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Doublons, topology 
and interactions 
in a one‑dimensional lattice
P. Martínez Azcona1 & C. A. Downing2*

We investigate theoretically the Bose–Hubbard version of the celebrated Su-Schrieffer-Heeger 
topological model, which essentially describes a one-dimensional dimerized array of coupled 
oscillators with on-site interactions. We study the physics arising from the whole gamut of possible 
dimerizations of the chain, including both the weakly and the strongly dimerized limiting cases. 
Focusing on two-excitation subspace, we systematically uncover and characterize the different 
types of states which may emerge due to the competition between the inter-oscillator couplings, the 
intrinsic topology of the lattice, and the strength of the on-site interactions. In particular, we discuss 
the formation of scattering bands full of extended states, bound bands full of two-particle pairs 
(including so-called ‘doublons’, when the pair occupies the same lattice site), and different flavors of 
topological edge states. The features we describe may be realized in a plethora of systems, including 
nanoscale architectures such as photonic cavities, optical lattices and qubits, and provide perspectives 
for topological two-particle and many-body physics.

The field of topological nanophotonics investigates how to exploit the geometric and topological properties 
of photonic systems in order to design and control both classical and quantum light 1–3. The field continues to 
display some fascinating physics, from unidirectional propagation of optical states immune to disorder 4, to the 
development of topological lasers 5, to the creation of topologically-protected quantum light 6,7. The simplicity 
and beauty of the field has ensured that many theoretical works do not need to stray beyond the single-particle 
level in order to describe and predict some fascinating topological photonic effects 8–11. This is especially true 
when considering phenomena in photonic lattices inspired by iconic topological theories, such as the Harper-
Hofstadter 12, Su-Schrieffer-Heeger 13 and Haldane models 14.

Perhaps the simplest theory providing insight into the role of interactions in lattice models is the one-
dimensional Bose–Hubbard model 15. For the past few decades, low-dimensional interacting bosonic systems 
have been intensively studied with the aid of such models in order to describe systems like ultracold atoms in 
optical lattices 16–21. Pioneering experiments have revealed novel features due to particle-particle interactions, 
such as exotic bound states of pairs of ultracold atoms in a regularly spaced chain of microtraps 22. Since the 
Su-Schrieffer-Heeger model 13 exhibits some interesting topological features with essentially just a dimerized 
(rather than regularly spaced) chain, it is is natural to ponder the interplay between interactions and topology in 
an extended Su-Schrieffer-Heeger-like model. Furthermore, as the first step towards understanding topological 
many-body systems, one may judiciously focus on the simplest nontrivial subspace with interactions, that of only 
two excitations. Indeed, the two-excitation sector already provides some hallmarks of multi-excitation physics, 
such as bound two-particle states and novel bands in the quasiparticle bandstructure 23–27.

Here we consider a dimerized chain of oscillators (each of resonance frequency ω0 ), characterized by the 
alternating coupling strengths along the chain J1 ≥ 0 and J2 ≥ 0 , as sketched in Fig. 1. The chain is then formed of 
N dimers (2N oscillators), and we suppose that any excitations are subject to an on-site interaction U. Therefore, 
the associated Hamiltonian Ĥ acts as a Bose–Hubbard version of the celebrated Su-Schrieffer-Heeger topologi-
cal model 13, and reads28–36
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where a†n and b†n ( an and bn ) create (destroy) a bosonic excitation on the n-th dimer in the chain, which is com-
posed of a and b type oscillators (as signified by the yellow and pink disks respectively in the sketch of Fig. 1). 
There are two key quantities in this nearest-neighbor tight-binding model: (i) the frequency scale J̄ , and (ii) the 
dimerization parameter ǫ , which are defined using J1 and J2 by

Then the dimensionless ratio U/J̄ measures the influence of the on-site interactions, while the dimerization 
parameter ǫ is purely geometric and tracks the influence of the intrinsic topology of the dimerized chain.

