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Abstract— Pigmented skin lesion identification is essential for detecting harmful pathologies related to this large organ, especially 

cancer. An analysis of the different methods and projects developed to diagnose these illnesses throughout the years showed that they 

had become very useful tools to identify melanoma, dermatofibroma, and basal cell carcinoma, among other types of cancer, are seen 

through the use of new computer-aided technologies. The most common diagnosis is based on dermoscopy and the dermatologist 

expertise that can improve accuracy with image detection techniques and classification by computer. Therefore, this study aims to 

develop software models able to detect and classify skin cancer. The following work is based on the use of dermoscopy images obtained 

from the HAM10000 dataset, a database with 10000 images previously tested and validated for research use. The main process is divided 

into three relevant parts: image segmentation, feature extraction (FE) using ten different pre-trained Convolutional Neural Networks 

(CNNs), and Support Vector Machine (SVM) to establish a classification model. According to the results, the models of classification 

performed very well using the image segmentation step, showing average accuracies between 80.67% (Xception) and 90% (Alexnet). In 

contrast to the process without using image segmentation, where no method reached 60%. AlexNet plus SVM model showed the minor 

running time and presented the higher accuracy rate (90.34%) for the correct identification and classification of the seven categories of 

cutaneous lesions taken into account. 
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I. INTRODUCTION

Nowadays, skin cancer is one of the most hazardous forms 

of this disease in humans. In Ecuador, according to the 

Society to Fight Cancer in Ecuador (SOLCA), this illness has 

the highest incidence rate in men and women [1]. Skin cancer 
is found in various types such as melanoma, basal, or 

squamous cell carcinoma, among which melanoma is seen as 

the most unpredictable and the most aggressive, causing the 

major number of death cases and the highest metastatic rates 

[2]. If melanoma is diagnosed and treated in its early stages, 

it can be cured. On the other hand, if it is detected late, it can 

grow deeper into the skin and spread to other parts of the body 

which is called metastasis [2], [3]. Previously, the diagnosis 

of this disease was based on a complete inspection of the 

patient's integument without aids. Nowadays, clinicians use 

devices and computer vision techniques that provide useful 

insights [4]–[8]. Some of the techniques used are confocal 

laser scanning microscopy (CLSM) and optical coherence 

tomography (OCT), and others [2]. Dermoscopy is the most 

common imaging technique used to help dermatologists on 

their assessments, consisting of a non-invasive procedure that 

makes possible the visual examination of subsurface 

structures of the skin [2], [7], [9]. 

Today, it has been possible to develop databases that 

contain dermatoscopic images for research purposes and for 
the development of techniques that can improve skin cancer 

diagnosis accuracy. The International Skin Imaging of 

Collaboration (ISIC) develops repositories of these kinds of 

images (ISIC Archive) for clinical training and supporting 

research. These databases are used to develop biomedical 

imaging analysis tools to classify them among different 

diagnostic categories [10]. The Human Against Machine with 

10000 training images (HAM10000) dataset is a Harvard 
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database collection of dermatoscopic images created in the 

University of Vienna, acquired and stored by different 

modalities. This database has been tested and validated, and 

the pictures are ideal for training computer models. More than 

50% of lesions that the data presents have been confirmed by 

pathology. The rest of the cases' ground truth was either 

follow-up, expert consensus, or confirmation in-vivo confocal 

microscopy [11]. 

Segmentation of skin lesions is crucial for identifying, 

classifying, and detecting melanoma by dermoscopy, 

intending to reduce unnecessary elements that could mislead 
the classification by convolutional neural networks [12]. 

Various pre-processing methods have been applied to 

precisely identify the lesions to avoid complications due to the 

software's poor image quality and reduce errors on CNNs. For 

example, some studies perform lighting correction and 

segmentation steps [13] or analyze regions defined by 

manually delimited tables [14], [15]. It is important to have a 

good resolution dataset for identification and classification 

through computational methods. Since the size of the data set 

is often a limitation because it influences the performance of 

the classification, the lack of data problem is solved by 
applying data augmentation [16], also applying tasks as 

segmentation of the lesion and detection of dermoscopic 

characteristics [17].  

However, when dermatologists perform these methods, the 

accuracy of melanoma diagnosis is estimated to be about 75-

84% , and it depends on the dermatologist's training [2], [9]. 

