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Abstract: This paper describes a post-evaluation analysis of the system developed by ViVoLAB re-
search group for the IberSPEECH-RTVE 2020 Multimodal Diarization (MD) Challenge. This challenge
focuses on the study of multimodal systems for the diarization of audiovisual files and the assignment
of an identity to each segment where a person is detected. In this work, we implemented two different
subsystems to address this task using the audio and the video from audiovisual files separately.
To develop our subsystems, we used the state-of-the-art speaker and face verification embeddings
extracted from publicly available deep neural networks (DNN). Different clustering techniques were
also employed in combination with the tracking and identity assignment process. Furthermore,
we included a novel back-end approach in the face verification subsystem to train an enrollment
model for each identity, which we have previously shown to improve the results compared to the
average of the enrollment data. Using this approach, we trained a learnable vector to represent each
enrollment character. The loss function employed to train this vector was an approximated version
of the detection cost function (aDCF) which is inspired by the DCF widely used metric to measure
performance in verification tasks. In this paper, we also focused on exploring and analyzing the effect
of training this vector with several configurations of this objective loss function. This analysis allows
us to assess the impact of the configuration parameters of the loss in the amount and type of errors
produced by the system.

Keywords: enrollment models; face recognition; aDCF loss; speaker recognition; deep neural networks;
spectral clustering; video processing

1. Introduction

A multimodal biometric verification field consists of the identification of persons by
means of more than one biometric characteristics, as the use of two modalities makes the
process more robust to potential problems. Typically, face and voice characteristics have
been two of the preferred biometric data due to the ease of obtaining audiovisual resources
to carry out the systems that perform this process. When this identification process is
applied throughout a video file, and this information is kept over time, this kind of task is
also known as multimodal diarization combined with identity assignment. In recent years,
this field has been widely investigated due to its great interest, motivated by the fact that
human perception uses not only acoustic information but also visual information to reduce
speech uncertainty. Moreover, this task has been rarely addressed for uncontrolled data
due to the lack of this type of datasets. However, several challenges focused on this topic
have recently been developed [1–3], and a large amount of multimedia and broadcast data
is also currently being produced, such as news, talk shows, debates, or series. Therefore,
to develop a multimodal biometric system, different tools are required to process this
data, detect the presence of people, and address the identification of who is appearing
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and speaking. The need to find new, efficient tools to process all the available audiovisual
content has led to a wide variety of systems based on artificial intelligence algorithms, such
as deep neural networks (DNN).

To perform multimodal diarization, many studies focus on the simplest method which
is based on independent systems for speaker and face diarization [3,4]. Speaker diarization
is a widespread task [5,6] due to its usefulness as preprocessing for other speaker tasks. At
the same time, it is still a challenging task because there is no prior information about the
number and the identity of speakers in the audio files, and the domain mismatch between
different scenarios can produce some difficulties. On the other hand, face diarization has
been widely used as a video indexing tool, and as the previous step for face verification [7,8].
However, in real-world scenarios, face images can often appear with large variations, so
this kind of system has also found some problems in unconstrained videos. For these
reasons, a straightforward score-level fusion is usually employed to join the information
from both types of systems.

The IberSPEECH-RTVE 2020 Challenges aim to benchmark and further analyze this
different kind of diarization systems. Therefore, two types of diarization evaluations are
included in this challenge: speaker diarization and identity assignment (SDIA) [9], and
multimodal diarization (MD) [10]. The former is the most extended kind of diarization
combined with the speaker assignment, while the latter combines the previous one with face
diarization and the face identity assignment, which is obtaining more relevance in recent
times. In this work, we focused on this second challenge and, especially, the characteristics
of the face subsystem are remarked upon.

