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Engineering transient dynamics of artificial cells by
stochastic distribution of enzymes
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Loai K. E. A. Abdelmohsen 1✉ & Jan C. M. van Hest 1✉

Random fluctuations are inherent to all complex molecular systems. Although nature has

evolved mechanisms to control stochastic events to achieve the desired biological output,

reproducing this in synthetic systems represents a significant challenge. Here we present an

artificial platform that enables us to exploit stochasticity to direct motile behavior. We found

that enzymes, when confined to the fluidic polymer membrane of a core-shell coacervate,

were distributed stochastically in time and space. This resulted in a transient, asymmetric

configuration of propulsive units, which imparted motility to such coacervates in presence of

substrate. This mechanism was confirmed by stochastic modelling and simulations in silico.

Furthermore, we showed that a deeper understanding of the mechanism of stochasticity

could be utilized to modulate the motion output. Conceptually, this work represents a leap in

design philosophy in the construction of synthetic systems with life-like behaviors.
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It is well recognized that stochastic events play a key directive
role in biological processes. In order to provide a robust
response to varying input, nature has developed a range of

approaches to translate stochasticity into adaptive biological
output. Specific examples include the dampening of cellular noise
to stabilize stochastic decisions in neuronal cell development1 and
the autonomous motion of motor proteins2,3, a consequence of
fluctuating biochemical reactions. Stochasticity is of course not
only present in biological systems. Stochastic processes have been
observed in many synthetic systems as well and have been used to
interpret their specific behavior. For example, in the field of
nanomotor and micromotor research, the stochastic positioning
of propulsive units has been used as an explanation for the
observed motility. Specific examples include the stochastic
attachment in a fixed position of enzymes to the surface of
nanoparticles by Sanchez et al.4 and the conjugation of enzymes
to the fluid membrane of liposomes by Sen et al.5. However, in
contrast to nature, stochasticity has never been used in motor
systems, or any other synthetic systems, as a purposely intro-
duced component to control the system’s features. In order to
incorporate more life-like behavior in active matter, stochasticity
should be given a more prominent role.

Herein we describe a micromotor system in which we have
been able to include stochasticity as a design element. Our
micromotor is based on a coacervate microdroplet cloaked with a
fluidic polymer membrane. To this membrane, enzymes were
conjugated as propulsive units. Remarkably, the micromotor did
not show the expected motility as a function of enzyme density.
This prompted us to develop a physical model and analyze the
system in silico. Our model provided us with the insight that a
stochastic process governs the motile behavior, which we could
subsequently direct, following the model’s guidelines.

Results and discussion
Asymmetry in the motor structure (e.g., shape, catalyst dis-
tribution) has been considered as a prerequisite for autonomous
motion6–10. This has, for example, been achieved by the con-
struction of Janus particles, which are hemi-spherically covered
with active catalysts11–15. Marangoni flow has also been employed
as a propulsion force, e.g., to drive autonomous motion of
surfactant-stabilized droplets16–20, to induce collective motion21,
or to navigate in complex environment22. Recently, a random
surface distribution of enzymes has been shown to propel
micromotors in the presence of fuel4,5. This inspired us to con-
struct a system, in which asymmetry (i.e., heterogeneous dis-
tribution of enzymes) is transient and dynamic, enabled by the
inherently fluidic polymer membrane (Fig. 1d, e). This approach
is analogous to the work by Sen et al. and in contrast to other
investigations that employ static and fixed surface distribution of
catalysts (Fig. 1b, c). Our platform was composed of a complex
coacervate droplet, which was formed by the spontaneous coa-
cervation of two oppositely charged polyelectrolytes that associate
when mixed in water, and which was further stabilized by the
presence of a polymer membrane23. A more detailed description
of the formation process and chemical structures can be found
in Supplementary Methods and Supplementary Figs. 1–5. The
chemical nature of the membrane made it possible to securely
tether enzymes to the surface. Moreover, as this membrane is
fluidic at room temperature24,25, the continuous spatiotemporal
reorganization of such propulsive units was ensured. With this
design, we hypothesized that transient asymmetry in enzyme
distribution would lead to a variety of random, continuously
changing organizational states, with a fraction of these displaying
sufficient polarization to generate a net propulsion for coacervates
(Fig. 1a).

