97.72 6.23
T = 50 97.86 6.02
T = 60 97.70 6.33

A decreasing tendency for EER can be observed when increasing the temperature
parameter up to T = 50, achieving a best EER value of 6.05%. However, this tendency
is not consistent for the AUC metric, showing values in between 97.80 and 97.86. When
compared to the baseline system, best temperature configuration reports a 8.10% relative
improvement on the EER value, yet this improvement in EER only leads to a 0.29% relative
improvement on the AUC metric. In general terms, an improvement in performance can
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be observed using the temperature softmax activation as argued by [51], however this
improvement is limited.

Results in Table 5 are complemented with those presented in Figure 6. In this Figure,
we present the DET curve and EER for some of the best performing knowledge distillation
systems compared to the unadapted baseline system.

Figure 6. DET curve and EER (%) on the FS02 development partition using the knowledge distillation
domain adaptation setup with various softmax temperature values compared to the baseline system.

As observed in Figure 6, unlike the pseudo-labelling strategy, knowledge distillation
seems to be able to decrease the EER point on the DET curve by using a large temperature
parameter. However, it can also be seen that all curves are very close to each other; this is
translated in AUC values very similar to those obtained by the baseline system. In general
terms, it can also be observed that knowledge distillation does not correct the baseline system
tendency to provide high FNR values. This may be due to the fact that KLD loss makes the
student network mimic the predictions of the teacher network, so probability distributions
and the relations between speech and non-speech observations should remain similar.

4.4. Deep CORAL Domain Adaptation

As an additional third alternative to the previously evaluated unsupervised domain
adaptation techniques, in the following lines, we evaluate experimentally the feasibility of
Deep CORAL and its variations for the SAD task. Following the theoretical explanation
provided in Section 2.3.3, we train a new model using the Deep CORAL and Log Deep
CORAL techniques using the same experimental setup: the baseline model is used to
initialise the new adapted model, that is then fine tuned for 10 epochs using a learning rate
decaying exponentially from 10−4 to 10−5 (10 times smaller than the one used to train the
baseline model). CORAL and log CORAL losses are applied only on the final linear layer of
the DNN classifier. Final loss term is then computed using cross entropy loss considering
the source labels, and the respective CORAL loss weighted by a factor λ. As described in
the original paper, λ value was chosen so that, at the end of the training, the classification
loss and the CORAL loss are in the same order of magnitude. Obtained results using both,
Deep and Log Deep CORAL methods, are shown in Table 6 in terms of AUC and EER for
three λ values in the same order of magnitude.
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Table 6. AUC (%) and EER (%) for FS02 development partition using Deep CORAL and Log Deep
CORAL domain adaptation setups using various λ weights.

Method CORAL Weight AUC (%) EER (%)

Deep CORAL
λ= 0.9 98.19 5.53
λ= 1.0 98.18 5.43
λ= 1.1 98.25 5.53

Log Deep CORAL
λ= 0.9 98.26 5.36
λ= 1.0 98.26 5.48
λ= 1.1 98.24 5.37

As observed in Table 6, both Deep CORAL and Log Deep CORAL provide the lowest
EER values obtained in this work so far through model adaptation. Best result in terms of
EER is obtained using Log Deep CORAL method, with an EER of 5.36%, which results in a
18.17% relative improvement when compared to the unadapted baseline system. Concern-
ing the AUC values observed, obtained results are in line with the best performing system
using the pseudo-labelling techniques, showing also better values than the knowledge
distillation method. As done in previous experiments, we also report the DET curves in
order to observe the behaviour of the adapted systems in all possible operating points.
This curve is shown for the Deep CORAL (left) and Log Deep CORAL (right) systems in
Figure 7 for multiple values of λ compared to the DET curve of the baseline system.

Figure 7. DET curve and EER (%) on the FS02 development partition using Deep CORAL (left)
and Log Deep CORAL (right) domain adaptation setups using multiple λ weights compared to the
baseline system.

As observed, CORAL-based domain adaptation techniques provide the best improve-
ment in the DET curve so far in this paper. When compared to the baseline system, besides
significantly decreasing the EER, an overall improvement can be seen in the DET curve
for the areas reporting high FNR values. That is the reason why the AUC value reported
increased when compared to the baseline system. Both, Deep CORAL and Log Deep
CORAL, seem to be insensitive to λ value, showing a similar performance as long as λ
remains in the same order of magnitude.

