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Abstract: This paper deals with the measurement of the compatibility in a local AHP-Group Decision
Making context. Compatibility between two individuals or decision makers is understood as the
property that reflects the proximity between their positions or preferences, usually measured by
a distance function. An acceptable level of incompatibility between the individual and the group
positions will favour the acceptance of the collective position by the individuals. To facilitate the
compatibility measurement, the paper utilises four indicators based on log quadratic distances
between matrices or vectors which can be employed in accordance with the information that is
available from the individual decision makers and from the group. The indicators make it possible
to measure compatibility in decision problems, regardless of how the collective position and the
priorities are obtained. The paper also presents a theoretical framework and a general, semi-automatic
procedure for reducing the incompatibility measured by the four indicators. Using relative variations,
the procedure identifies and slightly modifies the judgement of the collective matrix that further
improves the indicator. This process is undertaken without modifying the initial information provided
by the individuals. A numerical example illustrates the application of the theoretical framework and
the procedure.

Keywords: multiple criteria analysis; AHP-group decision making; incompatibility improvement;
row geometric mean; GCOMPI

1. Introduction

One of the most outstanding characteristics of the Analytic Hierarchy Process (AHP) [1,2]
is its suitability for addressing multiactor decision making in the three scenarios detailed
by [3,4]: Group Decision Making (GDM); Negotiated Decision Making (NDM) and Systemic
Decision Making (SDM).

In the first (GDM), under the principle of consensus, the individuals work together
searching for a common goal. In this case, consensus refers to the approach, model,
tools, or procedures (voting, aggregation, agreement, etc.) used for deriving the collective
position. For the collective position to be accepted by all the actors or decision makers
involved in solving the problem, or at least a significant number of them, it is necessary
to guarantee an acceptable level of the incompatibility between the individual and the
collective positions.

In general, the confirmation of the acceptance could be determined by means of
personal intervention or by measuring the degree of incompatibility using any appropriate
index. Personal intervention entails differentiated behaviour of the actors that is more
typical of NDM than GDM. In GDM, as the individuals work together, the same rules
are assumed for all decision makers. It is therefore necessary to measure the level of
incompatibility and establish procedures for its reduction. This question is especially
relevant in Consensus Reaching Processes (CRPs) where the participation of the decision
makers is limited to the incorporation of their preferences at the beginning of the process.
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This paper describes the measurement of the compatibility of the actors’ individual
positions with regards to the group collective position in a local (single criterion) AHP-
GDM context. Based on the log quadratic distance between matrices or vectors, the study
presents four geometric compatibility (GCOMPI) indexes (three of which are new) and a
framework for reducing incompatibility.

The framework uses similar ideas to those of the procedure proposed in [5]. In particu-
lar, it assumes relative rather than absolute changes because they better reflect the perceived
importance of the modifications. In addition, to improving incompatibility, it modifies the
judgements of the collective matrix, without modifying the initial information provided
by the individuals. Finally, following Saaty’s proposal [6], only slight modifications are
included, i.e., the relative changes allowed will be limited by a permissibility parameter set
by the decision makers or the facilitator (if there is one).

In [5], the authors, propose a semi-automatic procedure (AEM-COM) to reduce the
incompatibility measured by an indicator (GCOMPI) that combines the individual judge-
ment matrices (input of the model) and the collective priority vector (output of the model).
It assumes that the individual and collective judgement matrices are known, and that the
collective priority vector is derived by the RGM. The current work introduces three new
indicators which combine: (i) the individual and collective matrices; (ii) the individual
priority vectors and the collective matrix; and (iii) the individual and collective priority
vectors. These original indicators and their respective incompatibility improvement pro-
cedures will be employed in line with the information available and the context (local or
global). This is particularly relevant for adapting compatibility measurement and incom-
patibility improvement to any situation, irrespective of the procedures employed to obtain
the collective matrix and to derive the priority vectors.

The paper is structured as follows: Section 2 outlines the background of AHP-GDM
and the measurement of compatibility in AHP; Section 3 presents four compatibility mea-
sures based on log quadratic distances; Section 4 sets out the theoretical results necessary
for the reduction of incompatibility using these measures; Section 5 includes a general,
semi-automatic procedure for reducing the incompatibility measured with the different
GCOMPIs by revising judgements of the collective matrix; Section 6 highlights the most
important conclusions of the study.

2. Background
2.1. AHP in a Multiactor Decision Making Context

One of the most widely extended and applied multi-criteria decision making tech-
niques is AHP. The AHP methodology consists of three stages [2]: (i) Modelling; (ii) Val-
uation; and (iii) Prioritisation and Synthesis. In the first stage, a hierarchical structure
including all the relevant factors (goal, criteria, sub-criteria of different levels, and alterna-
tives) of the decision problem is constructed; the second stage incorporates the preferences
of the actors by means of eliciting the judgements of the pairwise comparison matri-
ces (PCMs); the third stage calculates the local priorities using a prioritisation method,
the global priorities by means of the composition principle and the total priorities of the
alternatives with an aggregation procedure. The most common prioritisation methods are
the Eigenvector (EV) [2] and the Row Geometric Mean (RGM) [2,7].

To validate the local priorities derived from a PCM, the internal coherence (consistency)
of decision makers when eliciting their judgements must be measured and its value must
be below a given threshold. The Consistency Ratio (CR) [8] is generally used for the EV
and the Geometric Consistency Index (GCI) [7,9] is used with the RGM.

AHP is a multicriteria decision making technique that has great potential in multiactor
contexts. The two aggregation procedures traditionally employed in local AHP-Group
Decision Making (AHP-GDM) situations [10–12] are the Aggregation of Individual Judge-
ments (AIJ) and the Aggregation of Individual Priorities (AIP). A review of these and
other AHP-GDM approaches can be seen in [5]. Both AIJ and AIP use weighted geometric
averages, of judgments (AIJ) and priorities (AIP), to obtain the collective priority vector.
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As is well known, the average is representative of the position of the group when the ele-
ments are sufficiently homogeneous. Unfortunately, this issue is rarely taken into account
in AHP-GDM when using the two procedures or any other approach proposed in the
scientific literature [5].

In this study, the measurement of homogeneity in the case of a local AHP-GDM context
is carried out by means of a compatibility indicator suitable for addressing the reciprocity
property of AHP [13]. In what follows, compatibility between two individuals or decision
makers is understood as the property that reflects the proximity between their positions or
preferences, usually measured by a distance function. In an analogous way, compatibility
in a GDM context is defined as the distance (objective measure) between the individuals
and the collective positions.