Two enzymes, catalase (CAT) and urease (UR), were selected
as the propulsive units due to their reported use as catalytic
engines for propelling micron- and nano-sized particles4,26,27.
The attachment of these enzymes on the coacervate membrane
was facilitated by blending in an azide-functionalized polymer, α-
azido-poly(ethylene glycol)-b-poly(ε-caprolactone-gradient-tri-
methylene carbonate), which rapidly undergoes strain-promoted
alkyne-azide cycloaddition with dibenzocyclooctyne-modified
enzymes (mCAT and mUR, Fig. 2a). Confocal images con-
firmed the enzyme-membrane coupling, which was manifested as
a ring-like distribution of Cy5-labeled mCAT or mUR (Fig. 2b
and Supplementary Figs. 6 and 7). This functionalization strategy
retained enzymatic activity (Supplementary Methods) and
resulted in membrane-bound enzymes to translocate diffusively
along the coacervate surface, as confirmed by fluorescence
recovery after photobleaching (FRAP) analysis (Fig. 2d). From
the FRAP recovery curve (Fig. 2c), lateral diffusivity of surface-
bound mCAT was determined to be 0.035 µm2/s (Supplementary
Methods). Moreover, the lateral diffusivity of surface-bound
mUR was very close to that of mCAT, which was determined to
be 0.030 µm2/s (Supplementary Fig. 8; for FRAP experimental
details, see Supplementary Methods). When the coacervates were
analyzed over time, a rare case was observed—a highly punctate,
dynamic radial distribution of mCAT was observed (Fig. 2e),
confirming our hypothesis that the fluidic polymer membrane
results in dynamic enzyme clustering and hence a transient
asymmetrical distribution of propulsive units.

Having confirmed the transient asymmetry on the coacervate
membrane, we set out to test coacervate motility. Motion of
mCAT- and mUR-coacervates was recorded in the presence or
absence of their respective substrate by bright-field microscopy.
Videos were recorded at 25 frames per second and for a period of
30–35 s. For each condition, 15–20 coacervates were analyzed.
The motile behaviors of both mCAT- and mUR-functionalized
coacervates were analyzed by using a tailor-made Python script,
the X and Y trajectory data were extracted, and the mean square
displacement (MSD) was calculated (for motility experimental
details, see Supplementary Methods). In the absence of fuel, both
mCAT- and mUR-coacervates exhibited typical Brownian motion
(Supplementary Movies 1 and 2), with linear MSD fitting profiles
(Fig. 3d, e and Supplementary Fig. 9). Upon addition of fuel,
10 mM H2O2 or 500 mM urea (final concentration), respectively,
enhanced propulsion with significant increase in MSD profiles
was observed for both mCAT- and mUR-coacervates (Supple-
mentary Movies 1 and 2 and Fig. 3d, e). Moreover, individual
trajectories (Fig. 3b, c) showed significant path expansion after
fuel addition, confirming coacervate propulsion in the presence of
fuel, without the need for deliberate structural or externally
manipulated asymmetrical features.

An important parameter that influences the degree of asym-
metry in the system, and hence the motile output, is the coverage
of enzyme (proportional to number/density of enzymes) on the
surface of the coacervates. We set out to test the impact of
enzyme density on motility by fabricating both mCAT- and
mUR-coacervates with three different surface enzyme densities—
low, medium, and high (for exact enzyme number and coverage,
see “Methods” and Supplementary Tables 1 and 2). To quantify
enzyme density, we first calculated the number of coacervates at a
given volume, and then determined, using Cy5-labeled enzymes,
the total amount of attached enzymes via fluorescence, as
described in the “Methods” section. Obtained enzyme densities
and surface coverage of both mCAT- and mUR-coacervates are
listed in Supplementary Table 2. Indeed, in the presence of their
respective fuels, 10 mM H2O2 and 500 mM urea, mCAT and
mUR-coacervates, with different enzyme densities and same
average size (diameter ~ 1.2 µm), moved with different MSDs and
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velocities (Supplementary Movies 3 and 4). Surprisingly, coa-
cervates with medium enzyme density moved faster than those
with high and low densities (Fig. 4c, e and Supplementary
Fig. 10), contrary to the monotonic increasing trend one would
expect. In addition, the velocity of coacervates with high enzyme
density was close to those with low enzyme density. To investigate
the mechanism behind the non-monotonic trend of enzyme
density and motility, we first ruled out local substrate depletion as
the reason for high enzyme density coacervates yielding smaller
propulsion. We estimated the relative rate of the enzymatic
reaction versus substrate diffusion by calculating the Damköhler
number Da ¼ _r R

