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Abstract In this article, a family of continuous functions on the unit sphere S ⊆ R
3 is considered as a

generalization of spherical harmonics. The family is fractalized using a linear and bounded operator of
functions on the sphere. Particular values of the scale vector in the iterated function system (IFS) may
yield classical functions system on the sphere. We have shown that for different values of the scale vector
in the IFS, Bessel sequences, frames, and Riesz bases can be established for the space L2(S) of square
integrable functions on the sphere.

1 Introduction

The notion of Fractal Interpolation Function (FIF)
which relates new research fields in approximation the-
ory, functional analysis, etc. was proposed in the nine-
teen eighties [1]. The graph of the aforementioned func-
tion is the attractor of an Iterated Function System
(IFS). In constructive approximation, fractal functions
form the basis for non-smooth functions. The FIFs gen-
erated from IFSs with free parameters known as scaling
factors give more flexibility to fit complicated curves
that exhibit some kind of self-similarity. To define a
fractal interpolation function, a general IFS is con-
structed as mentioned below.

Let for any r ∈ N, Nr = {1, 2, . . . , r} and N
0
r = Nr ∪

{0}. Consider a set of interpolation points {(xi, yi) ∈
I×R : i ∈ N

0
N}, N > 2, where Δ : x0 < x1 < · · · < xN

is a partition of the closed interval I = [x0, xN ] and
yi ∈ [h1, h2] ⊂ R for i ∈ N

0
N . Set Ii = [xi−1, xi] for

i ∈ NN and K = I × [h1, h2]. Let Li : I → Ii, i ∈ NN ,
be contraction homeomorphisms, such that

Li(x0) = xi−1, Li(xN ) = xi, (1)
|Li(c1) − Li(c2)| ≤ d|c1 − c2| for all c1 and c2 in I,

(2)

for some 0 ≤ d < 1. Furthermore, let Fi : K → R,
i ∈ NN , be given continuous functions, such that

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi, (3)
|Fi(x, ξ1) − Fi(x, ξ2)| ≤ |αi||ξ1 − ξ2| (4)

a e-mail: nasim.iitm@gmail.com (corresponding author)

for all x ∈ I and for all ξ1 and ξ2 in [h1, h2], for some
αi ∈ (−1, 1), i ∈ NN . Define mappings Wi : K → Ii ×
R, i ∈ NN by

Wi(x, y) = (Li(x), Fi(x, y)) for all (x, y) ∈ K .

Then

{K; Wi(x, y) : i ∈ NN} (5)

constitutes an IFS. Barnsley [1] proved that the IFS
{K;Wi : i ∈ NN} defined above has a unique attractor
G, where G is the graph of a continuous function g : I →
R which obeys g(xi) = yi for i ∈ N

0
N . This function g is

called a fractal interpolation function (FIF) or simply
fractal function and it is the unique function satisfying
the following fixed point equation:

g(x) = Fi(L−1
i (x), g(L−1

i (x))) for all x ∈ Ii, i ∈ NN .

(6)

The widely studied FIFs so far are defined by the iter-
ated mappings

Li(x) = ai x + di, Fi(x, y) = αi y + qi(x), i ∈ NN ,

(7)

where the real constants ai and di are determined by
the condition (1) as

ai =
(xi − xi−1)
(xN − x0)

and di =
(xNxi−1 − x0xi)

(xN − x0)
, (8)
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and qi(x)’s are suitable continuous functions, such that
the conditions (3) and (4) hold. For each i, αi is a free
parameter with |αi| < 1 and is called a vertical scaling
factor of the transformation Wi. Then, the vector α =
(α1, α2, . . . , αN ) is called the scale vector of the IFS.
If qi(x) is taken as linear, then the corresponding FIF
is known as affine FIF (AFIF). Let C(I) denote the
normed space of real-valued continuous functions on I
endowed with the uniform norm ‖f‖∞ = sup{|f(x)| :
x ∈ I}. Let f ∈ C(I). Consider the case

qi(x) = f(Li(x)) − αi b(x), (9)

where b(x) is a continuous function, such that b(x0) =
f(x0) and b(xN ) = f(xN ). Let fα be the continuous
map whose graph is the attractor of the IFS (7), (8),
and (9). Then, the function fα is called the α-fractal
function associated with f with respect to the function
b(x) and the partition Δ according to the definition of
Navascués in the reference [2]. The function fα inter-
polates and approximates f . In [3,4], authors defined
new approximation classes consisting of self-referential
functions. The graph of the of the function fα may have
non-integer fractal dimensions [5,6]. For results on the
fractal dimensions of different fractal functions, inter-
ested reader may see [4,7–14] and references therein. In
[15], the authors introduces the novel notion of dimen-
sion preserving approximation for continuous functions
defined on [0, 1] and initiates the study of it. From (6)
and (9), fα satisfies the following fixed point equation:

fα(x) = f(x) + αi (fα − b) ◦ L−1
i (x)

for all x ∈ Ii, i ∈ NN . (10)

