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Department of Condensed Matter Physics

Faculty of Science, University of Zaragoza

June 2021





I would like to express my deep gratitude to my family, from whom I have always received

nothing but support and affection. To all my colleagues who have made this four-year journey

an unbeatable experience.

I would also like to thank David and Juan, for devoting their time to teach me, not only

physics, but also the importance of enjoying the learning process. They have been a true

example of patience, humanity and hard work.

I



Contents

Introduction 1

Objectives and outline 2

1 Quantum Phase Transitions 3

1.1 Quantum Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Study of phase transitions through fidelity 7

2.1 Finite size scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Support vector machine (SVM) 10

3.1 Kernel trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Quantum Kernel(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results 15

4.1 Fidelity based Kernel (K(F )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Fidelity-per-site based Kernel (K(λ)) . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Kernel Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 22

6 References 23

A Code 24

II



Introduction

Both machine learning and quantum computing are the cradle of a large number of research

projects developed in the last decade. The reason is simple, the suggestive idea of finding new

tools which allow the computational treatment of larger amounts of data is, not only a difficult

task for experts in the field, but also the gateway to breaking the computational frontiers known

so far. Undoubtedly, this is very attractive for the global technology industry. The achievement

of this goal seems to be based on the constructive combination of two disciplines: quantum

physics and artificial intelligence. Nevertheless, it is not clear to date whether running quantum

machine learning (QML), i.e. ML algorithms in a quantum computer, will be practical.

The difficulty, as well as the possible advantage this computation presents, lies in the enor-

mous dimensions of the Hilbert spaces with which these computers work. To help us understand

this concept, consider that quantum computers with 50-100 qubits are able to perform tasks

which surpass the capabilities of today’s classical digital computers. These computers are al-

ready available and they are called Noise Intermediate Size Quantum (NISQ) [1] computers.

Nevertheless, they are seriously limited by noise and decoherence.

In parallel to the evolution of this technology, the boom in artificial intelligence has led to the

development of tools to implement algorithms into quantum computers [2] to carry out both

quantum and classical tasks with the hope of dealing with intractable problems or improve the

efficiency of those already solved. As a result: quantum optimization, quantum neural network

models, quantum decision trees, finding ground and excited states of many body problems or

quantum circuit optimization have already been reported. These algorithms are based on en-

coding the data into quantum states, i.e. |ψ(xj)〉, with xj the input data. The encoding is

followed by the processing of the state in a q-computer Uθ|ψ(xj)〉. Similarly to classical machine

learning , the solution of the problem lies in the optimization of a cost function f = 〈M〉θ,j in

order to find the optimal Uθ which transforms the initial state into the expected outcome.

Among the different classical algorithms that can be quantized in this way are Kernel methods.

In them, the principal object is the Kernel: the inner product of the input data (xj). They

are, for example, used in classification tasks. The quantum counterpart of Kernel methods uses

the encoding xj → |ψ(xj)〉, so K = |〈ψ(xj)|ψ(xj′)〉|, i.e. the Kernel is nothing but the Fidelity

between two quantum states. We can particularly think of adapting the classical support vector

machine (SVM) to classify datasets. In this framework, the quantum advantage (if any) occurs if

quantum mapping is necessary to solve the problem or, at least, shows better performance than

the classical techniques. So far, a quantum speed up has been rigorously shown for classifying

data inspired in the discrete logarithmic problem [3].

In this Undergraduate Dissertation we want to explore this possible quantum advantage in

quantum phase transitions classification using quantum kernels.
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Objectives and outline

This dissertation has as its principal objective to answer one of the main questions currently

being discussed about quantum computing: Are quantum computers capable of carrying out

artificial intelligence (AI) tasks in a better or faster way than classical computers do? Or

expressed differently: Can we find examples where quantum computing supremacy is plausible?

The pursuit of the answer to these questions lead us to the comprehension of the advantages

and drawbacks of current quantum computers in order to develop intuition to look for a concrete

problem which allows us to achieve our goal.

Inspired by the impossibility of classical computers to process data from the Hilbert space

due to its large dimensions, we chose a quantum task and study whether quantum machine

learning could solve it or not. Particularly, we discuss the performance of quantum Kernels in

the detection of quantum phase transitions (QPT) through the study of the one dimensional

quantum Ising model. As a direct implication, our work begins by understanding support vector

machines (the algorithm with which we will develop the idea) and quantum phase transitions.

As benchmark, we reproduce a study of these transitions through the fidelity of the ground states

of the system. Since we do not have reliable quantum computers yet, we use the Jordan Wigner

transformation to solve the quantum Ising model and construct the quantum Kernel. The data

that we handle is quantum by nature. Thus, by showing that this quantum machine learning

algorithm is capable of finding the transition boundary accurately, supremacy is confirmed and

the method can be extrapolated to solve non-exactly-solvable models.