This paper presents the ViVoLAB system submitted to the IberSPEECH-RTVE 2020
Challenge in the MD task. This challenge focuses on the segmentation of broadcast au-
diovisual documents and the assignment to segments of an identity from a closed set of
different faces and speakers. The face and speaker identities from this closed set are known
as enrollment or target identities. For the challenge, we processed audio and video tracks
independently in order to separately improve their performance. However, the pipeline
is very similar in both cases, where the differences are the exact approach used in each
part of the process. Therefore, initially, both audio and video files are processed. After
that, an embedding extractor is used to obtain the representations and, finally, clustering
and assignment process is applied. The assignment process can be seen as a binary task
that consists of comparing each face or speaker present in the audiovisual file with all
the enrollment identities and determining whether it belongs to one of them or not. A
simple approach employed is a cosine similarity by averaging the representations of all the
enrollment files for each identity to obtain the verification scores and decide the identity.
Nevertheless, these representations are extracted from DNN systems which are not trained
with this objective, so instead of using only cosine similarity, complex back-ends [11,12] are
often applied to improve the discriminative ability of these representations. The drawbacks
of this kind of back-end are that it involves a more complex training process and, therefore,
a high computational cost. Thus, to carry out the assignment process in the face subsystem
of this work, a new approach based on [13] was applied to model the enrollment identities.
This new approach was shown to be a promising technique to characterize each enrollment
identity with a single learnable vector for the speaker verification task, but this is the first
time that this technique has been applied in face verification. To train this back-end, the
approximated detection cost function (aDCF) [14] was used as the objective loss. Hence, in
this work, different parameter settings of this loss were explored and their effect on the
errors produced by the system was studied.

This paper is organized as follows. In Section 2, we provide a description of the
challenge and the dataset employed. Section 3 describes the new approach based on training
face enrollment models by network optimization and the loss function used as objective
for the training. Section 4 details the face diarization subsystem. The speaker diarization
employed is explained in Section 5. In Section 6, the performance metric employed is
detailed. Finally, Section 7 presents and discusses results, and Section 8 concludes the paper.
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2. RTVE 2020 Challenge

The RTVE 2020 Challenge is part of the 2020 edition of the Albayzin evaluations [10,15].
This dataset is a collection of several broadcast TV shows in Spanish language covering
different scenarios. To carry out this challenge, the database provides around 40 h of
shows from Radio Televisión Española (RTVE), the Spanish public radio and television.
The development subset of the RTVE2020 database contains two of the parts of the RTVE
2018 database (dev2 and test partitions) which are formed by four shows of around 6 h.
Furthermore, this subset also contains a new development partition with nine shows of
around 4 h. The evaluation or test set consists of fifty-four video files of around 29 h in total
with timestamps of speakers and faces. Enrollment data is also provided for 161 characters
with 10 images and a 20 s video of each character.

3. Face Enrollment Models

In verification tasks, a back-end is traditionally applied to compare enrollment and
test embeddings and obtain the final verification scores to assign the correspondent identity.
A widely used approach is the cosine similarity, where if an enrollment identity has more
than one enrollment embedding, these embeddings are averaged to compare with the
test embedding. However, we have shown in [13] for the speaker verification task that
a better solution to perform this process consists of training an enrollment model for
each enrollment identity. Therefore, in this work, we applied this approach for the face
verification task where we trained a model for each of the face enrollment identities. The
loss function optimized and the process to carry out the training of these models with this
loss function are explained in detail below.

3.1. Approximated Detection Cost Function (aDCF) Loss

Most DNN systems are trained to generate representations using traditional loss
functions as the objective loss for training. However, this strategy has a main drawback,
as traditional loss functions are not oriented to the goal task. For this reason, different
alternatives have been presented in the literature to design loss functions focused on the
final evaluation metrics to train the DNN systems such as the approximated area under the
ROC curve (aAUC) [16,17], the partial and multiclass AUC loss (pAUC) [18–20], and the
approximated detection cost function (aDCF) [14] which was used for this work. This aDCF
is inspired by the DCF verification metric [21]. The use of this differentiable version of the
DCF metric as objective loss function allows training DNN systems aimed at minimizing
one of the main metrics employed in verification tasks. In addition, this function is based
on measuring the two types of decision errors produced by verification systems using a
threshold. These two errors are known as false alarms and misses which are also part of
the diarization error rate (DER) used to evaluate diarization systems. The former errors
occur when an identity is incorrectly assigned, while the latter refer to a correct identity not
being detected by the system. Therefore, we seek to minimize the average number of times
false alarms (Pf a) and misses (Pmiss) occur, which can be approximated as

P̂f a(θ, Ω) =
∑yi∈ynon σα(sθ(xi, yi)−Ω)