2.2. Compatibility in AHP-GDM

The evaluation of compatibility between individual and collective positions, requires
the establishment of compatibility measures, procedures for their improvement (agreement
and consensus searching processes) and thresholds that allow validation of the use of
collective priorities that represent the individual priorities. Compatibility also refers to the
internal coherence of the group when selecting its collective priority vector, that is to say,
its representativeness in relation to the individual positions. In terms of decision making,
ref. [14] defines compatibility as the sharing of similar value systems. Incompatibility
improvement, or consensus searching, has been studied from different perspectives that
depend on the level of intervention of the actors (automatic, semi-automatic, personal),
and the approximation.

A number of ordinal and cardinal measures have been proposed for the evaluation of
compatibility [15–17]. Ordinal indicators use rankings of the alternatives. As pointed out
by [18], this is a myopic view of reality in the context of AHP (weighted spaces) so cardinal
indicators are preferred. Some of the cardinal compatibility measures for the evaluation
of the group coherence are: S-compatibility [19], G-compatibility [20], the coefficient of
multiple determination R2 [21], and the Geometric Compatibility Index (GCOMPI) [16,17].
This last indicator is particularly relevant for the measurement of collective coherence due
to its analytical properties and the suitability of log quadratic distances for PCMs [13].

The expression of this GCOMPI indicator (presented in Section 3.2 as GCOMPI2, see
Definition 6), measures the compatibility between the individual PCMs (input of decision
makers) and the collective priority vector (output of the group). The paper examines this
compatibility measure and defines similar indicators whose expressions differ with regards
to the elements being compared.

An issue associated with the measurement of compatibility concerns the facilitation of
procedures for the reduction of incompatibility. In [5] a semi-automatic procedure (named
AEM-COM) for reducing incompatibility when using the GCOMPI2 as the compatibility
measure is presented. The AEM-COM procedure identifies and slightly modifies the
judgements of the collective PCM that further improve the indicator. Among the most
outstanding characteristics of this procedure are: (i) it considers relative changes; (ii) as the
initial individual matrices are not modified, it does not require the continuous intervention
of decision makers; (iii) it provides closed (optimal) results in terms of the judgements
that most rapidly reduce incompatibility; and, (iv) it applies slight modifications to the
judgements that result in slight modifications of the associated priority vector. Section 4
summarises the theoretical results on which that proposal was based and proves similar
results for the other indicators that are defined. The semi-automatic procedure put forward
in [5] can also be adapted for the other indicators. An outline of the general procedure is
presented in Section 5. As with the AEM-COM, it considers modifications made in relative
terms (as recommended by Kahneman and Tversky) [22] which are bounded to guarantee
slight modifications in the collective matrix (Saaty) [6].
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3. Compatibility Indexes in AHP

This section presents the definitions of the Geometric Compatibility Indexes based
on log quadratic distances, in which the elements being compared in the expressions are
different. This is followed by ideas for using each of the indicators; they are all continuous
and derivable functions that capture the idea of reciprocity that is characteristic of AHP. All
the PCMs and the priority vectors are of order n.

3.1. Geometric Compatibility Indexes. Basic Definitions

The basic definitions of the Geometric Compatibility Indexes correspond to the log
quadratic distances between two matrices, a matrix and a vector, and two vectors.

Definition 1. Let A =
(
aij
)

and B =
(
bij
)

be two PCMs. The Geometric Compatibility Index
between A and B is defined as

GCOMPI(A, B) =
1

(n− 1)(n− 2) ∑
i,j

log2 aij

bij
(1)

Definition 2. Let A =
(
aij
)

be a PCM and v = (vi) be a priority vector. The Geometric
Compatibility Index between A and v is defined as

GCOMPI(A, v) =
1

(n− 1)(n− 2) ∑
i,j

log2 aij

vi/vj
(2)

Definition 3. Let u = (ui) be a priority vector and B =
(
bij
)

be a PCM. The Geometric
Compatibility Index between u and B is defined as

GCOMPI(u, B) =
1

(n− 1)(n− 2) ∑
i,j

log2 ui/uj

bij
(3)

Definition 4. Let u = (ui) and v = (vi) be two priority vectors. The Geometric Compatibility
Index between u and v is defined as

GCOMPI(u, v) =
1

(n− 1)(n− 2) ∑
i,j

log2 ui/uj

vi/vj
(4)

Remark 1. It is obvious that GCOMPI(A, B) = GCOMPI(B, A), GCOMPI(A, v) =
GCOMPI(v, A) and GCOMPI(u, v) = GCOMPI(v, u)

3.2. Geometric Compatibility Indexes for Families of Matrices and Vectors

Based on the aforementioned distances, the compatibility indicators for AHP-GDM are
defined below. Their expressions differ on the elements being compared and four possible
combinations are analysed (see Figure 1): (i) the family of the individual judgement
matrices with respect to the collective matrix; (ii) the family of the individual judgement
matrices with respect to the collective priority vector; (iii) the family of the individual
priority vectors with respect to the collective judgement matrix; and, (iv) the family of the
individual priority vectors with respect to the collective priority vector.

The notation is as follows:
Let A =

{
A(k) =

(
a(k)ij

)
, k = 1, . . . , d

}
be a family of PCMs provided by d decision

makers with weights αk

(
∑d

k=1 αk = 1
)

; and w =
{

w(k), k = 1, . . . , d
}

be a family of prior-
ity vectors provided by these decision makers.

Let AG =
(

aG
ij

)
be the collective matrix obtained using the weighted geometric

mean of the individual judgements of the matrices of family A, i.e., aG
ij = ∏d

k=1

(
a(k)ij

)αk
;
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and wG|J be the priority vector of AG obtained following a prioritisation method (AIJ
aggregation procedure).

Let wG|P be the priority vector obtained applying the AIP aggregation procedure to
the matrices of family A. Its elements are given by the weighted geometric mean of the

individual priorities, i.e., wG|P
i = ∏d

k=1

(
w(k)

i

)αk
.

When the RGM is used as the prioritisation method, both AIJ and AIP priority vectors
coincide (wG|J = wG|P) [23,24].

𝒜𝒜={A(1), A(2), …,A(d)} B

v

GCOMPI1

𝓌𝓌={w(1), w(2), …, w(d)} GCOMPI4

GCOMPI3

GCOMPI2

INDIVIDUAL GROUP

Figure 1. Outline of the GCOMPI measures.