Accordingly, this Undergraduate Dissertation is structured as follows: in Section 1 we briefly

explain the main traits of quantum phase transitions and particularize them introducing, in

Section 1.1, the quantum Ising model. To continue, in Section 2, we reproduce a study of the

transition in our model using the fidelity between quantum states. We show how the critical

parameter scales with the number of spins in the considered chain and use these results to

compare with the ones predicted by our algorithm. We also present Support Vector Machines

(SVM) and their operation as the algorithm used to carry out our analysis of the transitions, in

Section 3. Particularly, in sub-Section 3.1 we show the Kernel Trick and the quantum kernels

we will analyze. Finally, the results are presented and discussed in Section 4. We finish with

some conclusions and include an Appendix with a link to a public repository where all the code,

originally developed for this project, can be found.
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1 Quantum Phase Transitions

Their importance in nature makes them one of the topics which have attracted most the atten-

tion from physicists in the last decades. Phase transitions appeared to be everywhere, from the

boiling of water to the complex phenomenon of superconductivity, and their applications jump

from physics to mathematics, information science, biology and many other scientific domains.

In order to take full advantage of these processes and use them in different applications it is of

the utmost importance to characterize them. This can be translated into answering two simple

questions: when does the phase transition occur, and what does it signify?

When speaking of classical phase transitions, the combination of thermodynamics, statistics

and condensed matter physics with experiments in different systems, have allowed us to under-

stand their operating principles. In these kind of transitions, two states of matter are clearly

separated by the abrupt change of some properties which help us to determine whether the

system is in one phase or another. To fix ideas, let us begin with some important basic concepts

on classical phase transitions.

In particular, we might think of the classical Ising model, which is perfect to exemplify these

concepts. Here, thermal fluctuations compete, to drive the system to disorder, with the spin-spin

interaction, which tends to correlate the spins and thus, order the system. This competition

yields to a critical temperature Tc, such that for T > Tc the spins fluctuate without any corre-

lation. For T < Tc the spins in the system are ordered, since the interactions between the spins

are larger than the thermal fluctuations. The phase transition, in this case, is characterized

by looking at the magnetization. In the disordered phase the spins are randomly oriented, so

the magnetization is zero. In the ordered phase, a macroscopic magnetization emerges. This

observable that changes from zero to different from zero at the transition is the order parameter,

that can be used to fully characterize the critical properties of the system under study.

We summarise two main important concepts discussed with the example above. Firstly,

we introduced the driver of transitions in classical statistical mechanics: thermal fluctuations.

Secondly, we have defined the concept of order parameter that witnesses the transition: mag-

netization in the above example. To end with our description of classical transitions, we will

distinguish two types of phase transitions. First order transitions, when the first derivative of

the order parameter is discontinuous, and second order transitions, also called continuous, when

the discontinuity occurs in the second derivative of the order parameter.

A universal feature of second order phase transitions is the divergence of the correlation

length (ξ)[4] at the critical point 1 In the Ising model, this magnitude is defined as the typical

size of clusters of aligned spins and diverges in the critical point as:

ξ α

∣∣∣∣T − TcTc

∣∣∣∣−ν (1)

1First order transitions do not present this divergence of the correlation length in general.
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where ν is the thermal critical exponent, dependent on the dimensions and symmetries of the

system and its Hamiltonian. This characteristic is specially interesting since it reflects a universal

behaviour in continuous phase transitions, independent of microscopic traits of the systems [4].

Since the focus of this Thesis are quantum phase transitions, let us jump into this phenomena.

When we deal with microscopic systems at sufficiently low temperatures, quantum fluctuations

become important and, in some cases, they can even drive a transition. When these transitions

occur at zero temperature, in the absence of thermal fluctuations, they are called quantum phase

transitions (QPT).

Quantum phase transitions are defined as non-analyticity points in the ground state energy of

the system [5]. Since the temperature is fixed and null, there must be a parameter g in the

Hamiltonian which controls the transition, such that for g = gc this non-analyticity occurs.

Without loss of generality, let us write the Hamiltonian as the sum of two terms and a g-

parameter:

H(g) = H0 + gH1 . (2)

If both terms in the Hamiltonian commute, [H0, H1] = 0, they present common eigenvalues and

a level crossing may occur, as it is shown in Fig. 1(a). At this level crossing, the ground state

energy will be non-analytical. This is a first order quantum phase transition. Notice that this

can happen in finite systems (no thermodynamic limit here). In what follows we will focus on

another type of QPT, second order or continuous QPTs. When [H0, H1] 6= 0, an anti crossing

emerges leading to a QPT at the thermodynamic limit, where the gap closes (see Fig.1b)). For

any finite-size system a continuous transition will be described as an avoided level crossing in

the ground state.

Fig. 1: (a) Example of a crossing (First order QPT). (b) Example of an anti crossing, the seed for a

second order QPT

Pretty much like in the classical case, in second order phase transitions the correlation length

also diverges, in this case as a function of the g-parameter [6].

ξ α |g − gc|−ν (3)

where ν is the critical exponent, Cf. Eq. (1).

Historically, quantum phase transitions have been studied following the patterns used in the

classical approach. Again, we look for an driving parameter whose non-null value characterizes,
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in an infinite system, a break on its symmetry and thus, a phase transition. Nevertheless, the

difference between two ground states, |φ〉 and |ψ〉, in terms of this driving parameter is based

in the quantum measurement of the observable associated to this parameter. This distinguisha-

bility of states is, in some way, equivalent to the condition of orthogonality between states [7].

We can say that, if two states |φ〉 and |ψ〉 are orthogonal, then there must necessarily exist an

observable, i.e. a parameter, capable of distinguishing them. In the limit case, this observable

will be the projection of both states, 〈ψ|φ〉.
Knowing that orthogonal states can be reliably distinguished, one can think of using this equiv-

alence shown above to characterize phase transitions without resorting to an order parameter.