Due to human interpretation's difficulty and subjectivity, the 

development of computerized image methods is of paramount 

importance. It has become an important research area to 

minimize the errors that result from the visual interpretation 

and the obtention of a better accuracy [18]. 
Image processing allows sweeping abnormalities to get the 

relevant features from the original picture. Besides, to 

produce a more detailed image that contains more information 

and less noise [12], it is crucial to recognize the specific 

pathology that the image belongs to and, consequently, it will 

provide a proper diagnosis [9], [18]. An adequate 

segmentation leads to a better classification of the regions of 

interest, allowing skin pathology to be identified more 

precisely. It also improves image quality and consequently 

contributes to success in CNN's classification algorithm [12]. 

To carry on segmentation in this project, the Otsu method [19] 

consists of the extraction of the object of interest from the 
image background, comparing the values defined by the 

threshold that separates the mentioned components. 

CNN's are a class of deep learning neural networks that 

have been widely applied to image classification tasks in 

medicine [20]. In the last decades, skin cancer detection and 

classification by CNNs have been broadly studied to achieve 

facile and accurate recognition [21]–[24]. However, training 

deep CNNs from scratch for the classification of images 

requires a large amount of labeled training data, extensive 

computational and memory resources, and a great deal of 

expertise to ensure proper convergence, which results in an 
extremely time-consuming process [20]. Considering such 

limitations, multiple methods have been developed to 

recognize and classify images, among which stands out the 

processes 'End-to-end Learning' and the use of CNN's as 

feature extractors, especially in terms of recognition and 

classification of these types of lesions [21]. Certainly, several 

scientific publications have achieved high accuracies for the 

classification of malignant and benign skin pathologies, as in 

[14], [25], [26]. However, it is known that identifying the 

specific category is crucial for a correct posterior medical 

procedure. Accordingly, the present study is based on the FE 

from ten pre-trained CNNs and SVM training for cutaneous 

cancer classification using the HAM10000 database's images 

previously segmented and filtered.  

This article focuses on developing diagnosis software to 

detect and classify seven different kinds of skin lesions. 
Firstly, the image classification of the HAM10000 database is 

done, following a segmentation process of healthy and 

unhealthy images using the Otsu technique, which allows us 

to obtain better precision of the region of interest. Later, the 

segmented images resulting are used for FE using each of th 

ten pre-trained CNNs to carry on SVM training and finally 

achieve a highly precise skin lesion classification model (see 

Fig. 1. 

 

 

Fig. 1 Graphic summary. FE: Feature Extraction, SVM: Support Vector 

Machine 

II. MATERIAL AND METHOD 

This study proposes a method based on 3 key steps for 

developing computational models that can detect and classify 

seven skin pathologies, as described in Fig. 1. First, the 

classification of images consists of obtaining the dermoscopic 

images and classifying them according to the pathology that 

each one presents for their posterior use. The following step 

consists of image processing and filtering, based on applying 

filters and segmentation techniques on images to delete or 

obtain some essential features for the next step. Finally, FE 

and SVM processes, where the images are classified through 
different models, determine which one has the best accuracy.  

A. Skin lesion images 

The database used to work up the neuronal network models 

is the HAM10000 dataset [11] for previously exposed reasons. 

It includes all relevant diagnostic categories of pigmented 

lesions. Actinic keratoses and intraepithelial carcinoma (akiec) 

are considered as variations of squamous cell tissue or 

carcinoma. These lesions are commonly non-invasive, are 

commonly devoid of pigment.   Basal cell carcinoma (bcc), 
can be dangerous if is untreated. Different morphological 

variants appear; the lesion may be darker but still like 

translucent [3].  Benign keratosis-like lesions (bkl), is 

commonly a non-cancerous skin lesion that originally appears 
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in the outer layer of the skin. They could have various colors, 

from light ones to black.  Dermatofibroma (df), is a skin lesion 

consider benign. Its most common presentation is with lines 

at the periphery with a central white patch. Melanoma (mel), 
is a malignant cell growth derived from melanocytes that may 

have different variants. It can be cured in an early stage, but 

they also could be invasive and very harmful, generally have 

non defined shape [1]. Melanocytic nevi (nv), is a benign 

lesion made of neoplasms melanocytes and appear in different 

forms. Finally, vascular lesions (vasc) range from cherry 

angiomas to angiokeratomas and pyogenic granulomas, 
including hemorrhages. These are dermatoscopically 

characterized by red or purple color and well-defined 

structures [11]. 