Nnon
, (1)

P̂miss(θ, Ω) =
∑yi∈ytar σα(Ω− sθ(xi, yi))

Ntar
, (2)

where xi is the input sample, yi is the class label, sθ(xi, yi) is the score obtained from the
last layer which is defined as a cosine distance layer, and σα(·) is the sigmoid function,
expressed as follows:

σα(s) =
1

1 + exp(−α · s) , (3)
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where α is an adjustable parameter. The use of this sigmoid function allows making the
original expressions of Pf a and Pmiss differentiable and enables the backpropagation of
gradients. Hence, the aDCF loss function to minimize is composed of a weighted sum of
these approximated expressions, defined by

aDCF(θ, Ω) = γ · P̂f a(θ, Ω) + β · P̂miss(θ, Ω), (4)

where γ and β are configurable parameters to provide more cost relevance to one of the
terms over the other.

3.2. Training Process of Enrollment Models

Motivated by the demonstrated effectiveness in training DNNs using aDCF loss
function, in [13], we developed a straightforward and powerful back-end approach based
on a network optimization with this loss function. This approach tries to mimic the
target/nontarget process performed in verification tasks. In addition, this back-end takes
advantage of the data learned during a previous training step of a general embedding
network. Thus, this approach avoids the need for a careful selection of input data to train
the models as required by other complex back-ends such as triplet neural network with
triplet loss [11] or triplet neural network combined with aAUC [16,17].

Figure 1 shows the process to carry out this training, where a learnable vector is
obtained to represent each enrollment identity. This process is based on comparing the
positive or target examples with themselves (star), and also with the negative or nontarget
examples (snontar), using the aDCF loss function as training objective loss. To optimize
aDCF loss, the scores used are obtained with cosine similarity as

sθ(xi) =
xi · wT

‖xi‖ · ‖wT‖
, (5)

where ‖xi‖ is the normalized input to the enrollment model, and
∥∥wT

∥∥ is the normalized
layer parameters of the embedding obtained from the enrollment utterance.

aDCF Loss

Enroll Embeddings

.    .      snontar star

Figure 1. Training face enrollment models using target and nontarget embeddings for each enroll or
target identity.

The philosophy of the approach followed in this work has been the same as the original
approach used for speaker verification, but in this work, there are several differences. First,
in our previous work, the final verification scores were obtained directly in the last step of
the training process by comparing all target and nontarget samples with the trained vector,
whereas in this work, the learnable vector is stored as an enrollment model to be used in the
final step of the face subsystem to assign the identity to each segment. On the other hand,
the nontarget examples employed in this system are directly the embeddings extracted
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from the pretrained model. These nontarget examples belong to identities different to the
enrollment identities, so we used them to train the enrollment models instead of using
the weight matrix of the last layer of the trained neural network to obtain them as we did
in [13]. Hence, in this work, the process for training the enrollment model for each identity
is based on the following steps:

1. The target and nontarget embeddings extracted from the pretrained model are em-
ployed as positive and negative examples.

2. Each enrollment model is trained using the aDCF loss function with all nontarget
embeddings and only the target embeddings of the corresponding enrollment identity.

3. The trained models are stored to use them in the assignment process.

4. Face Subsystem

In this section, we present the different blocks of the face system, including video
processing, embedding extraction, training face enrollment models, clustering, tracking, and
identity assignment scoring. The block diagram of the face system is depicted in Figure 2.

4.1. Video Processing

The video processing step used to develop this face subsystem consists of three blocks:
frame extraction, face detection, and change shot detection. In the following, we will detail
all of them.

4.1.1. Frame Extraction

As the first step, the video is processed to extract five frames per second using the
f f mpeg tool (https://www.ffmpeg.org/ (accessed on 23 December 2021)). We decided to
use five frames per second as this number of frames allows us a high precision to determine
the limits of the characters appearance. Therefore, frames are extracted using a constant
rate where one frame is obtained every 200 ms.

