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THE MONODROMY CONJECTURE FOR A SPACE
MONOMIAL CURVE WITH A PLANE SEMIGROUP
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Abstract: This article investigates the monodromy conjecture for a space monomial
curve that appears as the special fiber of an equisingular family of curves with a
plane branch as generic fiber. Roughly speaking, the monodromy conjecture states
that every pole of the motivic, or related, Igusa zeta function induces an eigenvalue
of monodromy. As the poles of the motivic zeta function associated with such a
space monomial curve have been determined in earlier work, it remains to study the
eigenvalues of monodromy. After reducing the problem to the curve seen as a Cartier
divisor on a generic embedding surface, we construct an embedded Q-resolution of
this pair and use an A’Campo formula in terms of this resolution to compute the zeta
function of monodromy. Combining all results, we prove the monodromy conjecture
for this class of monomial curves.
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Introduction

The classical monodromy conjecture predicts a relation between two
invariants of a polynomial, one originating from number theory and
the other from differential topology. More precisely, it states that the
poles of the motivic, or related, Igusa zeta function of a polynomial f¢&
Clzo, . .., x,] induce eigenvalues of the local monodromy action of f,
seen as a function f: C"*! — C, on the cohomology of its Milnor fiber
at some point € f~1(0) C C"*!. Generalizing the motivic Igusa zeta
function to an ideal and using the notion of Verdier monodromy, one
can similarly formulate the monodromy conjecture for ideals. To date,
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both conjectures have only been proven in full generality for polynomi-
als and ideals in two variables; see [20] and [34], respectively. In higher
dimension, various partial results were shown for one polynomial (see
for instance the introduction of 7] for a list of references), but for mul-
tiple polynomials, the most general result so far is a proof for monomial
ideals [18]. Very recently, Mustata ([27]) showed that the monodromy
conjecture for polynomials implies the one for general ideals. However,
since the monodromy conjecture for one polynomial is still open in more
than two variables, this does not provide an immediate solution of the
monodromy conjecture for ideals. In the present article, the monodromy
conjecture is investigated for a class of binomial ideals in arbitrary di-
mension that define space curves deforming to plane branches. As the
poles of the motivic Igusa zeta function associated with these binomial
ideals have already been studied in [26], we concentrate on the eigenval-
ues of monodromy. A short summary of the main results of the present
article and of [26] can be found in [23].

To construct the ideals of our interest, we start with a germ C :=
{f =0} C (C%0) of a complex plane curve defined by an irreducible
series f € C[lzo,z1]] with f(0) = 0. The semigroup I'(C) of C is the
image of the associated valuation

. C[[Io, 561]] . . C

ve: 7 \ {0} — N: h +— dim¢ A
This semigroup is finitely generated and has a unique minimal generating
set (Bo, - - -, By)- Define Y as the image of the monomial map M : (C,0) —
(C9+1,0) given by ¢+ (t%, ... t%9). This is an irreducible curve which
is smooth outside the origin and whose semigroup is the ‘plane’ semi-
group I'(C). Furthermore, it is the special fiber of an equisingular fam-
ily n: (x,0) C (C9*! x C,0) — (C,0) with generic fiber isomorphic to C.
The ideal Z C C[xo, . ..,z,] defining Y in C9*! is generated by binomial
equations of the form

fi=at —2(°=0

a2 bao 21 _
foi=a5” — 2 ? =0

([0, z1]]

bgo bgl b

fg = zg” — Ty Iy "'wggf(glil) =0.
Here, n; > 1 and b;; > 0 are integers that can be expressed in terms of
(Bo,- -, Bg); see (3). The curve Y is called the monomial curve associated

with C, but, to simplify the notation, we will refer to it as a (space)
monomial curve Y C CI9t1. In this article, the case of interest is g > 2.
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In [26] it was shown that a complete list of poles of the motivic zeta
function associated with a space monomial curve Y C C9*! is given by

LI, L%, k=1,....q,

where

~ = (Zﬁz anﬁl) -1+ Z;l

nkﬂk

Here, L denotes the class of the affine line in the Grothendieck ring of
complex varieties.

It thus remains to investigate the monodromy eigenvalues of a space
monomial curve Y C C9*! and to show that every pole in the above list
yields such an eigenvalue. To this end, we will make use of the following
A’Campo formula for the monodromy eigenvalues in terms of a princi-
palization ¢: X — C97! of the ideal Z defining Y. Let E; for j € J
be the irreducible components of ¢! (Y), and denote by N; and v; — 1
the multiplicity of E; in the divisor of ¢*Z and ¢*(dzo A --- A dzg),
respectively. Let o: X’ — C9T! be the blow-up of C/*! along Y with
exceptional divisor E := ¢~1(Y). By the universal property of the blow-
up, there exists a unique morphism 1: X — X’ such that o o) = ©.
Then, from [34], a complex number is a monodromy eigenvalue associ-
ated with Y if and only if it is a zero or pole of the zeta function of
monodromy at a point e € E’ given by

(1) Zmon( ) = H(l _ th)X(E_?ﬁw_l(e))’
JjeJ
where x denotes the topological Euler characteristic and EY := Ej; \

U#j(Ei N E;) for every j € J. This is a generalization of the origi-
nal formula of A’Campo [1] expressing the monodromy eigenvalues of
one polynomial f € Clxzo,...,z,] in terms of an embedded resolution
©: X — C9t1 of {f = 0}; see (5). Both A’Campo formulas can be gen-
eralized in a straightforward way to ideals and polynomials, respectively,
defining a subscheme Y of a general variety X with Sing(X) C Y.

We will apply formula (1) to a specific point in the exceptional divi-
sor E’ that we define by means of a generic embedding surface of Y. For
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every set (Ag,...,Ag) of g — 1 non-zero complex numbers, we introduce
an affine scheme S(Aa,...,\,) in C9™! given by the equations
Ji+Afa=0
fa+A3fs =0
fo—1+Xgfg =0.
Every such scheme contains Y as a Cartier divisor defined by one of
the equations f; = 0. For generic coefficients (Ag,...,Ay), the scheme
S(A2,...,Ag) is a normal surface which is smooth outside the origin. If

we denote by S’ the strict transform of such a generic embedding sur-
face S := S(X2,...,Ay) under the blow-up o, then our interest goes to
the monodromy zeta function Z9"(¢) at the point p := S’ N o~"(0).
Using the above A’Campo formulas it turns out that, for generic coef-
ficients, Z3*)"(¢) is equal to the monodromy zeta function Z3G"(¢) of Y
considered on S at the origin; this will be shown in Theorem 4.7. In
fact, this result will be stated and proven in a more general context,
which makes it possibly useful for other instances of the monodromy
conjecture.

To compute the monodromy zeta function Zggn(t) of Y C § at the
origin, we will consider another generalization of A’Campo’s formula in
terms of an embedded Q-resolution of Y C S that was proven in [21].
Roughly speaking, a Q-resolution is a resolution in which the final ambi-
ent space is allowed to have abelian quotient singularities, and the zeta
function of monodromy at the origin can be written as

zyg () = [ a—emox=o,

1<i<s

1<j<r
where {E;;}j=1,. ri=1,.,s is a finite stratification of the exceptional
varieties E1,..., E, of the Q-resolution such that the multiplicity m;,
of E; along each E;; is constant. To construct an embedded Q-resolution
of Y C S, we will compute g weighted blow-ups. After each blow-up, we
will be able to eliminate one variable so that we obtain a situation very
similar to the one we have started with, but with one equation in Y and
S less. Therefore, in the last step, the problem will have been reduced to
the resolution of a cusp in a Hirzebruch—Jung singularity of type é(l7 qQ),
which can be solved with a single weighted blow-up. One can compare
this process to the resolution of an irreducible plane curve with g Puiseux
pairs using toric modifications; after each weighted blow-up, the number
of Puiseux pairs is lowered by one, and the last step coincides with the
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resolution of an irreducible plane curve with one Puiseux pair. Our case,
however, will be more challenging as the strict transform of Y after the
first blow-up will pass in general through the singular locus of the ambi-
ent space. The resulting Q-resolution is described in Theorem 5.8, and
its resolution graph is a tree as in Figure 5. Stratifying the exceptional
divisor of the resolution such that the multiplicity is constant along each
stratum and computing the Euler characteristics of the strata yields

[T (1 - )

zpe(t) = A= -

[ (1— ) %5
k=1
where
Mk;zlcm($ n;Hl...n) k=0,...,9
ged(Bo, ., Br)’ ) Y
and

( Br
ged(Bos - -5 Br)’
It follows that the monodromy zeta function Zy)"(t) of ¥ C CIt1 at
p=S5"No"10) is given by the same expression; see Theorem 6.6.

With this expression for Z3)"(¢), we will be able to prove (both the
local and global version of) the monodromy conjecture for a space mono-
mial curve YVC C9*1. More precisely, in :/I‘heorem 7.2 we will show, for
every pole L™ with = ¢ N, that ¢ "2 is a pole of Zpon(t). Tt fol-
lows that every pole L7%° of the motivic Igusa zeta function associated
with Y indeed yields a monodromy eigenvalue e27*%0 of Y.

We end the introduction with fixing some notation used throughout
this article. We let N be the set of non-negative integers. The great-
est common divisor and lowest common multiple of a set of integers

N = lem nk,...,ng), k=1,...,g.

mi,...,m, € Z are denoted by ged(my,...,m,) and lem(myq,...,m;),
respectively. To shorten the notation, we will sometimes use (my, ..., m,)
for the greatest common divisor. A useful relation between these two
numbers for mq,...,m, a set of non-zero integers and m a common
multiple is

m m m
2) g0d<m1"”7mr)_lcm(ml,...,mr)'

Finally, by a complex variety we mean a reduced separated scheme of
finite type over C which is not necessarily irreducible. A curve is a variety
of dimension one, and a surface a variety of dimension two.
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1. Space monomial curves with a plane semigroup

We start this article by introducing the class of monomial curves we
are interested in. They arise in a natural way as the special fibers of
equisingular families of curves whose generic fibers are isomorphic to a
plane branch. More precisely, let C := {f = 0} C (C2,0) be the germ at
the origin of an irreducible plane curve defined by a complex irreducible
series f € C[[zo, x1]] with f(0) = 0. Carrying out a linear change of vari-
ables if necessary, we can assume that the curve {zo = 0} is transversal
to C and that the curve {z7 = 0} has maximal contact (among all smooth
curves) with C. For h € C[[xg, 21]], the local intersection multiplicity of C
and the curve {h = 0} is defined as

Cllwo, z1]]

(f, h)o = dlm(c W

This induces a valuation
. Clzo, 24]]
Ve ————=

(f)

The image of this valuation is called the semigroup of C and denoted
by I'(C). Because N\ I'(C) is finite, there exists a unique minimal sys-
tem of generators (B, ...,By) of I'(C) satisfying Sy < --- < B, and
ged(Bo, - - -5 By) = 1; see for instance [38]. Additionally, we introduce the
integers e; :=ged(fo, ..., f;) fori=0,...,gand n;:= e’e—’l fori=1,...,9.

\ {0} — N: h— (f,h)o.

From the minimality of the generators (S, ..., 3,), one can easily see
that Bo =eg > e > - >eg=1and that n; > 2 forall 7 = 1,...,g.
One can also show that every n;3; for i = 1,...,¢ is contained in the
semigroup generated by fo, ..., B;_1; this follows for example from [6].
In other words, for each i = 1,..., g, we can find non-negative integers b;;
for 0 < j < i such that

(3) niB; = biofo + -+ + bii—1)Bi-1-
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If we require in addition that b;; < n; for j # 0, then these integers
are unique. For later purposes, we denote ng := b1 and list some other
properties used in this article:
(i) for i =0,...,9 — 1, we have that e; = n;41 - - ng,
(ii) for i =0,...,9 — 1, we have that n; | B; for all J >,
(iii) fori =1,...,g, we have that gcd(f—:, nl) = gcd(f—:, e—’l) =1, and,

€
in particular, that ged(ng,n1) = gcd(%,nl) =1, and
(iv) for i =1,..., g, we have that n;5; < Bij1.

In terms of the generators ([, .. .,Bg), the curve we will consider is
defined as the image of the monomial map M: (C,0) — (C9*1 0) given
by t + (t%, ... tPs). We denote this curve by Y and call it the monomial
curve associated with C. Tt is an irreducible (germ of a) curve with T'(C)
as semigroup and which is smooth outside the origin; see [38, Appendix]
for these and other properties of Y.

We can construct Y as a deformation of C as follows. First of all,
we can consider a system of approximate roots or a minimal generating
sequence (xo, .. ., 4) of the valuation v¢, which consists of elements x; €
C[[xo,z1]] fori =0, ..., g such that vc(x;) = f;; see for instance [2], [29],
and [38, Appendix]. For i = 0, 1, this condition is equivalent to the above
assumptions on xg and x1, respectively. These elements satisfy equations
of the form

— T bio biGi-1) 70 Vi P
Tit1 =T, — Cixy° - x;;]  — CinTg ** 1=1,...,g,

i
Y=(Y05---7i)

where 2441 =0, ¢; € C\ {0}, ¢;, € C,0 < v; <mnjfor1 <j <4,
and Z;:o Yj Bj > n;05;. These equations realize C as a complete intersec-
tion in (C9%1,0). Even more, this complete intersection is Newton non-
degenerate in the sense of [3] and [32]. It was proven (resp. conjectured)
that such an embedding always exists in characteristic 0 [33] (resp. in
positive characteristic [31]). We now consider the following slight mod-
ification of the above equations in the variables zo, ..., x4 including an
extra variable v:

. . bii o
Vg1 = T fcixgw coex, TV — E Ciyvr’rxlt, i=1,...,g.

Y=(Y0,--%4)
For varying v in (C, 0), these equations define a family of germs of curves
in (C9*! x C,0), which is equisingular for instance in the sense that
T'(C) is the semigroup of all curves in the family. We denote this family
by (x,0) and let n: (x,0) — (C,0) be the restriction of the projection
onto the second factor (C9! x C,0) — (C,0). The generic fiber 1 (v)
for v # 0 is isomorphic to C, and the special fiber Y = ~1(0) is defined
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in (C9*1,0) by the equations z!" — c;zh® - - - xl;i“fl’ =0fori=1,...,9.
The coefficients ¢; are needed to see that any irreducible plane branch is
a (equisingular) deformation of a such a curve. However, for simplicity,
we will assume that every ¢; = 1, which is always possible after a suitable
change of coordinates.

Clearly, we can also consider the global curve in C/*! defined by the
above binomial equations. From now on, we define a (space) monomial

curve Y C C97! as the complete intersection curve given by

— e no _
fi=alt —x)° =

" faim a3 — ol — 0
bo(a—
fg =% — xggoxigl . ~xg“’_("1 D =0.
This is still an irreducible curve which is smooth outside the origin.
As such a monomial curve for ¢ = 1 is just a cusp in the complex
plane, for which the monodromy conjecture is well known, we will assume
that g > 2.

2. The monodromy conjecture for ideals

This section provides a short introduction to the monodromy conjec-
ture for ideals. Let Z = (f1,. .., fr) be a non-trivial ideal in C[zy, . .., ;)
and let Y := V(Z) be its associated subscheme in the affine space C**1.
Assume that Y contains the origin.

An important notion needed to introduce the monodromy conjecture
for Z is a principalization (or log-principalization, log-resolution, mono-
mialization) of an ideal, which is a generalization of an embedded res-
olution of a hypersurface. By Hironaka’s theorem [17], a sequence of
blow-ups can be used to transform a general ideal Z = (fy,..., f,-) into a
locally principal and monomial ideal. More formally, a principalization
of Z is a proper birational morphism ¢: X — C"*! from a smooth va-
riety X to C"! such that the total transform ©*T is a locally principal
and monomial ideal with support a simple normal crossings divisor, and
such that the exceptional locus (or exceptional divisor) of ¢ is contained
in the support of p*Z.

The motivic Igusa zeta function associated with Z can be expressed
in terms of a principalization ¢: X — C"*! of Z as follows. Let E;
for j € J be the irreducible components (with their reduced scheme
structure) of the total transform ¢ ~!(Y"). Among these, the components
of the exceptional divisor are called the exceptional varieties; the other
components are components of the strict transform of Y. Denote by N;
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the multiplicity of E; in the divisor on X of p*Z, that is, the divisor
of ¢*Z is given by >, ; N;E;. Similarly, let v; — 1 be the multiplicity
of E; in the divisor on X of ¢*(dxg A --- A dz,). The numbers (N, v;)
for j € J are called the numerical data of the principalization. For every
subset I C J, we also define Ep := (N;c; Ei) \ (Ul€[ E;). In terms of
this notation, the local motivic Igusa zeta function associated with the
ideal Z (or with the scheme Y) is given by

mo —(n o — L-1 L_”iTNi
zp (1) =L Sz 0 o) [[ BT T € e
IcJ i€l

Here, [E9 N~ 1(0)] and L := [C] are the class of E9 N ¢~1(0) and
of the affine line, respectively, in the Grothendieck ring of complex va-
rieties K(Varc), and Mc is the localization of Ko(Varc) with respect
to IL. The precise definition of the Grothendieck ring of complex varieties
can be found for instance in [26]. In the global version of the motivic
zeta function, we replace [E N¢~1(0)] by [E$]. From this expression, it
is immediate that both the local and the global motivic zeta function are

rational functions in 7', and that all candidate poles are of the form IL w;
for some j € J. In concrete examples ‘most’ of these candidate poles
cancel; a phenomenon that the monodromy conjecture tries to explain.