Definition 5. Let A =
{

A(k)
}

be a family of PCMs and B =
(
bij
)

be a collective PCM. The
Geometric Compatibility Index between family A and matrix B is defined as

GCOMPI1(A, B) =
d

∑
k=1

αkGCOMPI(A(k), B)

=
1

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i,j

log2
a(k)ij

bij

 (5)

In our context (local AHP-GDM), this expression measures the compatibility between
the input of the decision makers (individual PCMs) and the collective PCM obtained by an
aggregation procedure. This expression does not use information from the priority vectors,
so it is an appropriate compatibility indicator for situations where it is not necessary to
force the use of a particular prioritisation procedure. It can be applied irrespective of the
prioritisation procedure each decision maker uses individually, as well as the one they
apply collectively, as a group.

Definition 6. Let A =
{

A(k)
}

be a family of PCMs and v = (vi) be a collective priority vector.
The Geometric Compatibility Index between family A and vector v is defined as

GCOMPI2(A, v) =
d

∑
k=1

αkGCOMPI(A(k), v)

=
1

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i,j

log2
a(k)ij

vi/vj

 (6)

This expression is already defined in the AHP-GDM literature [16,17], it measures the
compatibility between the input of the decision makers (individual PCMs) and the output
of the group (collective priority vector) used to rank the alternatives and make decisions.
This indicator does not make use of individual priority vectors. As with the previous
indicator, it may be applied irrespective of the prioritisation procedure each decision maker
may use, or when none is applied. However, the use of a particular prioritisation procedure
for the derivation of the collective priority vector from the collective PCM is implicit.
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Definition 7. Let w =
{

w(k)
}

be a family of priority vectors and B =
(
bij
)

be a collective PCM.
The Geometric Compatibility Index between family w and matrix B is defined as

GCOMPI3(w, B) =
d

∑
k=1

αkGCOMPI(w(k), B)

=
1

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i,j

log2
w(k)

i /w(k)
j

bij

 (7)

In a local AHP-GDM context, this expression measures the compatibility between
the priority vectors associated with each one of the decision makers (obtained using a
prioritisation method or provided directly by them) and the collective PCM obtained by
an aggregation procedure. This compatibility measure is independent of the prioritisation
procedure used to obtain the collective priority vector.

Definition 8. Let w =
{

w(k)
}

be a family of priority vectors and v = (vi) be a collective priority
vector. The Geometric Compatibility Index between family w and vector v is defined as

GCOMPI4(w, v) =
d

∑
k=1

αkGCOMPI(w(k), v)

=
1

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i,j

log2
w(k)

i /w(k)
j

vi/vj

 (8)

This expression measures the compatibility between the priority vectors associated
with each one of the decision makers (obtained using a prioritisation method or provided
directly by them) and the output of the group (collective priority vector) used to rank the
alternatives and make decisions. The use of a particular prioritisation procedure for the
derivation of the collective priority vector from the collective PCM is implicit.

The last two indicators, GCOMPI3 and GCOMPI4, may be used in a local context
(one criterion) and in a more general context (hierarchy) with several criteria. In the latter,
the individual priority vectors would correspond to those associated with the hierarchy.
They may also be appropriate in NDM situations, but these two extensions are not dealt
with in this paper.

The following result shows the relationships between different expressions of the
GCOMPIs indicators when the consistent matrices associated with the priority vectors are
taken into account.

Remark 2. Let W =
{

W(k), k = 1, . . . , d
}

, be the family of consistent matrices associated with

priority vectors w(k), W(k) = (w(k)
ij ) = (w(k)

i /w(k)
j ), and V = (vij) = (vi/vj) be the consistent

matrix associated with a collective priority vector v. It holds that:

GCOMPI1(A, V) = GCOMPI2(A, v) (9)

GCOMPI1(W, B) = GCOMPI3(w, B) (10)

GCOMPI1(W, V) = GCOMPI4(w, v) (11)

GCOMPI2(W, v) = GCOMPI4(w, v) (12)

GCOMPI3(w, V) = GCOMPI4(w, v) (13)

4. A Theoretical Framework for Reducing Geometric Compatibility Measures in a
Local Context

This section gives the theoretical results necessary for reducing, in a local AHP-GDM
context, the incompatibility measured by each one of the four GCOMPIi (i = 1, . . . , 4) indi-
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cators. The results associated with the GCOMPI1, GCOMPI3 and GCOMPI4 are original
and were obtained by following developments parallel to those used for the GCOMPI2
in [5]. To maintain an homogeneous notation with that paper, in what follows, the collec-
tive matrix is denoted as P =

(
pij
)
. The theoretical results allow the identification of the

judgement of the collective matrix that produces the greater reduction in the corresponding
GCOMPIi. In all cases, it is assumed that the collective matrix P is known.

The sequence followed to identify the judgement of the collective PCM, P =
(

pij
)
,

that should be slightly modified to reduce the incompatibility is analogous for the four
indicators. It consists of five stages or results: (i) a theorem that identifies the judgement prs
which, in absolute terms, most rapidly reduces the GCOMPIi; (ii) a theorem that establishes
the change produced in the value of the GCOMPIi when the judgement prs is modified in
relative terms; (iii) a theorem that provides the judgement prs which, in relative terms, most
rapidly reduces the GCOMPIi; (iv) a corollary that applies the previous theorem when
considering small variations; and, (v) a corollary that provides the relative variation of
judgement prs which produces the greatest decrease of the GCOMPIi and the maximum
reduction of that measure.

It is worth noting that the use of changes in relative terms (third theorem for each
indicator) is justified by the fact that relative changes capture the human perception of
the relevance of modifications better than absolute changes. Moreover [5], the use of
relative changes follows the suggestions of [22]: “the preferences, associated with the same
physical magnitude, are relative rather than absolute, depending on the situation of gain
or loss, and also on the point of departure” and [25]: “small errors (in terms of absolute
values) may significantly change the final rankings if they are big in relation to the true
value”. The importance given to the modification of a unit in the value of a judgement in
the pairwise comparison matrix depends on the initial value; increasing a unit in a small
judgement, such as 2 (an increase of 50%) is not the same as in a medium judgement such
as 5 (an increase of 20%).

The first two indicators measure the compatibility between the individual pairwise
comparison matrices and the collective position (the collective matrix with GCOMPI1 and
the collective priority vector with GCOMPI2).

4.1. GCOMPI1

The theoretical results that support the procedure to reduce incompatibility measured
by the GCOMPI1 through modifying the judgements of the collective matrix are as follows.