This modern point of view inherited from quantum information theory focuses its attention on

the ground state wave function, instead of looking at the Hamiltonian [8]. It is based in the

fidelity measure between quantum states.

F (ρ, σ) =
√
ρσρ (4)

where ρ and σ are the density matrix associated to any two states of the system in study. If we

work with pure states, this expression can be rewritten as:

F (ψ, φ) = |〈ψ|φ〉| (5)

This fidelity is a natural measure of closeness between quantum states. Assuming all the wave

functions are normalized:

F (ψ, φ) ∈ [0, 1] (6)

such that if φ = ψ → F = 1, while orthogonal states give F = 0.

Since we are considering two different phases, using the argument stated above, we expect

ground states at both sides of the transition to be orthogonal. In Section 2, we study the

characterization of phase transitions using this fidelity measure which is intrinsic to the concept

of quantum states, instead of searching for the adequate order parameter for the system in

study. This different approach to the problem enables us to identify phase transitions without

information of the Hamiltonian used to describe our system, only using the ground states for

different values of the coupling parameter g. To carry out with our purpose, we present the

results through a particular example, chosen for its importance in many scientific fields; the

quantum Ising model.

1.1 Quantum Ising model

As described above, the one dimensional Ising model explains the behaviour of the spins in a

chain. Its quantum version considers the exchange interactions between neighbour spins and

the force created applying a magnetic field. These two interactions compete to align the spins

in two transverse directions as it can be seen in the Hamiltonian:

HI = −J
N∑
i=1

σ̂xi σ̂
x
i+1 +

N∑
i=1

σ̂zi (7)

Note that, throughout this work, ~ = 1. Here, σα, α = x, y, z are Pauli matrices representing

spin-1/2. The parameter J is called the coupling constant. The first term in the equation
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represents the exchange interactions between spins that occur in form of quantum fluctuations

and the second term corresponds to the interaction of the spins with the transverse magnetic field

applied. As we have explained above, both terms compete to align the spins in two transverse

directions.

If we consider a N -site 1D lattice, where each spin has 2 dimensions, the total Hilbert space has

dimension 2N . Each function in the basis of this space will be constructed as the tensor product

extended to all the spins in the chain. The elements in the basis have the form:

|φ〉 = |↑〉1 ⊗ ... |↓〉j ⊗ ...⊗ |↑〉N (8)

This model has been historically important for its many applications in physics and it is always

used as a good framework for all those interested in the study of phase transitions since we can

easily intuit what will happen in both phases as a competition between the exchange (J) and

the magnetic interaction.

With the purpose of developing this intuition, we present a more visual description of both

paramagnetic and ferromagnetic states. The paramagnetic phase presents all the spins aligned

with the z-axis. This phase appears when the parameter J present values below the critical

point (J < JC).

|↑↑↑↑ ... ↑↑〉

The ferromagnetic phase [9] appears when J > JC and corresponds to situations where the

exchange interaction between spins dominates and the spins are aligned with the x-axis. Note

that there are two degenerate ferromagnetic ground states, parallel and anti-parallel to the x-

axis. In fact, this is a consequence of a discrete Z2 symmetry. At the phase transition, the

symmetry is broken and one of the possible states emerges, thus the x-magnetization (order

parameter) becomes different from zero. For example, the g.s. is

|→→→→ ...→→〉

In this work we set J > 0, i.e. the system is ferromagnetic.

A final and important advantage of using the Ising model lies in the fact that it is analytically

solvable using the Jordan-Wigner transformation [10, 11] which maps 1/2-spins into spinless

fermions enabling us to reduce the computational cost of calculating the ground state functions

and, thus, to simulate with larger chains. Due to its classical importance, this model has already

been resolved and it is known that the transition between both ferromagnetic and paramagnetic

states occurs at Jc = 1. Also, the universal critical exponent describing the divergence of the

correlation length (see Eq.(3)) is ν = 1. All this previous knowledge makes it possible to evaluate

the quality of the results obtained for the methods we present to solve this transition task by

comparing them with these previously known results.

After presenting the model, we will characterize the phase transition using the fidelity. This

concept, already mentioned above, is based on the orthogonality of the ground states from both

phases and has been extensively developed by other scientists. [11, 12]. We reproduce below

the results of these studies.
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2 Study of phase transitions through fidelity

In this section we pursue the comprehension of the fidelity and its utility to characterise quantum

phase transitions such as the one studied in this research project. For the Ising model the fidelity

can be expressed [11, 10]:

F (J, J ′) = 〈ψ0(J) | ψ0(J
′)〉 =

∏
k

cos
(
θk(J)− θk(J ′)

)
, (9)

here, |ψ0(J)〉 is the ground state of (7) for a given coupling strength J . And we define:

cos 2θk(J) =
1 + 2J cos k√

1 + 4J cos k + 4J2
. (10)

To define the values of k we impose periodic boundary conditions and obtain, considering N -even

chains:

k =
(2n− 1)π

N
(11)

with n = 1, ..., N/2.

Following [11] we compute the fidelity between two close states F (J, J − δ) to detect the

phase transition. It is expected that if J and J − δ, with δ small enough, are in the same phase

then F (J, J − δ) ∼= 1. Only when the phase boundary is crossed, the fidelity drops. To compute

the plots, we work with:

J ∈ [0.25 : 1.75]

and

δJ = 0.0002 .