4.1.2. Face Detection

Another fundamental step in this process is the face detection because failures in this
step could be crucial for the correct development in other parts of the face diarization
system. In our system, the face detector employed is a system of alignment and detection
based on a deep neural network (DNN) which is called multi-task cascaded convolutional
networks (MTCCN) [22]. In this part, we employ this implemented system as it is a proven
and effective method for face detection, which is necessary to perform before continuing
with the rest of the face verification pipeline. Furthermore, using this detector, we can
store the bounding boxes created by the algorithm that correspond to the coordinates
where a face is detected. This information is then employed in the tracking and identity
assignment process.

4.1.3. Change Shot Detection

The type of videos employed in this challenge are obtained from television programs,
so these programs are usually composed of a huge variability in the characteristics of the
content and by constant changes of shots and scenes. Thus, to aid the tracking and clustering
step, a change scene detection tool (https://www.pyscenedetect.readthedocs.io/en/latest/
(accessed on 23 December 2021)) is employed, as this tool effectively detects these changes
using threshold-based detection mode. This detector finds areas where the difference
between two subsequent frames exceeds a threshold value.

https://www.ffmpeg.org/
https://www.pyscenedetect.readthedocs.io/en/latest/


Appl. Sci. 2022, 12, 1141 6 of 15

 
 
 
 
 
 

NO 

NO 

YES 

YES 

YES 

NO 

YES 

Check shot & length >1.0 sec. 

Frame  
& clust id 

Next frame & 
clust id  

Load emb. frame 

Previous frame &  
clust id 

Load previous and 
current coordinates & 

check if correspond 

Load id assignment & 
check if conf. term > 1 

NO 

YES 

Load enrollment 
model 

Obtain score & compare 
conf. threshold 

NO 

Evaluate with all 
enrollment models & 

compare threshold new id 

NO 

NO 

Compare with the second 
high score & check if 

margin threshold 

YES 

Set conf. term, assign frame 
to identity, store score, 

actualize coordinates id & 
check if change of shot 

YES 

YES 

NO 

YES 

Check ids stored & length of 
minimum appearance & 
mean scores values 
 

RTTM file writing  Compare mean score with a 
restrictive threshold 

Augment enrollment models with 
new emb. & store conf. clust id 

Video processing & Embedding Extraction & 
Training Enrollment Models & Spectral Clustering 

 

Figure 2. Block diagram of face system.

4.2. Embedding Extraction

Once the video processing step is complete, we process the face images using the
bounding boxes, and apply mean and variance normalization. Then, as the images were
processed with the information given by the face detector, the resulting images have cen-
tered faces. Therefore, a center crop can be applied to resize the images to 160× 160 pixels.
After that, the processed images are passed through a trained model to obtain embedding
representations. The indicated center crop is necessary because the model employed was
trained using images with this format. In this system, as a face extractor, we employed a
pretrained convolutional neural network (CNN) with more than one hundred layers [11].
This network was trained for a classification task on the CASIA-WebFace dataset [23], but
the embeddings extracted from it have been proved previously in a verification task to
check their discriminative ability with state-of-the-art results on Labeled Faces in the Wild
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(LFW) [24,25]. For this reason, we decided to use these embeddings of 128 dimensions to
extract the representations of the enrollment and test files of this challenge.

4.3. Training Face Enrollment Models

As we explained in Section 3, in this work, we applied the approach based on enroll-
ment models [13] as a back-end for the face verification task where we trained a model
for each one of the 161 enrollment identities. To train these models, we used the embed-
dings of the enrollment images, and the video files of the development and test sets of the
IberSPEECH-RTVE 2020 Challenge [10] as positive or target examples, while the enrollment
files of the development and test sets of the IberSPEECH-RTVE 2018 Challenge [15] were
used as negative or nontarget examples. Therefore, once these embeddings were extracted,
we trained each face enrollment model with them using the aDCF loss function. Figure 3
shows two examples of the steps presented in Section 3.2 of the process of extracting
embeddings and training an enrollment model for each identity using the aforementioned
data. Moreover, the impact of the amount of nontarget data employed to train these models
will be discussed in the experimental section.

Enrollment ID1Non-enrollment IDs

aDCF Loss

.  .  .      
snontar star

. . .

Enrollment
Model ID1

Nontar Tar

. . 

(a) Model ID1

Enrollment ID2Non-enrollment IDs

aDCF Loss

.  .  .      
snontar star

. . .