d csub
. Da of 0.13 and 4.5 × 10−4 were obtained for

mCAT- and mUR-coacervates, respectively (for details, see
“Methods—Estimation of Damköhler number”). In both cases,
the Damköhler number is <1 even with the overestimated full
coverage of surface with enzymes (experimental enzyme coverage
is up to 87%, see Supplementary Table 2). This means that dif-
fusion is faster than the reaction rate and substrate molecules can
be resupplied as soon as they react, implying no local substrate
depletion.

We therefore hypothesized that the maximal velocity was
obtained as a balance between transient asymmetry and enzyme
density. The number of enzymes on each coacervate is directly
related to the potential of these enzymes to form asymmetric
organizational states. For example, a coacervate with maximum
enzyme loading will have a saturated, homogeneous distribution

of enzymes (Fig. 4a). Hence, in the presence of fuel, such coa-
cervates with on average high symmetry (and thus very low
probability of significant asymmetry) will have zero net propul-
sion. Although at low enzyme density the probability of asym-
metric enzyme organization is higher than that at medium
enzyme density, the net propulsion is still weaker as fewer
enzymes are able to impart velocity, thus yielding a smaller drive
capable of actively propelling the coacervate as a whole4. In the
case of medium enzyme density, there is a favorable balance
between the probability of transient asymmetry and the absolute
number of enzymes contributing to propulsion, thus resulting in
a larger net propulsion than for those with low and high enzyme
density.

To demonstrate the interplay of transient asymmetry and
enzyme density, a model probability density plot of the degree of
asymmetry with different enzyme numbers was derived (Fig. 4b).
The measure of asymmetry was defined by the net propulsion
divided by the product of the enzyme number and vc. Then two
theoretical extremes were formulated: a uniform (equidistant)
organization of enzymes results in 0% asymmetry, while 100%
asymmetry is caused by all enzymes clustering at a single point.
Sketching the relationship between enzyme density and net
propulsion in a schematic illustration shows that the delicate
interplay between the parameters is indeed logical (Supplemen-
tary Fig. 11) and in agreement with the probability density plot in
Fig. 4b.
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Fig. 1 Design philosophy to translate a stochastic process into autonomous motion in an artificial system. a Coacervates with surface-confined enzymes
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To further substantiate our hypothesis of transient asymmetry-
induced motility, we developed a stochastic mechanical model,
which verified our findings from two aspects. First, we para-
meterized our stochastic model based on the active Brownian
particle (ABP) model28 to include the mobility and the fluctua-
tions of the enzyme distributions along the surface (see Supple-
mentary Note 1). In this way, we were able to look at the
ensemble effect of propulsive units imposed on overall coacervate
motion in our system. Second, simulation from the same sto-
chastic model was used to verify the analytical expression and
further allowed us to examine the system at the level of the
individual enzyme (See Supplementary Note 2).

In general, a stochastic process is a process where an object
behaves in a random way. A well-known example is Brownian
motion. In our setting, we have three stochastic processes of
interest: the inherent translational (1) and rotational (2) diffusion
of coacervates on microscale, as well as the lateral diffusivity (3)
of the propulsive units (i.e., mCAT or mUR), which is unique to
this system. The location of the propulsive units drives the coa-
cervate in a particular direction, governed by the dynamic and
asymmetrical distribution of the enzymes on the coacervate
surface; the coacervates are reoriented during their motion as a
result of the rotational diffusion.