The database consists of three components: two folders 

containing all the images and the metadata. The downloaded 

images were found out of order, so the first step was to order 

each image within each folder according to the 7 pathologies 

present. 

The parameters describing the metadata are: ‘lesion_id’; 

that is the numeration inside the database, ‘image_id’ or the 

unique number for each picture, ‘dx’: skin illness categories 
of the dataset, ‘dx_type’; that is the method used to confirm 

the illness diagnostic, age, sex localization; place of the body 

in which the lesion appears. The important parameter for 

ordering the images, in this case, were ‘image_id’ and ‘dx’. A 

filter was made to obtain only the specific data in each 

pathology category. A new CSV document was created only 

with the pathologies as headlines, and all the images present 

the illness as a column. Once the metadata is organized, an 

algorithm was developed in python that: in the first place, 

creates seven folders with the names of the seven skin lesion 

names of the dataset, and after that, it reads the name of each 
image, compares it with the names in the new .csv file, and 

moves each image into the correct folder, as described in Fig. 

2. 

 

 
Fig. 2 Implemented Python algorithm to order the dataset according to each 

skin lesions category. 

B. Image Processing  

The main challenges of image processing techniques are 

identifying specific features, eliminating noise interference, 

or allowing clinicians to diagnose more accurately and 

efficiently through the use of segmentation results [18], [27], 
[28]. The most common segmentation methods used are 

gradient vector flow (GVF) [29]; split and merge 

segmentation method [30]; edge-based approach [31]; fuzzy-

based split-and-merge algorithm (FBSM) [32], a grouping of 

feature spaces, the histogram threshold, the Pixel-based 

method and watershed technique [21], [30], [32]. The main 

goal of medical imaging processing is to transform them 

through a stable and strong recognition system that allows 

analysis results that coincides with the elements of interest 

[17], [28]. Therefore, the result of the segmentation process 

depends largely on the type of method used and the FE of the 
network analysis. 

In this study, most of the images analyzed from the dataset 

show a notable, light color tone and significantly 

distinguishable features compared to the skin around the 

lesion. These data are of particular importance in our 

proposed procedure. Due to this marked difference, the Otsu 

technique is used as an automatic grouping-based image 

threshold selection. The latter is initially made based on the 

bimodal principle of extracting the object of interest from the 

image background [33]. The threshold is beneficial with a 

high level of contrast images, allowing to identifying specific 

areas affected by various skin pathologies [21]. In the process, 
iterations are carried out through the intensity values until the 

optimum threshold value is found, which is considered the 

separability criterion. The pixels of the skin lesions images 

have been separated into two classes that are foreground and 

background. Pixels above the separability criteria are 

considered in the foreground, while the remaining values go 

in the background.  

Finally, the Otsu process applies a selection mask between 

the background and the plane of the affected area on the 

original image, allowing the regions of interest to be extracted 

with great precision. Therefore, the lesion is isolated, as 
shown in Fig. 3. C, being useful for FE and the following 

training of the classification models. The whole segmentation 

process is represented in Fig. 3.  

 

 
Fig. 3 Image segmentation process. (A) Original image, (B) Otsu technique 

used to create the mask, (C) Final image result applying the mask into the 

original image. 

C. Deep Feature Extraction and SVM Classification 

FE consists of a feature vector acquisition from a specific 

deep layer of a CNN previously trained [34]. In this case, 

AlexNet, DenseNet201, GoogleNet, MobileNetV2, Resnet18, 

Resnet50, Resnet101, VGG16, VGG19, and Xception were 
employed. These CNNs are evaluated on more than a million 

images from the ImageNet database [35] and can classify 

images corresponding to 1000 categories. In this case, the pre-

trained networks were used to classify the mentioned illnesses 

from the settled ones. Therefore, 112 images were used from 

each category from the dataset for FE employing the 
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mentioned CNNs. From this dataset, 70% and 30% were split 

randomly for the model training sets and validation sets, 

respectively.  

After splitting the input dataset, a data augmentation step 

for training and validation sets is performed to fit each CNN’s 

required input properties. It was performed on MATLAB 

using the ‘augmentedImageDatastore’ command, providing 

the needed image size (determined by coding 

‘net.Layers(1).InputSize’) and RGB conversion, making all 

input images compatible with each CNNs input layers. 

Subsequently, the ‘activations’ function was applied to the 
various networks, allowing to carry on the FE by computing 

a deep learning process for specific CNN's layer detailed in 

Table I. Besides, a minibatch size of 32k was implemented in 

GPU memory, and the output feature vectors were placed in a 

column to fit in linear SVM training.  