From (10), it is easy to deduce the following inequality:

‖fα − f‖∞ ≤ |α|∞
1 − |α|∞ ‖f − b‖∞ , (11)

where |α|∞ = max{|αi| : i ∈ NN}. For α = 0, the frac-
tal function fα agrees with f . The theory of α-fractal
function for different choices of b(x) can be found, in
[16–18]. In this article, we consider the case

b = Lf ,

where L : C(I) → C(I) is a linear and bounded operator
with respect to the least square norm

‖f‖L2 =
( ∫ b

a

|f |2dx

)1/2

,

such that Lf(x0) = f(x0), Lf(xN ) = f(xN ) and L 	=
Id. The following result can be found in [19].

Theorem 1 (a) The operator

Fα : C(I) → C(I)
f ↪→ fα

Fig. 1 Fractal function

is linear and bounded with respect to the L2-norm.
(b) If α = 0, Fα is identity operator Id.
(c) The following inequalities hold:

‖Fα‖2 ≤ 1 +
|α|∞

1 − ‖α‖∞
‖Id − L‖2 ,

‖Id − Fα‖2 ≤ |α|∞
1 − ‖α‖∞

‖Id − L‖2 ,

where ‖T‖2 is the operator norm defined as

‖T‖2 = sup{‖T (f)‖L2 : ‖f‖L2 = 1, f ∈ C(I)} .

Figure 1 represents the fractal map fα for f(x) =
P 2
10(x), where P 2

10(x) is the associated Legendre polyno-
mial of orders 10, 2; b(x) = f(x)v(x), where v(x) = 4 −
3|x|, I = [−1, 1], N = 10, the sampling is uniform and
α = (0.15,−0.2, 0.3,−0.15, 0.2, 0.3,−0.1, 0.1,−0.2, 0.2).

The fractal functions on the sphere are initially con-
sidered in [19]. In [20], the authors considered a family
of continuous functions on the unit sphere S ⊆ R

3 gen-
eralizing the spherical harmonics. In the present paper,
the fractalization of the continuous functions on the
unit sphere S ⊆ R

3 is different from the existing ones.
Therefore, the present paper can be considered as an
amalgam of the articles [19,20], although some exten-
sions are given in some cases.

2 Fractal functions on the sphere

Let us consider a family of continuous functions

unm : J = [−1, 1] → R ,

such that for any nonnegative integer m, the system of
functions

Um =
{
unm;n = p, p + 1, . . .

}
(12)
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forms an orthogonal system in C(J) with respect to the
inner product

〈g, h〉 =
∫ 1

−1

g(t)h(t)dt ,

where p is the least positive integer, such that

m

2
≤ p. (13)

Let
{
vm : I = [0, 2π] → R| vm is continuous and periodic,

m = 0, 1, 2, . . .
}

be an orthonormal system in C(I) with respect to the
inner product

〈g, h〉 =
∫ 2π

0

g(t)h(t)dt .

Let P = (ϕ, θ) represent a point on the unit sphere S.
Let us define functions on the unit sphere S as

Hnm(ϕ, θ) = unm(cos ϕ)vm(θ),
(n = 0, 1, 2, . . . ;m = 0, 1, 2, . . . , 2n). (14)

On L2(S), define the inner product

〈F,G〉 =
∫

S

F.GdS for F,G ∈ L2(S)

and the norm

‖F‖L2(S) =
(

〈F, F 〉
)1/2

=
( ∫

S

|F |2dS

)1/2

for F ∈ L2(S) .

Lemma 1 For any nonnegative integer m

〈Hnm,Hrm〉 = 0, (n, r = p, p + 1, p + 2, . . . ;n 	= r) ,

where p is defined as in (13).

Proof The inner product can be expressed in spherical
coordinates as

〈Hnm,Hrm〉 =
∫ 2π

0

∫ π

0

unm(cos ϕ)urm(cos ϕ)

|vm(θ)|2 sin ϕdϕdθ

=
( ∫ 2π

0

|vm(θ)|2dθ

)
( ∫ π

0

unm(cos ϕ)urm(cos ϕ) sin ϕdϕ

)
.

Since the second integral is zero if n 	= r, it follows that
〈Hnm,Hrm〉 = 0. 
�

Lemma 2 For any nonnegative integer m

‖Hnm‖L2(S) = ‖unm‖L2(J), (n = p, p + 1, p + 2, . . .) .