In the single-excitation sector, the interactions described by the final term in Eq. (1) may be disregarded, and 
the model collapses into a simple one-particle Su-Schrieffer-Heeger-like topological model13,37,38. In this regime, 
the Zak phase acts as the relevant topological invariant governing the system39. It predicts a topologically trivial 
phase when ǫ ≥ 0 and the Zak phase is 0, and a topologically nontrivial phase when ǫ < 0 and the Zak phase is 
π40. Remarkably, the topologically nontrivial phase is associated with the presence of highly localized edge states, 
which reside at the mid-gap frequency ω0 , between an upper band and a lower band full of highly extended states. 
The evolution of the system from topologically nontrivial to topologically trivial is shown for a finite system in 
Fig. 2, as found by diagonalizing the 2N × 2N matrix Hamiltonian following from Eq. (1) in the single-excitation 
sector . We consider N = 10 dimers ( 2N = 20 oscillators), and we plot the single-excitation eigenfrequencies 
ω
(1)
m  as a function of the dimerization parameter ǫ . The color bar records PR(m) , the participation ratio41,42 of the 

eigenstate associated with the eigenvalue ω(1)
m  . This quantity provides a basic measure of the degree of localiza-

tion of the state, with a lower PR(m) corresponding to a more localized state, and a higher PR(m) corresponding 
to a more extended state, with 1 ≤ PR(m) ≤ 2N . [Furthermore, the scaling with the system size PR(m) ∝ Nα 
exposes both extended states (which typically may be described with α ≥ 1 ) and localized states (where usually 
α ≃ 0)]. The famous edge states shown at ω0 in Fig. 2 (red-orange in PR(m) on this color scale), have an intui-
tive geometric origin. When ǫ < 0 (or J2 > J1 ), it is energetically favorable for each oscillator in the chain to 
pair up with its neighboring oscillator with which it shares a strong J2 link. This dimerization leaves the first and 
last oscillators unpaired, since they only connect to their nearest oscillator via a weak J1 link, and they instead 
house edge states at the bare resonance frequency ω0 . When ǫ ≥ 0 , each oscillator in the chain pairs up with the 
neighboring oscillator with which it shares a strong J1 link, leaving no oscillators unpaired throughout the chain 
and thus removing the opportunity for edge states to arise. In this rudimentary way, these bosonic edges states 
emerging from dimerized chains are the cousins of the celebrated Majorana zero-modes found in Kitaev chains43.

The two-excitation sector of Eq. (1) presents a much richer topological structure due to the influence of the 
final interaction term, as governed by U, and it has been recently studied by several authors28–36. In particular, 
Eq. (1) leads to scattering states, which are composed of superpositions of two-particle states not residing on the 
same oscillator site; and bound states, which are made up of superpositions of states where the two excitations 
appear on the same oscillator site (so-called doublons) or on the same dimer of oscillators. Furthermore, as in 
the one-particle regime represented in Fig. 2, there are bulk states (those extended throughout the chain) and 
edge states (those pinned exponentially at the edges) due to the inherent topology of the array. Therefore, one 
may envisage that in the two-particle regime there is already a rather complicated zoo of states to classify and 
understand, due to the interplay of interactions and topology. In the remainder of this work we study in detail 
the properties of the two-particle Su-Schrieffer-Heeger model with interactions, at the simplest level of the pro-
spective bandstructures and eigenstates. Importantly, we consider the whole range of possible dimerizations ǫ 
of the chain, including both the weakly dimerized and the strongly dimerized limits, and thus generalize Fig. 2 

(2)J̄ = J1 + J2, ǫ = J1 − J2

J̄
.

Figure 1.   Sketches of dimerized chains of oscillators, each of resonance frequency ω0 , and represented 
by yellow and pink disks. The alternating coupling strengths J1 and J2 are denoted by thin white and thick 
black rods. The setup mimics the two-particle Bose–Hubbard version of the celebrated Su-Schrieffer-Heeger 
topological model. The two excitations are depicted by two white balls, and are subject to the on-site interaction 
U. Left chain: in the nearest edge oscillator there is a doublon (illustrated by the blue cloud) of two bound 
excitations on the same oscillator. Right chain: the two excitations are separated, and may be found in the bulk 
of the chain on the second and fifth oscillators respectively. Figure credit: S. Martínez Azcona.
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to capture the two-excitation regime. The detailed Supplementary Information contains the background theory 
supporting the results reported in the main text. It includes a systematic review of the anharmonic oscillator, the 
Bose-Hubbard dimer, the Bose-Hubbard chain, and the Bose-Hubbard dimerized chain, and includes Refs.39–42 
and Refs.44–52.