Remark 2.1. In [12], Denef and Loeser introduced the motivic Igusa
zeta function for a polynomial f using the jet schemes of {f = 0},
instead of an embedded resolution. However, in the same article, they
showed the equivalence between both expressions. Similarly, one can
write the motivic zeta function associated with a general ideal Z in terms
of the jet schemes of its corresponding scheme V(Z). In fact, this is the
definition used to compute the motivic zeta function of a space monomial
curve Y C C9*1 in [26].

The monodromy eigenvalues associated with the ideal Z can also be
expressed in terms of a principalization of Z. Before elaborating on this,
we first briefly discuss the original definition by Verdier. For more de-
tails, we refer to [13] and [34]. For one polynomial f € Clxo,..., %],
there are two equivalent definitions for its eigenvalues of monodromy: the
original definition in terms of the Milnor fibration [25], and a more ab-
stract description by Deligne [8] using the notion of the complez of nearby
cycles on Y = {f = 0}. While the original definition does not have a
(straightforward) generalization to ideals, Deligne’s description was the
inspiration for Verdier [35] to define monodromy eigenvalues for an ideal
by introducing the notion of the specialization complex as follows. For
a scheme Z, we denote by D%(Z) the full subcategory of the derived



538 J. MARTIN-MoORALES, W. VEYS, L. Vos

category D(Z) consisting of complexes of sheaves of C-vector spaces
with bounded and constructible cohomology, and by C* € D%(Z) the
complex concentrated in degree zero induced by the constant sheaf C,
on Z. For one polynomial f, we can associate with C* € D’(C"*+1)
the complex of mearby cycles 1¥;C € DY) equipped with a mon-
odromy transformation M} : H*(y;C"), — H*(4C"), for each y € Y
and k > 0, where H*(1);C), denotes the stalk at y of the kth co-
homology sheaf of ¥;C’. An eigenvalue of monodromy or monodromy
eigenvalue of f (or of Y) is an eigenvalue of such a transformation Myf
for some y € Y and k > 0. For a general ideal Z, Verdier considered the
normal cone CyC"*1 of Y = V(Z) in C"*! defined as

CyCntl .= Spec(@kZOIk/IkH),

and related to C € DY(C"*1) the specialization complex Spy C' €
D}(CyC"*1) with a monodromy transformation M} : #*(Spy C), —
H*(Spy C),, for each y € CyC"*1\ 'Y and k > 0. The (Verdier) mon-
odromy eigenvalues of T (or of Y) are the eigenvalues of these auto-
morphisms. Despite the fact that the specialization complex lives on the
normal cone of Y instead of on Y itself, where the complex of nearby
cycles lives, it turns out that these two definitions for the monodromy
eigenvalues in the hypersurface case are equivalent.

In [1], A’Campo proved a formula for the monodromy eigenvalues of
a polynomial f in terms of an embedded resolution of {f = 0}. This for-
mula was generalized to ideals in [34]. Later in this article, we will make
use of an A’Campo formula in the more general context of a Cartier di-
visor on a normal surface. In fact, the notion of monodromy eigenvalues
can be generalized in a straightforward way to any ideal sheaf Z on a gen-
eral variety X. Therefore, we state the formula in the following general
context. Let Z be a sheaf of ideals on a variety X, let Y := V(Z) be the
associated subscheme in X, and suppose that Sing(X) C Y. Consider
the blow-up o: X’ — X of X with center Y, and let E’ be its exceptional
divisor, that is, the inverse image o~!(Y) (with its non-reduced scheme
structure). One can show that E’ is the projectivization P(Cy X) of the
normal cone Cy X of Y in X. Denote the corresponding projectivization
map by p: Cy X\Y — E' = P(Cy X). For a point e € E’, we define the
monodromy eigenvalues of Z at e as the eigenvalues of the monodromy
transformation Myf for some y € Cy X \ 'Y mapped to e under p; this is
independent of the choice of y. Hence, we can define the zeta function of
monodromy or monodromy zeta function of 7 at e € E’ as

70 (t) = [ det(ld —tmf) D",

k>0
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where y € Cy X \Y is an arbitrary point in p~*(e). For one polynomial f,
Denef ([10, Lemma 4.6]) showed that every monodromy eigenvalue as-
sociated with f is a zero or pole of the monodromy zeta function of f at
some point e € E’. This result can easily be generalized to ideals.

Theorem 2.2 ([34]). Let Z be a sheaf of ideals on a variety X. Let Y =
V(T) be the associated subscheme in X, and suppose that Sing(X) C Y.
Consider a principalization ¢: X — X of Z. Denote by E; forjeJ
the irreducible components of ¢~ (Y') with numerical data (N;,v;), and
define E7 = E; \ U,;(E; N Ej) for every j € J. Let o: X" — X be
the blow-up of X with center Y and let E' = o= 1(Y) be its exceptional
divisor. By the universal property of the blow-up, there exists a unique
morphism 1: X — X' such that ¢ o) = ¢. For a point e € E', the zeta
function of monodromy of I at e is given by

Zp(6) = [ (1= Eine e,
jeJ
where x denotes the topological Fuler characteristic.

When Z = (f) is a principal ideal, we can consider the blow-up o as
the identity so that ¢ = 1 and

(5) Zp () = [T = eVpene o,
jeJ

which is the classical A’Campo formula for y € Y = {f = 0}. In the
next section we will introduce another generalization of this formula in
which the final ambient space X of the embedded resolution ¢: X — X
of {f = 0} is allowed to have abelian quotient singularities. Such a
resolution is called an embedded Q-resolution, and it is this formula that
we will use to compute the monodromy eigenvalues associated with a
space monomial curve Y C C97! by considering it as a Cartier divisor
on a generic embedding surface.

After having introduced the two invariants of an ideal that are inves-
tigated in the monodromy conjecture, we can now state this conjecture
in more detail.

Conjecture 2.3. LetZ = (f1,..., fr) be an ideal in Clxo, ..., z,] whose
associated subscheme Y =V (I) in C**! contains the origin. Leto: X' —
C"*1! be the blow-up of C*+1 with center Y. If .75 is a pole of the local
motivic Iqusa zeta function associated with I, then e2™*° is a zero or
pole of the monodromy zeta function of T at a point in o~ 1 (BNY)
for B C C"*! a small ball around the origin.
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So far, this conjecture has only been proven for ideals in two vari-
ables [34]. In this article we will show the conjecture for the space mono-
mial curves introduced in Section 1; this solves it for an interesting class
of binomial ideals in arbitrary dimension. Along the same lines, we will
also prove the global version of the monodromy conjecture.

3. Monodromy zeta function formula for embedded
Q-resolutions

As mentioned earlier, we will make use of an A’Campo formula for
the monodromy zeta function of a polynomial fe€ Clxq,...,2,]in terms
of an embedded Q-resolution of {f = 0}. Roughly speakmg, this is a
resolution ¢: X — €™ in which we allow X to have abelian quotient
singularities and the divisor ¢ ~!({f = 0}) to have normal crossings on
such a variety. In this section we briefly introduce all concepts needed
to understand this formula. We refer to [4] for more details.

We start with the notion of a V-manifold of dimension n which was
introduced by Satake [28] as a complex analytic space admitting an
open covering {U;} in which each U; is analytically isomorphic to some
quotient B;/G;, for B; C C™ an open ball and G; a finite subgroup
of GL(n,C). We are interested in V-manifolds in which every G; is
a finite abelian subgroup of GL(n,C). In fact, every quotient C"/G
for G € GL(n,C) a finite abelian group is isomorphic to a specific kind
of quotient space, called a quotient space of type (d; A) in which d is an
r-tuple of positive integers and A is an (r x n)-matrix over the integers.
More precisely, we can write G = piq, X -+ X g, as a product of finite
cyclic groups, where 114, is the cyclic group of the d;th roots of unity. We
will denote G by pa, where d is the r-tuple (di,...,d,), and an element
in pg by &€q = (&q,, ..., &a,). For a matrix A = (a;;);,; € Z™*", we can
define an action of pug on C" by

(6) pa x C" — C": (£4,%x) = (E3'@1,...,E57w,,)

(50«11 : gd 331’-~-75511" o g;”an)
where a; := (a1;,...,a,;)" is the jth column of A. Note that we can
always consider the ith row (a;1,...,a;,) of A modulo d;. The resulting

quotient space C™/uq is called the quotient space of type (d; A) and
denoted by
d1 a1 ... Qip

X(d;4) =X

dr | ar1 ... Qpp
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If r = 1, the quotient space X(d;aq,...,a,) is said to be cyclic. The
class of an element x = (z1,...,2,) € C™ under an action (d; A) will
be denoted by [x](q;4) = [(#1, .-, %n)](d;4), Where the subindex is omit-
ted if there is no possible confusion. The image of each coordinate hy-
perplane {z; = 0} in C™ for ¢ = 1,...,n under the natural projec-
tion C™ — X (d; A) will still be denoted by {z; = 0} and called a coor-
dinate hyperplane in X (d; A). One can show that the original quotient
space C"/G is isomorphic to X (d; A) for some matrix A, and that every
space X(d; A) is a normal irreducible algebraic variety of dimension n
with its singular locus, which is of codimension at least two, situated on
the coordinate hyperplanes. Hence, a V-manifold with abelian quotient
singularities is a normal variety which can locally be written like X (d; A).

Example 3.1. For n=1, each quotient space X((d1,. . ., d,);(a11,. - ., ar1)")
is isomorphic to C: let

l= lcm< du dr )
ng(dl, a11) L ng(dr7 0,1»1) '
Then X ((dy,...,d.); (ai1,..-,a:1)t) = C: [z] = 2! is an isomorphism.
Different types (d; A) can induce isomorphic quotient spaces: for ex-
ample, if k divides d, aq, ..., a,, then X(d;aq,...,a,) is isomorphic to
X(%; ap, E,..., “7") under the isomorphism defined by
(7) (w1, @2, )] = [(21, @2, 20)]-

A particularly interesting kind of types are the normalized types. These
are types (d; A) in which the group pugq is small as subgroup of GL(n,C)
(i-e., it does not contain rotations around hyperplanes other than the
identity) and acts freely on (C*)™. In this case, we will also say that
the quotient space X(d;A) is written in a normalized form. Equiva-
lently, a space X(d; A) is written in a normalized form if and only if
for all x € C™ with exactly n — 1 coordinates different from 0, the
stabilizer subgroup is trivial. Note that in the cyclic case, the stabi-
lizer subgroup of a point (z1,...,z,) € C"™ with only x; = 0 has or-
der ged(d, ay, ..., aiy. .., an).

Example 3.2. The space X (d;aq,az) is written in a normalized form
if and only if both ged(d,a;) and ged(d,as) are equal to 1. We can
normalize it with the isomorphism (assuming that ged(d, a1, a2) = 1)

X(d;al,ag)—>X( d ! a2 )

(d,a1)(d,as)" (dyar)” (d, as)
(1, 22)] = [(2{"), 250y,

which is the composition of two isomorphisms of the form (7).
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In general, it is possible to convert any type into a normalized form.
Especially in the cyclic case, this is not hard, using isomorphisms such
as (7). See [4, Lemma 1.8] for a list of some other useful isomorphisms.

An analytic function f: X(d; A) — C on a quotient space of some
type (d; A) is a holomorphic function f: C* — C compatible with the
action, that is, f(£q-x) = f(x) for all &g € pq and x € C™. To compute
the local equation of the divisor defined by f: (X(d; A), [p]) — (C,0) as
a germ of functions at p = (p1,...,pn) € C"\ {0}, one would naturally
use the change of coordinates x; — x; + p;. However, this coordinate
change induces an isomorphism on X (d; A) if and only if the ith row of A
is zero (modulo d;) for all ¢ for which p; # 0. Hence, we first need to find
an isomorphism (X (d; 4), [p]) ~ (X (d’; A"), [p]) with (d’; A’) having this
property. One can show that this is satisfied by (d’; A") with X (d’; A") =
C"/(pa)p, where (pa)p is the stabilizer subgroup of p. In particular, if
X(d;a1,...,ay) is cyclic, then the order of the stabilizer subgroup of p
is m = ged(d, {a; | p; # 0}) so that (d'; A") = (m;aq,...,a,) in which a;
modulo m will be zero if p; # 0. On X(d’; A’), we can apply the usual
change of coordinates x; — x; + p; to find the local equation of f at p.
This method will be very useful for the description of the Q-resolution of
a space monomial curve seen as a Cartier divisor on a generic embedding
surface in Section 5.

An important class of V-manifolds are the weighted projective spaces.
Consider a weight vector w= (po,. . ., pr) of positive integers. The weighted
projective space of type w, denoted by P", is the set of orbits (C"*1\
{0})/C* under the action

C* x (C"T\{0}) — C"™\{0}: (¢, (z0,...,xn)) = (tFOxq, ... tP ).

We denote the class of an element x = (xg,...,2z,) € C*"1\ {0} by
[X]lw = [z0: - : Tn]w, where we again omit w if possible. Note that for
the trivial weight vector w = (1, ..., 1), we obtain the classical projective
space P". Furthermore, one can show that PL is always isomorphic to P!;
cf. Example 3.1. As for the classical projective space, we can define an
open covering P = Vo U--- UV, where V; := {x; # 0}. It is easy to see
that for every i, the map

X(pi;p()v"wﬁi?"' apn) — ‘/z
(Toy -y Tiye ey Xp) = o i @imr s Limppy t o Xplw
is an isomorphism. It follows that P, contains cyclic quotient singular-
ities. Even more, each weighted projective space P7. is a normal irre-

ducible projective variety of dimension n whose singular locus, which is
of codimension at least two, consists of quotient singularities lying on the
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intersection of at least two coordinate hyperplanes. For more information
on weighted projective spaces, see for instance [14].

Another notion we need is a Q-normal crossings divisor, which was
first introduced by Steenbrink [30]. Let X be a V-manifold with abelian
quotient singularities and D a hypersurface on X. We say that D has
Q-normal crossings if it is locally isomorphic to the quotient of a nor-
mal crossings divisor under an action (d; A). More precisely, for every
point p € X, there exists an isomorphism of germs (X, p) ~ (X (d; A), [0])
such that (D, p) C (X,p) is identified with a germ of the form

({[x] € X(d; 4) [ &)™ - -z = 0}, [0]).

The multiplicity of a Q-normal crossings divisor D at a point p € D is
defined as follows. Suppose that p is contained in only one irreducible
component of D; we will only consider this situation; see [22] for a
more general definition in case p is possibly contained in multiple ir-
reducible components. In this case, the local equation of D at p is of
the form 2": X(d; A) — C for x; a local coordinate of X at p. The
multiplicity m(D,p) of D at p is defined as

dy d, ) .

m
D = — =1
®)  m(D,p) =2, cm(gcd(dhau), el

l;

One can show that this definition is independent of the type (d; A).
We can now define an embedded Q-resolution; see for instance [5].
Let X be an abelian quotient space and Y C X an analytic subvariety
of codimension one. An embedded Q-resolution of (Y,0) C (X,0) is a

proper analytic map ¢: X - (X,0) such that the following properties
hold:

(i) X is a V-manifold with abelian quotient singularities,
(ii) ¢ is an isomorphism over X \ ¢~ *(Sing(Y)), and
(iii) the total transform ¢~!(Y) is a hypersurface with Q-normal cross-
ings on X.

As for usual embedded resolutions, we can use the operation of blowing
up to construct an embedded Q-resolution, but in this case, we use
weighted blow-ups. Since we will only use weighted blow-ups at a point
in this article, we restrict to explaining this kind of blow-ups.

We first briefly recall the classical blow-up of C**! at the origin. We
use the notation x := (g, ..., 2,) € C" and [u] := [ug : - -+ : u,] € P".
Define

C = {(x,[u]) € C"* x P" | x € [u]},
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where x € m means that w;z; = ujx; for all 4,5 = 0,...,n. The blow-
up of C™*1 at 0 is given by the projection 7: C*+1 — C"*!. This is a
proper birational morphism inducing an isomorphism C"*1\ 771(0) ~
C"*+1\{0}. The exceptional divisor 7~!(0) can be identified with P", and
C"*1 can be covered by n+1 charts U; := {u; # 0} which are isomorphic
to C"*! under maps of the form

(Cn+1 —>Uvz
X = ((ToTiy ey @iy ey Tn®y), [To oot o1 2 L i @iqy oo @),

The weighted blow-up of C"*! at the origin with respect to a weight
vector w = (po, - - ., pn) of positive integers is defined similarly. Let

CrHl = {(x,[u],) € C" x P" | x € [u] }.