The first theorem identifies the judgement prs that most rapidly reduces the GCOMPI1.

Theorem 1. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a collective

PCM. It holds that

∂GCOMPI1(A, P)
∂prs

=
4

(n− 1)(n− 2)
1

prs
log

prs

aG
rs

(14)

Proof. It is obvious that

GCOMPI1(A, P) =
1

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i,j

log2
a(k)ij

pij

 =
2

(n− 1)(n− 2)

d

∑
k=1

αk ∑
i<j

log2
a(k)ij

pij
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and then

∂GCOMPI1(A, P)
∂prs

=
2

(n− 1)(n− 2)

d

∑
k=1

∂

∂prs

αk ∑
i<j

log2
a(k)ij

pij


=

2
(n− 1)(n− 2)

d

∑
k=1

(
αk
−2
prs

log
a(k)rs
prs

)
=

4
(n− 1)(n− 2)

1
prs

d

∑
k=1

(
αk log

prs

a(k)rs

)

=
4

(n− 1)(n− 2)
1

prs
log

prs

∏d
k=1

(
a(k)rs

)αk
=

4
(n− 1)(n− 2)

1
prs

log
prs

aG
rs

From previous theorem, if prs < aG
rs, the derivative is negative and as the value of prs

increases, the value of GCOMPI1(A, P) decreases. If prs > aG
rs, the reasoning is analogous.

The optimum (greatest reduction) is reached for prs = aG
rs.

The previous result considers absolute variations in the judgements. As previously
explained, the modification of a unit in the value of a judgement depends on the initial value
being small or large. Relative variations are now looked at: if judgement prs is modified
with p′rs as its new value, trs = p′rs/prs denotes the relative variation of this judgement and
P′ =

(
p′ij
)

the modified collective PCM. The modified value of the GCOMPI1 is given by
the following theorem.

Theorem 2. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a collective

PCM. It holds that

GCOMPI1(A, P′) = GCOMPI1(A, P) +
2

(n− 1)(n− 2)
log trs

(
2 log

prs

aG
rs

+ log trs

)
(15)

Proof. When judgement prs changes to p′rs, the only terms of expression (5) that differs are
those corresponding to indexes (r, s) and (s, r). Moreover, log2 a(k)sr /psr = log2 a(k)rs /prs by
the reciprocal property, and then:

∆GCOMPI1 = GCOMPI1(A, P′)−GCOMPI1(A, P)

=
2

(n− 1)(n− 2)

d

∑
k=1

αk

(
log2 a(k)rs

p′rs
− log2 a(k)rs

prs

)

=
2

(n− 1)(n− 2)

d

∑
k=1

αk

(
log

a(k)rs
p′rs

+ log
a(k)rs
prs

)(
log

a(k)rs
p′rs
− log

a(k)rs
prs

)

=
2

(n− 1)(n− 2)

d

∑
k=1

αk

(
2 log a(k)rs − log p′rs prs

)
log

prs

p′rs

=
2

(n− 1)(n− 2)
log

1
trs

(
2

d

∑
k=1

αk log a(k)rs − log trs p2
rs

)

=
2

(n− 1)(n− 2)
log

1
trs

(
2 log

d

∏
k=1

(
a(k)rs

)αk − 2 log prs − log trs

)

=
2

(n− 1)(n− 2)
log

1
trs

(
2 log aG

rs − 2 log prs − log trs

)
=

2
(n− 1)(n− 2)

log trs

(
2 log

prs

aG
rs

+ log trs

)
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The following theorem identifies judgement prs that most rapidly reduces the GCOMPI1
when considering relative changes.

Corollary 1. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a collective

PCM. It holds that

∂GCOMPI1(A, P)
∂trs

=
4

(n− 1)(n− 2)
1

trs
log

prstrs

aG
rs

(16)

Proof. Immediate from Theorem 2.

When considering small variations, the value of trs moves around 1, so the expression
of the previous partial derivative, (16), is given by next corollary.

Corollary 2. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a collective

PCM. It holds that

∂GCOMPI1(A, P)
∂trs

∣∣∣∣
trs=1

=
4

(n− 1)(n− 2)
log

prs

aG
rs

(17)

Proof. Immediate from Corollary 1.

Finally, the following corollary establishes the optimal relative variation of a judge-
ment, and the maximum reduction that can be achieved.

Corollary 3. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a

collective PCM. The relative variation of judgement prs that produces the greatest decrease of
GCOMPI1(A, P) is

t∗rs =
p∗rs
prs

=
aG

rs
prs

(18)

and the maximum reduction of the GCOMPI1(A, v) is

∇∗GCOMPI1 =
2

(n− 1)(n− 2)
log2 prs

aG
rs

(19)

Proof. Immediate from Theorem 2 and Corollary 1.

The judgement prs that most rapidly decreases the value of the GCOMPI1 is the one for
which there is a greater relative difference between the ratios prs and aG

rs (Corollary 2). This
judgement is also the one that allows the greatest reduction of the GCOMPI1 in absolute
terms (Corollary 3).

From Corollary 1 it is obvious that the matrix that minimises the value GCOMPI1(A, P)
is given by matrix AG. This is coherent with the previous results which indicate that the
modifications that produce the largest reduction in GCOMPI1 cause the P matrix to move
closer to AG.

4.2. GCOMPI2

This section is based on [5]. The main results are included here in order to be able to ap-
preciate the parallelism with the other three indicators and to establish a global framework.

Theorem 3. Let A =
{

A(k)
}

be a family of PCMs, P =
(

pij
)

be a collective PCM and v = (vi)

be the corresponding priority vector associated with P obtained with the RGM method. It holds that

∂GCOMPI2(A, v)
∂prs

=
4

(n− 1)(n− 2)
1

prs
log

vr/vs

wG|J
r /wG|J

s

(20)



Mathematics 2022, 10, 278 10 of 20

Proof. See [5].

Theorem 4. Let A =
{

A(k)
}

be a family of PCMs, P =
(

pij
)

be a collective PCM and v = (vi)

be the corresponding priority vector associated with P obtained with the RGM method. It holds that

GCOMPI2(A, v′) = GCOMPI2(A, v) +
4

(n− 1)(n− 2)
log trs

(
log trs

n
+ log

vr/vs

wG|J
r /wG|J

s

)
(21)

Proof. See [5].