We obtained our stochastic model by modifying the ABP
model, which was originally developed to describe the motion of
Janus particles28. In the ABP model, the catalytic hemisphere
defines the direction along which the particle moves, while the
rotational diffusion (τR) randomizes the orientation of the particle
making its motion diffusive at long timescales (Δt > τR)28. In
contrast, the coacervates described in this work do not display a
fixed preferential direction since the distribution of the enzyme
propulsive units fluctuates with enzymes undergoing lateral dif-
fusion. Our stochastic model assumes that the coacervate moves
along the direction of the dipole of the surface distribution with a
velocity proportional to its magnitude (see Supplementary

Note 1). The MSD after a time Δt was derived as

MSDðΔtÞ ¼ 1
2

V
Deff

� �2

ðe�2ΔtDeff þ 2ΔtDeff � 1Þ þ 4DTΔt; ð1Þ

where

Deff ¼ DR þ 1þ 2
λ

� �
DL

R2 ; ð2Þ

DT ¼ kBT
6πηR is the translational diffusion coefficient, DL is the

lateral diffusion coefficient of the enzymes, DR ¼ kBT
8πηR3 is the

rotational diffusion coefficient of the coacervate, kBT represents
the thermal energy, η is the viscosity of the liquid suspending the
particle, R is the radius of the coacervate, λ is the number of
enzymes on the coacervate, and V is the expected coacervate

propelling velocity (V ¼ vc
ffiffiffiffiffi
2
3 λ

q
, where vc is the propelling

velocity of coacervate induced by one single enzyme).
The (experimental or theoretical) approaches to obtaining

these parameters are discussed in the last paragraph of “Meth-
ods.” This expression has limiting forms of MSDðΔtÞ ¼ 4DTΔt þ
V2Δt2 for Δt � τ* and MSDðΔtÞ ¼ ð4DT þ V2τ*ÞΔt for
Δt � τ*, where τ* ¼ D�1

eff . The transition between the ballistic
(unimpeded motion) and diffusive (random motion resulting
from collisions between particles and surrounding molecules)
regimes is determined by the new timescale τ*, which thus
depends on both the lateral diffusivity of the enzymes and on the
rotational diffusion of the coacervate. It is important to note that
enzyme lateral diffusivity contributes to the coacervate velocity
and overall MSD in the stochastic model, while the ABP model
did not take these two factors into account28.

In general, this stochastic model predicts a ballistic motion at
short times and a diffusive motion at long times (Supplementary
Fig. 12) and this crossover from ballistic to diffusive regimes was
indeed observed in the experimental data (Fig. 3d, e and
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based on 100,000 simulated functionalized particles of each density (λlow= 100, λmedium= 300, λhigh= 1000). The asymmetry was computed as the net
propulsion in the ðx; yÞ-plane divided by the number of enzymes (as vc= µm/s in these simulations) per coacervate. c, e MSD curves of mCAT-
coacervates/mUR-coacervates (diameter ~ 1.2 µm) with three different enzyme densities, namely, low, medium, and high (Supplementary Table 2). The
MSD curves with error bars (mean ± SEM) are available in Supplementary Fig. 10. Inset is the corresponding velocity. Eighteen coacervates were analyzed
per condition for mCAT-coacervates and 17 coacervates were analyzed per condition for mUR-coacervates. d, f MSD curves of mCAT-coacervates/mUR-
coacervates predicted by stochastic simulation.
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Supplementary Fig. 9). In the case of rapid diffusion of surface-
bound enzymes, the lifetime of asymmetry becomes short, which
in turn leads to rapid velocity fluctuations. This results in a fast
transition of MSD from the ballistic regime to the diffusive
regime. Conversely, in the limit of diffusion-limited (static)
enzymes, the polarization becomes permanent, leading to recov-
ery of MSD, similar to those of Janus particles (Supplementary
Fig. 25)28.