Proof We have

‖Hnm‖2L2(S) =
∫ 2π

0

∫ π

0

|unm(cos ϕ)|2|vm(θ)|2 sin ϕdϕdθ

=
(∫ 1

−1

|unm(t)|2dt

)( ∫ 2π

0

|vm(θ)|2dθ

)

= ‖unm‖2L2(J),

since the second integral is 1 according to the definition
of {vm}. Hence, the result follows. 
�

Let us define, for any nonnegative integer m

Hj
m =

{ j∑
n=p

λnmHnm;λnm ∈ R

}
,

where p is the least integer, such that m
2 ≤ p. Note that

Hj
m = ∅ if p > j .

Due to Lemma 1, {Hnm}j
n=p is an orthogonal basis for

Hj
m. Define

Hm = ∪∞
j=0Hj

m = span{Hnm : n = p, p + 1, . . .} .

If ‖unm‖L2(J) = 1, for all n,m, then {Hnm}∞
n=p is an

orthonormal Schauder basis for Hm. In this article, we
will fractalize the second function vm(θ) in Hnm(ϕ, θ)
as

Hα
nm(ϕ, θ) = unm(cos ϕ)vα

m(θ), (15)

where vα
m(θ) = Fα(vm(θ)), Fα is the operator defined

in Sect. 1. Now, consider

(Hj
m)α =

{ j∑
n=p

λnmHα
nm;λnm ∈ R

}
.
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Then, {Hα
nm}j

n=0 is an orthogonal basis for (Hj
m)α. For

instance

〈Hα
nm(ϕ, θ),Hα

rm(ϕ, θ)〉

=
∫ 2π

0

∫ π

0

unm(cos ϕ)urm(cos ϕ)

|vα
m(θ)|2 sinϕdϕdθ

=
( ∫ π

0

unm(cos ϕ)urm(cos ϕ) sin ϕdϕ

)
(∫ 2π

0

|vα
m(θ)|2dθ

)
= 0,

since 〈unm, urm〉 = 0 for n 	= r.

Lemma 3 For n = p, p + 1, p + 2, . . . and m =
0, 1, 2, . . .

‖Hα
nm‖L2(S) = ‖unm‖L2(J)‖vα

m‖L2(I)

≤ ‖Fα‖2‖Hnm‖L2(S) .

Proof For instance

‖Hα
nm‖2L2(S) =

∫ 2π

0

∫ π

0

|unm(cos ϕ)|2|vα
m(θ)|2 sinϕdϕdθ

=
( ∫ 1

−1

|unm(t)|2dt

)( ∫ 2π

0

|vα
m(θ)|2dθ

)

= ‖unm‖2L2(J)‖vα
m‖2L2(I)

≤ ‖unm‖2L2(J)‖Fα‖22‖vm‖2L2(I).

Since {vm}∞
m=0 is an orthonormal family, it follows that

(Lemma 2):

‖Hα
nm‖L2(S) ≤ ‖Fα‖2‖Hnm‖L2(S) .


�

Theorem 2 The operator

Θα
m : ∪∞

j=0Hj
m → L2(S) ,

j∑
n=p

λnmHnm ↪→
j∑

n=p

λnmHα
nm

is linear and bounded.

Proof The linearity of Θα
m is obvious. For boundedness,

due to the orthogonality of {Hnm}j
n=p and {Hα

nm}j
n=p,

we get

∥∥∥∥Θα
m

( j∑
n=p

λnmHnm

)∥∥∥∥
2

L2(S)

=
j∑

n=p

‖λnmHα
nm‖2L2(S),

using Lemma 3,

≤
j∑

n=p

‖Fα‖22‖λnmHnm‖2L2(S)

= ‖Fα‖22‖
j∑

n=p

λnmHnm‖2L2(S).

Consequently, ‖Θα
m‖2 ≤ ‖Fα‖2. 
�

Since ∪∞
j=0Hj

m is dense in Hm, the operator Θα
m can be

extended to Hm preserving the norm. Let us denote the
extension as Θ

α

m. By linearity and continuity

Θ
α

m

( ∞∑
n=p

λnmHnm

)
=

∞∑
n=p

λnmHα
nm.

Theorem 3 [21] (Vitali’s completeness criterion) Let
{φn}∞

n=1 be an othonormal sequence of functions in
L2(a, b) where a, b are finite. Then, (φn) is complete
in L2(a, b) if and only if

∑
n

( ∫ r

a

φn

)2

= r − a

for every r ∈ (a, b).