Corollary 4. Let A =
{

A(k)
}

be a family of PCMs, P =
(

pij
)

be a collective PCM and v = (vi)

be the corresponding priority vector associated with P obtained with the RGM method. It holds that

∂GCOMPI2(A, v)
∂trs

=
4

(n− 1)(n− 2)
1

trs

(
2 log trs

n
+ log

vr/vs

wG|J
r /wG|J

s

)
(22)

Proof. See [5].

Corollary 5. Let A =
{

A(k)
}

be a family of PCMs, P =
(

pij
)

be a collective PCM and v = (vi)

be the corresponding priority vector associated with P obtained with the RGM method. It holds that

∂GCOMPI2(A, v)
∂trs

∣∣∣∣
trs=1

=
4

(n− 1)(n− 2)
log

vr/vs

wG|J
r /wG|J

s

(23)

Proof. See [5].

Corollary 6. Let A =
{

A(k)
}

be a family of PCMs, P =
(

pij
)

be a collective PCM and v = (vi)

be the corresponding priority vector associated with P obtained with the RGM method. The relative
variation of judgement prs that produces the greatest decrease of GCOMPI2(A, v) is

t∗rs = p∗rs/prs =

(
wG|J

r /wG|J
s

vr/vs

)n/2

(24)

and the maximum reduction of the GCOMPI2(A, v) is

∇∗GCOMPI2 =
n

(n− 1)(n− 2)
log2 vr/vs

wG|J
r /wG|J

s

(25)

Proof. See [5].

Corollaries 5 and 6 show that the judgement prs for which there is a greater relative
difference between the ratios vr/vs and wG|J

r /wG|J
s is the one that most rapidly decreases

the value of the GCOMPI2 and it is also the one that allows the greatest reduction of this
indicator in absolute terms.

For a family of PCMs A, ref. [5] proved that

min
u

GCOMPI2(A, u) = GCOMPI2(A, wG|J) (26)

This is coherent with the previous results which indicate that the modifications leading
to the further reduction of GCOMPI2 cause the priority vector derived from the P matrix
to approach wG|J .
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Figure 2 shows an outline of the reduction process when using the two previously
described indicators. The input for the incompatibility reduction in cases of Sections 4.1
and 4.2 comprises the individual comparison matrices A and the initial collective matrix
(P). The output in both cases is the collective matrix P′. When using the GCOMPI2,
the associated priority vector v′ is derived using the RGM.

𝒜𝒜={A(1), A(2), …,A(d)} P

v

RGM

AHP-GDM
Method

GCOMPI1(𝒜𝒜,𝑃𝑃)

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺2 (𝒜𝒜, v)

P’

v’

RGM

Figure 2. Outline of the incompatibility reduction of indicators GCOMPI1 and GCOMPI2.

The two following indicators measure the compatibility between the priority vectors
of the decision makers and the collective position (the collective matrix with GCOMPI3
and the collective priority vector with GCOMPI4).

4.3. GCOMPI3

Theorem 5. Let w =
{

w(k)
}

be a family of priority vectors and P =
(

pij
)

be a collective PCM.
It holds that

∂GCOMPI3(w, P)
∂prs

=
4

(n− 1)(n− 2)
1

prs
log

prs

wG|P
r /wG|P

s

(27)

Proof. From Remark 2 it holds that:

GCOMPI3(w, B) = GCOMPI1(W, B)

using Theorem 1

∂GCOMPI3(w, P)
∂prs

=
∂GCOMPI1(W, P)

∂prs
=

4
(n− 1)(n− 2)

1
prs

log
prs

wG
rs

where

wG
rs =

d

∏
k=1

(
w(k)

rs

)αk
=

d

∏
k=1

(
w(k)

r

w(k)
s

)αk

=
∏d

k=1

(
w(k)

r

)αk

∏d
k=1

(
w(k)

s

)αk
=

wG|P
r

wG|P
s

Theorem 6. Let A =
{

A(k)
}

be a family of PCMs and P =
(

pij
)
, i, j = 1, . . . , n, be a collective

PCM. It holds that

GCOMPI3(w, P′) = GCOMPI3(w, P) +
2

(n− 1)(n− 2)
log trs

(
2 log

prs

wG|P
r /wG|P

s

+ log trs

)
(28)

Proof. Analogous to proof of Theorem 5.

Corollary 7. Let w =
{

w(k)
}

be a family of priority vectors and P =
(

pij
)

be a collective PCM.
It holds that

∂GCOMPI3(w, P)
∂trs

=
4

(n− 1)(n− 2)
1

trs
log

prstrs

wG|P
r /wG|P

s

(29)
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Proof. Analogous to proof of Theorem 5.

Corollary 8. Let w =
{

w(k)
}

be a family of priority vectors and P =
(

pij
)

be a collective PCM.
It holds that

∂GCOMPI3(w, P)
∂trs

∣∣∣∣
trs=1

=
4

(n− 1)(n− 2)
log

prs

wG|P
r /wG|P

s

(30)

Proof. Immediate from Corollary 7.

Corollary 9. Let w =
{

w(k)
}

be a family of priority vectors and P =
(

pij
)

be a collective PCM.
The relative variation of judgement prs that produces the greatest decrease of GCOMPI3(w, P) is

t∗rs = p∗rs/prs =
wG|P

r /wG|P
s

prs
(31)

and the maximum reduction of the GCOMPI3(A, v) is

∇∗GCOMPI3 =
2

(n− 1)(n− 2)
log2 prs

wG|P
r /wG|P

s

(32)

Proof. Immediate from Theorem 6 and Corollary 7.

The judgement prs that most rapidly decreases the value of the GCOMPI3 is the
one for which there is a greater relative difference between the ratios prs and wG|P

r /wG|P
s

(Corollary 8). This judgement is also the one that allows the greatest reduction of the
GCOMPI3 in absolute terms (Corollary 9).

From Corollary 7 it is obvious that the matrix that minimises the value GCOMPI3(w, P)
is given by the consistent matrix WG|P associated with the priority vector wG|P. This is
coherent with the previous results which suggest that the modifications leading to the
further reduction of GCOMPI3 cause the matrix P to approach the matrix WG|P.

4.4. GCOMPI4

The last indicator measures the compatibility between the individual priority vectors
of a set of decision makers and the priority vector obtained from the collective matrix
when using the RGM. Taking into account that GCOMPI4(w, v) = GCOMPI2(W, v) (see
Remark 2) we can prove the corresponding results for GCOMPI4 in a similar way to
Section 4.3.