Then the w-weighted blow-up of C*t! at 0 is the projection 7: Cffl —
Cn*l. In this case, the condition x € mw can be rewritten as z; =
tPiy; for all ¢ = 0,...,n and some fixed ¢t € C\ {0}. This blow-up is
again a proper birational morphism and it is an isomorphism on @Z“ \
771(0). The exceptional divisor can now be identified with the weighted
projective space P}, and (@Z‘H can be covered by n+1 charts U; := {u; #
0} where each U; is isomorphic to X (pi;po,---sDie1y — 1, Dit1s-«-sDn)
under the morphism X (p;;po,...,—1,...,pn) = U; defined by

(9) x> ((wox?®, ... .ali o wpal) o i1ty

These charts are compatible with the charts V; of P}’ described above in
the following sense: in Uj;, the exceptional divisor is described by x; = 0,
and the ith chart of P? is X (pi;po,-- -, Diy---sDn)-

For a general abelian quotient space X (d; A)=C""!/uq, the weighted
blow-up at 0 with respect to w = (pg,...,pn) can be obtained from the
w-weighted blow-up of C**! at 0 as follows. The action of jq on C*+!
extends in a natural way to an action on CZH by

€a - (%, [u]w) = ((€3° %0, - -, €q" @), [€q w0 < -+ -+ £g" un]w)-
The w-weighted blow-up of X (d; A) at 0 is defined as the projection
T X(d;A)w = @ZJrl/ud — X(d; A): [(x, [u]w)](a;4) = [X](a;4)

which is once more a proper birational morphism. It induces an isomor-
phism on X (d; A), \ 7~1(0), and the exceptional divisor is identified
with P” /g, which we will also write as P?(d; A). Because the action
of g on C™t1 respects the charts U; = {u; # 0} of C**1, we can
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cover X(d;A)w with the n + 1 charts U; := U;/pa. Using the isomor-
phisms U; ~ X (pi;po, ..., —1,...,pn), one can show that each U; is also
isomorphic to an abelian quotient space. For example, under the isomor-
phism Uy ~ X(po; —1,p1,...,Dn), the action of pg = pg, X -+ X fiq,

on Up can be identified with the action of pap,/(tp, X -+ X fp,) ON
X(po; —1,p1,- -, pn) given by
[€] - X (asa) = [(§%0m0, £P0 7710wy, £POR P00, )] (g, a).

Hence, the quotient space

(10) X ( Po

dpg

—1 p1 o Pn
ap poar —pPi1ap ... Poan — Ppag

is isomorphic to Uy under the map
(x] — [((@8°, 28 @1, .., 20" @), 121 2 2 plw)](a;)-

The other charts are similar. The charts of X (d;A),, are again com-
patlble with those of the exceptlonal divisor: we can cover P! /ugq =
VoU--- UV with V; := V;/ug and V; = U; l{z;=0}- It follows, for exam-
ple, that the space

(11) X( Po

dpo

D1 D Pn
bPoar —p1ap ... Poan — Ppap

is isomorphic to VO.

We are finally ready to introduce the generalization of A’Campo’s
formula in terms of an embedded Q-resolution. As in the previous sec-
tion, we again work in a slightly more general situation. Let f: (X,0) —
(C,0) be a non-constant regular function on a variety X and let (Y,0)
be the hypersurface defined by f. Consider an embedded Q-resolution
P: X = X of (Y,0), and denote by Ey and E; for j = 1,...,r the
strict transform of Y and the exceptional varieties, respectively. Define
Ep = (Nier Bi) \ (Uigs El) for every I  {0,...,r}. Let X =L ;@
be a finite stratification of X given by its quotlent singularities so that
for every I and [, there exist a fixed abelian group G and positive inte-
gers my, ..., Mg such that the local equation of foy at a point p € E7YNQ;
is of the form z" -z B/G — C for B an open ball around p
on which G acts diagonally such as in (6), and z1,...,z) local coor-
dinates of X at p. Lastly, for every j = 1,...,r and [ = 1,...,s, put
ES, == E; N Q and mj; := m(Ej,p) for a point p € E?;, where the
multiplicity defined as in (8) is independent of the chosen point p.
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Theorem 3.3 ([21]). Let f: (X,0) — (C,0) be a non-constant regular
function on a variety X. Let Y = {f = 0} be its associated hyper-
surface in X, and suppose that Sing(X) C Y. Consider an embedded
Q-resolution ¢: X — X of (Y,0). Using the notation above, the zeta
function of monodromy of f at 0 is given by

Z7eN(t) = H (1 — tma X (BT,
1<j<r
1<i<s

where x denotes the topological Euler characteristic.

In [21], this formula was proven for f: (M,0) — (C,0) a non-constant
analytic function germ on a quotient space M = C"!/uq; by exactly
the same arguments, this result can be obtained in our setting. Further-
more, for plane curve singularities in C2, this theorem was proven earlier
n [36], and if : X — X is an embedded resolution of (Y,0), then we
recover the classical formula (5) of A’Campo.

4. Monodromy via generic embedding surfaces

In this section we will elaborate on how we can simplify the problem of
computing the Verdier monodromy eigenvalues associated with a space
monomial curve Y C C9*! with g > 2 by considering Y as a Cartier
divisor on a generic embedding surface. As the results in this section
are true for curves defined by a larger class of ideals, we state them
in the following generalized setting; this makes them possibly useful to
investigate the monodromy eigenvalues associated with other ideals in
this class.

Consider a complete intersection curve Y =V(Z) in C9*! whose ideal
Z=(f1,....fq) is generated by a regular sequence f1,...,f,€Clzo,. .., x4l
and whose singular set is Sing(Y") = {0}. We start with the construction

of a generic embedding surface of Y. For every set (Ag,...,Aq) of g —1
non-zero complex numbers, we introduce an affine scheme S(Xz,...,Aq)
in C9*! defined by

Ji+Xfa=0

fa+A3f3=0
(12) :

fg,1 + )\gfg =0.
The curve Y is contained in every such S(Ag,...,\y) and, because all \;

are non-zero, it can be defined by just one equation f; = 0 for some i €
{1,...,9}. In other words, Y is a Cartier divisor in S(Az,...,Ay). Since
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every S(Ma,...,\y) is given by g — 1 equations in C9*!, the dimen-
sion of each of its irreducible components, as well as its own dimen-
sion, is at least two. The next proposition shows that for generic coef-
ficients (Ag, ..., Ay) (i-e., the point (Ag,...,A,) is contained in the non-
empty complement of a specific closed subset of (C\ {0})¢71), the di-
mension of the scheme S(Aq,...,Ay) is exactly two. Even more, it is a
surface, and we can call it a generic (embedding) surface of Y. We also
prove some extra properties which are needed later on.

Proposition 4.1. For generic (A2,..., ;) € (C\ {0})97!, the scheme
S(A2,...,Ag) is a normal equidimensional surface which is smooth out-
side the origin.

Proof: We use the following affine version of Bertini’s theorem, which
can be found in [19, Corollary 6.7].

Let X be a smooth equidimensional variety of dimension m and let
f: X — C™ be a dominant morphism of C-schemes. Then, for a generic
point £ € C", the inverse image f~1(£) is a smooth equidimensional
variety of dimension m — n.

Consider X := C9"1\ |J%_,{fi = 0} and the morphism

=2
_filz) fa(2) _fgfl(x))
falx)" fs(@) 7 felx)

Clearly, X is a smooth irreducible variety of dimension g 4+ 1. To check
that f is dominant, it is enough to show that its image contains a dense
subset of C9~!. Note that for every A = (Aa,..., ;) € (C\ {0})971, the
inverse image f~'()\) is exactly the scheme S(A,...,),) without the
curve Y, which is never empty as S(Aq,...,Ay) is at least two-dimen-
sional. Hence, the image f(X) contains (C\ {0})9~!, and we can apply
the above version of Bertini’s theorem; for generic (Az,...,Aq) € (C\
{0})971, the scheme S(Aa,..., ;)\ Y is a smooth equidimensional vari-
ety of dimension two. Because all irreducible components of S(Aa, ..., )
have at least dimension two, it immediately follows that S(Xa,..., )
itself is also equidimensional of dimension two. Furthermore, using the
Jacobian criterion, one can check that S(Aq,...,Ay) is smooth at every
point in Y \ {0}. These two facts together imply that S is a complete
intersection in CY*! which is regular in codimension one (i.e., its singu-
lar locus has codimension at least two). As being regular in codimension
one is equivalent to being normal for a complete intersection in C9+!
(see, e.g., [16, Chapter II, Proposition 8.23]), we can conclude that S is
indeed a normal equidimensional surface which is smooth outside the
origin. O

f:X—)Cg_lsz—)(
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Remark 4.2. Tt is possible that a generic S(Ag, ..., Ay) is irreducible; we
did not find an easy argument or counterexample. This will, nevertheless,
not have any influence on the results in this article: as S(Xa,...,Ay)
is a normal equidimensional surface and smooth outside the origin, its
irreducible components are pairwise disjoint surfaces, all smooth except
for the single component containing the curve Y. Hence, because we are
only interested in the behavior of S(Ag,..., ;) around the curve Y, we
can, in some sense, only consider the one component containing Y and
forget about the other components.

We will now explain the relation between the monodromy eigenvalues
of Y considered in C9*! and the monodromy eigenvalues of Y considered
on a generic surface S(Ag,..., ;). At several places in this section we
will impose extra conditions on (Ag, ..., Ay), but it will still represent a
generic point of (C\ {0})9~! in the end. To shorten the notation, from
now on, we will denote a generic surface by S.

Let ¢: X — C911 be a principalization of Z. We can assume that ©
consists of two parts:

(i) a composition of blow-ups ¢1: X; — C9t! above 0 to desingularize
the strict transform of Y, and to make it have normal crossings
with one exceptional variety and no intersection with all other
components of @II(O), and

(ii) one last blow-up @s: X — X, along the strict transform of Y to
change it into a locally principal divisor.

The exceptional variety coming from the last blow-up is denoted by E
and has numerical data (1, g). The other irreducible components of the
total transform ¢~!(Y’) are denoted by FE; for j € J, and their corre-
sponding data by (N;,v;). Note that E is mapped surjectively onto Y
under ¢ and that ¢~ '(0) = ;s Ej. Let o2 X" — C9! be the blow-up
of CI9*! with center Y, let E' be the corresponding exceptional variety,
and let : X — X’ be the unique morphism such that o oy = . It
immediately follows that 1 is a surjective proper birational morphism
inducing an isomorphism X \ ¢~ *(Y) ~ X'\ E’. Because of the spe-
cific construction of the principalization, the morphism v even induces
an isomorphism X \ U,c, E; ~ X'\ 07'(0); indeed, because Y\ {0}
remains unchanged during the first series of blow-ups, both ¢ and ¢ re-
stricted to C971 \ {0} are just the blow-up along Y \ {0}, and they are
thus equal up to an isomorphism. Furthermore, E is sent surjectively
onto E’ under 1, while every other exceptional variety E; is mapped
onto a closed subset of o~1(0).
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With this notation, the zeta function of monodromy associated with
Y C C9*! at a point e € 071(0) C E’ is given by

(13) zpen (1) = [J (@ - eNxEine e,

jeJ
where E7 = Ej \ U,;(E; N Ej) for all j € J; see Theorem 2.2. We will
show that this zeta function for a generic point e € ¢71(0) is equal to
the zeta function of monodromy at the origin associated with the Cartier
divisor Y on a generic surface S.

We begin by considering the strict transform S’ := ¢~ 1(S\Y) of S
under o. By the behavior of a subvariety under a blow-up, the restric-
tion of ¢ to this strict transform is the blow-up of S along the Cartier
divisor Y C S. Consequently, S’ is a surface isomorphic to S, and
Y’ := E'NS’ is a curve on S’ isomorphic to Y. This can also be deduced
from the equations of the blow-up as follows. Because 7 is generated by
a regular sequence, the blow-up of C9*! with center Y = V(Z) is given
by the projection

(C[LL‘(), N 7£L‘9HX1, ce ,Xg}
(fZX] - f]Xl t,g=1,... ag)
see for instance [15, Section IV.2]. In other words, X’ is the closed
subscheme of ProjClzo, ..., x4][X1,..., X,] =~ CIT! x P9~! defined by
the equations f; X; — f;X; for 4,5 =1,..., g. The exceptional variety E’
is locally on X}, # 0 given by the principal ideal (fx) and glues globally
to Y x P91, Finally, the strict transform S’ is

Clzo, ..., zg][X1,..., X]
(fiXj = [iXi, X + M1 X5 4,5 = 1,9, k=1,...,9g— 1)
Since all A\; are non-zero, the system of equations Xy + A1 Xpr1 =0

(14) o: X' = Proj — C9T,

Proj

for k =1,...,9 — 1 has a unique homogeneous solution, say P = [p; :
i pg| € P9~1. Note that all p; # 0 and that ﬁ = —X;4 for i =
1,...,9 — 1. Hence, S’ can be rewritten as

Spec Cleo, .- ) x {P} CCI x P91,

(firj — fipis 1,5 =1,...,9)
Using the relations between the numbers p;, it is easy to see that this is
the same as S x { P}, so that S’ is indeed isomorphic to S under . From
this argument, it also follows that Y’ =Y x {P} is isomorphic to Y.
The point P € P91 is completely determined by the generic coef-
ficients (Ag,...,Ay) and corresponds to a unique point p := (0,P) =
S"No=1(0) on S’. We will call p the generic point associated with the
generic surface S. As Sing(S) = Sing(Y) = {0}, we have Sing(S’) =
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Sing(Y”') = {p}, and we can use the classical formula (5) of A’Campo
for the monodromy zeta function Zy?)(¢) at p of the Cartier divisor Y’
on the surface S’. We claim that this zeta function is equal to the mon-
odromy zeta function Zy')"(t) given in (13) at the generic point p €

o~1(0) C E’. As a direct consequence, the latter zeta function of mon-
odromy is equal to the zeta function of monodromy Z mo“( ) at the origin
associated with Y C S.

To compute the monodromy zeta function Zmo‘;( ) with A’Campo’s
formula, we need an embedded resolution of Y’ on S’. To construct such
a resolution, we consider the strict transform S := ¢=1(S\ Y) of S under
the principalization ¢, and we put ¥ := E N S.

Lemma 4.3. For generic (A2,...,)\g) € (C\ {0})971, the strict trans-
form S of S under ¢ is a smooth equidimensional surface.

Proof: We first determine the local defining equations of S. After the
principalization ¢, the ideal Z = (f1,..., fy) is transformed into the lo-
cally principal ideal *Z = (f7,..., f;) with ff=fiop fori=1,...,g
This means that in every point x € X, we have local coordinates Y=
(Y0, - - -, yg) such that (f{(y), ..., fi (y)) = (h(y)) for some generator h(y).
Then, on the one hand, there exist regular functions fi (y),...,fg(y)
such that ff(y) = fi(y)h(y) for all i = 1,...,g and, on the other
hand, there exist regular functions hq(y),. ..,hg( ) such that h(y) =

¢ hi(y)ff(y). We can deduce that 1 = hi(y)fi(y) and, in par-
ticular, that fi(y),..., f,(y) do not have common zeros. In addition, it
follows that S is locally given by equations of the form fi(y)+ A2 fa(y) =

= fyo1(¥)+ g f4(y) = 0, where the f;(y) have no common zeros. Now,
locally around each point z € S in the smooth irreducible (g + 1)-dimen-
sional variety X, we can repeat the proof of Proposition 4.1 to conclude
that S\ U?_,{fi(y) = 0}, for generic (Aa,...,A,) € (C\ {0})97, is
a smooth equidimensional variety of dimension two. Because the set
Ul A fily ) = 0} on S is equal to the empty set of common zeros

{fi(y) = faly) = --- = fy(y) = 0}, we indeed found that S is a smooth
equidimensional surface for generic coefficients (g, ..., Ag). O
Remark 4.4. Tt is again not important whether S for generic (g, . . . , Ag)

is irreducible; cf. Remark 4.2. Even more, the surface S is irreducible
if and only if S is. It is, however, important that there is only one
component of S which intersects =1 (Y”).
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Throughout the rest of this section, we assume that the coefficients
(A2,...,A,) are generic in (C\ {0})9! such that S and S satisfy the
properties of Proposition 4.1 and Lemma 4.3, respectively. To recapitu-
late, we visualize all morphisms and varieties in the following diagram:

E,Ej jcs E' S Y

! [ R R

Y S X v X’ s’ Y’

[ [ | [
ENS o (S\Y) ¢ o o (S\Y) EnS

CtM' S+ Y

We will show that, under some extra conditions on (Ag,...,Ay), the
restriction p: S — S of ¥ to S is an embedded resolution of Y’ on S’.
Recall that every E; for j € J is mapped onto a closed subset of o~1(0)
under 9. Let J; C J be the set of indices j € J such that E; is mapped
surjectively onto o~1(0). Note that J; # 0: the second last exceptional
variety Fj of ¢, which is the only one intersecting E, will always be
mapped surjectively onto o~1(0) since E is mapped surjectively onto E’
and E\ (EN Ey) ~ E'\ 07'(0). Then, every E; for j € Jy := J\ J; is
mapped onto a proper closed subset ¥(E;) of 071(0) ~ P97, and the
set 071(0) \ Ujes, ¥(E;) is non-empty. The next result tells us, among
others, that for a generic surface S corresponding to a generic point p
in the latter set, the surface S is equal to 1)~'(S’). This implies that
the map p: S — S is a well-defined proper surjective morphism from
a smooth surface S to S’, or thus, that p is a good candidate for an
embedded resolution of Y on .

Lemma 4.5. For a generic point p€o~1(0) \Ujes, ¥(Ej), we have that
(i) for all j € Ji, the inverse image ’z,ZJj_l(p) of p under v;: E; —

o~ 1(0) is smooth and equidimensional of dimension one, and

(ii) the total inverse image 1~ (p) of p under 1: X — X' is connected
and equidimensional of dimension one.

Furthermore, for each surface S corresponding to such a generic point p,
the strict transform S of S under ¢ is equal to ¥=1(S").

Proof: To prove items (i) and (ii), we will again apply a kind of Bertini’s
theorem; this time, we use the following projective version obtained
from [19, Corollary 6.11].
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Let X be a complex scheme of finite type which is equidimensional of di-
mension m, and let f: X — P™ be a dominant morphism of C-schemes.
Then, for a generic point & € P, the inverse image f~1(€) is equidimen-
sional of dimension m —n. If X is in addition smooth, then the inverse
image f=1(€) for a generic point & is also smooth.