Corollary 1 Let (a, b) be a finite or infinite interval
of R, let g belong to L2

w(a, b), g 	= w, where w is a
positive continuous weight function, and let (φn) be an
orthonormal sequence in L2

w(a, b). Then, (φn) is com-
plete in L2

w(a, b) (equivalently (φn
√

w) is complete in
L2(a, b)) if and only if

∑
n

∣∣∣∣
∫ r

a

φn(x)g(x)w(x)dx

∣∣∣∣
2

=
∫ r

a

|g(x)|2w(x)dx

for every r in (a, b).

From here on, let us assume that for any nonnegative
integer m = 01, 2, . . ., the system U = ∪∞

m=0Um given
in (12) is orthonormal, that is

∫ 1

−1

unm(x)ujr(x)dx = δnjδmr ⇒ ||unm||L2(J) = 1

(16)

and Um forms a complete system in L2(J), where
m is the least integer, such that m

2 ≤ p. Also,
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assume that {vm}∞
m=0 is a complete orthonormal sys-

tem in L2(0, 2π). Then, by Vitali’s completeness crite-
rion (Theorem 3)

∞∑
m=0

(∫ θ

0

vm(θ′)dθ′
)2

= θ for every θ ∈ (0, 2π).

(17)

Lemma 4 For any nonnegative integer m

∞∑
n=p

( ∫ ϕ

0

unm(cos ϕ′) sin ϕ′dϕ′
)2

= 1 − cos ϕ

for every ϕ ∈ (0, π) .

Proof For any nonnegative integer m, the completeness
of the system Um in L2(J) implies the completeness
of the system

{
unm(cos ϕ)| n = p, p + 1, p + 2, . . .

}
in L2(0, π). Then, by modified Vitali’s criterion Corol-
lary 1, taking g = 1

∞∑
n=p

(∫ ϕ

0

unm(cos ϕ′) sin ϕ′dϕ′
)2

=
∫ ϕ

0

12. sin ϕ′dϕ′

= 1 − cos ϕ .


�
The Vitali’s completeness criterion for the functions on
the sphere is the following.

Lemma 5 Let S denote the unit sphere with (ϕ, θ) as
usual spherical polar coordinates. Let {fn} be a set of
functions which are orthonormal over S, that is

∫
S

fnfm = δnm .

The orthonormal sequence (fn) is complete in L2(S) if
and only if

∑
n

[ ∫ θ

0

∫ ϕ

0

fn(ϕ′, θ′) sin ϕ′dϕ′
]2

= θ(1 − cos ϕ)

for every θ ∈ (0, 2π) and every ϕ ∈ (0, π).

Proof See [22]. 
�
Theorem 4 The family

{
Hnm : n = 0, 1, 2, . . . ;m = 0, 1, 2, . . . , 2n

}

=
{

Hnm : n = p, p + 1, p + 2, . . . ;m = 0, 1, 2, . . .

}

form an orthonormal complete system of L2(S).

Proof Recall that Hnm(ϕ, θ) = unm(cos ϕ)vm(θ). Due
to Lemmas 1, 2, and (16), the family {Hnm : n =
0, 1, 2, . . . ;m = 0, 1, 2, . . . , 2n} is orthonormal. Let
Φn(S) be the orthonormal sequence of functions of the
above system. Then

∞∑
n=0

[ ∫ θ

0

dθ′
∫ ϕ

0

Φn(ϕ′, θ′) sin ϕ′dϕ′
]2

=
∞∑

n=0

2n∑
m=0[ ∫ θ

0

vm(θ′)dθ′
∫ ϕ

0

unm(cos ϕ′) sin ϕ′dϕ′
]2

=
∞∑

m=0

[ ∫ θ

0

vm(θ′)dθ′
]2 ∞∑

n=p[ ∫ ϕ

0

unm(cos ϕ′) sin ϕ′dϕ′
]2

,

inverting the order of integration on the right-hand side
of the last inequality. Using Lemma 4 along with (17)

∞∑
n=0

[ ∫ θ

0

dθ′
∫ ϕ

0

Φn(ϕ′, θ′) sin ϕ′dϕ′
]2

= θ(1 − cos ϕ) .

Therefore, by Lemma 5, it follows that {Hnm : n =
0, 1, 2, . . . ;m = 0, 1, 2, . . . , 2n} forms a complete system
in L2(S). 
�

Theorem 5 For any f ∈ L2(S), the operator Θα :
L2(S) → L2(S) defined by

Θα(f) =
+∞∑
n=0

2n∑
m=0

cnmHα
nm

if

f =
+∞∑
n=0

2n∑
m=0

cnmHnm

is linear and bounded.

Proof Let us consider the mapping

Gα : span(Hnm) → L2(S)

defined by

Gα(f) = Gα

( N∑
n=0

2n∑
m=j

cnmHnm

)

=
N∑

n=0

2n∑
m=j

cnmHα
nm.
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The operator Gα is linear. If one consider f ∈ span
(Hnm), then f ∈ Hj for j sufficiently large, and

Gα(f) = Θ
α

j (f)

||Gα(f)||L2(S) = ||Θα
j (f)||L2(S) ≤ ||Fα||2||f ||.