0.6 0.8 1.0 1.2 1.4
J

0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

F(
J,J

)

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
J

0

2000

4000

6000

8000

F(J
)

Fig. 2: (a) Fidelity between adjacent states for N=250, 500, 750. (b) Susceptibility for N=250, 500, 750.

We recall that δ = 0.0002

In Fig. 2a) we see, as expected, that far from the transition the fidelity between each state

and its adjacent is almost one. Since they are subject to very similar coupling parameters

and we are far from the thermodynamic limit, they seem to be quasi-identical states. In the

phase boundary, no matter how close two adjacent g.s. are in the state space, they belong to

different phases and thus they are different. As a conclusion, the fidelity presents a minimum in

the transition. Another interesting quantity to compute is the susceptibility, defined after the

expansion,

F (J, J − δ) ∼= 1− χδ2 .
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Thus:

χF (J) =
1− F (J, J − δ)

δ2
. (12)

As we can see in Fig. 2, both fidelity and susceptibility approach the divergence when increasing

the number of spins in the chain (N). One advantage of the latter is that it is independent of

the discretization (δ) used. We can assure that the maximum of this function will be equivalent

to the minimal value of fidelity, with the advantage that now we are working with an analytical

function.

2.1 Finite size scaling

We recall that second order quantum phase transitions occur in the thermodynamic limit, N →
∞, where the system presents no gap between the g.s. and the first excited state (see Fig. ??).

In order to understand how our finite system approaches this limit, we performed simulations

for different Ns using the fidelity to characterize the transition of the system.

We first notice, as we have seen in Fig. 2, that the fidelity susceptibility, defined in (12),

scales with the size of the system. Thus, the maximum of the function approaches the divergence

as a function of N , until it reaches the asymptotic value in the thermodynamic limit. This finite-

size scaling has been studied before [11, 12] and can be justified knowing that χF is directly

related to the energy spectrum and, thus, to the system fluctuations using perturbation theory.

If the system J- dependence is written explicitly as :

H = H0 + JHI .

It can be found using perturbation theory that:

χF =
∑
n6=0

|〈ψn(J)|Hi|ψ0(J)〉|2

(En(J)− E0(J))2
. (13)

Here, |ψn(J)〉 and En(J) are the spectrum, |ψ0(J)〉 and E0(J) the ground state and its energy.

Standard argumentation yields:

χF ∼ Nγ/ν ,

with γ and ν universal critical exponents, whose theoretical value is already known. This

expression suggest that we can perform a scaling analysis in order to verify this expressions. We

fit the scaling formula:

|J − JC(N)| ∼ N−1/ν , (14)

where JC(N) is the critical value of the driving parameter for a given length N and ν = 1 is

known to be a universal exponent.

However, we found that using the fidelity (or its susceptibility) for extracting both Jc and ν is

not so easy for two main reasons. The first one is that, given the shape of the divergent functions

presented in Fig. 2, it is not easy to fit them. The second one is related to the orthogonality

catastrophe. For sufficiently large N the Hilbert space is so big that any two states are (almost)

orthogonal. Therefore, δ needs to be reduced as N increases in order to preserve the similarity

of adjacent states.
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To solve these problems, Zhou and coworkers [7, 12, 13] computed the scaling analysis with

the fidelity per site λ(J, J ′) instead, defined in the thermodynamic limit as:

lnλ(J, J ′) = lim
N→∞

1

N
lnF (J, J ′) . (15)

They use the logarithm in order to smooth the divergence of this function. Although it is defined

in the thermodynamic limit, it can be extended to the finite case as:

lnλ(J, J ′) =
1

N
lnF (J, J ′) . (16)

0.6 0.8 1.0 1.2 1.4
J

0.08

0.06

0.04

0.02

0.00

ln
(J,

J′ )

N=25
N=100
N=700
N=1100

0.6 0.8 1.0 1.2 1.4
J

0.0

0.1

0.2

0.3

0.4

0.5

ln
(J,

J′ )

N=25
N=100
N=700
N=1100

Fig. 3: (a) We compute the fidelity between every J and J’= 1.256. We repeat the curves for J’=0.664.

Both J’ are marked with a dotted vertical line. (b) The derivative of the lnλ(J, J ′) for N= 25, 100, 700,

1100 and J ′ = 1.4998.

We plot the fidelity per site. In practical terms, to find the critical point of this function

we also plot its derivative for different N (Fig. 3). The maximum of this derivative function

(see Fig. 3b)) is identified with the intersection of lines in Fig. 3a). It is a pinch point of the λ

function [7, 12]. This singular behaviour can only be associated to a transition of the system,

i.e. it is the critical point we are looking for. Also, we see how the derivative approaches the

divergence for large N . The critical value JC(N) and the scaling obtained by measuring the

maximum of these derivative curves for different N is shown in Fig. 4a) and b) respectively.

0 200 400 600 800 1000
N

0.00

0.05

0.10

0.15

0.20

0.25

|J c
(N

)
1|

3 4 5 6 7
ln(N)

6

5

4

3

2

ln
|J c

(N
)

1|

Fig. 4: (a) JC(N) predicted using the fidelity per site for different N. (b) Linear fit of the scaling of JC

with the length of the spin chain.
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We find a critical exponent ν = 1.004 which is remarkably close to the theoretical expected

value ν = 1. In conclusion, we have verified the scaling law our model presented, Eq. (14).