By observing the behaviour of the Log Deep Coral method and the pseudo-label
strategies previously characterised, it becomes apparent that both solutions may be comple-
mentary. While the Log Deep CORAL DET curve shows no improvement over the baseline
for high FPR values, the DET curve for the pseudo-labelling method obtains its best results
in that area, making it the one with best performance for high FPR values over the three
methods evaluated. This fact suggest that combining both methods, applying them in
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cascade, might provide even further improvements to the SAD neural network. This idea
is evaluated experimentally in the following subsection.

4.5. Cascaded Application of Domain Adaptation Methods

In view of results presented in previous subsections, this final experiment evaluates the
possibility of applying two domain adaptation methods in a cascaded setup in order to improve
even further the results on the new unseen domain. By combining the capabilities of CORAL
based adaptation to obtain an overall boost in performance and the pseudo-label adaptation
to obtain a DET curve with a constant slope, we use both of them in a cascaded setup. The
baseline model is first adapted using the Log Deep CORAL method. Then the adapted model
is used to extract a new set of pseudo-labels, which are later used to obtain a final model
using both training strategies described in previous experiments, either training a new model
from scratch, or fine-tuning the previous model. Table 7 shows an objective evaluation of the
pseudo-labels obtained via the Log Deep CORAL model in terms of AUC, EER, FPR and FNR
for the same three possible operating points considered in previous experiments.

Table 7. AUC, EER, FPR and FNR on three operating points for the pseudo-labels obtained using the
best performing model adapted through Log Deep CORAL method on FS02 training partition.

Dataset AUC (%) EER (%) Operating Point FPR (%) FNR (%)

FS02–Train 98.26 5.63
Low FPR 4.55 7.55
Balanced 5.70 5.54
Low FNR 7.27 3.78

As expected, we can observe that the overall quality of the pseudo-labels has improved
when compared to those obtained using the baseline model (see Table 3). Improvements
obtained are in line with the ones presented on the FS Development subset when using
the Log Deep CORAL method, with the EER metric decreasing from 7.28 to 5.63%. By
using this new set of pseudo-labels the adaptation process is performed feeding the neural
network with an approximately 11% of wrong labels distributed according to the three
operating points shown. Obtained results using this new set of pseudo-labels are described
in Table 8 in terms of AUC and EER for each possible operating point and for both training
strategies described.

Table 8. AUC (%) and EER (%) for FS02 development partition using pseudo-label domain transfer
setup training a new neural network from scratch and fine tuning the best performing model adapted
using Log Deep CORAL method.

Pseudo-Labels
From Scratch Fine Tuning

AUC (%) EER (%) AUC (%) EER (%)

Low FPR 98.86 5.21 98.85 5.34
Balanced 98.81 5.50 98.83 5.49
Low FNR 98.75 5.67 98.85 5.51

The previously observed behaviour of the pseudo-labelling method is repeated in this
new experiment. In general terms, compared to Log Deep CORAL model (AUC = 98.25%,
EER = 5.48%), it can be seen that pseudo-labelling strategies provide an improvement on
the AUC metric while maintaining a similar EER value. As a matter of fact, all the AUC
values reported outperform those from previous experiments, with the best case scenario
of AUC = 98.86% obtained by training a new model from scratch using low FPR pseudo-
labels. Concerning the training strategies considered, experimental results suggest that
no significant difference can be found between training a new model from scratch or fine
tuning the previous stage model. In terms of operating point, the EER value obtained using
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low FPR is slightly lower for both training strategies, however this difference becomes
insignificant when considering the AUC metric.

4.6. Discussion

Once all the results for the unsupervised domain adaptation methods have been
described, in this subsection we aim to provide a brief discussion on its behaviour, setting
them in the context of the original FS challenge and using the original DCF metric in order
to obtain a performance comparison. Table 9 presents a summary of the best obtained
results using all methods explored (pseudo-labels, KD, Deep CORAL), and the cascaded
application of both of them in terms of AUC, EER and DCF metrics as used in the FS
challenge. We also report the relative improvement obtained in DCF metric compared to
the unadapted baseline system. For comparison, we present the challenge baseline result
provided by the FS challenge organisation [72], and our submission to the challenge trained
using in domain data.

Table 9. AUC (%), EER (%), DCF (%) and DCF relative improvement (%) over the unadapted baseline
model on the FS02 development partition using the three evaluated domain adaptation methods, and
the cascaded application of two of them with the best performing hyperparameter configuration in
terms of DCF metric compared to the original challenge baseline and our submission to the challenge
trained using in domain data.