To verify the analytically derived MSD and further examine the
stochasticity of the system, we studied our system using simula-
tion. The lateral diffusion of a single enzyme on the coacervates’
surface is simulated as a spherical Brownian motion (SBM) with a
diffusion coefficient DL (see Sections 1 and 3 of Supplementary
Note 2 for how such an SBM was simulated)29. The fluidity of the
coacervates’ membrane leads to stochastic motion of enzymes on
the surface, whereas each individual enzyme contributes to the
net propulsion of coacervates in the presence of fuel. Important
parameters are thus the propelling velocity of the coacervate
induced by an individual enzyme (vc) in the presence of fuel as
well as the density of enzymes (λ) on the surface; they can both be
tuned in our simulation. The direction of the coacervate’s motion
is further influenced by its Brownian rotation. Such Brownian
rotation is also simulated using an independent SBM with a
diffusion coefficient DR (see Supplementary Note 2 Section 4).
Additionally, the translational diffusion of the coacervate was
simulated independently as a two-dimensional Brownian motion.
In the case that transient asymmetry highly fluctuates (DL >> 1,
note: experimental DL of mCAT-coacervates is 0.036) or when the
rotational diffusion is very fast (DR >> 1), the resulting motion of
the coacervates was hypothesized to be diffusive (Supplementary
Figs. 23–25). The MSDs observed in simulations have a great
agreement with the derived analytical expression presented as Eq.
(1), as well as with experiments (Supplementary Figs. 12 and 26).

The relationship between enzyme density and net propulsion
observed in the experiment (Fig. 4c, e) cannot solely be explained

by the change in asymmetry (i.e., V ¼ vc
ffiffiffiffiffi
2
3 λ

q
is monotonically

increasing as a function of λ). We thus incorporated enzyme
density-dependent specific expected propelling velocities V (see
Section 5 in Supplementary Note 2) in the stochastic simulation
to explain the non-monotonic relation between the MSD and the
enzyme density. By altering the number of enzymes in the
simulation, MSD curves of low, medium, and high enzyme
densities were simulated within the same magnitude of experi-
mental data (Fig. 4d, f). These results demonstrate the potential of
harnessing stochastic processes: a seemingly simple, tunable
parameter (e.g., enzyme density) can have a profound and non-
linear effect on the output behavior (motility).

The simulation identified lateral diffusivity of enzymes (DL) as
a key parameter that has a crucial impact on transient asymmetry,
due to the speed at which enzyme clusters can form. Therefore, to
further control the system with stochastically dominated para-
meters, we set out to examine the impact of lateral diffusion of
enzymes on the motility, by tuning DL in the stochastic model. In
the extreme case, where DL= 0 (completely static motor
arrangement), the MSD is at the maximum. While in the theo-
retical case where DL is infinite, dynamic enzyme clustering and
its resultant transient asymmetry fluctuate at a rate that is much
faster than the measurement timeframe, the MSD profile is the
same as that of Brownian motion. Overall, by decreasing DL in
the stochastic model, an increase in MSDs was predicted (Fig. 5a).

To validate the relationship between transient asymmetry and
motility experimentally, we tuned the diffusivity of surface-bound
catalase by means of in situ crosslinking of catalase using a
chemical crosslinker; namely, glutaraldehyde (Fig. 5). Coacervates
with medium mCAT density, the best performer from the

enzyme density experiments, were chosen to test this diffusivity
hypothesis. In order to avoid aggregation of catalase, crosslinking
was carried out after extensive washing steps to remove any
unbound catalase (Supplementary Fig. 13). FRAP measurements
were performed on mCAT-coacervates with crosslinked surface
enzymes to test the extent of decrease in lateral diffusivity. An
evident drop in fluorescence recovery speed was observed as there
was no significant recovery >100 s after bleaching (Fig. 5e),
compared to obvious fluorescence recovery after ~52 s in the case
of no crosslinking (Fig. 2d). Although the enzyme diffusivity was
drastically diminished, it is important to note that enzymes were
not fully static even after crosslinking as a slight recovery in
intensity was observed (Fig. 5f).