3 Support vector machine (SVM)

A support vector machine is a supervised learning algorithm, created to classify data sets in

different categories. This type of algorithms learn to predict outcomes from ”well” labeled

data, i.e. they need prior training. We now present the mathematical foundations on which

the SVMs are built, in order to fully understand its functioning. We start presenting the

easiest case, linearly separable points i.e. classes we can separate through a straight line.

Fig. 5: Functioning of a support vector machine.

The hyperplane (solid line), and support vectors

(gray points) are shown.

The operation of the algorithm is based on

the formulation of the optimal hyperplane that

separates the set of points in classes, Cf. Fig. 5.

The construction of the hyperplane is based

on the characterization of two parameters, the

norm vector to the plane (~w), called weight vec-

tor, and the intercept term b, which defines the

optimal hyperplane from all the planes perpen-

dicular to ~w.

With these two parameters, the algorithm is

capable of classifying the points. To do so, it

defines a decision function whose value is differ-

ent for points in different classes. This decision

function is defined as:

yi = f(~xi) = sign(~ω · ~xi + b) . (17)

It is equal to one when the data point ~x lies on the positive side of the hyperplane and, when the

point lies on the negative side of the optimal hyperplane, it is equal to -1. In fact the algorithm

finds both ~ω and b, such that, given a vector ~xi depending on the sign of f(~xi) it is assigned to

a class or another.

In order to find these parameters, the algorithm needs a training set of already-classified

points, so that it will use them to transform the issue into a minimization problem as we will see

now. Our purpose is to understand the functioning of the algorithm. To do so, we reproduce

here the steps followed by the SVM to separate the data set. Let´s simulate the simplest

scenario. Suppose we have a training set with data we want to classify in two linearly separable

groups. Firstly, we introduce a crucial concept in the definition of SVMs, the support vectors.

Support vectors are defined as the only points in the training set that contribute to delimit the

hyperplane. They define the geometric margins (dotted lines in Fig.5 at both sides of the plane).

They are found by imposing:

~ω · ~x− + b = −1 , (18)

~ω · ~x+ + b = 1 , (19)
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here, ~x− and ~x+ are support vectors corresponding to left and right margins respectively. These

constraints enable us to fix the width of the space delimited by the geometric margins. This

width (d) can be computed projecting the distance between the support vectors ~x+ − ~x− onto

a unitary vector normal to the hyperplane. This calculation is embodied in Fig.6.

d = ( ~x+ − ~x−) · ~ω

‖~ω‖
. (20)

Fig. 6: Characterizing the optimal plane.

Manipulating the definitions given for sup-

port vectors in Eq.(18) and Eq.(19), multiplying

at both sides for ~ω we find:

~x− = −(1 + b)
~ω

‖ω‖2
(21)

~x+ = (1− b) ~ω

‖ω‖2
. (22)

Finally, we subtract both vectors to calculate

the distance between them:

~x+ − ~x− = 2
~ω

‖ω‖2
(23)

and so

d =
2

‖~ω‖
. (24)

As we can see, the distance depends only on the module of the vector that defines the hy-

perplane.

Since we are looking for the optimal separation, we impose this distance between both

margins to be maximum (see Fig. 6). From Eq.(24) is deduced that the maximization of the

width is equivalent to the minimization of the normal vector (~ω). Thus, we have transformed the

initial problem into an equivalent minimization question. The minimization we want to perform

presents a main restriction, the classification of points in the data set made by the decision

function must match the classification given for these points. We must recall that the set used

to solve the problem is already labelled (training data set). Before searching for the solution to

the problem, we rewrite, for convenience, the decision function as:

yi(~ω · ~xi + b) ≥ 1 , (25)

where yi is the classification of each point, so yi = −1 for points in the left side of the plane and

yi = 1 for points in the right side. It is easy to prove the equivalence between both definitions

((17)) and ((25)). Notice that this function cancels out for points in the separating hyperplane

and equal to one for all the support vectors. Looking at the definition of the function we want to

minimize and its restriction we conclude that this optimization problem admits a solution which
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can be achieved using Lagrange multipliers [14]. We define the multipliers (αi) and construct

the Lagrangian:

L =
1

2
‖~ω‖2 −

∑
i=1

αi[yi(~ω · ~xi + b)− 1] , (26)

where we sum uniquely over the support vectors, or equivalently, we impose αi 6= 0 if and only

if xi is a support vector. The method consists on applying:

∇L = 0 (27)

and solving the system of equations obtained. For our particular problem, we obtain the solution

in the form of two equations which fully characterize the separating hyperplane:

~w =
∑
i=1

αiyixi (28)

b = yi − ~wT ~xi for all ~xi with αi 6= 0 (29)

It is interesting to redefine the decision function in order to find some of its properties. Using

(28) and (29) we can express, for a given point ~x with label y:

f(~x) = y(
∑
i=1

αiyi ~xi~x+ b) ≥ 1 . (30)

Consequently, our algorithm is going to classify any given point as a function of the distance to

the support vectors, i.e. the distance to the margins. Following this procedure, we can guess

that the training set is going to be a crucial element in order to achieve an accurate classification

of the set, since it is the set from where our algorithm learns.