Results
The Hamiltonian of Eq. (1) may be straightforwardly diagonalized numerically in the two-excitation sector, 
where a chain of N dimers (2N oscillators) necessitates working with a N(2N + 1)× N(2N + 1) matrix. This 
dimensionality arises because the basis contains 2N double-occupancy states, like ||2, 0, 0, ...�� , ||0, 2, 0, ...�� and 
so on, and N(2N − 1) single-occupancy states, like ||1, 1, 0, ...�� , ||1, 0, 1, ...�� and so on. Here we use ||i, j, k, ...�� , 
which has 2N elements, to refer to bosonic eigenstates in the occupation number basis in the two-excitation 
sector. The two-particle eigenfrequencies ω(2)

m  (here m = 1, 2, ...N(2N + 1) labels the state) are naturally meas-
ured from 2ω0 , while the frequency unit J̄ is given by Eq. (2). The topology of the system can then be probed by 
changing the dimerization parameter ǫ [cf. Eq. (2)]. We present the eigenfrequencies ω(2)

m  as a function of the 
full range of potential dimerizations −1 ≤ ǫ ≤ 1 in Fig. 3 for a chain of N = 10 dimers. The interaction strength 
is successively increased along the panels (a-d), with U/J̄ = {0, 1/4, 1, 2} . The dashed gray lines in all panels of 
Fig. 3 define regions enclosing the scattering states, as calculated in the infinite chain limit , which are eigenstates 
wholly comprised of single-occupancy states.

In Fig. 3a the simplest case is presented, that with vanishingly small interactions ( U → 0 ), such that the two-
particle solutions are simple combinations of the single-particle solutions (which can themselves be classified as 
either bulk states or edge states40). Therefore, due to the necessary pairing up of single-particle results, one should 
find three categories of scattering state in the two excitation sector with U → 0 : bulk-bulk states, bulk-edge states, 
and edge-edge states. In the topologically trivial phase ( ǫ ≥ 0 ) three distinct scattering bands of bulk-bulk states 
(mostly blue-green in PR(m) on this color scale) can be seen, as neatly predicted by the continuum calculation 
(dashed gray lines) . In the strongly dimerized limit ( ǫ → 1 , such that J2 → 0 ) the bulk-bulk states amalgamate 
at the three eigenfrequencies 2ω0 ± 2J̄ and 2ω0 , since the two constituent single-particle states contribute ω0 ± J1 
(which are the two eigenfrequencies of a dimer coupled by J1 , in the single-excitation sector). In the opposing 
topologically nontrivial phase ( ǫ < 0 ), in addition to the three scattering bands familiar from ǫ ≥ 0 are two scat-
tering bands housing more localized bulk-edge states [mostly orange in PR(m) ]. The strongly dimerized limit 
( ǫ → −1 , such that J1 → 0 ) reveals that the bulk-edge states merge at the two eigenfrequencies 2ω0 ± J̄ , since 
the elemental single-particle states contribute ω0 (from the edge states) and ω0 ± J2 (the two eigenfrequencies 
of a dimer coupled by J2 ). The third class of state, the topologically protected edge-edge states, are found at 2ω0 
(mostly red) and their existence may be envisaged from the single-particle physics displayed at ω0 in Fig. 2.