Theorem 7. Let w =
{

w(k)
}

be a family of priority vectors. Let P =
(

pij
)

be a collective PCM
and v = (vi) be the corresponding priority vector associated with P obtained with the RGM method.
It holds that

∂GCOMPI4(w, v)
∂prs

=
4

(n− 1)(n− 2)
1

prs
log

vr/vs

wG|P
r /wG|P

s

(33)

Theorem 8. Let w =
{

w(k)
}

be a family of priority vectors. Let P =
(

pij
)

be a collective PCM
and v = (vi) be the corresponding priority vector associated with P obtained with the RGM method.
It holds that

GCOMPI4(w, v′) = GCOMPI4(w, v) +
4

(n− 1)(n− 2)
log trs

(
log trs

n
+ log

vr/vs

wG|P
r /wG|P

s

)
(34)
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Corollary 10. Let w =
{

w(k)
}

be a family of priority vectors. Let P =
(

pij
)

be a collective PCM
and v = (vi) be the corresponding priority vector associated with P obtained with the RGM method.
It holds that

∂GCOMPI4(A, v)
∂trs

=
4

(n− 1)(n− 2)
1

trs

(
2 log trs

n
+ log

vr/vs

wG|P
r /wG|P

s

)
(35)

Corollary 11. Let w =
{

w(k)
}

be a family of priority vectors. Let P =
(

pij
)

be a collective PCM
and v = (vi) be the corresponding priority vector associated with P obtained with the RGM method.
It holds that

∂GCOMPI4(A, v)
∂trs

∣∣∣∣
trs=1

=
4

(n− 1)(n− 2)
log

vr/vs

wG|P
r /wG|P

s

(36)

Corollary 12. Let w =
{

w(k)
}

be a family of priority vectors. Let P =
(

pij
)

be a collective PCM
and v = (vi) be the corresponding priority vector associated with P obtained with the RGM method.
The relative variation of judgement prs that produces the greatest decrease of GCOMPI4(w, v) is

t∗rs = p∗rs/prs =

(
wG|P

r /wG|P
s

vr/vs

)n/2

(37)

and the variation of the GCOMPI4(w, v) is

∇∗GCOMPI4 =
n

(n− 1)(n− 2)
log2 vr/vs

wG|P
r /wG|P

s

(38)

Corollaries 11 and 12 show that the judgement prs for which there is a greater relative
difference between the ratios vr/vs and wG|P

r /wG|P
s is the one that most rapidly decreases

the value of the GCOMPI4 and it is also the one that allows the greatest reduction of this
indicator in absolute terms.

From Corollary 10 it is obvious that the vector that minimises the value GCOMPI4(w, v)
is wG|P. So, any collective matrix P whose RGM priority vector coincides with wG|P pro-
vides the minimum value for this compatibility measure. This is coherent with the previous
results which show that the modifications leading to the further reduction of GCOMPI4
cause the priority vector derived from the P matrix to approach wG|P.

Figure 3 gives an outline of the reduction process when using the last two indicators.
The input for the incompatibility reduction in both cases 4.3 and 4.4 consists of the indi-
vidual priority vectors w and the initial collective matrix (P). Again, the output is the
collective matrix P′. When using the GCOMPI4 the associated priority vector, v′, is derived
using the RGM.

𝒜𝒜={A(1), A(2), …,A(d)} P

v

RGM

AHP-GDM
Method

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺4 (𝓌𝓌, v)

𝓌𝓌={w(1), w(2), …, w(d)}

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3 (𝓌𝓌,𝐺𝐺)
Prioritisation

Method

P’

v’

RGM

Figure 3. Outline of the incompatibility reduction of indicators GCOMPI3 and GCOMPI4.
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5. Procedure for Incompatibility Reduction and Numerical Example
5.1. Semi-Automatic Procedure for Incompatibility Reduction

Using the theoretical results demonstrated in the previous section, a semi-automatic it-
erative procedure for incompatibility reduction can be designed that works in a similar way
for the four compatibility indicators. Table 1 lists the values determined in Section 4 for each
indicator and guides the general procedure proposed for the reduction of incompatibility.

Table 1. Values from theoretical results for the indicators.

Measure drs = ∂GCOMPIi
∂trs

∣∣∣
trs=1

t∗rs ∇∗GCOMPIi

GCOMPI1
4

(n−1)(n−2) log prs
aG

rs

aG
rs

prs

2
(n−1)(n−2) log2 prs

aG
rs

GCOMPI2
4

(n−1)(n−2) log vr/vs

wG|J
r /wG|J

s

(
wG|J

r /wG|J
s

vr/vs

)n/2 n
(n−1)(n−2) log2 vr/vs

wG|J
r /wG|J

s

GCOMPI3
4

(n−1)(n−2) log prs

wG|P
r /wG|P

s

wG|P
r /wG|P

s
prs

2
(n−1)(n−2) log2 prs

wG|P
r /wG|P

s

GCOMPI4
4

(n−1)(n−2) log vr/vs

wG|P
r /wG|P

s

(
wG|P

r /wG|P
s

vr/vs

)n/2 n
(n−1)(n−2) log2 vr/vs

wG|P
r /wG|P

s

As already mentioned, incompatibility reduction is achieved by modifying judgements
in the collective matrix without modifying the initial information provided by the decision
makers. Therefore, it is necessary to have the collective matrix, obtained by any aggregation
procedure, as input.

Modifications in the judgements of the collective matrix are made in relative terms [22]
and are limited to guarantee slight modifications in the collective matrix [6].

The results collected in Corollaries 2, 5, 8 and 11 provide the judgement from the
collective matrix whose modification reduces the corresponding GCOMPIi more rapidly.
This judgement is selected from the value of derivative drs =

∂GCOMPIi
∂trs

∣∣∣
trs=1

(see column 2

in Table 1). Corollaries 3, 6, 9 and 12 calculate the relative variation of these judgements, t∗rs
(column 3 of Table 1), that produces the largest reduction∇∗GCOMPIi (column 4 of Table 1).

At each iteration, the procedure selects the judgement prs from the collective ma-
trix whose relative modification will produce the largest reduction in the corresponding
GCOMPIi. Its optimal value is determined by t∗rs, but this relative variation can be ex-
cessively large, moving the judgement prs away from the initial value. To avoid major
modifications of the judgments, the concept of permissibility, ρ, is introduced [26]. The
parameter ρ indicates the maximum relative variation permitted for the modifications of
any judgement. It is established by the decision makers or by the facilitator (if there is
one) [5]. The parameter of permissibility considers the actors’ attitudes or flexibility to
negotiation. This allows them to adapt their initial positions, facilitating the establishment
of consensus paths for reaching a more satisfactory final agreement [3]. The sensitivity
analysis of the permissibility parameter may provide relevant information about the critical
points and the decision opportunities of the resolution process.