In order to amplify the motility output, and thus to observe any
difference that might arise because of changing the lateral diffu-
sion of enzymes, we aimed at capturing the ballistic regime of
MSD curves (rather than the diffusive regime). In order to do so,
mCAT-coacervates with average diameter of 3.6 µm (Supple-
mentary Methods and Supplementary Fig. 14) were chosen to
perform motility testing, as their characteristic timescale satisfies
τ* >> Δt, resulting in a more predominant influence of DL on the
coacervates’ motion (Eq. (2)). After crosslinking, a clear differ-
ence was observed regarding motility: mCAT-coacervates with
crosslinked surface enzymes, with the same average size, exhibited
increased MSDs and velocities when compared to their non-
crosslinked counterparts (Fig. 5b, Supplementary Fig. 15, and
Supplementary Movie 5). This propulsive motion can clearly be
seen in the movement trajectories, where more stretched and
expanded paths were observed for crosslinked ones (Fig. 5c).
Should the organizational state of enzymes be permanent and not
changing with time, there would not have been a motion
enhancement after fixating the enzymes. By tuning enzyme lateral
diffusivity, we eventually imposed control over the lifetime of
transient asymmetry, which was manifested in the motility out-
put. The enhanced propulsion after crosslinking clearly con-
firmed the role of the fluidic membrane imparting transient
asymmetry and thus motility. Moreover, these experimental
results are in line with our prediction by stochastic simulation
that lower enzyme diffusivity leads to a more propulsive MSD
(Fig. 5a and Supplementary Fig. 23). This agreement between
theoretical predictions and experimental validation provides a
valuable framework for the incorporation of stochastic mechan-
isms in synthetic systems.

In addition, an interesting phenomenon was observed that ca.
10% of such non-crosslinked coacervates exhibited anomalous
type of motion, so-called run-and-tumble, hitherto only observed
in bacteria (e.g., Escherichia coli30). These non-linear run-and-
tumble movements can be characterized by remarkable con-
secutive alternations between diffusive motion and directional
propulsion (Supplementary Movie 6). Analysis of the instanta-
neous velocity confirmed our observation, with the experimen-
tally observed “run” regime exhibiting significantly higher
velocities than predicted by the stochastic model (Supplementary
Fig. 31). With our current settings, this run-and-tumble behavior
cannot be replicated in the simulation, indicating another degree
of stochasticity in the system. As this behavior was only observed
with the catalase modified coacervates, we tentatively attribute
this phenomenon to a possible explanation—the stochastic
release of oxygen microbubbles31—but a deeper investigation is
needed to substantiate this explanation.

Stochasticity is abundant in nature and of great importance for
the regulation of many biological processes. Although this has
been well recognized, it has mainly been studied from a phe-
nomenological point of view and its active exploitation is
underexplored. This certainly accounts for artificial systems,
where researchers have in some cases acknowledged stochasticity
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to play a key role in the behavior of their systems but have not
controlled, let alone designed, this phenomenon. In this con-
tribution, we have demonstrated an engineered motile system
that is fully governed by stochasticity. By following a combined
experimental and theoretical/simulation approach, we have been
able not only to describe the motile process but also to engineer
the key parameters that determine stochastic behavior. The great
fit between theory and experiment demonstrates that we now
have a high level of control over this process. Although our results
explain the majority of motile events, we have also observed a
small fraction that shows an intriguing “run-and-tumble” beha-
vior. These extreme cases cannot be described by our current
model (see Section 6 in Supplementary Note 2) and most prob-
ably result from a combination of stochastic processes that we do
not fully understand yet. It, however, demonstrates that exploring
stochasticity can enable the creation of even more complex, non-
linear behavior. For example, research exploring the ability of
such stochastic-induced motility to drive chemotaxis is in pro-
gress. Hopefully, this study will inspire other researchers to
recognize and apply stochasticity as a powerful method to design
and engineer other adaptive systems based on fluctuating
extrinsic and intrinsic conditions.

Methods
Surface enzyme density (mCAT/mUR) of coacervates. To calculate the number
of modified enzymes attached on one coacervate, we estimated the number of
coacervates per sample and measured the total amount of enzymes attached
according to their fluorescence emission.

Coacervate number estimation. We first measured the density of the interior
coacervate phase. The coacervate phase was generated by mixing 6 mL 3 mg/mL
Q-Am and 3mL 3mg/mL Cm-Am for 5 min (no stabilizing polymer was added).
Subsequent centrifugation led to macroscopic phase separation, and supernatant
was removed. A total of 10 µL pellet weighed 10.5 µg, therefore the density of the
coacervate phase is 1050 mg/mL.

As the mass of Q-Am and Cm-Am and the density of the coacervate phase are
known, the total volume of all coacervates was calculated according to
V total ¼ mQ-Am þmCm-Am

density . The average volume (Vavg) of one coacervate was calculated

from the average diameter of the coacervate (obtained from confocal image
analysis, see above). By dividing Vtotal over Vavg, the number of coacervates was
calculated. Results are listed in Supplementary Table 1.