Interactions are turned on in the remaining panels of Fig. 3, from U = J̄/4 to U = J̄ to U = 2J̄ in panels (b, c, 
d). Let us first consider the ǫ ≥ 0 regime, and for simplicity the highly dimerized limit ǫ → 1 (such that J2 → 0 ). 
Most noticeably, the effect of nonzero interactions in panels (b-d) is to introduce three new bound state bands 
(mostly orange in PR(m) on this color scale), which complement the three scattering bands (mostly blue-green) 
familiar from panel (a). With weaker interactions in panel (b), these bound state bands mostly overlap the scat-
tering bands, since the energy cost U is minimal compared to the coupling parameter J̄ . However, in panels (c) 
and (d) the increasingly strong interactions act to lift the frequencies of the bound state bands, such that in panel 
(d) two of the bound state bands naturally start to become detached from the upper scattering band. This bound 

Figure 2.   Eigenfrequencies ω(1)
m  of a finite dimerized chain in the one excitation sector (as measured from ω0 ), 

in units of the coupling strength J̄ , as a function of the dimerization parameter ǫ [cf. Eq. (2)]. Color bar: the 
participation ratio PR(m) of each state m . Edge states are highly localized and thus appear reddish on this scale. 
Dashed gray lines: region enclosing the extended states, as defined in the infinite chain limit . In the figure, the 
chain is composed of N = 10 dimers, leading to a 20-dimensional Hilbert space.
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state behavior can be captured exactly in this highly dimerized limit ( ǫ → 1 ), where the chain collapses into N 
disconnected Bose–Hubbard dimers, via the following expression (valid for a subset of m)

With U � J̄ , the largest eigenfrequency [the expression with + in Eq. (3a)] is associated with the symmetric 
doublonic eigenstate (||20�� + ||02��)/

√
2 . The intermediate eigenfrequency, as given by Eq. (3b), is independ-

ent of J1 and J2 and is associated with the antisymmetric doublonic eigenstate (||20�� − ||02��)/
√
2 . Finally, the 

smallest eigenfrequency [the expression with − in Eq. (3a)] is associated with the third type of bound state, 
where the two excitations are equally shared amongst one specific dimer as ||11�� (that is, a bound state but not 
a doublon bound state). The physics of the ǫ < 0 regime is again more complex due to the residual topology of 
the dimerized chain. In this case, there are five extra bands in Fig. 3b–d (where U  = 0 ), as compared to panel (a) 
(where U → 0 ). This fact is most apparent in the the highly dimerized limit ǫ → −1 , where, as well as the three 

Figure 3.   Eigenfrequencies ω(2)
m  of a dimerized chain in the two excitation sector (as measured from 2ω0 , and 

in units of the coupling strength J̄ ) as a function of the dimerization parameter ǫ [cf. Eq. (2)]. The interaction 
strength U increases upon going along the panels. Color bar: the participation ratio PR(m) of each state m . 
Highly localized states are red-orange in color, while extended state are blue-green. Dashed gray lines: regions 
enclosing the bulk scattering states, as calculated in the infinite chain limit . Solid gray vertical lines in panels (a) 
and (c): cuts at ǫ = −1/2 , as guides for the eye. In the figure, the chain is composed of N = 10 dimers, leading 
to a 210-dimensional Hilbert space.
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bound state bands governed by Eq. (3) for ǫ → 1 , there are two extra bands. These two additional bands arise 
due to the extra combinations of two-particle states which are possible because of the edge state-like and bulk 
state-like characters of the underlying single-particle states (namely, the remnants of the topological edge states 
well defined in the U → 0 limit).

The eigenstates of the dimerized chain in the two-excitation sector are associated with two integers n and 
m, since each two-particle state can be decomposed (up to a normalization factor) by c†nc†m|vac� , where |vac� 
is the (unoccupied) vacuum state and c†n = {a†n, b†n} captures the two flavors of bosonic creation operator [cf. 
Eq. (1)]. Using the two examples of possible state sketched in Fig. 1, the doublon in the left chain is described 
by a†1a

†
1|vac�/

√
2 , while the two excitations in the right chain are represented with b†1a

†
3|vac� . In this way, our 

considered two-excitation states live geometrically on a triangular eigenspace of base n and height m (after 
removing the redundant replication of information arising from the bosonic symmetry). Doublons occupy the 
same lattice site and so are codified by n = m , they are found along the hypotenuse of the triangle. Bound states 
are associated with either doublons or with singly-occupied states confined to the same dimer, hence they are 
found on the hypotenuse diagonal and the immediately adjacent squares. Scattering states can reside everywhere, 
and thus are exposed by their high participation ratios.