The statement in (i) for each j € J; follows immediately from this ver-
sion of Bertini’s theorem applied to the surjective morphism v;: E; —
071(0) ~ P91, where E; is a smooth irreducible hypersurface in X of
dimension g. For (ii), we consider the surjective morphism 1: ¢~(0) —
o~1(0). As the irreducible components of »~1(0) are the g-dimensional
exceptional varieties E; for j € J, this version of Bertini tells us that
1~ 1(p) for a generic point p is equidimensional of dimension one. To show
the connectedness, we make use of Zariski’s main theorem stating that
a proper birational morphism f: X — X’ between irreducible varieties
with X’ normal has connected fibers. From the equations (14) of X', it
is easy to see that X'’ is locally a complete intersection in C971 x P9—1,
In fact, the blow-up of an affine space C" along any subscheme defined
by a regular sequence is a local complete intersection. Because Y \ {0}
is smooth, we know that X'\ ¢=1(0) is smooth. Therefore, X’ is a local
complete intersection in C9T! x P9~! which is regular in codimension
one, and we can conclude that X’ is normal (see, e.g., [16, Chapter II,
Proposition 8.23]). Hence, Zariski’s main theorem for the proper bira-
tional morphism : X — X'’ assures that every fiber is connected. In
particular, the fiber of a generic point p € o=1(0) \ Ujes, ¥(E;) is con-
nected, which ends the proof of (ii).

Let S be a generic surface corresponding to such a generic point p.
To show that S = ¢~1(S5"), we first rewrite S = p~1(S\ Y) as follows:

S =41 (S\Y) = =15\ {p}).

The first equality immediately comes from the fact that S’ \ Y’ =
o~ 1S\ Y) by the properties of the blow-up, together with the commu-
tativity of the above diagram. The second equality can be seen from the
next small argument. It is trivial that ¢ =1(S"\ Y’") C ¢ =1(S"\ {p}). For
the other inclusion, we remark that the closure of S"\ Y’ in X'\ ¢=1(0)
is equal to S\ {p}. Since v induces an isomorphism X \ Ujes B =~
X'\ ¢71(0), this implies that the closure of ¢~1(S"\ Y’) in X \ Ujes B
must be equal to ¥~ 1(S”\ {p}), which in turn implies the reverse inclu-
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sion ¥=1(S"\ {p}) € ¥=1(S"\ Y’). The inclusion S C ¢~*(S’) follows
now easily from the continuity of :

S=¢ L T\Y) Sy (S\Y) =4 (S").

Using the third description of S and the fact that ¢ is an isomorphism
above X'\ ¢71(0), one can see that S\ ¢~ (p) = 1~'(S"\ {p}). Hence,
it remains to show that 1 ~!(p) C S. We do this in three steps.

First, we show that ¢~ (p) NS # 0. To this end, it is enough to show
that ¢=1(Y” \ {p}) is not equal to =1 (Y’ \ {p}); indeed, both sets are
contained in S, and the complement =1 (Y \ {p})\ v~ (Y"\{p}) is con-
tained in ¢ ~1(p) since 1) is an isomorphism outside »~1(0) and o=1(0).
Suppose that ¢=1(Y"\ {p}) = »~1(Y"\ {p}) or, in other words, that
¢~ (Y"\{p}) is closed in X. Then, the restriction 11 (yn (p3): ¥ (Y"\
{p}) = Y’ of ¢ is proper so that Y’ \ {p} = ¢('(Y"\ {p})) is
closed in Y’. This is a contradiction. Second, let A be an irreducible
component of 1)~ 1(p) such that AN S # (). We prove that A is con-
tained in S. Because A C ¢~ (p) C Ujes, Ej is irreducible, there exists
a component F; with j € J; such that A C E;. Then, the intersec-
tion E; N S is non-empty, and there exists an irreducible component B
of E; N S such that AN B # (. Note that both A and B are contained
in B;Ny~(p) = wj_l(p). We claim that they are also both irreducible
components of w;l(p). Because 1/1;1(p) is equidimensional of dimension
one by (i), it is enough to show that A and B are one-dimensional. For A,
this is trivial as it is an irreducible component of ¥ ~!(p). For B, this
follows from the general intersection theory in the smooth (g + 1)-di-
mensional variety X: the single component of S that intersects E; (see
Remark 4.4) is two-dimensional and not contained in F;. Hence, ev-
ery irreducible component of the intersection of the surface S and the
hypersurface E; is one-dimensional. We thus found that A and B are
irreducible components of wj_l(p) that are intersecting. Because wj_l(p)
is smooth, this is only possible if A = B is contained in S. Finally, as
¢~1(p) is connected, the whole of ¢»~!(p) must be contained in S. [

As a generic condition on the point p € 0~1(0) translates into a generic
condition on (Az,...,Ay) € (C\ {0})9~!, we can rephrase Lemma 4.5 in
terms of generic (A2,...,Ay), and consider S and its strict transforms S’
and S corresponding to such coefficients. In the next proposition we show
that p: S — S’ is indeed an embedded resolution of Y’ on S’. We also
determine the exceptional varieties and the part of their numerical data
appearing in the formula of A’Campo.
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Proposition 4.6. For generic (\z,..., ;) € (C\ {0})971, the restric-
tion p: S — 8" of ¢ to S is an embedded resolution of Y’ on S’. The
strict transform of Y' is Y, and the exceptional varieties are the irre-
ducible components of E; NS for j € Ji. Furthermore, the pull-back of Y’
seen as a Cartier divisor on S’ is given by

p*Y/ = Y + Z Nj(Ej N S),
Jjen
which yields (the needed) part of the numerical data associated with this
resolution.

Proof: The previous lemma already implies that p: S — S’ is a well-
defined surjective proper birational morphism from the smooth surface S
to S’. Additionally, p induces an isomorphism S\ p~'(Y) ~ S\ Y": even
more, because 1 is an isomorphism above X'\ ¢71(0), its restriction p
gives an isomorphism S\ »~1(p) = ¥ 1(S"\ {p}) ~ 5"\ {p}. The first
equality follows from the third description of S in the proof of Lemma 4.5.
From the same lemma, we know that E;np~!(p) = E; NS for every j € Ji,
and that E; N p~'(p) = 0 for j € Jo. In other words, we have that
p p) = Ujes (E5 N S) or, thus, the irreducible components of E; N

S for j € Jp are indeed the exceptional varieties of p. To show that
Y = EN S is the strict transform p=1(Y"\ {p}) of Y’ under p, we first
remark that Y’ \ {p} ~ Y \ p'(p) = (ENS)\ (EN E,NS), where
E}, denotes the second last exceptional variety of ¢, which is the only
one intersecting E. Similarly as in Lemma 4.5, one can see that every
irreducible component of EN S is one-dimensional. Therefore, it suffices
to show that N E, N S only consists of a finite number of points. To
this end, we recall the specific construction of the principalization ¢ and
let Ej, be the last exceptional variety of the first part o1, of which Ej, is
the strict transform under the last blow-up ¢2. By the properties of the
blow-up, we know that the restriction s|g, : Ex — E}, is the blow-up
of Ej, along its intersection with the strict transform of Y under ¢;. As
the latter intersection consists of a single point, the exceptional divisor
of this blow-up is given by E N Ey ~ P9~1. It follows that each fiber of
the surjective morphism |z : BN Ep ~ PI~1 — o71(0) ~ P91 is
finite. In particular, we find that £ N Ej N P~ l(p) = ENELNS consists
of a finite number of points. Finally, for the last claim, we consider the
commutative diagram

W X/

J

L>S/

Uy — <



(9}
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o
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From the properties of the pull-back, we know that p*Y’'=p*(EF'|g/) =
(¥*E")| 5. Because the inverse images 1)~ (E’) and ¢~ !(Y') are equal, the
pull-back of the Cartier divisor E’ is

Y'E'=E+Y N;E;.
jeJ

Then, indeed,

PY'=E|s+) NjEjls=Y + Y Nj(E;nS),
jeJ jeJ1

where we used that E; NS = E; Np~Y(p) =0 for j ¢ J;. O

We are now ready to apply A’Campo’s formula for the monodromy
zeta function ZPP)(t) of Y’ C S, and to show the main result of this
section.

Theorem 4.7. Consider a complete intersection curve Y = V(I) C
C97! whose ideal T = (f1,...,f,) is generated by a regular sequence
fi,-., fg € Clzo, ..., x4], and whose singular set is Sing(Y") = {0}. Let
S = S(A2,...,Ag) be a generic embedding surface of Y defined by the
set of equations (12), where the coefficients (A2, ...,Ay) € (C\ {0})971
are generic such that all previous results hold. Denote by o: X' — C9t!
the blow-up of CIT1 with center Y and by S’ the strict transform of S
under o. Then, the monodromy zeta function Z{?gn(t) of Y considered
in CI*L at the generic point p = S’ No~1(0) is equal to the monodromy
zeta function Zyg*(t) of Y considered as a Cartier divisor on S at the
origin. Therefore, we refer to both zeta functions as the monodromy zeta
function of Y.

Proof: Let Ej be the second last exceptional variety of the principal-
ization ¢ or, thus, the only one intersecting E. Then, the formula (5)
of A’Campo with the embedded resolution p: S — S’ of Y’ € §’ from
Proposition 4.6 gives

ZP(t) = H (1 — N X(ENS)°00 ™ () = H (1 — Mo p((ENS)?)
JeN JeN

where
(B;n )\ Ui (Ei N E; N S) for j # k,

(B;NS)° = N o N
(BxnS)\ (Uan (BN ExNS) U(ENELNS)) for j=k.
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By the choice of the generic point p € o=1(0) \ UjEJg Y(E;) satisfying
E;Nv¢~Y(p) = E; NS for j € Jy, this is the same as the monodromy
zeta function Z0%(¢) given in (13). Because 0 € Y C S is isomorphic
top e Y’ C S under o, the theorem follows. O

5. Embedded Q-resolution of a space monomial curve

The purpose of this section is to construct an embedded Q-resolution
of a space monomial curve Y considered as a Cartier divisor on a generic
surface S C C9H! with g > 2 satisfying all results in Section 4. We will
also describe the combinatorics of the exceptional divisor that are needed
to compute the monodromy zeta function of Y in Section 6.

Our method requires g steps, denoted by Step k for k =1,..., g, con-
sisting of a weighted blow-up in higher dimension. Roughly speaking, in
every step, we are able to eliminate one equation in Y and S, and to
lower the dimension of the ambient space by one. Therefore, the last step
coincides with the resolution of a cusp in a Hirzebruch—Jung singularity
of type é(l, q). We will see that the resolution graph obtained in this
process is a tree as in Figure 5, but that the exceptional varieties do
not have zero genus in general. The latter implies that the link of the
surface singularity (S,0) is not always a rational nor an integral homol-
ogy sphere. However, using this embedded Q-resolution, one can obtain
necessary and sufficient conditions for the link of (S, 0) to be a rational
or integral homology sphere; see [24].

5.1. Technical results. We extract some results from the main con-
struction that are interesting in their own right and discuss them in this
section separately.

A first challenge in the resolution will be to investigate the irreducible
components of the exceptional divisor in each weighted blow-up. We will
see that in Step k for k = 1,..., g, the exceptional divisor & can be de-
scribed by a similar system of equations in the quotient of a weighted
projective space P7 /uq that arises as the exceptional divisor of the am-
bient space. Except from the number of irreducible components, we are
also interested in the singular points of &, which lie on the coordinate hy-
perplanes {z; = 0} of P, /uq. Since our exceptional divisors will always
have one common intersection point Ay with the coordinate hyperplanes
for i = 2,...,r, we restrict in the following proposition to that case. In
fact, the single intersection point Ay = &, N{x; =0} fori =2,...,r will
be the center of the blow-up in the next step.
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Proposition 5.1. Consider the quotient pro’___,m)(d; agy ..., Qp) =
P?po,...,m/“d of some weighted projective space IP’&)OWWPT) under an ac-

tion of type (d;ao,...,a,) with r > 2. Let £ be defined in this space by
a system of equations

xg® "t a3 =0

m2 m3 __
Ty t+x3° =

Mr—1 My

SL'T71 + xr

for positive integers m; such that d | a;m; for i = 0,...,7r, and such
that each equation is weighted homogeneous with respect to the weights
(poy---,pr). Assume that the intersection of £ with {x; = 0} for i =
2,...,7 only consists of one fived point A, and that a;p; — ajp; = 0
for all i,j € {2,...,r}. Put P := [[[_,pi, and Q = q; H;:Zj#pj
fori=2,...,r. Then,

(i) the number of irreducible components of £ is equal to

mo -+ My

lem(ms,...,m;)’

(i) all irreducible components of € have the point A in common and
are pairwise disjoint outside A, and

(iii) each irreducible component has

my - ng(dP ) (p17p27 cee 7p7‘)? (alp _plQ) . (an cee 7p7'))
dP - ged(pa, ..., pr)

intersections with {xo = 0}, and

mo - ged(dP - (po, p2, - -, pr)s (aoP — poQ) - (P2, .., pr))
dP - ged(pay - -, 0r)

intersections with {x1 = 0}.

Computing the numbers in (i) and (iii) relies on counting the number
of solutions of a system of polynomial equations in a cyclic quotient space
such as in the next result.



558 J. MARTIN-MoORALES, W. VEYS, L. Vos

Lemma 5.2. Let X be a cyclic quotient space X (d; ag, ... ,a,) withr >0
and let k; for i = 0,...,r be positive integers such that d | a;k; for

every i =0,...,r. Consider the system of equations
T = ¢
mlfl =c
kr _
e = cp,

where ¢; € C\ {0}. If r > 1, then the number of solutions in X of the
form [(zo,b1,...,b.)] with [(b1,...,b.)] € X(d;a1,...,a,) fized is equal
to
kO ) ng(d7 ao, - .- 7a7“)
ged(d,aq, ... a.)

The total number of solutions for r > 0 is equal to

kO"'kr’ng(daa07~~-7ar)
d .

Proof: Forr > 1, the solutions with [(by, ...,b,)] € X(d;ay,...,a,) fixed
can be written as [(£bg, b1, .. ., b,)] for some fixed koth root by of ¢o and
varying & € py,. Two elements £ and &' in ug, yield the same solution if
and only if there exists a dth root 17 € 4 such that by = n%°E&'by and b; =
n*b; for i = 1,...,r or, thus, if and only if there exists an element n €
paNpiay N Nfla, = Pged(dsar ... a,) Such that £~ = n. It follows that
the solutions of the above form are in bijection with ug,/Imh where h
is the well-defined group homomorphism h: igeq(d,ay,....a,) = Mk, given
by 7+ 1. As Im h is isomorphic to pigcd(d,a;.,...,a,)/ Ker h and Ker h =
Hged(d,ao,...,a,)» We obtain the right number of solutions. The total number
of solutions for > 0 can be shown by an induction argument, using the
first part of the lemma in the induction step. O

Proof of Proposition 5.1: We start with the case where r > 3 and we
determine the irreducible components of £ by first identifying the irre-
ducible components of £ \ {A}. To find the components of £\ {A}, we

consider the chart of P?po,--- pr)(d; agp, . .., a,) where x9 70 which is given
by
X P2 | Po P1 P3 --- Dr
dp2 AQ A1 O e O ’
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with Ay = agpe — aspo and A1 = a1pa — aspr; see (11). On this chart,
the equations of £ become

zg® it +1=0

1425 =

Tt =
For a fixed solution b = [(b3,...,b,)] in X(p2;p3,...,pr) of the last
r — 2 equations, we denote by &, the set {[(zo,x1,b3,...,b;)] | 25 +
" +1 = 0}. By the second part of Lemma 5.2, the number of such
solutions b € X (pa;ps,...,pr) is given by
(15) ms - -my - ged(pa, .., pr)

b2

It is not hard to see that every & is irreducible and that all these sets are
pairwise disjoint. In other words, the irreducible components of £\ {4}
are the sets & for each solution b € X(pa;ps,...,pr) of 1 4+ 25 =

Mr—1

<o =x, 7"+ = 0. One can also show that A is contained in each
closure & in Plyy. py(diao,....a;) or, thus, that all & = & U{A}
are the irreducible components of £. Hence, the number of components
of £ is given by (15), which can be rewritten as the expression in the
proposition by using relation (2). Furthermore, all £, contain the point A
and are pairwise disjoint outside A, proving (ii). To show the last part
of the proposition, we still work on the chart where x5 # 0: the point A
is not contained in the intersection & N {z; = 0} for ¢ = 0,1. We thus
need to compute the number of intersections of each component &, =
{l(xo, z1,b3,...,b.)] | 25" + 2" +1 = 0} with {zg = 0} and {z; =
0}. For the first intersection, this reduces to counting the number of

points in X (fpzz 113111 s p(;~) of the form [(z1,bs,...,b,)] with 27" +1 =
0 and [(bs,...,b,)] a fixed solution of 1 + 25" =--- = T g =0

in X (p2;ps,...,pr). This can be further simplified with the isomorphism
(see Example 3.1)

b2 | P1 P3 ... DPr dp1p2
16) x (P
(16) ( dps | A4 0 ... O ) P2 ged(dpa, Ar) Ps P
dpo
defined by [(z1,23,...,2,)] = [ 23,... 2,)] to counting the
number of points in X(pg;#%,pg, .. .,pr) of the form [(z1,bs, . . ., b))

mq ged(dpo,Aq)

with x, 2 +1=0 and [(bs, ..., b,)] a fixed solution of 14+z5" =
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coo=a " amr = 0in X (pa; ps, - - -, pr). By the first part of Lemma 5.2,
this number is given by

mi - ged(dps - (p1,p2; - -, pr); (@1p2 — aspr) - (P2, - - -, pr))
dp2 ' ng(an cee 7p7')
which is equal to the expression in the proposition. Analogously, one can

show that the number of intersections of each component with {z; = 0}
is given by

(17)

)

mo - ng(dPQ ) (pOaan s 7p7“)7 (a’OPQ - QZPO) ! (an s 7p7“))
dps - ged(pay . -, Dr)

If r =2, then &€ C P, pz)(d; ap,ai,as) given by the single equa-
tion (" 4+ x7™ + x5 = 0 is irreducible, showing items (i) and (ii).
The number of intersections with {z¢g = 0} and {z1 = 0} can be shown

similarly as in the case where r > 3. O

(18)

Remark 5.3. The expressions in Proposition 5.1 are computed by looking
locally on the chart where x2 # 0, but they could also be obtained by
looking on one of the other charts z; # 0 for i = 3,...,¢. This is the
reason why we rewrote the formulas (15), (17), and (18) of the proof
into the formulas of the statement; this way, it is clear that they are
independent of the choice of chart. In practice, however, we will often
use the local expressions of the proof as they are slightly easier to work
with.