Consequently

||Gα||2 ≤ ||Fα||2
and Gα is bounded and linear. Since span(Hnm) =
L2(S), Gα can be extended to L2(S) preserving the
norm. Let us denote the extension by Θα : L2(S) →
L2(S). The linearity and continuity of Θα imply that

Θα(f) =
+∞∑
n=0

2n∑
m=0

cnmHα
nm

if

f =
+∞∑
n=0

2n∑
m=0

cnmHnm .

Moreover, ||Θα||2 ≤ ||Fα||2. 
�

3 Fractal basis for L2(S)

In this section, we will consider the linear bounded
operator L : C(I) → C(I) with respect to least square
norm given in Sect. 1. Let LH be defined on the basic
elements as

LH(Hnm)(ϕ, θ) = unm(cos ϕ)L(vm(θ)). (18)

Then, by linearity, it can be extended LH : Hj
m →

L2(S), such that ‖LH‖2 ≤ ‖L‖2. In Theorem 5, the
operator LH can be extended to LS : L2(S) → L2(S),
such that ‖LS‖2 = ‖LH‖2 ≤ ‖L‖2.
Lemma 6

‖Θα(Hnm) −Hnm‖L2(S) ≤ |α|∞‖Θα(Hnm)
−LS(Hnm)‖L2(S).

Proof Note that

Θα(Hnm) = Hα
nm .

Therefore

‖Θα(Hnm) − Hnm‖2L2(S) = ‖Hα
nm − Hnm‖2L2(S)

=
∫ 2π

0

∫ π

0

u2
nm(cos ϕ)|vα

m(θ)

−vm(θ)|2 sinϕdϕdθ

= ‖unm‖2L2(J)‖vα
m − vm‖2L2(I).

However, from (10), for f = vm and b = Lf

‖vα
m − vm‖2L2(I)

=
N∑

i=1

∫ xi

xi−1

|αi|2|(vα
m − Lvm) ◦ L−1

i (x)|2dx .

By changing of variable x̃ = L−1
i (x), it follows that:

‖vα
m − vm‖2L2(I) =

N∑
i=1

ai|αi|2
∫ 2π

0

|(vα
m − Lvm)(x̃)|2dx̃

=
N∑

i=1

ai|αi|2‖vα
m − Lvm‖2L2(I)

≤ |α|2∞‖vα
m − Lvm‖2L2(I)

N∑
i=1

ai

= |α|2∞‖vα
m − Lvm‖2L2(I),

since
∑N

i=1 ai = 1. Therefore

‖Θα(Hnm) −Hnm‖2L2(S) ≤ |α|2∞‖unm‖2L2(I)‖vα
m

−Lvm‖2L2(I) .

On the other hand

‖Θα(Hnm) − LS(Hnm)‖2L2(S)

= ‖Hα
nm − LS(Hnm)‖2L2(S)

=
∫ 2π

0

∫ π

0

u2
nm(cos ϕ)|vα

m(θ)

−L(vm(θ))|2 sinϕdϕdθ

= ‖unm‖2L2(J)‖vα
m − Lvm‖2L2(I).

Hence the proof. 
�
Lemma 7 For any f ∈ L2(S)

‖Θα(f) − f‖L2(S) ≤ |α|∞‖Θα(f) − LSf‖L2(S)

(19)

and

‖Θα(f) − f‖L2(S) ≤ |α|∞
1 − |α|∞ ‖Id − LS‖2‖f‖L2(S).

(20)

Proof For any f ∈ L2(S), let us consider a sequence Xk

in Hmk
, such that f = lim Xk with respect to the L2-

norm (such sequence exists due to Theorem 5). Also,
continuity of LS implies that LSf = lim LSXk. Due to
the continuity of Θα and the norm, it follows that:

‖Θα(f) − f‖2L2(S) = lim
k→∞

‖Θα(Xk) − Xk‖2L2(S).

(21)
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Now, for X ∈ Hm

X =
∞∑

n=p

λnmHnm.