Enrollment
Model ID2

Embedding
Extraction

Nontar Tar

Training
Face
Enrollment
Models

(b) Model ID2

Figure 3. (a) Left: Example of Embedding Extraction and Training Enrollment Model ID1, where the
dashed line indicates the two steps of the process. (b) Right: Example of Embedding Extraction and
Training Enrollment Model ID2, where the dashed line indicates the two steps of the process.

4.4. Clustering

As a source of complementary information, the face embeddings from the test videos
are used to perform a spectral clustering technique [26] that attempts to find strongly
connected segments. This technique provides an initial cluster assignment to group the
frames of the video sequence. In this work, we employed this clustering combined with
the use of coordinates to improve the whole tracking process.

4.5. Tracking and Identity Assignment Scoring

Once all the above information was obtained, we developed an algorithm to carry out
the tracking and identity assignment process, which is depicted in Figure 2 and follows
a similar philosophy to the one developed in [27]. In this algorithm, the tracking process
was developed by shot, so a change of shot restarts the tracking. Therefore, while the
shot is the same, the algorithm checks, frame by frame, the clustering information and the
correspondence between the coordinates of the current frame and the previous frame to
establish links to perform the tracking process. When a relationship exists between both
frames and has a high confidence term, the identity assignment of the previous frame is
used to select the enrollment model and obtain the score. This score is compared with a
confidence threshold to determine whether the assigned identity is correct or not. However,
when there is no relationship between the coordinates of the current and previous frame,
or the confidence term is low, the frame embedding is compared to all enrollment models
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to obtain a score and determine whether it is a new identity to assign. Once the identity
assignment is performed on the current frame, the score is stored, the coordinates are
updated, and the algorithm checks whether the shot changes.

Tracking is carried out with the above steps, but the identity assignment process per-
formed is only an initial assignment. When a shot change is detected, the system checks the
identities and scores stored in the shot to remove inconsistent segment assignments. After
that, the final segments with their identity assignments are written to the rich transcription
time marked (RTTM) file. In addition, score confidence values are stored when a final
identity assignment is made. If these values are greater than a more restrictive threshold
which is set with the development set, we augment the enrollment models with the current
face embedding. The whole process is repeated with all detected shots.

5. Speaker Subsystem

This section describes the speaker subsystem, which consists of similar blocks to
the face subsystem, such as audio processing, embedding extraction, clustering, and
identity assignment scoring, but using different approaches in each one. The different
parts of just this subsystem are explained in more detail in [28], although, as part of the
multimodal diarization system, the following sections present the main ideas for creating
this subsystem.

5.1. Audio Processing

In this subsystem, the audio processing step is also composed of three blocks: a front-
end, speech activity detection, and speaker change point detection. Next, we briefly explain
each of them.

5.1.1. Front-End and Speech Activity Detection

The first block of this subsystem is a front-end to obtain the MFCC features [29]. For
a given audio, a stream of 32 coefficient feature vectors is estimated according to a 25 ms
window with a 15 ms overlap. No derivatives are considered. Simultaneously, speech
activity detection (SAD) labels are estimated each as 10 ms [30]. Our approach for SAD
is based on a deep learning solution that is an evolution derived from our previous SAD
systems [31]. We use a convolutional recurrent neural network (CRNN) consisting of
three blocks of 2D convolutional followed by three BiLSTM layers [32]. Then, the final
speech score is obtained through a linear layer. As input features, 64 Mel filter banks and
the frame energy are extracted from the raw audio and fed to the neural network. Cepstral
mean and variance normalization (CMVN) [33] normalization is applied.

The CRNN is trained on a combination of different broadcast datasets. Specifically, we
include data from the Albayzín 2010 dataset (train and eval), Albayzín 2018 dataset (dev2
and eval), and a selection of data from the first MGB Challenge (train, dev.longitudinal,
and task3 eval). Furthermore, audios are augmented with a variety of noises that can be
usually found in broadcast emissions.