Another challenge will be to understand how the exceptional divisors
intersect each other. When blowing up at the point A;_; in Step k, the
components of £ _1 will be separated, and the intersections with the new
exceptional divisor & will be equally distributed as explained in the next
proposition, in which D plays the role of the strict transform of &_;.
Furthermore, the new center of the blow-up will not be contained in any
of the components of £,_1, which implies that every exceptional divisor
only intersects the divisor of the previous and of the next blow-up, and
that the combinatorics of these intersections stay unchanged throughout
the rest of the resolution. This will be the key ingredient to show that
the dual graph of the resolution is a tree as in Figure 5; see Theorem 5.8
for the details. It is also worth mentioning that the first part of the
next result is a generalization of the resolution of a cusp P + 3¢ in C?
with ged(p, ¢) not necessarily equal to 1; such a cusp counsists of ged(p, ¢)
irreducible components going through the origin and pairwise disjoint
elsewhere, and after the (g, p)-weighted blow-up at the origin, all the
components are separated; see for instance [21, Example 3.3].
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Proposition 5.4. We work in the same situation as Proposition 5.1 with
the stronger condition that a;p; —a;p; =0 for all 4,5 € {1,...,r}. Con-

sider ]P”("po pr)(d; ag,---,ar) as the exceptional divisor of the weighted

blow-up 7: X(d;ao, sy r)y — X(d;ag,...,ar) of X(djag,...,a,) at
the origin with weights w = (po,-..,pr), and let D be the strict trans-
form under this blow-up of D in X(d;aq,...,a,) defined by

xy"® =
/M 4y =0

(19) 1 2
Tt M = 0.

Then,

(i) the total number of irreducible components of D 1is
my - -m,

lem(my,...,m;)’

and they are all pairwise disjoint,

(i) each component of D is intersected by precisely one component of £,
and this intersection consists of a single point, and

(iii) each component of £ intersects the same number,

my lem(ma, ..., m;)

lem(my,...,my) ~

of components of D, which is precisely the number of components
of D divided by the number of components of €.
If the above conditions (i)—(iii) are satisfied, we will say that the inter-
sections of D and £ are equally distributed.

Remark 5.5. In item (iii) one can rewrite
mq lem(ma, ..., m,) _m ged(pr, ..., pr)
lem(myq,...,m;) ged(pa, ..., pr)
This is consistent with Proposition 5.1, item (iii), with a1 P — p1@Q = 0

as a1p; — a;p1 = 0 for all ¢ € {1,...,r}: the intersection of & with D
corresponds to the intersection of & with {zy = 0}.

Proof: We start by considering for a moment the subspace of C"*! de-
fined by the set of equations (19) and prove that the number of irre-
ducible components of this subspace is

my---m,

lem(my,...,m;)’
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This provides an upper bound on the number of irreducible compo-
nents of D and, hence, of D. First of all, we can reduce to the sub-
space of C" given by the last —1 equations and we work by induction
on r>2. For r = 2, we have to consider {z]" + 25" = 0} in C2. Let
q = ged(my,ms) and denote by &; for i = 1,..., ¢ the gth roots of —1.
We can rewrite

a4 mg my
mi ma __ q X q
Tyt T = H(xz =&z * ),
i=1
ma my
where each factor z,” — &z, is an irreducible polynomial in C[z, z2].

m2 mi1
In other words, the irreducible components are given by {z,° —&x," =
0}, and there are ¢ = ged(my,ms) = % components in total.
In the induction step, assuming that the statement holds for » — 1, one
can again decompose the first equation as above and reduce the problem
to showing that each of the subspaces given by one factor of the first
equation together with the last r — 2 equations from (19) has

mi---My

glem(mq,...,m,)

irreducible components. In each of these problems, the first equation can
be parametrized with a parameter ¢ € C to further reduce the problem
to investigating the components of

mimg

q +x73n3 =

m3 mg __
x5 +xt=0

z, 1t =0
in C"~!. By the induction hypothesis, we can conclude. To show that
the upper bound is attained for D, we take a look at the third chart
of X(d;ao,...,ar). where the exceptional divisor is given by {z5 = 0};
one could also obtain this by looking at one of the other charts, except
for the first one, where the strict transform of D is not visible. The third
chart is given by

b2
X
( dp2

with Ay = agpa — aspg, via

A() 0 as 0 0

po p1 —1 p3 ... pr)

[(zoy .-y zp)] — [((zoxh?, xr2ht 22 abPas, ... ab ),

[$01$1:1:x3;...;xr]w)];



THE MONODROMY CONJECTURE FOR A SPACE MONOMIAL CURVE 563

see (10). By pulling back the equations of D along this map, we find the
following equations of D in this chart:

mo _
Ty =

" +1=0
Tt M = 0.

From these equations, it is not hard to see that the irreducible com-
ponents of D in this chart are all pairwise disjoint and given by Dy =

{1(0, b}, w2, b5, ..., b.)] |x2 € C} for b'=[(b), b, ..., b)) € X(p2; 01, D3y - - s 1)

a fixed solution of 27" +1 =--. = 27" + 2™ = 0. By the second part
of Lemma 5.2, their total number is
mymg---mpged(pr, .., pe) My oomy
D2 lem(my,...,m;)

It follows that the total number of irreducible components of D is given
by the same number and that all irreducible components of D are visible
in this chart. Furthermore, by symmetry between the charts, we can
conclude that all components are pairwise disjoint. This shows (i). To
prove the other two statements, we first suppose that » > 3 and we
keep on working in the third chart; the irreducible components of £ are
obtained from those of £\ {A} by adding the point A. As we saw in the
proof of Proposition 5.1, all irreducible components of £ \ {A} are given
by 51) = {[(1‘0,{)31, O, b3, ey br>)] | $6n0+$§n1 +1= 0} for b = [(b37 e ,br)]

a fixed solution in X (pe;ps,...,pr) of 1425 =+ ="' 2™ =0,
they are pairwise disjoint, and their total number is
Mo+ M,
lem(ma,...,m;)

Assume now that a component Dy of D in this chart intersects a compo-
nent & of £\ {A}. Then, there exist by, by, b5 € C with b +b7"' +1 =10
such that [(0,b],...,b))] = [(bo,b1,0,b3,...,b.)] is a point in the in-
tersection. This implies that by = b5 =0 and that [(b},d5,...,b.)] =
[(b1,b3,...,b.)] in X(p2;p1,Ps,-..,pr). Hence, the component Dy only
intersects the component of £ \ {A} corresponding to [(b,...,b))], and
the intersection consists of the single point [(0,b],0,05,...,b.)]. It re-
mains to show that each component of £ has non-empty intersection
with precisely
mq lem(ma, ..., m;)

lem(my,...,m;)
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components of D. Along the same lines, we see that a component &,
of £\ {A} intersects every component Dy of D in the third chart with
[(b,...,0)] = [(bs,...,br)] in X (p2;ps, ..., pr). Hence, we need to count
the solutions in X (p2; p1,ps,.-.,0r) Of

" 4+1=0

my—1

My
mr—l +x'r "=0

with [(b},...,0.)] fixed. The first part of Lemma 5.2 gives the right
number; see also Remark 5.5. If r = 2, then £ is irreducible and intersects
every component of D in a single point; this can again be shown by
considering the third chart. O

One last result that we discuss before going into the construction
of the resolution is needed to control the power of some variables when
pulling back the equations (4) of the curve Y. Recall that the numbers b;;
and n; were introduced in (3); see Section 1.

Notation 5.6. Let n :=ng---n4 and define the numbers bl(-k) for i,k €
{0,...,g} with ¢ > k recursively as follows:

bz('O) — bioni for i > 0,
0
(20) b birs
bEk) — bgk_l)—F (Lk_i_..._‘_ﬂ_l)bg@—l) fori>k>1.
Nk ni—1

Note that bgO) =n.Foreach k€{l,..., g}, the number bgk) for i > k will
be related to the ith variable x; in Step k of the resolution. The following
result expresses these numbers in terms of the generators (8o, ..., 34) of
the semigroup introduced in Section 1. As a consequence, we show that
they are all greater than 1.

Lemma 5.7. Let i,k € {1,...,9} withi > k. Then,
bl(-k) = (nifi — nBr)

b ~ ~ by ~ ~
- D (ni—1Bic1 — nifi) — -+ — et ) (Pkt1Br+1 — " Br),
Ni—1 Nk+1

and, in particular, b,(fgl = npy1Bks1 — niBr. Furthermore, bl(»k) > 1 or,
equivalently,

(k—1) (k—1) by Y by Y
(21) b +1<b; + big, + by .
k 7 g ( ) ni_1
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lfroof: ‘We use induction on k. Let us first consider k¥ = 1. Note that
Bo = n% and 81 = n% Using equation (3), the term bgl) for ¢ > 1 can
indeed be rewritten as

2 2 bi bi(i—
b =bioBo + bir B1 + (nij o D 1)71

Ni—1
=n;fB; — biafo — -+ — bi(z‘—l)ﬁ_iq + (% +eee b;(:ll) - 1)”15_1
=B~ maB) D 0By i)~ P oy i),
Let us now consider the general case. By induction, we know that bfckfl) =

NPk — Ni—18k—1 and that bgkil) for i > k — 1 can be written as

- _ _ _ bix bi
by 1):niﬁi—bikﬁk—“'—bi(i—l)ﬁiq-f-( ol 1)—1)% 1Br—1-

T —

Hence, by definition, we have for ¢ > k that

_ b; bigi- -
b§’“>:b§’“ 1)+(J+...+M—1>b§f Y
ng ni—1

bii-1)

_ _ _ bin _

=nifi — bk — - — bii—1)Bi—1 + (L +o 1)nk5k-
N ni—1

After regrouping, we obtain the required formula. For the second part

of the lemma, as b;; < n; whenever ¢ > j # 0 (see the extra assumption

on (3)), it is enough to show that

(nifBi — niBr) — (N1 Bicy — i) — -+ — (Niy1 Bryr — naBe) > 1.
We proceed by induction on i > k. For i = k + 1, one indeed has
Nht1Brs1 — niPr > 1, since Bri1 > npBr and nyy1 > 2. Suppose now

that it is true for ¢ — 1 with ¢ > k + 1. The conditions Bi > ni—1Bi—1
and n; > 2 imply that n;8; — ngfr > ni(ni—15i—1 — nkPr). Hence,

(niBi - nkgk) - (ni—15i—1 - nkgk) - (nk+15k+1 - nkBk)
> (n; — 1)(ni—1Bi—1 — nBr)
- (ni726i72 - nchk) - (nk+18k+1 - nkBk)
> (ni—1Bi—1—niBr) — (ni—2Bi—z — niBr) — -+ — (M1 Brg1 — neBr)
> 1,

where the second inequality again follows from n; > 2, and the last one
from the induction hypothesis. O
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5.2. Construction of the embedded Q-resolution of Y C S. We
are now ready to start with Step 1 in the resolution of Y C S, focusing
on the information needed to compute the zeta function of monodromy.
The idea is to consider the blow-up 7 at the origin of C9*! with some
weights and study its restriction to S that we call o1 := m1|g: S =S,
with S the strict transform of S. After this blow-up, we will be able
to eliminate one variable so that we attain the same situation as in the
beginning, but in one dimension less and where the ambient space con-
tains quotient singularities. In Step 2 we will again consider a weighted
blow-up of the ambient space and its restriction ¢s to S. As mentioned
in the beginning of this section, we will need g such steps. Denote by &
for k =1,..., g the exceptional divisor of ¢ appearing at Step k; we will
also denote their strict transforms throughout the process by &. To keep
track of the necessary combinatorics of these divisors, we introduce H;
for i = 0,...,g as the divisor in S defined by {z; =0} NS C CI9™. We
will see in the process of resolving the singularity that (the strict trans-
form of) Hy, is separated from the strict transform Y of Y precisely at
Step k and that it intersects the kth exceptional divisor & transversely.
Therefore, it is interesting to study how the H;’s behave in the process
of resolving Y C S, although they are not part of our curve. We again
keep on denoting them by H;.

5.2.1. Step 1: weighted blow-up 7; at 0 € C91! with weights w;.

Let 71 : C4T1 — C9%! be the weighted blow-up at the origin with respect

to wy == (nio, ceey nl), where n = ngn; ---ng. For a better exposition,
g

we split the section into several parts.

Global situation. Let us first discuss the global picture. Recall that the
equations of Y and S are given by (4) and (12), respectively, and that
the exceptional divisor Ey of m is identified with P, . The exceptional
divisor & := E1 N S of o1 = mlg: S — S is in the coordinates of Pg,
given by the wi-homogeneous part of S. By inequality (21) in Lemma 5.7
fork=1and i=2,...,g, we have
n <41 < b + by 4 +bi(i—1)L7
no i Ti—1

so that & C P9 is defined by

w1

n n n
1t —2° + Aaxy® =0

(22) e =0

Ng—1 g __
.77 + Agzg” = 0.
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After a change of variables, we can assume that all coefficients in
these equations are equal to 1 so that they satisfy the conditions of
Proposition 5.1 with d =1 and a; =0 for i = 0,..., g; for instance, the
intersection & N{x; = 0} = &NH,; fori=2,..., g is the point P := [1
1:0:---:0]. According to this proposition, the number of irreducible
components of & is

Ng -+ ng el

23 = .
(23) lem(ng,...,ng)  lem(ng,...,ng)

If ¢ = 2, then this number is equal to 1 or, thus, &; is irreducible. All the
irreducible components of £ have the point P; in common and are pair-
wise disjoint outside P;. Combining (15) and (17) from Proposition 5.1,
the intersection £ N Hy, which is & N {z¢ = 0} in these coordinates,
contains

mng - ongged (G, 5 ) (ﬂo Bo Bo)
= e’ ng
(24)
_ o
lem(ni, na, ..., ng)

points, where n = ngfy and relation (2) was used in the first and sec-
ond equality, respectively. Analogously, from (15) and (18), the intersec-
tion & N H; is formed by

nong - g ged(Gh, 7 ae) (51 By Bl)
- o' g
(25) _
lem(ng, ng, ..., ng)

points. The fact that each irreducible component of £ has the same
number of intersections with Hy (resp. H;) is compatible with the fact
that the integer in (23) divides the one in (24) (resp. (25)). The intersec-
tion & NY of & with the strict transform of Y is defined by the wq-ho-
mogeneous part of Y: 2]' —z(® = x5 = --- = x4 = 0. This is simply the
point P;. The global situation in the strict transform S for g > 3 is illus-
trated in Figure 1. For simplicity, the components of £ are represented
by lines, but they are in general neither smooth nor rational curves. If
g = 2, we can make the same picture with & irreducible.
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FIGURE 1. Step 1 in the resolution of Y C S for g > 3.

In order to study the singular locus of S, we use local coordinates.
Note that the surface S is smooth outside &1: the complement S \ & is
isomorphic to S\ {0}, which is smooth as (5, 0) is an isolated singularity.
To study the situation on &£;, we just need to have a look at the first two
charts Uy and U7 of @gﬂ;l because £ N Hy N H; = (. In fact, the local
study of S around points of & can be understood using the first chart,
except for the finite number of points in the intersection & N Hy. For
the latter points, the second chart is employed.

Points in & \U?:o H;. Let us compute the equations of S and Y in the
first chart Uy of CZF'. They are obtained via

(20, .-+ 2g) > (257, 20" T1,. - - mo T xy),
and the new ambient space is Uy = X(n%; -1, 7:‘1 e ) see (9). The
total transform o) !(Y) is defined by :ngl = f = 0, where

fi=ait =1
ba1

f .2 by
9 1= Tg Ty Ty

b(l) byt b
9(g—1)
fg =2y — 2y 2y’ g

define the strict transform Y, and a: : § — C is the exceptional part.
Here, b()—b-oﬂ (—14— Biti= 1)—1)n>1forz:2,...,g,

Wng Ni—
see Lemma 5.7. The strict transform S is given by f1 + )\Qfg = ... =
fg 1+ A fg =0, and H; for i = 1,...,g by {z; = 0} N S. Note that
Hy is not visible in this chart. On 51 \ U, H;, the ambient space Uy is
smooth, and one can use the standard Jacobian criterion to show that
S is also smooth on this set: the Jacobian matrix of S is a (g —1) x
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(g + 1)-matrix containing a lower triangular (¢ — 1) X (g — 1)-matrix
with diagonal (Agnozi?™*, ..., )\gngatg"’fl). To compute the multiplicity
of the exceptional divisor, we take a look at the equations around a
generic point @ = [(0,a1,...,a4)] € & \ U, Hi, where a; € C*. The

order of the stabilizer subgroup of @ is gcd(nio, ey nl) and, hence, as
germs, !
(X(”;—l, ”")Q) ~ (X(gcd(",...,”);-1,0,...,0),@)
o ny Ng no Ng
~(C9*,0);

see Section 3. The functlon xg: Uy — C is transformed under the pre-
vious isomorphism into ac : C9+1 — C, where
n

ged(2, o)
is the multiplicity of & defined in (8). Here, we used once again rela-
tion (2).