TABLE I 

CNNS USED AND ITS FEATURE LAYERS.  

CNN Feature layer 

AlexNet fc7 

DenseNet201 fc1000 

GoogleNet loss3-classifier 

MobileNetV2 logits 

Resnet18 fc1000 

Resnet50 fc1000 
Resnet101 fc1000 

VGG16 fc6 
VGG19 fc6 
Xception predictions 

 

Subsequently, the SVM training was carried out using the 

function ‘fit class error-correcting output codes’ (‘fitcecoc’). 

This function returns fully trained multiclass error-corrected 

output data (ECOD) models. Then, ‘fitcecoc’ function 

employed the extracted features to train a multiclass SVM 

classifier utilizing a fast Stochastic Gradient Descendent 

(SGD) solver, setting its ‘Learner’ parameters to be ‘Linear’ 

and one-versus-all coding strategy. After that, the validation 

dataset extractions were accomplished and passed to the SVM 

classifier by the ‘predict’ function. Finally, confusion 

matrices were performed to evaluate the accuracy of each 
model. All of these steps are summarized in Fig. 4. The 

classification models' implementation was done in MATLAB 

2019b and ran on a laptop Lenovo G50-80 Core i7 5th 

generation, Windows 10, 8 Gigabytes (GB) RAM, 240 GB 

SSD. 

 
Fig. 4 Process for the deep feature extraction and Support Vector Machine 

classification of segmented images. 

III. RESULTS AND DISCUSSION 

A. Results Description 

Once performed all the steps previously described, the 

neural networks were validated in the Matlab program. For 

CNN's training, 112 images of the total amount obtained from 
the HAM1000 database per category were used, of which 78 

images represented 70% for training and 34 images 

represented 30% for validation. After segmentation, the 

images were tested with each of the different CNNs plus SVM 

models to prove two important parameters: the mean accuracy 

of each model used and the time each one takes to run and 

give results.  
All the HAM10000 dataset images were classified into 

different folders according to the pathology that each one 

belongs. Then, the metadata was saved in the following 7 

folders with a specific category name and number of images, 

as shown in Table II.  

TABLE II 

NUMBER OF IMAGES CLASSIFIED IN THEIR RESPECTIVE PATHOLOGIES FROM  

THE DATABASE HAM10000.  

Category akiec bcc bkl df mel nv vasc 

N° of 

Images 
327 514 1099 115 1113 6705 142 

 

Comparisons of the time and accuracy for each model 

using images with and without segmentation is shown in 

Table III. They are testing each CNN with the database 
without segmentation show much lower accuracies than the 

processed data. The higher accuracy belongs to AlexNet 

model, with a mean of ~58%. On the other hand, image 

segmentation allows for better accuracies. The lower accuracy 

is about ~81% (Xception), and the highest value corresponds 

to AlexNet with 90.34%. Meanwhile, DenseNet201, 

GoogleNet, MobileNetV2, Resnet18, Resnet50, Resnet101, 

VGG16 and VGG19, performed with accuracies of  90%, 

86%, 84%. 85%, 84%, 89%, 88%, 86%, 85%, and 81% 

respectively. 

TABLE III 

COMPARISON BETWEEN ACCURACY AND TIME SPENT BY THE 

CLASSIFICATION MODELS USING IMAGES WITH AND WITHOUT 

SEGMENTATION 

Classification 

models 

Images without 

segmentation 

Images with 

segmentation 

Mean 

accuracy 

Time 

(s) 

Mean 

accuracy 

Time 

(s) 

AlexNet 0.5756 37.98 0.9034 43.87 

DenseNet201 0.5378 372.24 0.8571 586.83 

GoogleNet 0.4580 72.59 0.8403 119.75 

MobileNetV2 0.4958 72.82 0.8487 110.41 

Resnet18 0.3824 61.28 0.8403 87.43 

Resnet50 0.5546 76.63 0.8866 99.71 

Resnet101 0.5336 136.62 0.8824 180.26 

VGG16 0.5126 393.43 0.8571 517.74 

VGG19 0.5546 487.68 0.8487 650.21 

Xception 0.4496 332.78 0.8067 445.75 

 
From another perspective, the images without 

segmentation present a shorter classification time than the 

segmented ones, showing an increase of 38% in this 

parameter. As mentioned, ten CNNs were used as principal 

feature extractors, including AlexNet, which gets the best 

time and accuracy percentages. This is a supervised learning 

CNN that has eight clusters distributed in five convolutional 

three fully-connected layers. Additionally, these are some of 

the features used that are important to the functionality of this 
network. For example, AlexNet uses Rectified Linear Units 