5.1.2. Speaker Change Point Detection

Feature vectors and SAD labels obtained are fed into the speaker change point detec-
tion (SCPD) block which is dedicated to infer the speaker turn boundaries. The differential
form of Bayesian information criterion (∆BIC) [34] was used. This estimation works in
terms of a 6 s sliding window, in which we assume there is, at most, a speaker turn
boundary. Each involved speaker in the analysis is modeled by means of a full-covariance
Gaussian distribution. In addition, the SAD labels delimit the parts of the audio where the
analysis is performed. In the given data, the described configuration provides segments of
approximately 3 s length on average.
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5.2. Embedding Extraction

Once the audio processing is completed, each one of the identified segments will
be converted into a compact representation or embedding. For this purpose, we opted
for an evolution of x-vectors [35] considering an extended version [36] of the time delay
neural network (TDNN) architecture [37]. The modification is the inclusion of multi-
head self-attention [38] in the pooling layer. This network, trained on VoxCeleb [39] and
VoxCeleb2 [40], provides embeddings of dimension 512. These embeddings undergo
centering and LDA whitening (reducing dimension to 200), both trained with MGB [41]
as well as the Albayzín training subset, and finally length normalization [42]. These
embeddings will be referred to as Φ. A similar extraction pipeline working offline is in
charge of the enrollment audios. The enrollment embeddings will be named Φenroll.

5.3. Clustering

The obtained embeddings are modeled in a generative manner according to [43],
where a tree-based probabilistic linear discriminant analysis (PLDA) clustering is proposed.
This approach exploits the higher acoustic similarity of temporally close embeddings by
sequentially assigning these representations to the available clusters at each time. These
clusters are managed by the algorithm at the same time. This concept is boosted by [44],
which helps to find the best possible sequence of decisions. The considered model has
100-dimension speaker subspace and it is trained with both MGB and Albayzín train-
ing subset.

5.4. Identity Assignment Scoring

The considered identity assignment block follows a state-of-the-art speaker recognition
PLDA backend followed by score normalization and calibration stages. By means of the
PLDA model, we estimate the score sij, which represents the likelihood that the diarization
cluster j shares the same speaker identity as the enrollment speaker i. Then, these scores are
normalized according to adaptive S-norm [45], using MGB as extra cohort. Finally, normal-
ized scores are calibrated according to a threshold ε. Whenever the score sij overcomes the
threshold, we consider that the cluster j contains audio from the enrolled person i, being
different otherwise. Threshold ε is adjusted by assignment error rate (AER) minimization
according to a calibration subset Φcalib and the enrollment embeddings Φenroll as follows:

ε = arg min
ε

(AER(Φcalib, Φenroll, ε)) (6)

where Φcalib and Φenroll represent the set of embeddings from calibration as well as the
enrollment speakers.

Final AER labels are obtained according to these normalized and calibrated scores.
The audio from cluster j is assigned to the ith enrolled identity with highest score if sij
overcomes the calibration threshold. If sij is below the threshold for any enrolled identity
i, the cluster is assigned to the generic unknown identity. Mathematically, the assigned
identity (θj) for a subset of embeddings j with respect to the enrolled identity i is

θj =

{
arg maxi(sij|sij > ε) if ∃i|sij > ε

Unknown if ∀i, sij < ε
(7)

where sij stands for the normalized PLDA log-likelihood ratio score between the embedding
j and the enrolled identity i. By means of this decision-making, we do not exclude the
possibility of assigning multiple diarization clusters to the same identity. This design choice
is taken to allow the fix of some diarization errors.

6. Performance Metrics

To evaluate the systems developed in this work, the metric used was diarization error
rate (DER). DER is usually the reference metric employed in the diarization task, but in
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this case, DER is obtained slightly differently than the original metric as it also takes into
account the measurement of the identity assignment errors. To better analyze the results
obtained with the DER metric, this metric can be decomposed in the three terms of error:

• Probability of misses (MISS): Indicates the segments where the target identity is pre-
sented but the system does not detect it.

• Probability of false alarm (FA): Illustrates the number of errors due to the assignment of
one enrollment identity to a segment without identity known.

• Identity error (ID): Reflects the segments assigned to enrollment identities different
from the target identity.