With these ideas, at each iteration, the value of the relative variation, trs, of the selected
judgement is determined as follows:

trs =

{
min{1 + ρ, t∗rs} when drs < 0

max
{

1
1+ρ , t∗rs

}
when drs > 0

(39)

Once a judgement has been modified, it will not be examined in the subsequent
iterations. The procedure finishes when all judgements in the matrix have been analysed
or when an acceptable, pre-set, level of incompatibility is reached. As no thresholds for
the compatibility indicators are available, this level can be set in terms of efficiency (%
improvement with respect to the maximum possible reduction). From results obtained in
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Section 4, we can obtain the minimum value for each GCOMPIi, GCOMPIi,min. This value
allows us to calculate the efficiency achieved after t iterations:

Et =
GCOMPIi,0 −GCOMPIi,t

GCOMPIi,0 −GCOMPIi,min
(40)

where GCOMPIi,t denotes the value of GCOMPIi after t iterations. In this way, decision
makers or a facilitator can set a threshold for the efficiency, E∗, and if it is reached, the pro-
cedure finishes.

An outline of the algorithm that implements these ideas is shown in Box 1. To apply
this semi-automatic procedure, it is necessary to provide the permissibility value (ρ) and the
efficiency threshold (E∗), in addition to the information on the individual and the collective
positions (matrices or vectors, depending on the indicator). Once these values are known,
the procedure works automatically to provide the final collective matrix.

Box 1. Outline of the algorithm for improving the GCOMPIi in terms of relative changes.

Step 0. Let J = {(r, s), with r < s}.
Step 1. Evaluate drs =

∂GCOMPIi
∂trs

∣∣∣
trs=1

for all (r, s) ∈ J.

Step 2. Choose the pair (r′, s′) ∈ J for which dr′s′ has the largest absolute value.
Step 3. If pr′s′ > 1 then let (r, s) = (r′, s′). Otherwise, let (r, s) = (s′, r′).
Step 4. Modify prs using expression (39).
Step 5. Update matrix P with new values p′rs = prstrs and p′sr = 1/p′rs.

Update J = J \ (r′, s′).
Step 6. If J is empty or Et ≥ E∗, stop and provide P′. Otherwise go to Step 1.

The procedure described above follows general and common guidelines for the four
indicators. Some particularities of these indicators are presented below.

The minimum value for the GCOMPI1 is obtained when P = AG, and the algorithm
iterates over the judgements trying to approach the value of prs to aG

rs taking into account
that the relative variation is limited by permissibility ρ. The problem can be expressed as

min
P′

GCOMPI1(A, P′)

s.t.
1

1 + ρ
≤

p′ij
pij
≤ 1 + ρ, for all i, j

(41)

This problem is solvable because it is a separable optimisation problem and it is
enough to optimise each judgement p′ij separately. To find the optimal solution it is enough
to apply the algorithm to each and every one of the judgements, regardless of the order.

However, the iterative algorithm above makes sense as by sequentially modifying the
judgements that reduce the indicator most rapidly, it is possible to stop when a certain
efficiency has been reached (E∗). Stopping before going through all the judgements allows
us to move only as far as necessary from the original judgements.

The same can be said for GCOMPI3: its minimum value is obtained when P = WG|P.
The GCOMPI2 is minimised by any matrix P whose priority vector, obtained applying

the RGM method, coincides with wG|J . In particular, the consistent matrix WG|J formed
from the vector wG|J provides minimum distance with GCI = 0. This matrix can be far
from the starting matrix P, and the algorithm tries, with small modifications, to move the
vector v closer to the vector wG|J .

The same is also true for GCOMPI4: its minimum value is reached using any matrix P
whose priority vector, obtained applying the RGM method, coincides with wG|P.
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Remark 3. When the RGM method is used to obtain the individual priority vectors, the collective
priority vector wG|P equals wG|J and the results obtained for GCOMPI4 coincides with those for
GCOMPI2. The proposed procedure leads to the same matrix P′.

The procedure for improving incompatibility can be tailored to specific interests that
reflect ideas that are common in AHP-GDM [27,28]. For example, by simply customising
the appropriate constraints in step 4, the algorithm may [5]: (i) delimit the judgements
of the resulting collective matrix in the interval [1/9, 9]; (ii) delimit the judgements in
the priority stability intervals for P.α or P.γ problems; (iii) delimit the judgements in the
consistency stability intervals; or (iv) allow for a greater participation of the decision makers
in an interactive way.

5.2. Numerical Example

The procedure is illustrated with an example used in [17,29]. The problem has n = 5
alternatives and d = 3 decision makers with weights α1 = 5/11; α2 = 4/11; and α3 = 2/11.
We present in more detail the procedure for incompatibility reduction when compatibility is
measured with GCOMPI1. As initial information, it is necessary to provide the individual
and the collective pairwise comparison matrices. The individual pairwise comparison
matrices are:

A(1) =


1 3 5 8 6

1 3 5 4
1 3 2

1 1/3
1

A(2) =


1 3 7 9 5

1 3 7 1
1 5 1/5

1 1/5
1

A(3) =


1 5 7 7 5

1 1 5 1
1 5 1/3

1 1/5
1


The collective matrix P is provided below. It corresponds to the Precise Consistency

Consensus Matrix (PCCM) determined by the method described in [17], which is based on
consistency. The matrix AG, obtained using AIJ, is also provided as its values are utilised
in the reduction process of the GCOMPI1.

P =


1 2.049 5.510 9.000 3.165

1 3.000 6.082 1.739
1 2.709 1/1.467

1 1/2.845
1

AG =


1 3.292 6.007 8.150 5.432

1 2.457 5.651 1.878
1 3.964 1/1.600

1 1/3.964
1


The value of the compatibility indicator for matrix P is GCOMPI1(A, P) = 0.484; for

AG it is GCOMPI1(A, AG) = 0.342, which is the minimum possible value for this indicator.
The algorithm has been applied to reduce the value of GCOMPI1 considering a per-

missibility of 15%. Table 2 lists the 10 iterations followed with the proposed semi-automatic
procedure when there is no efficiency threshold. Each iteration shows: the selected judge-
ment (r, s), its initial value (prs), the modified value (p′rs), the new value of the compatibility
indicator after the modification (GCOMPI1,t), and the level of efficiency achieved up to that
iteration (Et). The process finishes after revising all the judgements and 56.32% efficiency is
achieved. If an efficiency threshold is assumed the procedure may conclude before the tenth
iteration. For example, for E∗ = 50% the procedure stops at the fifth iteration achieving
efficiency of 52.01%.
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Table 2. Information on the iterations of the procedure with ρ = 15%.