Points in the intersection & N Hi. Let Q1 = [(0,0,as,...,a4)] be a
point in & N H; considered on the first chart, where a; € C* are cho-

Ny = = lem(ng, ..., ng)

sen such that —1 + Agay? = ap? + Agai® = -+ = a,"7" + N\gag® =
0. The order of the stabilizer subgroup of @ is gcd(no, s ..,nig),
and Uy around Q1 becomes X(gcd(no, r— "’n%,)v -1, 7? ,0,. O). To
have a chart centered at the origin, we can change the coordlnates
T, — x; +a; for i =2,...,9. In these new coordinates, S is described
in X (ged (2, ., ) —1,-2,0,...,0) by equations of the form

0 ’rL2 Ng 711

Y2 1= Ug(x2)x2 — ho(zo,21) =0

ys = uz(z3)r3 — h3(wo, 1, 72) =0

Yg = ug(rg)xg — hg(To, .. 29-1) =0,
where u;(z;) € C{z;} are units, and h; € C[xg, z1,...,x;—1]. By making
the change of coordinates yg = xg, y1 = =1, y; = w;z;—h; fori =2,... g,
we finally obtain the following situation at [(zq, 21)]:

S=x(wa(Z 2 By )
(26) no’ ng ng ny

512.%820, Hlil'l:O.

In particular, the total transform gpl_l(Y) has Q-normal crossings on S
at these points.
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Points in the intersection £ N Hy. As mentioned before, to study these
points, we need to consider the second chart Uy = X(n1 imo— 1L 7;’2 .. ,nﬂ)
g
via
(o, ..., xq) —> (xoxF,xF,mFxg, ... ,xeg).

Choose a point Qo € & N Hy, which is of the form [(0,0,as,...,a,)]
for a; € C* satisfying a set of equations similar as @)1 € EyNH;. Since its
stabilizer subgroup has order gcd( no, ) one obtains by repeating
the same arguments as in (26) the followmg local situation around Qg

at [(zo, z1)]:

n n n
S=X(ged(—,—,...,—);—,—1
(27) (g <n1 N9 ng) no )
gliitrll:(), HO:xO:O.

The total transform of Y is again a Q-normal crossings divisor around
such points.

The point P, = & N H; for i = 2,...,g. In the first chart, P, =
[(0,1,0,...,0)], and the order of its stabilizer subgroup is gcd(no, :1) =
e1. Hence, as germs,

(X(";l,",...,")ﬂ) ~ (X<el;1,0,”,...,"),P1).
ng n ng ng n

g

We use the change of variables 1 — z1+1and z; — z; fori =0,2,...,g
to get a chart centered at the origin in which S is given by

(28) fi(wo, a1 + 1, @2, ., 2) + N1 firr (20, 21 + 1,22, ..., 2411) = 0,

fori =1,...,g—1. Consider the first equation as a function F': C2xC —

C. Since gfl (0) = ny # 0, there exists some h € C{zg,x2} such that

the set of zeros of F' in C? can be described as {(zg,71,22) € C? | 21 =
h(zo,x2)}. In particular,

(1)
(h(zo,22) + 1)™ — 1+ \p(232 — 2? (h(wo, x2) + 1)) = 0.

Because the action on z; is trivial, and z7 = h(zg, z2) provides a set of

zeros in the quotient space, we know that h(zg, z2) is invariant under the

group action of type (61; -1, n%) The above equation can be rewritten as
e B{»

(29) h(zo, x2) = u(zo, z2)(x5* — 2" )

with u(zg,z2) € C{zg,x2} a unit. For a better understanding of the

whole process, we distinguish two cases: g =2 and g > 3.
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If g = 2, then S is locally around P, = [(0,...,0)] defined by xz; =
h(zo,x2). The projection pr: (X(ng; -1,0, %)70) — (X(ng; -1, %)702
given by [(xo,z1,22))] — [(zo, x2)] induces locally an isomorphism of S
onto X(ng; -1 %) The total transform apfl(Y) is given by

' n

(1)
(30) (b2 —ag? ) =0,

& .
where x5? — x?ﬁ = 0 defines the strict transform Y, and zf = 0 the

exceptional divisor £;. This shows in particular that & is irreducible as
was already stated in (23). The divisor Hj is still {z3 = 0} in S.

If g > 3, then one can rewrite equations (28) using (29) so that S is
defined by the equation x1 = h(zg,x2) locally around P, = [(0,...,0)],
and

filzo, Lo, oo as) + Nt firr (0, L, @2, - o, 2441

)
+ (z5? — x?ﬁ )R(l)(xo,xg, coymy) =0,

?

for i =2,...,9 — 1, where every Rz(l)(l'(hl'g, cooyxy) € C{xg,x0, ... x5}
is compatible with the action (i.e., it defines a zero set in the quotient)
and satisfies REI)(O, Za,...,2;) = 0. The projection

pr: (X<€1;_1507n,"'5n)70) — (X(el;_17n7...7n)’0>
n2 Ng N2 Ng

given by [(zo,z1,%2,...,24)] — [(xo,22,...,24)] induces an isomor-
phism of S onto the subvariety of X(el; -1, n%, ey ni) defined by
g

(31)
(1) (1) (1)
752 —ag + Na(25° — ag’ 2h?) + (252 — agt )RS (20,72) =0

ng bél) b2 ng bz(ll) baz .ba3 n2 bgl) (1)
25° —xg® 2P A (2t — gt 23w )+ (2% —xy’ )Ry (w0, T2, v3) =0

b(l) b b 2 b(l) b b
Ng—1 g—1 (g—1)2 (g—1)(g ) g g g2 g9(g—1)

+(z5? —xbgl))R(l) (z =0
2 0 g—1 071:2’"'7569—1)— .
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The total transform of Y is given by

n n2 bél)
zi(ry* —xy° ) =0
b b
(32) ng(.’IIgLJ - xOS mQSZ) =0
)
TRy —ay @y wlY) =0,

where zJ = 0 corresponds to &, and H; = {z; =0} N Sfori=2,...,q.

In both cases, we can conclude that ¢; is an embedded Q-resolution
of Y C S except at the point P;. In Step 2, we will blow up at this point.
If g = 2, the curve Y is a cusp inside a cyclic quotient singularity, and
we will finish right after this blow-up. If g > 3, we see in (31) and (32)
that we were able to eliminate x1, and that we obtained a situation very
similar to the one we have started with, but with one equation in S
and Y less; see (12) and (4). However, Step 2 is essentially different and
more challenging than Step 1 because the ambient space of S contains
singularities.

5.2.2. Step 2: weighted blow-up w5 at P; with weights w,. We
keep the distinction between g = 2 and g > 3.

If g = 2, then we consider the weighted blow-up m2 = o of S =
X (ng; -1, n%), on which 7 !(Y) is given by (30), at P, = [(0,0)] with

respect to the weights wy := (1, %) Note that bél) = n9Bs—n1 P is di-
visible by no = e;. This produces an irreducible exceptional divisor & =
PL, (n2;—1, ) ~ P! with multiplicity Ny = n + b{") = naf,. The new
strict transform Y is smooth and intersects & transversely at a smooth
point of S. The intersection &N Ho is just one point, and the equation of
the total transform of Y around this point is 1:6’252 : X (ng; —1,32) — C.
Finally, & intersects £ at a single point, and around this point we have
the function

B "L2E2—n1B1

n

roTy? P X ~m2
nafa — n1B

-l > — C.

n
B =

The composition ¢ = @1 0 @s: S — S is an embedded Q-resolution
of Y. The final situation is illustrated in Figure 2; the numbers in brack-
ets are the orders of the underlying small groups at the intersection
points & N H; for i = 0,1 and & N Hs; see Remark 6.1.
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no2 -

FIGURE 2. Embedded Q-resolution of Y C S for g = 2.

Assume g > 3 from now on. Consider the equations (31) and (32) of S

and Y, respectively, around P; = [(0,...,0)] in X(er;—1, PYSRRRE 2,
Let 7 be the blow-up of X(el, -1, > z 7...,#) at P; with respect to
M ’

the weight vector wy := (1, 2. i—) Note that bél) = n9fs — n1 1
g
is divisible by e1 = mpey = Ny ---ng; see Section 1. Denote by Ey ~

]P’f;l (el,—l i) the exceptional divisor of mg, and let g :=

Sher
To|g: S — S be the restriction map with exceptional divisor & := F,NS.
Here, we denote the strict transform of S again by S. As in Step 1, we
start with the global situation.

Global situation. Because Rl(l)(xo, Xoy...,x;) fori=2,...,9g —1is not
a unit, and
b(l) b(l)
b5 < b5V 1 < b)) + by ot bt =3,

ni—1

by (21) from Lemma 5.7, the exceptlonal divisor &; is given by

byV .
ng 2 n.
T9? —xy® + 323 =0

n, n
1’33 —+ )\4’1}44 = O

Ty’ 1+)\ sTg’ =0

in P7 1 (el, -1, SRRk E) As these equations satisfy, modulo the coef-
ﬁc1ents, the condltlons of Proposition 5.1, we know that £ has
nz---nyg 7 e
lem(ns, ..., ng) ~ lem(na, . .. \Nyg)
irreducible components. Note that if g = 3, then &; is irreducible. The
intersection & N H; for i = 3,..., g consists of the single point P, :=
[L:1:0:---:0], which is contained in all components of &, while

they are pairwise disjoint outside P,. By equations (15) and (17) with
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aipz —azpr = 0, the intersection E;NE7, which corresponds to EaN{xg =
0}, consists of

b(21) bél)
NaNy - -+ Ng gcd(—n2 EERE S ) el el e1
o) =ged| —,...,— =1
bS Ng ng cm(ng, ..., ng)
ng

points. Note that this is precisely the number of irreducible components
of &£1; see (23). Using (15) and (18), one can compute that there are

(1) b(l) 2 b(l) b(l) B -
b n4~onggcd(elﬁ—3,—"f£2 cd(i—a,...,i—g)) By Bs
R :gcd<eg,—7...,—>
by " by n3 Ng
ns mns _
_ B2
lcm(%,ng, ce )
points in the intersection £ N Hy. The first equality is a consequence of
the fact that 1202 ged (%) %y _natil poq(Be  fa
€ 1acC aTSgC (TB’...7E)_T3gC (n—3,...,n—g)asn3,...,ng

divide B,. To understand the combinatorics of & with &1, we can make
use of Proposition 5.4; the components of £; are separated, each of them
is intersected by precisely one component of £, each intersection consists
of only one point, and each component of & intersects

nglem(ns, ..., ng)

lem(ng, ..., ng)
components of £, which is precisely the quotient of the number of com-
ponents of £ and &. Finally, the strict transform Y of Y intersects &
only in the point P». Figure 3 shows the global situation in S so far
(for g > 4). The divisors are again visualized in a simplified way, and
the intersection £ N &; is represented by white circles to emphasize the
difference with the other points.

&

FIGURE 3. Step 2 in the resolution of Y C S for g > 4.
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As in Step 1, we make use of local coordinates to investigate the
behavior around the singular points of S. Note that S is smooth out-
side &1 U &, and that it is again enough to consider the first two charts
of the blow-up to understand the whole situation in &;.

Points in € \ (€1 UJ]_, H;). The first chart is

bsH bsH - -
U= X 1 -1 Yy W —x 1 'TLQ/BQ n2,82
0— n+b(1) n+b(1) - €1;—1, ) ’
e _ 2 2 N9 ng
1 P A Tog

and we can compute the local equations of S and ¥ by pulling back (31)
and (32) via

0 0
ng ng
(2o, 2,...,2g) V> (x0, 2" T2,..., T 7 Zg).
-1/ -1 - naBz p_ _ o omneBap
The total transform @5~ (¢; (Y)) is given by z(*7 fo = - - - = 2> fy =
0, where
for=adr =1
. ‘ NONM
n,
fai=a5® —x® x>
N b(2) b b
g 9 92 g(g—1)
for=ag®” =g’ @y -
correspond to the strict transform Y, and a:g“ﬁ ?: S — C to the excep-

tional divisor &z; see (20) and Lemma 5.7 for the definition and behavior
of b§2) >1fori=3,...,9. Here, we use again fz to avoid complicating
the notation. The strict transform .S is defined by
. 0

fi+ /\¢+1f¢+1 + fQRE )(xo,l‘onz To, ... ,Ioni mz) =0, 1=2,...,9—1,
and H; for i = 2,...,¢ is still given by {z; = 0} N S. Observe that
the divisor &; is not visible in this chart. Similarly as in Step 1, the
ambient space at points of & \ Uf:z H; is smooth, and the standard

Jacobian criterion can be applied to see that S is also smooth at these

points. To compute the multiplicity of &, we consider a generic point
Q = [(0,a2,...,a,)] in &\ Uj_, Hi with a; € C*. The order of its

stabilizer subgiroup is gfzd(el, %, A %) and, as germs, (Up, Q) =
(X (e1;—1, "2—262, cey "fl—fb), Q) equals

(33) (X(gcd(el,n;fz,...7n262);—1,0,...,0>7Q):((C-‘],O).

Ng
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Under this isomorphism, the function gcgng: Uy — C becomes z)?: CI —
C with

n2 B2 B2
Ny = e o lem P na,...,MNg
ng(el, na 7"'7Tg) 2

the required multiplicity.

Points in the intersection E2MH,. The order of the stabilizer subgroup of
apoint Q2=[(0,0,as, ..., ay)] €E2NHy is ged (e, "Z—f% e ,"Z—ih) Chang-
ing the variables as in (26), one gets the following situation at [(zg,z2)]:

S = X<gcd<61, nQﬁQ,..., nzﬂz); —1,52>
ns

Ng

(34) N
52:563252 =0, Hy:x9=0,

and the total transform of Y defines a Q-normal crossings divisor around
these points.

Points in the intersection E2NE. These points cannot be seen in the first
chart. Therefore, we consider the second chart U; where the exceptional
divisor & corresponds to zo = 0; it is given by

1 1 1
R T v
2 e

b 5 n
K@l 762 g 0 ‘e 0

via
b pl) b(D)
(o, @2, ..., xg) > (ToT2, Ty , 5" T3,..., 257 Ty)

A point Q12 € & N & is in this chart of the form [(0,0,as,...,a4)]
for some a; € C*. The stabilizer subgroup of @15 is the product of two

o) (1) = = (1)
cyclic groups of orders gcd(%, - %) = % and %61 =
(n2f2—n1P1)eq, and one obtains the following local situation around Q12

in the variables xy and xs:
TL2B2 - nlBl 1 1
G— x| lem(ng,...,ng)
(35) (n252 - nlBl)GQ —Ba n%
E1:al =0, &:al*P =,
Hence, the total transform ¢, * (¢ () has Q-normal crossings at each

of the points in the intersection & N ;. Note that these data are com-
patible with the case g = 2.



THE MONODROMY CONJECTURE FOR A SPACE MONOMIAL CURVE 577

The point P, = E&3NH; fori=3,...,g. This point considered in the first
chart Uy = X (e1; -1, 2By ,"2—?) is given by P, = [(0,1,0,...,0)],

ng n
n252

and its stabilizer subgroup has order ged (61, ) =e5. Hence, as germs,

(X(el;—l, "252,...,"262)7192) - (X(eg;—l,O, "QﬁQ,...,mﬂz),PQ).

o Ng ns Ng

The idea is to follow the same procedure as the one we used for the
point P; in Step 1. We use the change of variables zo — x5 + 1 and
x; > x; for i =0,3,...,g to get a chart centered around the origin and
we discuss two cases separately.

If g = 3, then & is irreducible, and using the Implicit Function Theo-
rem, one easily sees that S ~ X (ng; —1, "2—[32) with variables [(zo, x3)] on

which H3 = {x5 = 0} and the total transform of Y is given by x”zgz(

)
;vg ) = 0. The first factor represents the exceptional divisor &, and the

other the strict transform of Y.

n3_
T3

If g > 4, then the germ (SLP2 =[(0,...,0)]) can be described inside the
ambient space X (e2; —1, ”fL—fQ, e ”;—[32) in the variables xg,3,..., 2,4
by equations of the form ‘

(36)
(2) (2) (2)
2 —ag M@l — g al®) + (a5 — g )RS (w0,5) = 0

( bys b( ) bs3 .bsa n3 bé2) (2) —
2t =zt 2 4 Ay (205 — a2l 4 (28—l )R w0, 3, 24) =0

b b b b b
xzifll _ xog*1x3(9*1)3 .. .‘rg(_ggl)(gfz) _|_A ( Ng _ xog xgg?’ L $g$i(g171))
b(z) (2 )

+(x5® — xy® )R 1(zo, 23, ..., xg—1) =0,
where REZ)(.TQ7.’)L‘3, ooy x;) € C{xg,x3,...,2;} foreach i = 3,...,9 — 1,
and with REZ) (0,z3,...,2;) =0, and the total transform of Y is given by

)
3?82'62 (LL'?‘; _ mbs ) -0

nofB (2
2P2 Mg
Sl €

(37)

(
nafa g 9=\
xy? 7 (xg? — xy ez 2TY) = 0.
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Here, xgzﬁ ? = 0 corresponds to the exceptional divisor &, and x; = 0
to H; fori=3,...,9.