Amount of mCAT/mUR attached on the coacervates. The amount of mCAT or
mUR attached on the coacervates was estimated through Cy5 fluorescence emis-
sion (for enzyme modification, see Supplementary Methods). mCAT-coacervates
were centrifuged into a pellet, while unbound mCAT stayed in the supernatant.
After removing the supernatant, the pellet was resuspended in phosphate-buffered
saline buffer. Cy5 fluorescence emission from the supernatant and resuspended
pellet were measured by a plate reader (TECAN Spark 10M). The percentage of
mCAT attached was determined by Cy5 emission in pellet

Cy5 emission in pellet þ Cy5 emission in supernatant. Then

this percentage and the total number of coacervates calculated above were used to
calculate the average number of enzyme molecules attached to one coacervate.
Results are listed in Supplementary Table 2.

Estimation of Damköhler number. The relative rate of the enzymatic reaction
versus substrate diffusion can be estimated by the Damköhler number:

Da ¼ _r R
d csub

ð3Þ

where _r is the reaction rate, R is the radius of the coacervate, d is the diffusion
coefficient of the substrate and csub is the concentration of the substrate far from
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the coacervate. The reaction rate _r can be estimated as the product of the maximum
turnover rate kcat of the enzyme multiplied by the surface density of the enzymes
Γ0: _r � kcatΓ0. We estimated surface density of the enzymes in the case of max-
imum packing (full coverage):

Γ0 �
0:91
πrenz2

ð4Þ

where renz is the characteristic size of the enzyme. Supplementary Table 3 shows
the parameters used for Da, with estimates for mCAT- and mUR-coacervates,
respectively.

Stochastic simulation. The backbone of the stochastic simulation is the simulation
of a SBM as described in Section 1 of Supplementary Note 2. The motility of a
coacervate with a dynamic membrane was simulated by the union of three inde-
pendent stochastic processes: (i) the translational diffusion of the coacervate was
simulated as a realization of a three-dimensional (3D) Brownian motion depending
on the diffusion speed DT (see Section 2 of Supplementary Note 2), (ii) the rota-
tional diffusion of the coacervate, causing the direction of the net velocity to change
over time, was simulated by implementation of an SBM of one of the unit axes.
This way we could implement rotation of the 3D coordinate system at a speed
depending on DR (see Section 4 of Supplementary Note 2) and (iii) the lateral
diffusion of each single enzyme, causing the magnitude of the net velocity to
change over time, was simulated as independent SBM at a speed depending on DL

(see Section 3 of Supplementary Note 2).

Estimation of simulation parameters. In the stochastic simulation, there were six
parameters that influence the motility of enzyme-tethered coacervates, namely, the
propelling velocity of coacervates induced by one single enzyme vc, coacervate
radius R, translational diffusion coefficient DT, rotational diffusion coefficient DR,
enzyme lateral diffusion coefficient DL, and enzyme number on the surface of
coacervate λ. However, from Eq. (1) it became clear that the impact of vc and λ

could be integrated in the expected coacervate velocity V ¼ vc
ffiffiffiffiffi
2
3 λ

q
because the

influence of λ on Deff (stated in Eq. (2)) could be ignored for the order of λ (shown
in Supplementary Table 2). This thus reduces the number of relevant simulation
parameters to five.

R was obtained from the analysis of coacervate confocal images (Supplementary
Fig. 14). To obtain realistic parameter estimates, first kBT

6πη was estimated to equal

0.14 based on the (experimental) MSD curves of coacervates in the absence of fuel
(Supplementary Note 2 Section 2.1) and in turn used to estimate DR and DT

according to the Stokes–Einstein equation. After substituting the estimates of DR

and DT into Eq. (1), this equation was fitted to the experimentally obtained MSD
curves to estimate DL and V for conditions of interest (Supplementary Note 2
Section 5). Besides, the estimate of V is within reasonable range of micromotors
(see Table in Supplementary Fig. 26) and comparable to other micromotor system,
which used the same type of enzyme as propulsion unit10.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
The tailor-made motion tracking Python script is available upon request. The stochastic
simulation R script can be accessed on GitHub https://github.com/RAJP93/ETD-of-
artificial-cells.git.
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