Iteration t (r, s) prs p′rs GCOMPI1, t Et

0 0.484
1 (1–5) 3.165 3.640 0.462 15.57%
2 (1–2) 2.049 2.356 0.443 28.87%
3 (3–4) 2.708 3.114 0.428 39.13%
4 (4–5) 2.844 3.271 0.416 47.76%
5 (2–3) 3.000 2.608 0.410 52.01%
6 (1–4) 9.000 8.149 0.408 53.21%
7 (3–5) 1.466 1.599 0.407 54.06%
8 (1–3) 5.509 6.007 0.406 54.98%
9 (2–5) 1.738 1.877 0.405 55.68%
10 (2–4) 6.082 5.650 0.404 56.32%

After considering all the judgements (10 iterations), the final pairwise comparison
matrix (P′) is:

P′ =


1.000 2.356 6.007 8.150 3.640
0.424 1.000 2.609 5.651 1.878
0.166 0.383 1.000 3.115 0.625
0.123 0.177 0.321 1.000 0.306
0.275 0.533 1.600 3.272 1.000


Table 3 details the resulting priorities using the RGM method for the initial and final

collective matrices. It also shows the associated values of the compatibility indicator
(GCOMPI1) for both matrices. It can be observed that the differences between the two
collective priority vectors are small, as recommended by Saaty [6]. In relative terms,
the maximum difference is 6.6% and the average difference is 3.2%. Garuti’s G value [20]
is G = 0.9612 suggesting that the initial and final priority vectors are highly compatible
(G > 0.9).

Table 3. Priorities and Compatibility for the collective matrices.

v1 v2 v3 v4 v5 GCOMPI1

P 0.467 0.255 0.095 0.044 0.139 0.484
P′ 0.486 0.238 0.096 0.042 0.138 0.404

For this example, the incompatibility reduction procedure has also been applied using
the other three indicators to measure compatibility; again with a permissibility value of
ρ = 15%. A detailed description of the application with GCOMPI2 can be found at [5].
In the cases where the individual priority vectors are needed (GCOMPI3 and GCOMPI4),
we have used those obtained by applying the RGM to the individual pairwise comparison
matrices. Furthermore, the final collective matrices obtained by applying the procedure
using the four indicators have an acceptable level of inconsistency.

Table 4 shows, for each indicator, the efficiency achieved if the process is completed
with the 10 possible judgements (E10), the number of iterations necessary to achieve ef-
ficiency of 50% (#Iter), and Garuti’s G value that measures the proximity between the
initial and the final priority vectors. The results obtained for GCOMPI2 and GCOMPI4
are the same as the individual priority vectors have been calculated using the RGM (see
Remark 3). It can be observed that efficiency of 73.10% can be achieved for GCOMPI2 and
GCOMPI4, and that is not possible to achieve 50% efficiency for GCOMPI3. Finally, in all
cases, the initial and final priority vectors are highly compatible (G > 0.9).
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Table 4. Results of the procedure for the four indicators with ρ = 15%.

E10 #Iter G

GCOMPI1 56.32% 5 0.9612
GCOMPI2 73.10% 5 0.9380
GCOMPI3 44.11% – 0.9498
GCOMPI4 73.10% 5 0.9380

6. Conclusions

One of the strengths of AHP is its suitability for multiactor decision making. In group
decision making, where individuals work together, the assessment of the representativeness
of the group position has not been contemplated with the significance that it deserves.
Defining compatibility between individual and collective positions as the property that
reflects the proximity between them, the position of the group may be accepted if the group
has an acceptable level of incompatibility.

This paper presents four indicators based on log quadratic distances for the evaluation
of compatibility, three of them new. The measures are continuous and derivable functions
and capture the idea of reciprocity, which is essential in AHP. The elements compared by the
expressions are not the same: the first indicator compares the individual and the collective
pairwise comparison matrices; the second compares the individual pairwise comparison
matrices and the collective priority vector; the third compares the individual priority vectors
and the collective pairwise comparison matrix; and the fourth compares the individual and
the collective priority vectors. The indicators make it possible to measure compatibility for
different decision problems, irrespective of the aggregation and the prioritisation methods.
Some recommendations on when each of the indicators could be used have been included.

Associated with each of the proposed indicators, a set of theoretical results have been
proved to determine how to reduce incompatibility by modifying the judgements of the
collective matrix. Due to the mathematical expressions of the indicators that measure the
distance, the results are closed (optimal) in terms of the judgements that most rapidly reduce
incompatibility. In all four cases, it is shown that the judgement that achieves the greatest
reduction in relative terms is also the one that produces the greatest reduction in absolute
terms. The values that the modified matrix approaches in each case are also observed.

Finally, the theoretical results are used for the development of a general, semi-automatic
procedure for reducing the incompatibility. Adapting the proposal made in [5] to each
compatibility measure, the procedure selects and modifies, at each iteration, the judgement
of the collective matrix that further improves the corresponding indicator, the continuous
intervention of decision makers to modify the initial information they provide is not nec-
essary. It uses relative rather than absolute changes as they better reflect the perceived
importance of the modifications and limits the variations in the judgements to guarantee
slight modifications in the associated priorities. The efficiency, measured as a % of improve-
ment with respect to the maximum possible reduction, is one of the values proposed to
determine if an acceptable level of incompatibility has been reached.

The proposed procedure has been illustrated with a numerical example. With relative
changes in the judgements of the collective matrix below 15%, efficiency values above 44%
are achieved for the four indicators, reaching 73% for two of them. In all cases, the initial
and final collective priority vectors are highly compatible, and the relative differences in
their components are below the permissibility value given for the judgements.

In short, this work offers new indicators to measure compatibility that are not influ-
enced by the method used for obtaining the collective position and the priorities. Fur-
thermore, a general procedure for incompatibility reduction that is easy to implement
and apply is also proposed. The procedure can be adapted to particular interests in a
similar way as outlined in [5] for GCOMPI2. Future research will include the analysis of
the performance of the general algorithm; obtaining direct thresholds for the different com-
patibility indicators; and, extensions to deal with global contexts (hierarchy) and negotiated
decision making.
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