The solid gray vertical lines in panels (a) and (c) of Fig. 3 cut the plots at ǫ = −1/2 , a somewhat arbitrary 
point which is nevertheless characteristic of the more interesting ǫ < 0 regime, which we now investigate in 
more detail. In Fig. 4 we plot explicitly the eigenstates (where the interactions are vanishingly small, U → 0 ) 
associated with three typical two-particle states highlighted in Fig. 3a by the predominantly green, orange and 
red participation ratios respectively. Namely, we show representative bulk-bulk states, bulk-edge states, and 
edge-edge states in panels (a), (b) and (c) respectively in Fig. 4. The bulk-bulk state of Fig. 4a is characteristically 
spread throughout the triangular eigenspace, as are all extended states of a similarly high participation ratio. 
A bulk-edge state is represented in Fig. 4b, which showcases a high probability density along the opposite and 
adjacent sides of the triangular eigenspace, due to the competition between the constituent single particle states 
(a topological edge state and a bulk state). In Fig. 4c, one sees an example of a fully topological edge-edge state 
residing exactly at 2ω0 , which clearly exhibits strong doublon-like localization at the ends of the chain on the 
bound state diagonal (red squares).

In Fig. 5 we show the impact of interactions on the system at the level of the eigenstates, similar to Fig. 4 but 
now with nonzero interactions. In particular, in Fig. 5 we concentrate on the case of U = J̄ and ǫ = −1/2 , cor-
responding to the solid gray vertical line in panel (c) of Fig. 3. As we move through the panels (a-i) in Fig. 5, we 
look at states with increasingly small eigenfrequencies ω(2)

m  (that is, we go from top to bottom down the vertical 
line in panel (c) of Fig. 3). In Fig. 5a, we show an example of what we call a bound-bulk-bulk state. This nomen-
clature refers to the state belonging to a bound state band [rather than a scattering band, which are marked by the 
dashed gray lines in Fig. 3c], and infers that the state is composed of two bulk-like (rather than edge-like) single 
particle states. Characteristically, the bound-bulk-bulk state result displayed in Fig. 5a is of a high probability 
density on the diagonal (a feature of bound states) which are concentrated in the bulk of the diagonal rather 
than at the edges. In Fig. 5b we have entered a scattering band, and we show an example scattering-bulk-bulk 
state, with a typical highly spread probability density all over the triangular eigenspace. A signature of topology 
is found in Fig. 5c, a so-called bound-edge-edge state (see the red squares in the doublon corners), and a state 
which does not appear in the geometrically opposite case of a dimerized chain with ǫ = +1/2 [see Fig. 3c]. The 
state in Fig. 5d is a bound-bulk-bulk state, similar to the case of panel (a), but significantly more doublonic as 
can be seen by the lack of leakage from the diagonal n = m . Exactly at 2ω0 resides a fully topological scattering-
edge-edge state as shown in Fig. 5e, which is tightly confined to the first and last oscillators in the chain (see the 
red square in the right-angle corner). Upon further decreasing in frequency, panel (f) returns to a scattering 
band, and shows an extended scattering-bulk-bulk state with a distinctive checkerboard profile. Slightly lower 
in frequency is another scattering-bulk-edge state, as displayed in panel (g), with the representative ‘reflected-L’ 
shape. A bound bulk-edge state is shown in Fig. 5h, where the two excitations are on the same dimer but not on 
the same oscillator site (hence it shows significant leakage from the doublon diagonal n = m ). Finally, panel (i) 

Figure 4.   Three typical eigenstates of a dimerized chain in the two excitation sector, with vanishing interactions 
( U → 0 ). Color bars: probability densities (note: the scale is different for each panel). In the figure, the 
dimerization parameter ǫ = −1/2 and the chain is composed of N = 10 dimers, leading to a 210-dimensional 
Hilbert space. This regime corresponds to descending the thin, gray vertical line in Fig. 3a.
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shows an example state from the lowest band, a scattering-bulk-bulk state with a standard bump-like probability 
profile similar to panel (b).