(ReLU), an advantage in training time; this trains several 

times faster than their equivalents with tanh (hyperbolic 

tangent) units. It also performs the training on Multiple GPUs 

(graphic processing units), expanding the network's 
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maximum size, allowing to put half of the model’s neurons on 

one part of them and the other half in the other one. This 

network adds an overlapping function that establishes many 

max-pooling in each layer and finally suppresses the 

overfitting problem by data augmentation and dropout 

techniques; this facilitates the network to memorize instead of 

differentiating between one image from another, as observed 

in Fig. 5 [36]. 

 

 
Fig. 5 Architecture of AlexNet: show layers and their distribution in this CNN. 

 

The confusion matrices performed for each CNN plus 

SVM model show ‘Predicted Class’ and ‘Real Class’ axis 

with each of the seven skin pathologies. It shows that the 

number of images of one of the seven skin pathologies (i.e., 

bcc) used as input for the model is not always the same as the 

number of cases that the model classifies as the correct one. 

Fig. 6 A and B show the confusion matrices of the CNNs plus 
SVM model presented the highest and the one with the lowest 

accuracy, respectively.  

 

 

Fig. 6 A) CM of the CNN with the highest accuracy level: AlexNet. B) CM 

of the CNN with the lowest accuracy level: Xception. 

Once the validation process was done, the Confusion 

Matrix (CM) of each model was obtained. This step was 

performed to determine the accuracy level from each of the 

ten individual classification algorithms implemented, 

exposed in Table III. Finally, Fig. 7 A and B show the results 

of the two main characteristics of interest of each CNN model: 

the time they take to run in seconds (s) and the accuracy of 

each percentage method, respectively. The data is 

summarized in two histograms, enabling visualizing which 

models are the quickest to run and provide results with the 

best accuracy. 
 

 
Fig. 7 Histogram representation of A) the accuracy of each CNN model, 

where the lowest percentage is more than 80%, and the best value is more 

than 90%. B) the time each CNN takes to run with a range of 50 to 650 

seconds (s). 

B. Results Analysis 

The separation of the images from the HAM10000 

database into seven categorized folders was crucial for data 

management, the process described in Fig. 2. In this study, the 

image pre-processing step plays a significant role in the 

posterior prediction model construction. Image segmentation 

allows the greatest number of information of interest to be 

grouped into defined areas. Most pigmentation spots show 
observable and differentiable tones and textures surrounding 

the lesion, being essential for identifying the skin pathology. 

Otsu technique has shown in work carried out an 84-90% 

accuracy in classifying pathologies through all the CNNs used. 

Concerning time, the values vary slightly from one network 

to another. It can be seen that a few seconds more processing 

is required in the case of using segmented images than with 

the others nonsegmented, as detailed in Table III. However, 

time does not represent a significant parameter taking into 

account the advantage in the obtained precision. Therefore, 

the segmentation of images represents an improvement in the 
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image database classification, increasing an average of 35% 

accuracy. 

It is confirmed that the selected method eliminates 

unnecessary characteristics in images. The accuracy variation 

is obtained because CNNs only require the strictly necessary 

information on the cutaneous pathology, not its interference. 

This allows the threshold selection mask to overlap on the 

original image, leading to proper extraction of the desired area. 

Furthermore, it is appropriate to mention that the 

implemented models obtain a high-level classification, 

similar to [14], [21], [25], [26], and prompt response in the 
time domain for the considered pathologies in this work. 

FE has been reported as a suitable method that provides 

acceptable accuracy for classification models [20], [24]; it 

extracts relevant attributes from images and avoids redundant 

characteristics that do not contribute to the process [34]. 

Besides, many scientific publications have introduced 

Support Vector Machine systems to classify images [8], [14], 

[37], [38]. This study uses the SGD method for training a 

linear SVM to achieve efficient and accurate responses. As 

the results show, the proposed methods produce relatively fast 

responses varying from seconds to minutes. The low 
computational time required is because the SGD method uses 

a unique training case for each training set [39]. It allows rapid 

convergence, being in the range of 43.87 to 650.21 seconds in 

running time. The lower computational time required 

corresponds to AlexNet plus SVM training which also 

presents the highest accuracy, owing to its structure built by 

five convolutional layers and three fully-connected layers 

with a high-performance operation [36], [40]. On the other 

side, the systems corresponding to VGG19, DenseNet201, 

VGG16, and Xception demonstrated the slower running times 

corresponding to 650.21 s, 586.83 s, 517.74 s, and 447.76 s, 
respectively, shown in Fig. 7. B, which is a result of the 

profound architectural design [36].  