The composition ¢ o @9 is an embedded Q-resolution of Y C S ex-
cept at the point P,. Hence, in Step 3, we will blow up at this point.
If g = 3, this third step will finish the resolution. If g > 3, one sees in (36)
and (37) that x2 is eliminated and that the situation is the same as in the
beginning of Step 2 but in one variable less; see (31) and (32). The idea
is to repeat this procedure until we obtain a cusp in the (¢ — 1)th step
in a cyclic quotient singularity with variables zy and x4. Then, one ad-
ditional blow-up resolves the singularity. Because the next steps will be
essentially the same as Step 2, we consider all of them simultaneously in
Step k for k > 2.

5.2.3. Step k: weighted blow-up 7, at Pr_; with weights wy.
Let k € {2,...,g} and assume that the first ¥ — 1 blow-ups have already
been performed. Recall that we denote by &1,...,Ex—1 the exceptional

divisors of the corresponding weighted blow-ups ¢1,...,pr_1 with re-
spect to the weights wq,...,wr_1, respectively. We again consider two
cases.

If k = g, then at the end of the (¢ — 1)th step, the total trans-

3 (9—1)
form (o1 0--- 0@, 1)7'(Y) is given by xgﬂ—lﬂg‘l(x’;g - a?gg )=0in

S = X (ng—1, ”g%fg’l) around Py_; = [(0,0)]. The blow-up m, = ¢,
b;g—l)

at P,_; with respect to wy, = (1, ) yields an irreducible excep-

tional divisor &, = IP’&Q (ng; —1, M) ~ P! with multiplicity N, =

'n,g
ng_lﬂ_g_l + bég_l) = ngﬁg. The intersection £, N H, consists of a sin-
gle point, and the equation of the total transform of ¥ at this point is
xggﬁgz X (ng;—1,B4) — C. The intersection & N &, consists also of
one point around which we have the function

_ B ”959—”9—159—1 1 -1
xg“”lﬂg’lzggﬁgz X 9 _ — C.

ngﬁg_ng—lﬁg—l _/Bg ng_;fg_l

Finally, the strict transform Y is smooth and intersects &, in a transver-
sal way at a smooth point of S, Hence, the morphism ¢ := ¢ 0---0
Pg: S — S defines an embedded Q-resolution of Y C S ¢f. Figure 2.

Assume now that 2 < k < g — 1. In the first chart of ¢_1 centered
at Pr_1, one has

Peoy = [(0,...,0)] € X (ex—1; -1, USTEST ”k—lﬂk—l)
ng Ng
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in the variables (zo,2k,...,%,), and the strict transforms S and Y
are given by equations as in (31) and (32), respectively. The strict
transform &;_1 is given by x""ﬂ" =0, and H; = {x; = O}HS for i =
k,...,g. Let m be the Welghted blow-up at P,_1 with respect to wy =

b b (k—1) e T
( TR )7 where b, =nkBr—nk_10k_1 is divisible by ex_1 =
NEek = Mg - Ng. Let Ey ~ Pi:k_H (6k,1; -1, nk_rllfk_l sy nk_:lfk_l)

be the exceptional divisor of 7, and let ¢y, := mx|4: S — S be the re-
striction map with exceptional divisor £ := E;N.S. Once more, we split
the exposition in different parts.

Global situation. The new exceptional divisor &, is given in homogeneous

k+1 nk_1Bk_1 nk—1Bk_1
coordinates [z : zj : -+ 1 wg] €PYF T (ep_1; -1, e P )

by the equations

ng bL’“’“ N4l
Tk — 1 + A1z, =0

nk+

(38) D1+ Aeeay =0

7Lg 1+Ax’n970

and has
Nkg41-°Ng _ CL
lem(ngy1,...,ng)  lem(npyr,...,ng)
irreducible components that contain the point P, = [1:1:0:---: 0]

and are pairwise disjoint outside Py by Proposition 5.1. Note that & is
irreducible if k = g—1, and that P, =&, NH; fori =k+1,...,9. With
Proposition 5.1, one can also compute that & has

€k—1
lem(ng,...,ng)
intersections with £,_1 and
B
B
lem(CE, k1, ..., ng)

with Hj, where the cardinality of & N &;—1 is precisely the number of
components of _1. Furthermore, Proposition 5.4 tells us that the com-
ponents of &1 are disjoint, and that the intersections of & and &_1
are equally distributed. Lastly, the strict transform ¥ of ¥ and & in-
tersect in the single point Py. In the next step, we will blow up this
point.
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Points in & \ (51@71 UL, Hl) Outside the coordinate axes of &, the
Jacobian criterion can be used to check that $ is smooth. Studying the
stabilizer subgroup of a generic point in & \ (51971 UL, Hi) using local
equations in the first chart as in (33), one can compute the multiplic-
ity N of &, which is equal to lcm(f—:,nk, e ,ng).

Points in the intersection &, N Hy. The local situation around these
points can be studied from the local charts as in (34) and becomes at
[(zo, zx)] the following:

S = X(ng<ek—la nkﬂk PR nkﬂk)7 1’6k>
(39) Mht1 ng

5k:$gk6k :0, HkZCL'kZO.

Clearly, the total transform of Y under ¢ o0- - -opy, is a Q-normal crossings
divisor around these points.

Points in the intersection &, NE;—1. Using the second chart on which &
corresponds to x = 0, the local equations at these points are given by

nkBk: - nk—l/@k—l

1 -1
G- x lem(ng, ..., ng) ;
_ — — N _
(40) (niBe — k1 Pre_1)er | —Br  — rlzkk :

En_1 :966”‘”’1/3"’1 =0, &: xzkﬁ’“ =0,

cf. (35), and the total transform of Y has again Q-normal crossings at
each of these points.

The point P, = E N H; fori=k+1,...,9. After centering the first
chart around P, we distinguish for the last time two different cases.

If k=g¢g—1, then S ~ X(ng; -1, n"%fg’l) in the variables xo and z,.
The total transform (¢10---0p,_1)71(Y) of Y is defined by the equation

ng—1Bg—1,. 1 bl b . .. .
zy? 189 Yz —xy* ) = 0, where the exceptional divisor &, is given

ng—lBg—l (g—1)

. b
by x, = 0, the strict transform Y by x;g -z’ =0, and H,
by x4 = 0.
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If 2 < k < g—2, then S is locally around P, = [(0,...,0)] in

X(ek, 1, ZZf’; ,”Z—f’“) with the variables xo, Zgy1,...,24 given by
equations of the form
Nkt1 bgﬁ& k42 bl(c]‘22 b(k+2)(k+1)
it = 2" A Apa (24 — 2 k+1 )
Nk+1 k+1 _
(' — )Rk+1(x07xk+1) =0
by b b b b
Nk+2  ht2 (k+2)(k+1) N\ (x"ws — ks (k+3) (k+1) <k+3)<k+2>)
k42 0 k+1 k+3 k+3 0 Tkl Lto
k41 k+1 (k)
(@i — VR o (20, Tyt Tha2) =0
b b o b b b
Mg—1 gfl (g—1)(k+1) (9—=1)(9—2) g g g(k+1) 9(g—1)
Tg—1 —To Ty g o "')\ (29" —mo” 2 [0 )
Tgt1 k+1 (k) -
+(xk:+1 - )Rg 1(x07xk:+1a"'a$g—1) - 0’
k e .
for some Rg )(1‘0, Tht1s- - 2;) EC{xg, k41, - . ., ; } satisfying the condi-

tion that ng)(O, Zk41,- - -, 2;)=0. The total transform of Y is defined by
(%)

b
e Br [, Mkt1 k+1Y) _
Lo (xk—',-l —x5") =0

kBl (M b by

kPk +2 +2 —
Lo ($k+2 Ty Ty )=0
= (k)

ngBr (Mg g bg(k+1) bgg—1)y _

o (2g° — 7 k+1 g1 )=0

where & —{x"’“ﬁ’“ =0}and H; ={z; =0} fori=k+1,...,g.

To conclude, we have exactly the same situation as the one we had at
the beginning of Step k£ but in one less variable. Further blowing up at
the point Py and repeating this procedure will lead after g steps to an
embedded Q-resolution of Y C S as illustrated in Figure 4.

Q11 Qo
e
0. Q2
Q3 £,
&
1.9
Y _‘# Eg—2
gg Qg &771
5.{/71

FIGURE 4. Resolution of Y C S.
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5.3. Main result. We summarize the previous construction in the fol-
lowing result.

Theorem 5.8. Let Y C CI9t! be a space monomial curve defined by
the set of equations (4) with g > 2, and consider Y as a Cartier divisor
on a generic surface S = S(Aa,...,\y) C CIT! given by (12), where
(A2,...,Ag) are chosen such that Section 4 applies. There exists an
embedded Q-resolution ¢ = @1 0---0gy: S S of Y C S which is a
composition of g weighted blow-ups py with exceptional divisor & such
that the pull-back of Y is given by

gO*Y = }A/ + Z Nk&cj,

1<k<g
1<j<rg
where & = Ek1 + -+ + Ekr,, 5 the decomposition of & into ry =
Mneik ifk=1,...,9—2 and ry_1 = r, = 1 irreducible com-
kt1seeesMg) g g

ponents, and Ny = lcm(f—:,nk,...,ng) is the multiplicity of Ex. Fur-
thermore, each divisor &, for k = 2,...,9 — 1 only intersects Ep_,
and Ex41, and &, only intersects Eg_1. Finally, for every k = 2,...,g,
the intersections of Ex—1 and & are equally distributed; each of the com-
ponents Ey; of & inlersects precisely r’;—;l components of Ex_1, each
component E,_1y; of Ex—1 is intersected by only one of the components
of &, and each non-empty intersection between two components Ej;
and Ey,_1)j consists of a single point. In particular, the dual graph of

the resolution is a tree as in Figure 5.

&

FIGURE 5. Dual graph of the resolution of Y C S.
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Remark 5.9. Besides the monodromy zeta function, this resolution could
also be used to compute other invariants associated with the curve sin-
gularity Y C S, such as the mixed Hodge structure on the cohomology
of the Milnor fiber.

6. The monodromy zeta function of a space monomial
curve

Using the embedded Q-resolution ¢: S — S of a space monomial
curve Y seen as a Cartier divisor on a generic surface S constructed in
the previous section, we will now compute the monodromy zeta func-
tion of Y. More precisely, we will compute the zeta function of mon-
odromy Zy'g" (¢ )of Y C S at the origin with the A’Campo formula from
Theorem 3.3 in terms of ¢. To this end, we still need to stratify the
exceptional divisor such that the multiplicity defined in (8) is constant
along each stratum, and compute the Euler characteristic of these strata.

With Figure 4, we define a stratification of the exceptional divisor as
follows. The first set of strata are the points of the intersection & N Hy,
which we will all denote by Qo; there are

Bo

lem(nq,no, ..., ng)

such points; see (24). From (27), we know that the local equation of &

at each Qg is given by z7: X(gcd(n1 A RRRE nlg), nlo, 71) — C. Hence,
the multiplicity m(&y, Qo) is equal to
n
m(&o, Qo) = =lem(ni, ..., ng).
ged(2 2 )
Analogously, each point in an intersection & N Hy for k =1,...,¢g will
be a stratum denoted by @y, the total number of such Qy, is
B
lcm(f—:, Nty - - - ,ng)

and the multiplicity at each such point is

m(Ek, Qr) = lcm(%,nk+1, e ang)'

Remark 6.1. For g = 2, the resolution was already illustrated in Fig-
ure 2, together with the order of the underlying small group at the
points Qq, Q1, and Q2. This provides another way of computing the mul-
tiplicity at these points. For example, at QQg, we know that & is given
by 211 X (ged (-, )5 =, ~1) — C. Using the morphism [(zo,21)] —

' ng?
[(wo, 27°2"12)], the space X (ged (-

.n

) o 71) can be normalized into
ni ) no ) n07
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X(ZL’—O; i 71) on which & is locally given by the function :cl""”ﬁ” .
. 02 . mo2M12 . ..
This yields the same multiplicity. In general, one could also first nor-

malize the space around the points to compute the multiplicity.

Another set of strata are the intersection points & N ;41 for k =
1,...,9—1, denoted by Qx+1). For every k =1,...,g— 1, the number
of points Qy(x+1) is equal to the number of irreducible components of &y,
see Theorem 5.8, and the multiplicity at these points can be computed
from the results in the previous section: for example, if g >3 and k=
1, it can be computed from (35) with the more general definition of
multiplicity introduced in [22]. As these strata will not contribute to the
zeta function of monodromy (see Theorem 3.3), we will not go into more
detail. Similarly, the intersection point £, N Y is a stratum that we do
not have to consider. The last set of strata are the parts of the irreducible
components & for j =1,...,7r; of & for each k =1,..., g that are not
yet contained in the previous strata. Because all &; for fixed & have the
same behavior, we will consider them at once; we introduce

51\((51 ﬁH())U(gl ﬂHl)U(Slﬁgg)) for k=1,
Eri= 1 E\((Ex N HE) U (Ex NE1) U (Ex N Epyr)) for k=2,...,g—1,
EN(E,NH)U(E;NEG_1)U(E,NY)) for k=g.

The multiplicity along each of these ‘strata’ & is equal to the multiplicity
of & given by Ny = lcm(e—:,nk, e ,ng). It remains to compute their

Euler characteristics.

The Euler characteristic of f:'g is easy to compute: as £, ~ P!, we
find x(€,) = —1. The other Euler characteristics can be computed from
the following proposition, in which we work in the same situation as
Proposition 5.4. Because of the symmetry in the variables za,...,zg,
the result is written in such a way that it is independent of the choice of

chart in the proof; cf. Proposition 5.1 and, in particular, Remark 5.3.

Proposition 6.2. Consider the quotient IP’zp0 pr)(d; ag, ..., a.) of some
weighted projective space IP’po ) under an action of type (d;ag, . .., a,)

with r > 2. Let £ be defined in this space by a system of equations
xg® "t + a3 =0

m2 ms3 _
Tyl +x3°=0

My—1
r—1

T +az'r =0
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[$)3
(0]
o

for positive integers m; such that d | a;m; for i = 0,...,7 and such
that each equation is weighted homogeneous with respect to the weights
(poy--.,pr). Assume that the intersection of € with {x; = 0} for i =
2,...,r only consists of one fixed point A, and that a;p; — a;p; = 0 for
alli,j € {1,...,r}. Then, x(£\ U,_o{z; = 0}) is given by

_ml My - ng(dP : (p07 e 7pT)7 (pOQ - a‘OP) . (p17 cee 7pT))
dpop ’

where P = [[;_y pi and Q = a; [[j_) j4;pj fori=1,...,r.

To prove this result, we will reduce the problem of computing this Eu-
ler characteristic to computing the less complicated Euler characteristic
considered in the next lemma.

Lemma 6.3. Let C in ]P’(on . pz)(d; ap, a1, a2) be defined by a single
equation of the form x('"° +x" + x5 = 0 which is weighted homogeneous
with respect to the weights (po, p1,p2). Put K = pomgo = p1my = pama,

and let M; for i =0,1,2 be the 2 x 2-minor of

Po P1 D2
ag ar az)’

where the column of p; is removed. Then, we have

2
K? - ged(d - (po, p1,p2), Mo, My, M>)
C .’L'z — O — b b b b b
X< \lL_JO{ }) dpop1p2

Proof: We will once more simplify the problem of computing this Euler
characteristic by looking at an easier Euler characteristic. More precisely,
we consider the curve C' in P? defined by z{ + 2 + 25 = 0. As this is
a smooth curve of degree K, we know its genus

o(@) = EZIEZ2)
and, hence, its Euler characteristic x(C) = 2—2¢(C') = —K?+3K. Since
each intersection C' N {z; = 0} for i = 0,1,2 consists of K points, we
find that x(C'\ U?_y{z; = 0}) = —K?. From this result, we can deduce
x(C \U?:O{xi = 0}) by considering the well-defined surjective morphism

2 2
h: P2\ LJ{a:Z =0} — P?po,phm)(d; ap, a1, az) \ LJ{xZ = 0}:
i=0 =0

[0 : x1 : xo] > [ap 2"+ 2h?)