7. Results

In this work, several experiments were carried out to show the effect of different
aspects on the face subsystem and the overall performance of both subsystems. First, we
compared the use of a cosine similarity metric directly on the embeddings extracted from
the pretrained model (AverageEmbedding) to obtain the closest identity in each instance
with the training face enrollment models approach (EnrollmentModels) for the identity
assignment process. Moreover, in this first set of experiments, the relevance of employing
more nontarget data to train the enrollment models was also analyzed. After that, we
analyzed the behaviour of the system when different values of the aDCF loss function pa-
rameters were employed. To conclude, a summary of the best results of the face subsystem
in combination with the results of the speaker subsystem is presented.

7.1. Analysis of Training Enrollment Models for Face Subsystem

In this section, we analyze the performance of the system when enrollment models
are trained and used for the identity assignment process or a cosine similarity is directly
employed to compare the average of all enrollment embeddings with each frame of the
video file. Furthermore, the effect of adding more nontarget data to train the enrollment
models is also checked.

Table 1 shows DER% results on the test set for the face subsystem with the different
back-end approaches. As we can observe, the training of face enrollment models to
characterize each enrollment identity achieves a large improvement over comparing each
segment directly against the average of the enrollment embeddings. Note that whether
the enrollment models are trained with more nontarget examples, the variability that the
learnable vectors have to model is higher, so these models learn to represent each identity
better and the DER% result obtained is lower.

Table 1. Experimental results on RTVE 2020 Multimodal Diarization test set, showing DER%. These
results were obtained to compare the back-end approach proposed and the cosine baseline. The best
result is marked in bold.

Back-End Nontarget Examples DER%
Average Embedding − 80.16%
Enrollment Models 57 61.79%

3302 56.86%

7.2. Effect of aDCF Parameters γ, β for Training Face Enrollment Models

A second set of experiments was performed to observe the effect of training with
different aDCF loss parameters. In Table 2 and Figure 4, we observe that the system
performance improves by only adjusting the aDCF parameters without modifying the
threshold values or the tracking and identity assignment algorithm for the reference number
of training epochs. As reference number of epochs, we considered 800 epochs as it is the
number initially used in the previous set of experiments. In view of this result, we explored,
in depth, the behavior of the training enrollment models for the different configurations of
parameters and number of epochs. As a result of this sweep, we obtained that the original
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parameter configuration, γ = 0.75 and β = 0.25, has still room for improvement, and
training for 1200 epochs achieves the best result without modifying any other parameter.
Moreover, we note that when giving a higher cost relevance (β) to the probability of misses
during training with aDCF loss function, regardless of the number of epochs, the results
are worse in all situations.

Table 2. Experimental results of RTVE 2020 Multimodal Diarization test set, showing DER%. These
results were obtained by sweeping of the parameters of aDCF loss function and by different number
of training epochs. The best results are marked in bold.

γ β 600 Epochs 800 Epochs 1000 Epochs 1200 Epochs 1400 Epochs
0.75 0.25 62.56% 56.86% 55.32% 54.07% 55.91%
0.50 0.50 55.92% 55.89% 56.02% 56.47% 57.16%
0.25 0.75 58.30% 59.29% 59.58% 60.01% 60.02%

53.00%

55.00%

57.00%

59.00%

61.00%

63.00%

600 epochs 800 epochs 1000 epochs 1200 epochs 1400 epochs

0.75-0.25 0.50-0.50 0.25-0.75

Figure 4. Evolution of DER% results as a function of the different parameter configurations.

In addition to the above results, we analyzed the behavior of the three types of errors
that compose the DER% metric when the different possible system configurations are used
for the same number of training epochs. As we can see in Table 3 and Figure 5, giving
a higher cost relevance to the probability of false alarms (γ) in the aDCF loss results in
a lower number of false alarms in the decomposition of the DER%, while the number of
misses is higher than in the other two configurations. On the other hand, the same trend
can be seen in reverse when the relevance term (β) is higher for the probability of misses.

Table 3. Experimental results of RTVE 2020 Multimodal Diarization test set, showing DER% and
decomposition of DER% results in miss (MISS), false alarm (FA), and identity (ID) errors. These
results were obtained by sweeping the parameters of the aDCF loss function. The best results are
marked in bold.

γ β MISS FA ID DER
0.75 0.25 32.60% 12.80% 8.70% 54.07%
0.50 0.50 30.70% 16.00% 9.80% 56.47%
0.25 0.75 28.30% 19.80% 12.00% 60.01%
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8.00%

13.00%

18.00%

23.00%

28.00%

33.00%

0.75-0.25 0.50-0.50 0.25-0.75

Miss ID FA

Figure 5. Evolution of the different types of errors (MISS, FA, ID) for each different γ, β parameter
configuration.