So far, we have discussed linear separable data. Let’s raise the difficulty a bit and suppose now

that the data set is mainly separable but presents some outliers that break separability. In this

case, we use the so-called soft margin technique [15] and drop the constrain that each point

must lie on the correct side of the margin (25). Instead, we penalize points incorrectly classified

using the hinge loss function:

max(0, 1− yi(~ω · ~xi + b)). (31)

Fig. 7: Example of set solved with soft margin

techniques.

It is zero if the constraint (25) is satisfied and

otherwise proportional to the distance from the

margin. The new decision function is:

yi(~ω · ~xi + b) ≥ 1− ζi . (32)

Here, ζi allows xi to lie outside the established

margins. The optimization problem is now trad-

ing off how wide is the margin versus how many

points are misclassified with such margin. It can

be written as:

1

n

n∑
i=1

max(0, 1− yi(~ω · ~xi + b)) + λ||~ω||2 , (33)

12



where λ represents the trade-off mentioned above. We can convert again this problem into a

maximization problem, solvable using Lagrange multipliers, a bit more complicated this time.

L =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαj(xi · xj) . (34)

Subjected to the constraints:
n∑
i=1

αiyi = 0 (35)

and

0 ≤ ci ≤
1

2nλ
, (36)

where i sums to all the support vectors. Note that the dual problem, as this maximization is

called, does not depend on parameters ζi . The constant 1
2nλ it the maximum possible size of

the Lagrange multipliers for the support vectors. The solution to this problem is of the form:

~ω =
∑

αiyi~xi (37)

and

b = yk − ~ω · ~xk , (38)

where ~xk is located on the margin´s boundary.

Soft margins are commonly used since few problems are completely linearly separable.

3.1 Kernel trick

Fig. 8: Kernel Trick.

Now, we can go a bit further and ask ourselves what

would happen if we give our algorithm a non-linearly

separable data set to work with, as in Fig 8. In these

cases, we cannot compute a separating hyperplane to

delimit different groups of data and thus, we use the

kernel trick.

The Kernel trick is nothing but noticing that both

the Lagrangian (26) and (30) depend only on the inner

product:

Kij ≡ ~xi · ~xj . (39)

. Here, we have already introduce the notation K an call it Kernel. This Kernel is nothing but

a function that corresponds to a dot product in some expanded feature space.

Thus, the Kernel trick consists on mapping the points into a higher dimensional space, called

feature space, where they may be linearly separable, as in Fig. 8. Being concrete, we define the

map as:

~xi −→ Φ(~xi) , (40)

such that the Kernel (39) consists of the inner product in the feature space:

K(~xi ~xj) = Φ(~xi)Φ( ~xj) . (41)

13



Notice that to calculate the decision function between two points in the set, we only need to

know how to compute the dot product in the feature space. As a consequence, it is not necessary

to specify the mapping used. Finally, the decision function is also written in terms of the Kernel:

y (
∑
i=1

αiyiK(~xi, ~x) + b) ≥ 0 . (42)

The crux of the matter is that classification is now given by the Kernel matrix. It is nothing but

a function that takes two input data, and returns a real number characterizing their similarity.

Obviously, in general, the map that measures this similarity is not known. Typically, what is

done is mapping to a very high dimension space to ease the separation. However, if we know

about the data we may find a mapping capable of measuring that similarity. This is what we

study in the next section

3.2 Quantum Kernel(s)

In our case, we want to classify quantum states. We have already presented a quantity that

measures the ’distance’ or similarity between quantum states, which is the fidelity. Besides, we

have argued before it is suitable for characterizing phase transitions. Therefore, it seems natural

to choose:

K(F )(ψ0(J), ψ0(J
′)) = |

〈
ψ0(J)

∣∣ψ0(J
′)
〉
| (43)

as our quantum Kernel.

Also, from what we learnt in previous sections, we will use a second Kernel in terms of the

fidelity per site. This one is a measure of similarity but with the advantages of avoiding the

orthogonality catastrophe. We construct this second Kernel as:

K(λ)(ψ0(J), ψ0(J
′)) = |

〈
ψ0(J)

∣∣ψ0(J
′)
〉
|1/N . (44)

In what follows, we discuss the performance of this two different kernels in the task of locating

the phase transition in the quantum Ising model.
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4 Results

4.1 Fidelity based Kernel (K(F ))

It is time to present the results of comparing the prediction of the critical value made by the SVM

with the results obtained with the fidelity analysis (Fig.4). In Fig. 9 we show this comparison

with results obtained from the SVM trained in two intervals of J, one for each phase, far from

the transition. The intervals are non-symmetric in order to challenge our algorithm abilities in

the classifying task.

101 102 103

N

0.8

0.9

1.0

1.1

1.2

J c(
N)

SVM
Scaling

Fig. 9: Comparison of estimated Jc for both fidelity analysis and SVM results. The SVM has been trained

in the intervals [0.6, 0.7] U [1.6, 1.7].