Note that {Hα
nm−Hnm}∞

n=p is orthogonal. For instance

〈Hα
nm − Hnm,Hα

rm − Hrm〉

=
∫ 2π

0

∫ π

0

unm(cos ϕ)urm(cos ϕ)

|vα
m(θ) − vm|2 sin ϕdϕdθ

=
( ∫ π

0

unm(cos ϕ)urm(cos ϕ) sin ϕdϕ

)
(∫ 2π

0

|vα
m(θ) − vm|2dθ

)

= 0,

since the first integral is zero. Therefore

‖Θα(X) − X‖2L2(S) =
∞∑

n=p

|λnm|2‖Hα
nm − Hnm‖2L2(S)

≤
∞∑

n=p

|α|2∞|λnm|2‖Hα
nm

−LSHnm‖2L2(S),

using Lemma 6. Also, Hα
nm − LSHnm,Hα

rm − LSHrm

are orthogonal for n 	= r, due to the orthogonality of
unm, urm for n 	= r. Therefore

‖Θα(X) − X‖2L2(S) ≤ |α|2∞‖Θα(X) − LSX‖2L2(S).

(22)

Using it in (21) for X = Xk, it follows that:

‖Θα(f) − f‖2L2(S) = lim
k→∞

‖Θα(Xk) − Xk‖2L2(S)

≤ |α|2∞ lim
k→∞

‖Θα(Xk) − LSXk‖2L2(S)

= |α|2∞‖Θα(f) − LSf‖2L2(S)

and therefore

‖Θα(f) − f‖L2(S) ≤ |α|∞‖Θα(f) − LSf‖L2(S) .

For the second inequality

‖Θα(f) − f‖L2(S) ≤ |α|∞‖Θα(f) − LSf‖L2(S)

≤ |α|∞
(‖Θα(f) − f‖L2(S)

+‖f − LSf‖L2(S)

)

and the result follows. 
�

Proposition 1 If |α|∞ < ‖L‖−1
2 , then Θα is injective

and its range is closed.

Proof From (19), with ‖LS‖2 ≤ ‖L‖2, it follows that:

‖f‖L2(S) − ‖Θα(f)‖L2(S) ≤ |α|∞
(‖Θα(f)‖L2(S)

+‖L‖2‖f‖L2(S)

)
.

Therefore

‖f‖L2(S) ≤ 1 + |α|∞
1 − |α|∞‖L‖2 ‖Θα(f)‖L2(S). (23)

If Θα(f) = 0, then f = 0, and consequently, Θα(f)
is injective. To show that the range of Θα is closed,
consider a convergent sequence Θα(fn), such that
Θα(fn) → g. Since the sequence Θα(fn) is convergent,
it is also Cauchy, and therefore, according to (23), fn

is also a Cauchy sequence. As a consequence, fn is con-
vergent in a Banach space. If fn → f as n → ∞. Then,
the continuity of Θα implies that

Θα(f) = lim
n→∞ Θα(fn) = g .

Therefore, g belongs to range of Θα, and hence, range
of Θα is closed. 
�
The treatise [23] is a good reference for the basic defi-
nitions used in the sequel.

Definition 1 Let H be a Hilbert space. A sequence
(xk) ⊂ H is a Bessel sequence in H if there exists a
constant B > 0, such that for all x ∈ H

∞∑
k=0

|〈x, xk〉|2 ≤ B‖x‖2.

Proposition 2 For any scale vector α with |α|∞ < 1,
(Hα

nm) is a Bessel sequence.

Proof For any f ∈ L2(S)

∞∑
n=0

2n∑
m=0

|〈f,Hα
nm〉|2 =

∞∑
n=0

2n∑
m=0

|〈f,Θα(Hnm)〉|2

=
∞∑

n=0

2n∑
m=0

|〈(Θα)∗(f),Hnm〉|2,

where (Θα)∗ is the adjoint operator of Θα. Applying
Parseval identity to the orthonormal basis Hnm, it fol-
lows that:

∞∑
n=0

2n∑
m=0

|〈f,Hα
nm〉|2 = ‖(Θα)∗(f)‖2L2(S)

≤ ‖Θα‖22‖f‖2L2(S), (24)
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since ‖(Θα)∗‖22 = ‖Θα‖22. Therefore, (Hα
nm) is a Bessel

sequence with Bessel constant B = ‖Θα‖22. 
�
Definition 2 A sequence (xk) in a Hilbert space H is
a frame if there exist numbers A,B > 0, such that for
all x ∈ H, we have

A‖x‖2 ≤
∞∑

k=0

|〈x, xk〉|2 ≤ B‖x‖2. (25)

Definition 3 A sequence (xk) in a Hilbert space H
is a frame sequence if it is a frame for its closed span
[xk] = span(xk).

Proposition 3 If |α|∞ < ‖L‖−1
2 , (Hα

nm) is a frame
sequence.

Proof In the proof of Proposition 2, for any g ∈ L2(S)

∞∑
n=0

2n∑
m=0

|〈g,Hα
nm〉|2 ≤ ‖Θα‖22‖g‖2L2(S) .

Therefore, right-hand inequality of (25) holds for B =
‖Θα‖22.