)
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under which A~ (C'\ U?:O{xi =0}) = C’\Ufzo{xi = 0}. We claim that
h is a covering map of degree

D= dpop1p2
ng(d . ng(p07p17p2)7 MOa M17 MQ) ’

Then, indeed,

X<C \ CJ {z; = O}) - X(é \ U?:O{xi = 0})

D

K? - ged(d - ged(po, p1, p2), Mo, My, My)
dpop1p2 .
First, to show that h is a covering map, one can see that it is enough to
show that h is a local homeomorphism. To prove the latter, we can work
locally around a point x € P2\ Ufzo{xi = 0} by considering the chart
where ¢ # 0:

2
ho: C? i=0} — x| I
o €\ Ut =0) (o

ASANIVERT

($1, $2) — [(xlfl ) 331272)]

Because X (gm | M, 07, ) \Ule{xl = 0} is smooth at hg(x), we can

further reduce to showing that
2 2
(€2\ Ut = 0,2) — (C\Uts = 01, ho(@) ) s (1, 22) v (af, 28?)
i=1 i=1

is a local homeomorphism, which is clearly true. Second, to find the de-
gree of h, we can still work with hg on the chart where zy # 0. Because
the morphism hg can be decomposed into the morphism o: C? — C? de-
fined by (21, 2) — (21", #52) and the projection pr: C2 — X (g | 7, 17, )
its degree is equal to the product of the degrees of o and pr. Clearly,
the morphism o has degree p;ps. For the degree of pr, the result in [5,

Lemma 5.1] tells us that this is equal to

dpo
ng(d ! ng(pOaplaPQ)a M07 Mla MQ)
Together, these degrees yield the correct expression for the degree D. [

In the proof of Proposition 6.2 we will work similarly as in the proof
of Lemma 6.3: we will construct a covering from which the Euler charac-
teristic of £ \ U;_y{xi = 0} can be easily computed. To find the degree
of this covering, we will use the following lemma.
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Lemma 6.4. Let r > 2 and consider a cyclic quotient space X of the

formX(k,kO ,k—Ii) where k, ko, ..., ke | K. Let £ in X be defined by
+:rk1 =c
x’gz =y
zhr =,

for some constants ¢; € C\{0}, and denote by N its number of irreducible

components. Consider also the cyclic quotient space X = X(%; k%? k—li)

and € in X defined by the single equation xlgo + ac]fl = c1. The degree
of the projection pr: €\ U;_o{zi = 0} = &\ U;:o{xi = 0} given by
(o, ... x)] = [(xo,x1)] is
KN - gcd(k,k ) kﬁ)
K K K K"
keged( i 1) - eed (5 500 1)

Proof: First of all, the projection pr is a covering map: as in the proof
of Lemma, 6.3, it suffices to see that pr is a local homeomorphism around
every point = € €\ J_y{z; = 0}. In this case, because X and X are
smooth around z and pr(z), respectively, the problem is equivalent to
showing that the projection

=0
c ((CT“ \ U{x - 0},x) — (é\ O{xi - 0},pr(:c))
i=0 =0

& (€2 Utes = 0} e)
=0

is a local homeomorphism, which is again easy to see. To compute the
degree of pr, we count the number of elements in pr—!([(ag,a;)]) of a

point [(ag,a1)] € €\ UZLO{%' = 0}. These elements are of the form
[(gﬁao,gﬁal,bg,...7br)] for some & € i and b; € Cfori=2,...,r
satisfying bf = ¢;. Note that the irreducible components of £ are pair-
wise disjoint and given by {[(zo,1,ba,...,b,)] | zk0 + 2% = ¢} for
some ﬁxed solution [(ba,...,b,)] of zh2 — ¢y = .- = 2k — ¢, = 0
in X ( o) k2 ) It follows that the degree is equal to the product
of the number N of irreducible components and the number of points
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(€% a0, €8 an,ba,.... b)) for some € & e and. fixed [(ba,-..b)] €
X(%; %, L k—fi) Working analogously as in the proof of Lemma 5.2,

the latter number is equal to

(€%, 67)€ € pc |
[Im A ’

where h is the group homomorphism h: pigeqex x ) — {(5%,5%) |
Y ko ) Ky

e ,u%} given by n — (77%717%) with kernel Pocd(I6, £ . ) Finally,

an easy computation gives that

K K K
MR8 [ e pghl = ——
L

K K\’
ng( %o H)
and we find the degree stated in the lemma. O

With these two preliminary results, we are now ready to prove Propo-
sition 6.2.

Proof of Proposition 6.2: For r = 2, the result follows from Lemma 6.3
in which My = aips — asp; = 0. For » > 3, we work similarly as in
the proof of Lemma 6.3: we will show that the well-defined surjective
morphism

T 2
h:E\U{xizo}HC\U{xizo}: [Zo i ... x| > [20 @y 2 22,
i=0 i=0
where €' = {af + 2T + 2§ = 0} C P, (d:ag,01,a2) is & D-
sheeted covering with

ms - --my - ged(dpz - (pos - - -, pr), (@2po — aop2) - (P1, - - -, Pr))

p2 - ged(d - (po, p1,P2), a2po — aop2, G1Po — AoP1)
Together with Lemma 6.3 applied to C with My = 0, we find that
x(E\Ui_o{zi = 0}) is given by

(a1) M ged(dpz - (po, - - -, pr), (a2po — aopz) - (p1, - - -, pr))
dpop2

D =

This can be rewritten as the formula in the statement. To show that
h is a covering map, it is once more enough to show that h is a local
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homeomorphism. This time, we consider the chart where x5 # 0. This
gives

r 1
ho: g/\ U {.’EZZO}—)C/\U{$1:0} [(1’0,%1,%37 ce ,l'»,‘)]l—> [($07£L'1)],
i=0, i72 i=0
where &£’ is given by

0+ +1=0

14252 =0
o amr =0
in the embedding space
X<P2 Po P1 P3 ... Pr>
dps | =My 0 0 ... 0 )’
with My = aspo—aops, and C’ by {z{"+2*+1=0}in X (42, | ¥, 0 ).

Because the embedding spaces of £ and £’ are smooth outside their
coordinate hyperplanes, one can conclude by working similarly as in
Lemma 6.4. To prove the correct formula for the degree of h, we again
consider the chart where x5 # 0. The morphism hs can be further sim-
plified with an isomorphism

D2 Po PpP1 P3 ... Dr dpop2
X :X< ; b b PR ] T)
(dp2 “M; 0 0 ... 0 ) P2 o cd(dpa, My) PE PSP

as in (16) under which £’ is transformed into

mq ged(dpg, My)
d;
x, " +2" +1=0
1 +$m3 _

m, 1+xmr_

Using the corresponding isomorphism on the embedding space of C’
under which € is transformed in the same way as £, we arrive at
the situation of Lemma 6.4 with K = m;p; for i = 0,...,7 and N =

B g;f(pz"“’p") (see (15)), which leads to the degree D. O

Corollary 6.5. Fork=1,...,g, the Euler characteristic of & is given by

lcm( B nk,...,ng)




590 J. MARTIN-MoORALES, W. VEYS, L. Vos

Proof: For k=g, we already know that X(gg) = —1. Because ged(By, ny) =

= 1, this is the same as the expression in the statement. For k = 1,
by construction of the resolution, & is isomorphic to & \ U%_y{z; = 0}
in P9, after the first blow-up. From (41) in the proof of Proposition 6.2
applied to the set of equations (22), we indeed find that

X(g):_nlu-nggcd(nﬂo,...,%):_ nifr
! nlo lcm(& nl,...,ng)’

where we used that n=mn;3; and relation (2). If g>3 and k€{2,...,9—1},
the Euler characteristic of &, can be computed from (38) in the same
way. O

We are finally ready to compute the zeta function of monodromy
associated with a space monomial curve Y c C9+1,

Theorem 6.6. Let Y C CI9t! be a space monomial curve defined by
the set of equations (4) with g > 2. Consider a generic embedding sur-
face S = S(Aa,...,\g) C C9* given by (12), where (Na,...,Ny) are
chosen such that Section 4 applies. Denote by o: X' — C9! the blow-
up of CITL with center Y and by S’ the strict transform of S under
o. Then, the monodromy zeta function of Y considered in CI9t! at the
generic point p = S"No~1(0) is given by

i

g o
[T (1 ey
mon k=0
ZY,; (t) = g Bk )
10— )%

k

1

where, for k=0,...,g, Mk:zlcm(f—:,nk+1,...,ng) and, fork=1,....g
Ny lcm(ﬂ’“ nk,...,ng),

Proof: This immediately follows from all the results in this section: the
strata Qy for k = 0,...,g yield the factors in the numerator, and the
‘strata’ & for k =1,..., g yield the factors in the denominator. O

We illustrate this theorem with two examples, in which we already see
that every pole of the motivic Igusa zeta function induces an eigenvalue
of monodromy. In the next section we will prove this in general.
Example 6.7. (i) The irreducible plane curve given by (2?2 — 23)% —

xiz1 = 0 has (4,6,13) as minimal generating set of its semigroup,
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and leads to the space monomial curve Y; C C? defined in three vari-
ables (g = 2) by

2?2 —23 =0

z3 — xjz1 = 0.

The expression for the monodromy zeta function in Theorem 6.6 gives

guon (o~ A=FPA-©)1—119) (- 2219

Yi,p1 (1 _ t6)2(1 _ t26> (1 _ tﬁ)(l _ t26) ’
In [26, Example 4.1] it was shown that the motivic Igusa zeta function
of Y7 has three poles: L2, ]L%, and L3 . Every pole L™% of these three
induces a monodromy eigenvalue €270 ¢~47 is a zero of Z{2°0 (t), while

—8mi —37mi
e~s and e” 13 are poles of Zy:%) (t).

(ii) Consider the space monomial curve Yo C C* associated with the
plane curve defined by (22 —23)2—z571)? 20 (22 —23) = 0, whose semi-
group is minimally generated by (8,12,26,53). Its equations are given
by

23—} =0

x5 —adw; =0
23 —xlzy = 0.
Using Theorem 6.6, we find
(1 _ t2)4(1 _ t6)2(1 _ t26)(1 _ t53)
(1 — 6)4(1 — ¢26)2(1 — {106)

2y, (T) =
_ (1 _ t2)4(1 _ t53)
B (1 — 6)2(1 — 26)(1 — ¢106)”
The poles of the motivic zeta function of Yo were also computed in [26,
Example 4.1]: they are given by L3, ]L%, ]L%, and LT06 . Similarly as in
the previous example, it is easy to see that they all induce eigenvalues
of monodromy associated with Y5.

7. The monodromy conjecture for a space monomial
curve

This last section consists of a proof of the main result in this article,
namely the monodromy conjecture for a space monomial curve ¥ C
C9*t! with g > 2. In other words, we will show that every pole =% of
the motivic Igusa zeta function associated with Y yields a monodromy
eigenvalue €275 of Y.
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In [26] it was shown that a complete list of poles of both the local and
global motivic Igusa zeta function of a space monomial curve Y C C9*!
is given by

L9, L%, k=1,....q,

where
1
(42) nkﬂk (Z B — Z mﬂz) -1+ l:;l o

and N = lcm( M, ...,Ng). Clearly, the first pole, LY, and the

Vk

poles ]LNk with € N induce the trivial monodromy eigenvalue 1.
We claim that for every k=1,...,g with ]’Q—’; ¢ N, the candidate mon-

odromy eigenvalue e —2miy is a pole of the monodromy zeta function
of Y computed in the previous section.

Remark 7.1. It is possible that ’Z is an integer for some k € {1,...,g};
for example, the space monomial curve Y C C? defined by

23— =0
2§ — 2’21 =0
corresponds to the generators (12,18, 37) with g = 1.

To prove this claim, we will not work directly with the monodromy
zeta function of Y at the point p = S’ N o~1(0), but we will again
consider Y as the Cartier divisor {f; = 0} on a generic surface S. All the
interesting information is contained in the characteristic polynomial A(¢)
of the monodromy transformation on #!(¢)¢, C*)¢. From Theorem 6.6, it
follows that

(t=1) [T (¢% - )&
A(t) = =1 -
(1 — 1)

ol
[

is a polynomial of degree p = 14+ > 7_,(nx — 1)Br — Bo > 0. Hence,

if we show that the candidate monodromy eigenvalue e 2Ty #1lisa
zero of A(t), then it will be an eigenvalue of monodromy associated with
Y C C9*1 at the generic point p = S’ No~1(0).
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Theorem 7.2. Let Y C CI9t! be a space monomial curve defined by
the set of equations (4) with g > 2, and denote by o: X' — CI9*1 the
blow-up of CIT1 with center Y. Every pole L.™%° of the local or global mo-
tivic Igusa zeta function associated with Y induces a monodromy eigen-
value €2™%° of Y at a point in o~ (BNY) for B a small ball around 0.

Proof: It remains to show that every A\p := e_QMZVT]Z for k =1,...,9
with <& ¢ N is a zero of the characteristic polynomial. To this end we
will wrlte A(t) as the product of g polynomials of which each has one of
the elements Ay as a zero. More precisely, we will write A(¢) as a product
of polynomials of the form
(t® — 1)P - (¢8ed(d:e) _ 1)ged(ar)
GEVNCES I

where a, b, ¢, p, ¢, and r are positive integers with b,c | @ and ¢, | p.

For this purpose, let Ly := lem(ng,...,ny) for & = 1,...,g and let
Lgiq := 1. With the definitions N}, = lcm(ﬂ—’c Ny - - - ,ng) and M, =
lcm(ﬁk Tkt Ly -« s ng), it is easy to see that My, Ly | Ny and that 1\%7 ez?

"I@—ﬁ’“ forall k=1,...,g. Furthermore, we have for all k =1,..., g that
k

ng(MkyLk‘) = 1Cm<Lk+1,ng(f:, nk)) = Lk+1,
where we used in the first equality the general property
ged(lem(ay, ), lem(ay, 6)) = lcm(a ged(7, 9)),

and in the second equality the fact that gcd( nk) =1; see Section 1. Fi-
nally, using relation (2) and ged(fBy, ex_1) =ex, we see for k=1,..., g that

ng(ﬁk 2= 1):gcd(ek, B - B en1 6k—1)

) ) ) )
M, Ly nk+1 Ng Nk Ng
€L €L
= gcd( e —) = .
Nht1 Ng Lyt

All this together implies for each k =1,..., g that
(N — 1) R L (e — )T
Pk (t) = ’k er_1
(th — I)T (th — 1)?
is a polynomial of the above form. It is also easy to see that A(t) =
[Tiy Pe(t).
oYk
Fix now some k € {1,...,9}. We prove that A\, = e TiNY is a zero
of Py(t). Clearly, it is a zero of tM — 1, but we still need to show that
this candidate zero does not get canceled with the denominator. To show
this, we distinguish the following four cases.
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(i) The candidate zero A is not a zero of t*» —1 = 0, nor of t&+ —1 = 0:
trivially, the candidate zero Ay is not canceled in Py(t).
(i) The candidate zero Ay, is a zero of t#+ —1 = 0, but not of t%+ —1 = 0:
in this case, it is sufficient to prove that "ﬁ,ﬂ > J@—k in order to conclude
k k
omi Xk
that Ay, is a zero of Py, (t). Because Ay, = e > % is a zero of tMr —1 = 0,
v M,
we know that & k’“ is an integer. Using the expressmn (42) for £ N , one
can see that this implies that ny /S5 \ (Zl 0/3; Zl 1 nlﬁl)Mk, which

in turn implies, using nifr = ex— 1 \ BiMy, for 1 =0,...,k— 1, that
ng | Mj,. We can conclude that Nk = Mj,, and hence, we 1ndeed have
that "I’i[—[:“>]\%asnk>l.

(iii) The candidate zero A is a zero of tL* —1 = 0, but not of t+ —1 = 0:
ek 1

as in the previous case, it is enough to show that ”’fﬁ ko> . From )\
belng a zero of t** — 1 = 0, one can now deduce that f—: | (Zf;ol B, —

Zl 1 nlﬂl) L’“ . Because e, | B for 1 = 0,...,k — 1, it follows that
Ny = lcm(aa k) | (Zfz_ol B — Zl 1 nlﬁl)

1 1 €k—1
N Z k-1 7 k—1_ 7
k ‘leo Bi—20- ”lﬂl‘
_ {Lll for k=1,
- 1 €k—1 _
*BOﬁLZf:_ll(nL*l)Bl Lx for k = 27...,g

The equality comes from the fact that —Bp+ (ny —1)8; = n1 31 (1 — n%) —
m) > 0 since ng,n; > 2 are coprime. We can finish this case by using

that [‘31 > 50 = e ?Hd ﬂk > *ﬂo + Zl:l (ng — 1)[‘3[ for k = 2,...,q,
which follows from f; > n;_18;—1 fort =2,... k.

(iv) The candidate zero A is a zero of both tL* —1 = 0 and ¢+ —1 = 0:
in this last case, the candidate zero Ay, is also a zero of tL#+1 —1 = 0 and

we need to show that ”’“B’“ + - — A‘%’“ — 2=1 > 0. Combining case (ii)
k+1 k

and (iii), we know that

mbBe | er Br e (nk = 1)By €k—1, €k Ck-1

Ny Ly My Ly _|Zf=_0151—25=_11mﬂ_l| Ly Ly Ly’

which is positive as one can see, similarly as in case (iii), that (ny—1)8, >
a k-1 3 k=1 7

B > ‘leo Bi—> 1 nlﬁl‘ fork=1,...,9.

Hence, every Ay is a zero of Py (t), and consequently, an eigenvalue of
monodromy. O
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Remark 7.3. In the proof of Theorem 7.2, the pole A\, = e 2N could
have been treated way easier. More precisely, the candidate zero A, is
never a zero of the denominator of Py(t), and we are always in case (i).
Indeed, in case (ii), we would have that n, | M, = B,, which is im-
possible. Likewise, in case (iii), we would have the impossible prop-
erty S, | Elg;()l B — Zlg;l ni B because 3, > |Z?;01 B — 219;11 nlﬂl| =
—Bo + Zf’;ll(nl — 1)f3;. For smaller k, however, it is possible that ) is
a zero of the denominator. For instance, we can consider the curve Y;
from Example 6.7 whose characteristic polynomial A(¢) is written as the
product P (t) - Py(t) where

(18 — 1)2(2 - 1)

(6 —1)(t—1)

o= WD 1)

Py(t) =

For A\; = e 5", we are in case (ii): it is a zero of the first term of the
denominator of P;(t), but not of the second. One can also find examples
in which some candidate zero Ay for k < g is in case (iii) or (iv).

One can also investigate the monodromy conjecture for the related
topological and p-adic Igusa zeta function, which are specializations of
the motivic Igusa zeta function. See for instance [11] and [9], respec-
tively, for their expressions in terms of an embedded resolution for one
polynomial, and [37] for their generalizations to ideals. Since the mon-
odromy conjecture for the motivic zeta function implies the conjecture
for the other two zeta functions, we have simultaneously shown all these
monodromy conjectures for our monomial curves.
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