Looking at the results, it is obvious that SVM predictions do not scale with the number of

spins in the chain (N). It seems advantageous for small chains, where the predictions approach

better the theoretical phase boundary JC = 1 than the benchmark results obtained with the

finite size scaling. Nevertheless, for large spin chains, the SVM predictions seem to diverge from

the expected JC and so our system loses all its validity. In order to go deep into this phenomena

we present three different results from the SVM trained with three different sets of Js. The first

is made up of random Js all along the J-interval. The second one is the interval set used above.

The third one is again an interval set, but this time made up with Js closer to the transition

J ∈ [0.7, 0.8] U [1.2, 1.3]. As in Section 2, we work with:

J ∈ [0.25 : 1.75] ,

but a larger separation between adjacent Js, since that high precision is not required anymore.

δJ = 0.0015 .

All three training sets contain approximately a 10% of the Js in the J-interval.
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Fig. 10: Divergence of the predicted JC with three different trainings, done with random Js, J ∈ [0.7 :

0.8] U [1.2 : 1.3] and J ∈ [0.6 : 0.7] U [1.6 : 1.7].

Looking at Fig. 10, both three trainings conclude in a divergence of the predicted transition

boundary when they work with long spin chains. Nevertheless, we must highlight that the

functioning of the algorithm is much better when it is trained with scattered values of J . In this

case, the appearance of the divergence is delayed from N v 300 to N v 30000. The explanation

of this phenomena is simple, the algorithm works much better when it has knowledge of all the

space of classification. This way, it is capable of choosing better support vectors and constructing

a more accurate hyperplane to distinguish the phases of the system studied. To fully analyze the

functioning of the SVM and prove these arguments, we plot the distance of the ground states

to the hyperplane:

d(~x) =
∑
i=1

αiyi ~xi~x+ b , (45)

as shown in Section 3 based on (17). This plot is made for interval and random training, and

for different sizes of the chain (see Fig. 11 and 14). It characterizes the transition boundary.

In figure 11, in the interval training, it is marked in gray the intervals used for training the

SVM. As we can see, for small N the distance function presents a coherent shape. It smoothly

approaches null distance while J tends to Jc. It seems that the algorithm does not need a lot of

support vectors to separate both phases. It is easy for the SVM to extrapolate the information

in the training intervals to the rest of the set. These points contain enough information to enable

an accurate classifying process. Meanwhile, for high N , the interval does not contain enough

information to draw the boundary correctly. As a conclusion, we see a loss of accuracy reflected

in the appearance of a flat zone at distance zero. The algorithm is not capable of characterizing

the transition any more.
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Fig. 11: Function distance to the hyperplane for N=20, 100, 200, 500, 700, 1200. The dots represent

the support vectors chosen by the algorithm to decide the boundary. The training has been made in

J ∈ [0.6 : 0.7] U [1.6 : 1.7].

If we look now at the same figures done with a random training, the situation is a bit

different. Since the algorithm now visits the whole J set, there are support vectors closer to the

transition. Nevertheless, it has something in common with Fig.11; when N increases enough,

the SVM fails. It takes all the training points as support vectors, and not only the nearest

ones, loosing its ability to distinguish the better ones, and presents fluctuations in the distance

function which prevent it from giving an accurate prediction.
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Fig. 12: Function distance to the hyperplane for N=50, 100, 500, 1000, 10000, 30000. Again the dots

represent the support vectors chosen by the algorithm in each case.
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In order to understand this rupture we recall Section 2.1 where we explain how fidelity is

automatically linked to the appearance of the orthogonality catastrophe at a sufficient large

Hilbert space. We recall that we work with states of 2N dimensions and therefore, the similarity

between adjacent states disappears fast with the increase of N . We propose a solution to this

problem based on Zhou´s work [7, 12], as we have also explained in section 2.1, implementing a

new quantum kernel based on the fidelity per site, see Sect. 3.2.

4.2 Fidelity-per-site based Kernel (K(λ))

We now present two different trainings, respectively made with intervals and random Js, and

compare its predictions, observing their behaviour for large N .

1000 2000 3000 4000
N

0.9950

0.9975

1.0000

1.0025

1.0050

J c(
N

)

random
[0.8, 0.9]&[1.2, 1.3]

Fig. 13: SVM´s predicted JC with the kernel based on the fidelity per site (K(λ)) proposed and two

different trainings, random Js and J ∈ [0.8 : 0.9] U [1.2 : 1.3].

As expected, new predictions do not suffer the rupture seen before. Following what we have

demonstrated in Section 2.1, the fidelity per site avoids the orthogonality catastrophe and so,

presents this huge advantage when operating with large spin chains. Also, it can be seen that

the interval training works as good as the random training. Consequently, our SVM estimates

the transition boundary being trained with states located far from the transition. Finally, notice

that critical values scale with N in same way that the λ function did, following the scaling law

14. For both trainings we find as critical exponents:

νrand = 0.94 (46)

and

νint = 1.08 (47)

We present again the distance function for different Ns in order to demonstrate the avoiding of

rupture seen in Fig. 13
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Fig. 14: Function distance to the hyperplane for N=200, 600 and 4000 respectively. SVM trained in the

interval J ∈ [0.8 : 0.9] U [1.2 : 1.3].
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Fig. 15: Distance to the hyperplane for N= 200, 600 and 4000. SVM trained with a random set of Js.

The situation is quite different now. The distance functions are smooth and approach zero

when J is Jc. We can also see that the function maintains its shape when we increase the length

of the spin chain. We also see that it adapts its shape for different trainings, to assure that the

support vectors are at distance ±1 or less to the hyperplane. This is a direct consequence of its

definition and the appearance of soft margins, seen in Section 3.