7.3. Summary of Face and Speaker Results

In this section, we collect the best result for the face and speaker subsystems, and we
also divide the results into development and test set to better observe the difference in
behavior of both subsystems. Moreover, our reference results obtained for the challenge [46]
are included to better reflect the improvement achieved. Thus, the results of the other two
participating groups [47,48] that are publicly available (available online: http://catedrartve.
unizar.es/albayzin2020results.html (accessed on 23 December 2021)) are been introduced
in reference to the difficulty of this multimodal diarization challenge.

Table 4 shows the DER results obtained in the development and test set for the face
and speaker modalities. In addition to the separate results, we show the average result of
the face and speaker diarization errors (FACE + SPEAKER). These results indicate a great
mismatch between development and test results. We analyzed what type of video files
composed both subsets and the length of these files, and we found that the development
files are shorter and more similar than test files. Thus, we can see that the face and
speaker subsystems perform better in the development files which are shorter videos, so
the tracking process is easier to follow. Nevertheless, in the face subsystem, we observe
that this difference is smaller than in the speaker subsystem.

Table 4. Experimental results on RTVE 2020 Multimodal Diarization development and test sets,
showing DER%. These DER% values were the result of the improvements introduced in this work,
and the reference results for both modalities are also presented.

Subset Modality DER% DER% Ours [46] DER% [47] DER% [48]

DEV
FACE 51.26% 51.66% − −

SPEAKER 37.45% 47.90% − −
FACE+SPEAKER 44.36% 49.78% − −

TEST

FACE 54.07% 61.79% 44.55% 67.31%
SPEAKER 60.34% 72.63% 61.61% 131.59%

FACE+SPEAKER 57.20% 67.21% 53.08% 99.45%

To better analyze these results, Table 5 presents a decomposition of the DER metric
into the three terms of error. Focusing on the face modality errors, in the case of the
development subset, we observe that the main cause of error is the probability of misses,
which indicates that a large number of segments of the target identities have not been
detected. Therefore, this effect can be motivated by using a threshold value that is too

http://catedrartve.unizar.es/albayzin2020results.html
http://catedrartve.unizar.es/albayzin2020results.html
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restrictive, while in the test subset, the misses term decreases, and especially relevant is
the increase in false alarm errors as this illustrates the problems in discarding segments of
nontarget faces when the number of enrollment identities is large. On the other hand, the
distribution of errors produced in the speaker subsystem is quite different, as false alarms
are much larger than misses in the test subset of data. Note that it is also related to the
chosen threshold; however, in this case, the threshold is lower, so the target segments are
mostly detected, but as a result, a high number of enrollment identities are assigned to
segments of unknown identity.

Table 5. Decomposition of DER% results in miss (MISS), false alarm (FA), and identity (ID) errors for
the development and test sets in both modalities.

Modality Subset MISS FA ID

FACE
DEV 41.70% 5.10% 4.50%
TEST 32.60% 12.80% 8.70%

SPEAKER
DEV 26.10% 9.60% 1.75%
TEST 8.70% 39.00% 12.64%

8. Conclusions

This paper presents the ViVoLAB submission to the IberSPEECH-RTVE 2020 Multi-
modal Diarization Challenge. In this work, we developed two monomodal subsystems to
separately address face and speaker diarization. Each system is based on state-of-the-art
DNN approaches. In addition, we introduced a new back-end approach for the face sub-
system. This approach consists of training a learnable vector with the aDCF loss function
to represent each face enrollment identity. Using these enrollment models for the identity
assignment process instead of just the cosine similarity, the results have achieved a relevant
improvement over the average embedding directly and the application of cosine similarity.
We have demonstrated that there is still room for improvement in each of the systems
because the results obtained are too high in both subsets and in both systems. Moreover,
future work can be carried out on the fusion of both systems, which could improve the
final results, especially by disambiguating the identification process. The high DER values
for misses and false alarms in the face and speaker subsystem, respectively, should be
addressed by that fusion.
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