If |α|∞ < ‖L‖−1
2 , then due to Proposition 1, Θα is

injective with closed range. Then, range of Θα, rg(Θα)
is a Hilbert space, since it is a closed subspace of
a Hilbert space L2(S). Consequently, (Θα)−1 is well
defined, linear, and bounded as Θα (see, e.g., Theorem
3.5.3, [24]). Therefore, Θα ◦(Θα)−1 is the identity oper-
ator on rg(Θα)

[Hα
nm] = span(Hα

nm) ⊆ rg(Θα) .

However, for any g ∈ [Hα
nm]

g =
(
(Θα)−1

)∗ ◦ (Θα)∗(g),

and thus

‖g‖2L2(S) ≤ ‖(Θα)−1‖22‖(Θα)∗(g)‖2L2(S), (26)

since

‖(
(Θα)−1

)∗‖2 = ‖(Θα)−1‖2 .

As in the proof of Proposition 2

‖(Θα)∗(g)‖2L2(S) =
∞∑

n=0

2n∑
m=0

|〈g,Hα
nm〉|2. (27)

Using it in (26)

‖g‖2L2(S) ≤ ‖(Θα)−1‖2
∞∑

n=0

2n∑
m=0

|〈g,Hα
nm〉|2 .

Denoting

A = ‖(Θα)−1‖−2 ,

it follows that:

A‖g‖2L2(S) ≤
∞∑

n=0

2n∑
m=0

|〈g,Hα
nm〉|2 .

This completes the proof. 
�
Definition 4 A sequence (xk) in a Hilbert space H is
a Riesz sequence if there exist k1, k2 > 0, such that for
any (λk) ∈ l2

k1

∞∑
k=0

|λk|2 ≤ ‖
∞∑

k=0

λkxk‖2 ≤ k2

∞∑
k=0

|λk|2. (28)

Proposition 4 If |α|∞ < ‖L‖−1
2 , (Hα

nm) is a Riesz
sequence.

Proof If (cnm) ∈ l2, let us define for f ∈ L2(S)

f =
∞∑

n=0

2n∑
m=0

cnmHnm .

Then, due to Parseval’s equality

‖f‖2L2(S) =
∞∑

n=0

2n∑
m=0

|cnm|2 .

Also

‖Θα(f)‖2L2(S) = ‖
∞∑

n=0

2n∑
m=0

cnmHα
nm‖2L2(S)

≤ ‖Θα‖22‖f‖2L2(S)

= k2

∞∑
n=0

2n∑
m=0

|cnm|2,

where k2 = ‖Θα‖22.
For the left inequality in (28), let

k1 =
1 − ‖L‖2|α|∞

1 + |α|∞ .

If |α|∞ < ‖L‖−1
2 then from (23), it follows that:

k1‖f‖2L2(S) ≤ ‖Θα(f)‖2L2(S) =
∞∑

n=0

2n∑
m=0

‖cnmHα
nm‖2L2(S) .

Hence, (Hα
nm) is a Riesz sequence. 
�
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Definition 5 A sequence (xk) in a Hilbert space H is
a Riesz basis for H if it is the image of an orthonormal
basis for H under a topological isomorphism. In other
words, if there is an orthonormal basis (ek) for H and
a topological isomorphism T , such that Tek = xk for
all k.

Lemma 8 If L is a bounded and linear operator from
a Banach space into itself, such that ‖I − L‖ < 1, then
L−1 exists and is bounded.

Theorem 6 If |α|∞ < (1+‖I −L‖2)−1 then (Hα
nm) is

Riesz basis for L2(S).

Proof It is easy to check that the extension of the oper-
ator Id − L to L2(S) is Id − LS with ‖Id − L‖2 =
‖Id − LS‖2.

If |α|∞ < (1 + ‖I − L‖2)−1, then

1
1 − |α|∞ <

1 + ‖I − LS‖2
‖I − LS‖2 ,

|α|∞
1 − |α|∞ ‖I − LS‖2 < 1 ,

Then, due to (20)

‖I − Θα‖2 < 1 .

According to Lemma 8, the operator Θα is an isomor-
phism, and hence, (Hα

nm) is Riesz basis. 
�

4 Conclusions

Maps on the sphere are crucial to understand and visu-
alize many phenomena of the nature as meteorology,
geodesy, oceanography, etc., and it is therefore essen-
tial to extend the family of the standard functions on
this surface. To this end, we have constructed a set of
square integrable functions that generalize the classical
spherical harmonics. This process is done by means of
α-fractal functions associated with one of their factors.
The graph of these maps is the invariant attractor of an
iterated function system and owns a fractal structure.
Accordingly, the methodology used provides a method
to define non-smooth functions on the sphere.
The process of fractalization of harmonics is made also
through an operator defined on the space of square inte-
grable functions L2(S), where S represents the unit
sphere. The transformed functions constitute a sys-
tem of maps parameterized by a scale vector typi-
cal of α-fractal functions. According to its magnitude,
one obtains different spanning sets of functions on the
sphere. Taking the scale small enough, we have con-
structed a family of Riesz bases of L2(S), that contains
the classical bases as a particular case. As the fractal
functions are non differentiable in general, the smooth-
ness of the maps employed in a specific approximation
problem becomes optional. And this is a major innova-
tion in the field of function theory.