Model AUC (%) EER (%) DCF (%) Rel. Improv. (%)

Baseline 97.57 6.55 4.84 -

Pseudo-labels (fine tune) 98.03 6.20 4.25 12.19
Pseudo-labels (scratch) 98.21 6.46 4.31 10.95

Knowledge distillation (T = 1) 97.79 6.41 4.78 1.24
Knowledge distillation (T = 50) 97.86 6.02 4.56 5.79

Deep CORAL (λ = 1.1) 98.25 5.53 4.26 11.98
Log Deep CORAL (λ = 1.0) 98.25 5.48 4.20 13.23

Log CORAL + PL (fine tune) 98.85 5.34 3.67 24.17
Log CORAL + PL (scratch) 98.86 5.21 3.65 24.59

Challenge baseline - - 12.50 -
Challenge submission 99.56 3.28 2.56 -

Concerning the results of the pseudo-labelling strategy, we can observe a relative im-
provement in DCF metric between 11% and 12% when compared to the unadapted baseline
system. This improvement comes mainly from the correction made to the DET curve, with
those systems showing a behaviour with more constant slope. This means that systems
adapted using this method show a better performance in areas with high FPR or high FNR
while, at the same time, EER remains very similar to that of the baseline system. The knowl-
edge distillation systems offer the lowest improvement in DCF of all methods evaluated.
Even though its configuration with high softmax temperature still shows a non-neglectable
5.79% relative improvement compared to the baseline system, this solution shows limited
applications. DET curve is really similar to the one obtained by the baseline system, with lim-
ited improvement in AUC. Finally, CORAL-based methods show one of the most promising
results of this study. The best hyperparameter configuration using Log Deep CORAL achieves
a DCF relative improvement of 13.23% compared to the baseline system. These results shows
the lowest EER value in this paper in the case of the application of a single technique, while
also reporting an overall improvement for the full DET curve.

Best results in terms of DCF are obtained by applying Log Deep CORAL and pseudo-
labelling in a cascaded setup. In the case of training a new model from scratch using
pseudo-labels from the previous step, DCF is 3.65%, which is equivalent to 24.59% relative
improvement compared to the unadapted baseline system. Furthermore, experimental
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results confirm that both methods are complementary. As shown, the total relative im-
provement with both techniques is equivalent to the sum of relative improvements when
used separately.

As a final point in this discussion, and in order to provide a condensed view of the
best obtained results in this work, Figure 8 presents DET curve and EER of the three
evaluated methods by themselves (left), and the cascaded application of Log Deep CORAL
and pseudo-labelling (right) using the best hyperparameter configuration in terms of DCF
metric compared to the unadapted baseline and our submission to the challenge trained
using in domain data.

Baseline

PL-LowFPR

KD
LogCORAL
Challenge
submission

- single method - cascaded application

Figure 8. DET curve and EER (%) on the FS02 development partition using the three evaluated
domain adaptation methods (left), and the cascaded application of two of them (right) with the
best performing hyperparameter configuration in terms of DCF metric compared to the unadapted
baseline system and our submission to the challenge trained using in domain data.

Observing the comparative of the single method application (left), it can be seen again
that the most promising result in terms of improving the DET curve is obtained by the
Log Deep CORAL method, while the improvement of the knowledge distillation method
is limited. Focusing on the comparison on the cascaded application of Deep CORAL and
pseudo-labelling (right), it can be observed that the DET curve obtained for the cascaded
application of both methods (in pink) supports again the hypothesis that both techniques
are complementary. Applying the pseudo-labelling strategy on top of the Log Deep CORAL
model results in a DET curve with a similar EER value but a performance significantly
improved in areas with high FPR and high FNR. With this method we achieve the best
DET curve in this paper that, as already presented, allows to decrease even further the
DCF metric, which is influenced in a higher way by false negative errors. As an example
operating point for comparison, focusing on a FPR value of 1%, the unadapted baseline
system shows a FNR value greater than 50%. While the Log Deep CORAL model reduces
this value to be approximately 40%, the improvement is much more significant with the
combination of both adaptation methods, that reports a FNR value of 25%.

Even though there is still a gap between the best obtained results and a model trained
using in domain data, in practical scenarios, where no labels are available, experimental
results have proved that unsupervised domain adaptation can improve significantly the
performance of SAD systems. Best results are obtained using an approach that combines
two methods. The application of this solution increases the computational complexity of
the adaptation process in training time. However, the increase in complexity introduced by
pseudo-labelling is minimal compared to the one already introduced by Log Deep CORAL.
The latter implies a training process that computes two covariance matrices for CORAL
loss and a classification loss, while the former only requires inference computation on the
unlabelled data and then a simple training process with a classification loss. Furthermore,
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inference complexity remains the same in all cases as there is only need to compute the
final adapted model to obtain SAD predictions.