The highest accuracy reached is 90.34% employing the 

AlexNet plus SVM algorithm, as shown in Fig. 7. A. A similar 

approach is made by Kawahara et al. [26], who reported a 

model for image recognition of 10 different types of skin 

lesions with an accuracy of 81.8%. In the mentioned work, the 

‘fc6’ AlexNet CNN layer features are extracted to train a 

linear logistic regression classifier without any segmentation 

pre-processing. In another scientific report, Codella et al. [14] 

describe a method based on extracting elements, sparse 

coding, and SVM to classify melanoma vs. non-melanoma 
lesions, and melanoma vs. atypical lesions, reaching 

accuracies of 93.1% and 73.9%, respectively. Similarly, Khan 

et al. [41] describe a method for skin lesion segmentation and 

recognition between malignant and benign lesions, based on 

FE using ResNet50 and ResNet101, for a posterior feature 

selection using kurtosis controlled principle component 

(KcPCA) to feed an SVM classifier. They used HAM10000, 

ISBI 2017, and ISBI 2016 databases separately and reported 

95.60% accuracy using the ISBI 2017 database. 

In most scientific reports for skin lesion classification 

based on FE and SVM training, the computing time required 
to run each model is not included; therefore, it is difficult to 

compare this parameter. However, the methodology proposed 

in this study has achieved good accuracies in low periods. 

The limitations presented in this study lie in the data 

amount used for training and validating the models. Here, 112 

images were used for each of the seven categories, from which 

70% was split randomly for training, and the rest for 

validation, to maintain the same conditions for all the ten 

CNNs plus SVM algorithms. Moreover, some images were 

eliminated from the dataset because they could not perform 

appropriate segmentation due to the differences in contrast 

between the lesion and skin tones. Hence, ‘df’ images reduced 

from 115 to 112, becoming 112 dermatoscopic images, the 

maximum amount of data used. The results obtained can be 

compared with the reviewed works that use FE plus SVM 

algorithms [14], [26] and including segmentation image pre-
processing [41]. These, Validating classification effectiveness 

by implementing a previous segmentation phase. 

From future perspectives, the authors plan to expand the 

dataset by combining HAM10000 with ISBI or ISIC public 

databases, expecting to obtain higher accuracy and expanding 

the classification to more than seven types of skin pathologies. 

It is also appropriate to carry on an exhaustive study of pre-

trained CNNs to develop reliable classification models using 

dermatoscopic images as training and validation sources. 

Finally, developing a local database and working together 

with dermatology institutes would help acquire a correct 
comprehension of the skin pathologies that affect the 

population. 

IV. CONCLUSION 

The HAM10000 proved to be an adequate database 

reaching the purpose for FE and SVM training, owing to its 

size and the pathologies diversity. The dermatoscopic images 

could be successfully classified and organized in folders 

according to the lesion or pathology they present for its 
posterior segmentation. The Otsu technique chosen showed 

reliability in identifying and detecting essential characteristics 

in the given images, reducing unnecessary elements that could 

mislead or decrease the accuracy of the following 

classification performed by the CNNs plus the SVM model. 

The application of the Otsu technique for image 

segmentation, followed by the FE and SVM algorithm, 

allowed the implementation of high accuracy and fast 

classification models of the different skin lesion types. The 

mean accuracies registered ranged between 80.67% and 

90.34%. The lowest value of this parameter was obtained 
from the Xception plus SVM model, while the highest one 

corresponded to the AlexNet plus SVM model. Similarly, 

although all the developed classification models performed 

rapid responses, the AlexNet model registered the fastest 

while the VGG19 model was the slowest. All the results are 

shown in Fig. 7. A and Fig. 7. B. 

To sum up, it successfully developed ten different 

classification models, capable of detecting and classifying 

seven skin pathologies by using the dermatoscopic images 

from the HAM10000 database. The methodology proposed in 

this study resulted in efficient skin lesions classification 
methods with high accuracy and little time required for each 

of them. 
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