References

1. M.F. Barnsley, Fractal functions and interpolation. Con-
str. Approx. 2(4), 303–329 (1986)

2. M.A. Navascués, Fractal trigonometric approximation.
Electron. Trans. Numer. Anal. 20, 64–74 (2005)

3. M.N. Akhtar, M. Guru Prem Prasad, M.A. Navascués,
Fractal Jacobi systems and convergence of Fourier-
Jacobi expansions of fractal interpolation functions.
Mediterr. J. Math. 13(6), 3965–3984 (2016)

4. S. Verma, P. Viswanathan, A fractalization of rational
trigonometric functions. Mediterr. J. Math. 17(93), 1–
23 (2020)

5. M. Nasim Akhtar, M. Guru Prem Prasad, M.A.
Navascués, Box dimensions ofα-fractal functions. Frac-
tals 24(3), 1–13 (2016)

6. M. Nasim Akhtar, M. Guru Prem Prasad, M.A.
Navascués, Box dimension of α-fractal function with
variable scaling factors in subintervals. Chaos Solitons
Fractals 10, 440–449 (2017)

7. Z. Feng, Variation and Minkowski dimension of fractal
interpolation surface. J. Math. Anal. Appl. 345(1), 322–
334 (2008)

8. Z. Feng, X. Sun, Box-counting dimensions of fractal
interpolation surfaces derived from fractal interpolation
functions. J. Math. Anal. Appl. 412(1), 416–425 (2014)

9. D.P. Hardin, P.R. Massopust, Fractal interpolation
functions from R

n → R
m and their projections. Z. Anal.

Anwend. 12(3), 535–548 (1993)
10. S.A. Prasad, G.P. Kapoor, Fractal dimension of coales-

cence hidden-variable fractal interpolation surface. Frac-
tals 19(2), 195–201 (2011)

11. P.R. Massopust, Vector-valued fractal interpolation
functions and their box dimension. Aequ. Math. 42(1),
1–22 (1991)

12. M.F. Barnsley, P.R. Massopust, Bilinear fractal inter-
polation and box dimension. J. Approx. Theory 192,
362–378 (2015)

13. S. Verma, P. Viswanathan, A revisit to α-fractal func-
tion and box dimension of its graph. Fractals 27(6),
1950090 (2019)

14. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar,
Fractal Functions. Dimensions and Signal Analysis
(Springer, Berlin, 2021)

15. S. Verma, P. Massopust, Dimension preserving approx-
imation (2020). arXiv:2002.05061

16. M.A. Navascués, Fractal polynomial interpolation. Z.
Anal. Anwend. 25, 401–418 (2005)

17. M.A. Navascués, Non-smooth polynomials. Int. J. Math.
Anal. 1, 159–174 (2007)

18. M.A. Navascués, A.K.B. Chand, Fundamental sets of
fractal functions. Acta Appl. Math. 100(3), 247–261
(2008)

19. M.A. Navascués, Fractal function on the sphere. J. Com-
put. Anal. Appl. 9(3), 257–270 (2007)

20. M. Nasim Akhtar, M. Guru Prem Prasad, M.A.
Navascués, More general fractal functions on the sphere.
Mediterr. J. Math. 16(6), 19 (2019)

21. J.R. Higgins, Completeness and Basis Properties of Sets
of Special Functions (Cambridge University Press, Cam-
bridge, 1977)

123

http://arxiv.org/abs/2002.05061


3764 Eur. Phys. J. Spec. Top. (2021) 230:3755–3764

22. G. Sansone, Orthogonal Functions (Dover Publications
Inc, New York, 1991)

23. C. Heil, A Basis Theory Primer, Expanded Edition.
(Birkhauser, Boston, 2011)

24. V. Hutson, J.S. Pym, Applications of Functional Anal-
ysis and Operator Theory, Mathematics in Science and
Engineering, vol. 146 (Academic Press, New York, 1980)

123


	New fractal functions on the sphere
	1 Introduction
	2 Fractal functions on the sphere
	3 Fractal basis for mathcalL2(S)
	4 Conclusions
	References
	References