5. Conclusions and Future Lines

In this paper, we have explored the use of unsupervised domain adaptation techniques
in the context of the SAD task. An initial baseline model was trained on a variety of well-
known domains with big amounts of labelled data available. Then, a study was performed
on three methods that allow to perform adaptation directly on the model space with
the objective of fine tuning the mentioned baseline model using only unlabelled data.
We have used the data provided in the FS challenge, coming from a singular domain
such as Apollo space missions, to experimentally validate in the SAD task the methods
presented. Yet, the methods are general enough so that they can be easily applied to other
datasets. Furthermore, no labels are required for them to be used, significantly reducing
the constraints for choosing them in practical applications.

Through the application of Deep CORAL based domain adaptation methods, results
show a 13% relative improvement in DCF metric of the original challenge. Furthermore, the
cascaded application of Deep CORAL and pseudo-labelling techniques provides the best
results in this study, with a significant 24% relative improvement compared to the baseline
system. These experimental results suggest that Deep CORAL and pseudo-labelling
techniques are complementary. The first one providing an overall improvement in the DET
curve and reducing the EER. The second one improves the AUC value by modifying the
DET curve so that its slope becomes constant, specially in areas with high FPR and FNR
values. The improvements in performance observed allow to substantially reduce the gap
for the SAD task between a system trained using in domain data and an approach based
on fully unsupervised adaptation.

Even if the knowledge distillation method shows an improvement in performance
compared to the unadapated baseline model, this improvement is limited compared to
the one observed by CORAL based techniques. This kind of domain adaptation methods,
seeking to minimise the statistical distribution shift between source and target domains,
provide one of the most promising results in this paper. Some recent work has introduced
the use of higher-order statistics for unsupervised domain adaptation [73], generalising the
idea presented in Deep CORAL as an arbitrary order moment matching technique. Some
of our future work lines may point in this direction, applying this idea to the SAD task.

Author Contributions: Conceptualisation, P.G. and A.O.; methodology, P.G. and A.O.; software,
P.G. and A.M.; validation, P.G., D.R., A.O., A.M. and E.L.; formal analysis, P.G., D.R. and A.O.; data
curation, P.G.; writing—original draft preparation, P.G.; writing—review and editing, D.R., A.O.,
A.M. and E.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the European Union’s Horizon 2020 research and inno-
vation programme under Marie Skłodowska-Curie Grant 101007666; in part by
MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR under
Grant PDC2021-120846-C41, and in part by the Government of Aragón (Grant Group T36_20R). Au-
thor Pablo Gimeno was supported in part by the Government of Aragón with a grant for predoctoral
research contracts (2018–2022) co-funded by the Operative Program FSE Aragón 2014–2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Albayzín 2010 dataset is available from the corresponding authors
on reasonable request. Albayzín 2018 and Albayzín 2020 RTVE datasets are available upon request
through http://catedrartve.unizar.es/albayzin.html [ accessed on 26 November 2021]. AMI corpus
is publicly available at https://groups.inf.ed.ac.uk/ami/download/ [accessed on 26 November
2021]. ICSI Meetings corpus is available at the Linguistic Data Consortium (LDC) under catalogue
numbers LDC2004S02 and LDC2004T04 for audio and transcripts respectively. CALLHOME dataset
can also be found on the LDC under the catalogue numbers LDC97S42 and LDC97T14 for audio
and transcripts respectively. Fearless Steps Challenge data was made available to the challenge

http://catedrartve.unizar.es/albayzin.html
https://groups.inf.ed.ac.uk/ami/download/


Appl. Sci. 2022, 12, 1832 20 of 23

participants. Both partitions used in this work can be requested to their respective authors through
the following contact email: FearlessSteps@utdallas.edu.

Acknowledgments: We gratefully acknowledge the support of the NVIDIA Corporation with the
donation of a Titan V GPU.

Conflicts of Interest: The authors declare no conflicts of interest. The founders had no role in
the design of the study; in the collection, analyses or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ASR Automatic Speech Recognition
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DCF Detection Cost Function
DET Detection Error Trade-off
DNN Deep Neural Network
EER Equal Error Rate
FNR False Negative Rate
FPR False Positive Rate
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GPU Graphics Processing Unit
KD Knowledge Distillation
KLD Kullback–Leibler Divergence
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LSTM Long Short-Term Memory
MGB Multi-Genre Broadcast
NIST National Institute of Standard and Technology
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RNN Recurrent Neural Network
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SAD Speech Activity Detection
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