We have found the right kernel to deal with our classification problem. Nevertheless, apart

from the quantum argument based on avoiding the orthogonality catastrophe mentioned above,

we can also give a machine learning measure of whether a kernel is good.

4.3 Kernel Alignment

Based on [16], the kernel alignment is defined in terms of the Frobenius distance between ma-

trices:

A :=
Tr[k1 k2]√
Tr[k21]Tr[k22]

. (48)

A ∈ [0, 1] is a measure of the similarity between two kernels.

It is convenient to center the kernel:

[Kc]ij = Kij −
1

m

m∑
i=1

Kij −
1

m

m∑
j=1

Kij +
1

m2

m∑
i,j=1

Kij , (49)

where m is the dimension of the kernel matrix and Kc is a positive semi-definite matrix fulfilling

the condition:
1

m2

m∑
i,j=1

[Kc]ij = 0 . (50)
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This centering is nothing but the replacement of the map Φ(~xi) by Φ(~xi)− Ex[Φ] where Ex[Φ]

is the expected value of Φ through the set considered to construct the Kernel matrix.

Following [16] the quality in the performance of our kernel is given by the alignment with

the, so called, target kernel (K(Y )):

K
(Y )
ij = yiyj , (51)

where yi, yj are the labels of the training points xi, xj .

Thus, we can center both the target and training kernel using Eq. (49) and compute the

alignment as a measure of the quality of the kernels chosen. In order to do so, firstly we rewrite

the alignment expression as:

A(Kc,K
(Y )
c ) =

∑m
i,j=1 [Kc]ij [K

(Y )
c ]ij√∑m

i,j=1[Kc]2ij
∑m

i,j=1[K
(Y )
c ]2ij

. (52)

Obviously, the larger the alignment the better the Kernel. If A is small, then the classification

is poor. For the fidelity based kernel, A first grows with the lattice size, N . But then, if N >> 1

A decreases, which agrees with the arguments related to the orthogonality catastrophe presented

in Sections 2 and 4.1. This is plotted in Fig. 16. Looking now at the alignment for the fidelity-

per-site based kernel (K(λ)) things are quite different. The alignment is a growing function

which approaches 1 for large Ns (see Fig. 16). This ratifies the arguments presented in Section

2 based on [7, 12]. Again, for small N the alignment is smaller since the boundary is determined

more accurately for a system approaching the thermodynamic limit N → ∞ (see Section 2 to

find the scaling arguments supporting this reasoning).
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Fig. 16: (a) Alignment of (K
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c ) and the target centered kernel (K

(Y
c ). (b) Alignment of (K

(λ)
c ) and the

target centered kernel (K
(Y
c ).

A verification of all of this can be seen in Fig. 17 where K(F ) is plotted for two sizes N . For

N = 40, both phases are clearly distinguished. States in the same phase have a fidelity close

to 1 and those in different phases, a fidelity close to 0 as expected. Nevertheless, for N = 500,

even states in the same phase present a fidelity close to 0.
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Fig. 17: Random training kernels for N=40 and 500 respectively and (K(F )).

On the other hand, if we plot K(λ) we can clearly distinguish both phases also for large N .

The kernel stays close to 1 for states in the same phase and close to 0 for those in different sides

of the transition boundary.
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Fig. 18: Random training kernels for N=400 and 3600 respectively and (K(λ)).
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5 Conclusions

Through the development of this Undergraduate Dissertation we have presented an example of

quantum computing supremacy in the context of quantum phase transitions. We have studied

the one dimensional Ising model on its quantum version and developed two different kernels to

locate the phase transition of this model using a machine learning algorithm known as Support

Vector Machine.

In the first half of this Dissertation, we have presented the two pillars of this project, quantum

physics and artificial intelligence. They seem to have nothing to do with each other and yet

both are playing an indispensable role in the development of quantum computing. They are

presented using particular examples: quantum phase transitions in the Ising model and Support

Vector Machines.

After presenting these two concepts, we have searched for an example of quantum computing

supremacy in the context of quantum machine learning. To do so, we have developed two

different kernels to locate the phase transition of the Ising model using a SVM. Both kernels

were based on an important quantum quantity known as fidelity. To fully understand the

results, we have first studied the orthogonality catastrophe associated to the fidelity in high

dimensional Hilbert spaces. This phenomenon is reflected in the results obtained with the first

kernel presented (see Section 4.1).

Introducing the fidelity per site, we have been able to construct a new quantum Kernel capable of

accurately characterizing the transition boundary, being trained exclusively with states located

far away from the transition. This could be crucial when extending this technique to other

non-analytically solvable models since it allows one to avoid dealing with the difficulties critical

systems usually present near the transition. The validity of the method has been ratified,

not only with the quantum arguments presented in Section 2 where we see how this quantity

avoided the orthogonality catastrophe, but also through computer science assertions based on

kernel similarities, presented in Section 4.3.

The fusion of these two branches, quantum physics and machine learning, has enabled us to fully

understand the application of artificial intelligence in quantum physics and explore the immense

world of quantum computing and its limitations.
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A Code

All the development of this Undergraduate Dissertation was based on proprietary code developed

by the author that can be found here.
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