Clearly, non-negligible interactions have introduced a rich smorgasbord of possible states in Fig. 5, especially 
in comparison to the simple interactionless case discussed in Fig. 4 [and even more so when compared to the 
single-excitation sector results alluded to by Fig. 2]. The features presented in the eigenfrequency-dimerization 
plots shown in Fig. 3 provide credence to the view that the model of Eq. (1) exhibits interesting and nontrivial 
many-body effects already in the two-excitation subspace, including new bands in the bandstructure and novel 
types of topological states, which may be readily probed in various experimental platforms due to the generality 
of the theoretical setup.

Discussion
We have studied the two-particle Bose–Hubbard version of the celebrated Su-Schrieffer-Heeger topological 
model. Our comprehensive survey encompasses the complete range of possible dimerizations of the chain, 
including both the weakly dimerized and strongly dimerized regimes (where the relevant physics is captured 
by the Bose–Hubbard dimer). In doing so, we have been able to characterize some general properties of one-
dimensional topological lattices with nonzero on-site interactions. Most importantly, the fingerprint of one-
particle topology remains in the two-excitation sector, and manifests itself in the creation of new bands in the 
two-particle bandstructure, and novel types of highly localized state in the topological phase (as defined by the 
Zak phase in the single-particle sector). We have systematically reviewed the exotic gamut of possible eigenstates 
supported in the array, which are associated with distinctive patterns in their probability densities and thus are 
ripe for experimental detection.

On the experimental side, recently there have been a number of exciting reports probing interacting Su-
Schrieffer-Heeger-like setups using platforms as diverse as topolectrical circuits53 and arrays of superconducting 
qubits54. Meanwhile, interaction effects in related topological models have been realized using magnons55,56, 
optical lattices57, Bose–Einstein condensates58, Rydberg atoms59, and a 24-qubit superconducting processor60. 

Figure 5.   Nine typical eigenstates of a dimerized chain in the two excitation sector, with nonzero interactions 
(here, U = J̄ ). Color bars: probability densities (note: the scale is different for each panel). In the figure, the 
dimerization parameter ǫ = −1/2 and the chain is composed of N = 10 dimers, leading to a 210-dimensional 
Hilbert space. This regime corresponds to descending the thin, gray vertical line in Fig. 3c.
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Hence, the theoretical results that we have reported should have some utility in a plethora of modern experi-
mental systems with the scope to modulate the strength of interactions in an array of resonators. For example, 
one may exploit superconducting qubits in order to produce effective interactions between supposedly nonin-
teracting photons61–63.

Our work also opens up several avenues for further study, including: understanding the influence of 
dissipation64–67, exploring unconventional quantum transport effects68, going beyond our strictly enforced 
two-excitation subspace to probe higher multi-excitation phenomena, and investigating the impact of bro-
ken symmetries in the dimer (leading to an interacting, bosonic Rice-Mele-like topological model 69). Fur-
thermore, an open quantum systems approach would give access to some key correlation functions, such as 
g
(2)
ij (0) = �b†i b†j bibj�/(�b†i bi��b†j bj�) and g (3)ijk (0) = �b†i b†j b†kbibjbk�/(�b

†
i bi��b†j bj��b†kbk�) , which give information 

about the strength of photon correlations in the system, and which may be probed experimentally in Hanbury 
Brown and Twiss-like experiments44. It will also be interesting to probe the time evolution of our two-particle 
states, after extending the presented model into a full driven-dissipative theory.

Methods
The theoretical results of the main text simply result from diagonalizing the matrix representation of the Hamil-
tonian of Eq. (1). However, the detailed Supplementary Information contains both analytic and numeric results 
supporting the principal results reported in the main text. The Supplementary Information includes a systematic 
review of the anharmonic oscillator, the Bose–Hubbard dimer, the Bose–Hubbard chain, and the Bose–Hubbard 
dimerized chain, and utilizes methods such as bosonic Bogoliubov transformation, Bethe ansatz, and topologi-
cal band theory.

Data availability
This study did not generate any new data.

Code availability
The code is available at https://​github.​com/​fame64/​2Part​icleT​opolo​gical​SSH, and is curated by P.  Mar-
tínez Azcona (e-mail: pablo.martinez.azcona@gmail.com).
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