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Abstract: Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance
of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal
features using machine learning algorithms. Methods: A case–control 1:2 study was carried out
compromising 378 infants, born in the Miguel Servet University Hospital, Spain. Neonatal acidemia
was defined as pH < 7.10. Using EFM recording logistic regression, random forest and neural
networks models were built to predict acidemia. Validation of models was performed by means
of discrimination, calibration, and clinical utility. Results: Best performance was attained using
a random forest model built with 100 trees. The discrimination ability was good, with an area
under the Receiver Operating Characteristic curve (AUC) of 0.865. The calibration showed a slight
overestimation of acidemia occurrence for probabilities above 0.4. The clinical utility showed that
for 33% cutoff point, missing 5% of acidotic cases, 46% of unnecessary cesarean sections could be
prevented. Logistic regression and neural networks showed similar discrimination ability but with
worse calibration and clinical utility. Conclusions: The combination of the variables extracted from
EFM recording provided a predictive model of acidemia that showed good accuracy and provides a
practical tool to prevent unnecessary cesarean sections.

Keywords: electronic fetal monitoring; fetal heart rate; sensors; acidemia; machine learning; random
forest; clinical utility curve

1. Introduction

Currently, the universal method for the surveillance of intrapartum fetal well-being
is the continuous monitoring of fetal heart rate (FHR) and maternal uterine contraction
(UC) signals [1]. Electronic fetal monitoring (EFM) requires complex electronic devices
developed to acquire, process, and display the signal. In the intrapartum period, an
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ultrasound transducer is used for the external FHR monitoring. This transducer contains
piezoelectric effect crystals that convert electrical energy into ultrasound waves and uses
the Doppler effect to detect movements of the cardiac structures [2,3]. In this context,
several systems have been developed for central monitoring of fetal signals to provide
simultaneous display of multiple tracings on several locations, allowing easier monitoring
of signals [4]. The rate and pattern of the fetal heart are displayed on the computer screen
and printed onto special graph paper.

Shannon defined entropy as a measure of the average information provided by a set
of events and informs on its uncertainty [5]. The information theory is a mathematical
theory of communication to quantify information. Information theory has been successfully
used to evaluate biological biochemical signal networks [6] or in evolutionary biology [7].
Metrics such as mutual information have been used in the information theory in order to
quantify the sharing of information in the presence of anomalies in electrocardiographic
heart signals [8]. Fetal heart rate is altered in the presence of adverse fetal problems, the
level of chaoticity in the signal may be measured using entropy. Higher entropy represents
higher uncertainty and a more irregular behavior of the signal. Entropy can even explain
how linked complex systems interact and exchange information.

The prediction of acidemia understood as fetal asphyxia was mainly based on the visu-
alization of morphological aspects of fetal heart recording (FHR) with limited accuracy [9].
The quantification of the magnitude of this information becomes a goal in the study of
FHR signals. Guidelines, such as the American College of Obstetricians and Gynecologists
(ACOG) [10,11], proposed the categorization of FHR parameters to predict acidemia, but
most categorization systems show lack of accuracy [12]. In addition, the interobserver
agreement between experts shows the need to make the prediction of acidosis through the
modeling of the EFM characteristics rather than the visual interpretation of the signal [13].

Two main objectives focused the effort on the improvement of the diagnosis of
acidemia in recent years, the proposal of new predictors derived from the fetal cardiotocog-
raphy (CTG) and their combination with previous features [14,15]. Automated systems can
extract data on the FHR [16] or patterns can be obtained using signal processing as fractal
analysis [17,18], but regarding combination of EFM variables, the artificial intelligence and
machine learning algorithms have opened a range of possible applications with multiple
development [19–22].

Machine learning algorithms had helped to improve prediction in different prob-
lems in medicine [23], although the nature of the used models is very diverse. Decision
trees [24], support vector machines [24–26], adaptative boosting [24], convolutional neural
networks [27,28], neuro fuzzy inference systems [29], neural networks [25,29], deep stacked
sparse auto-encoders [29], or deep-ANFIS models [29] are machine learning techniques
used for acidemia prediction. Machine learning algorithms are based on the minimization
of a loss function. The cross-entropy is a generalized loss function that can be interpreted
as an information measure [30], best models correspond to the minimum discrimination
information [31]. Abnormalities in the FHR tend to increase the cross-entropy function,
showing it as a candidate for quantifying the variety of physiological signals.

The success of machine learning models was distributed in a wide range, and can be
classified in two groups, models that were built from the FHR signal and others built with
the variables extracted from the signal. The most frequent parameters used to validate these
previous models were the area under the receiver operating characteristic (ROC) curve [32],
or the sensitivity and specificity that corresponds to a threshold probability of acidemia. To
our knowledge, none, or very few of the developed machine learning models analyzed the
clinical utility of these models although this is one the most important properties for the
applicability of a prediction model [33].

Complementing the prediction of acidosis [34–36], recent publications have analyzed
the importance of deceleration physiology and use parameters such as the deceleration area,
that reports accumulated hypoxemia [14,37]. In addition, it is essential to know about the
fetal time available to recover between deceleration and fetal ability to repeatedly activate
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the chemoreflex, fetal resilience [38,39]. Moreover, combining these parameters can provide
better-adjusted predictions, the fetal reserve index is a promising classification system that
proposed the improvement of EFM by adding three clinical variables: maternal, obstetrical,
and fetal risk-related information in a scoring system to assess fetal perfusion and resilience
rather than “hypoxia” [40].

In a previous study, we analyze a new parameter, the total reperfusion time (fetal re-
silience) to predict fetal acidemia [15]. In this study, we build a predictive model of acidemia
using the FHR variables extracted from the EFM recording, including the reperfusion time,
in a case–control study. For the combination of variables, we used the multivariate logistic
regression, random forest, and neural networks models, performing a complete validation
based on the analysis of the discrimination, calibration, and clinical utility of models.

2. Materials and Methods
2.1. Study Design and Patients Recruitment

The study was designed as a retrospective case–control analysis that involves preg-
nancy data recruited between June 2017 and October 2018 at the Miguel Servet University
Hospital, in Zaragoza, Spain. The inclusion criteria were singleton term gestation between
37 and 42 weeks, cephalic presentation, and no fetal anomalies. In addition, we selected
electrocardiographic recordings showing presence of a deceleration pattern in the EFM
defined as two or more decelerations in the last 30 min. As exclusion criteria, we defined
having experienced a sentinel event (uterine rupture, cord prolapse, or shoulder dystocia),
EFM with less than 30 min registered period, or anomalies that do not enable the analysis
of EFM. In the case of a monitoring that had not started active labor, the EFM register
was discarded.

The outcome of the study was neonatal acidemia defined as pH < 7.10, measured by
arterial cord blood at birth, these are the cases of the analysis. From the 5694 women in
the initial cohort, 192 (3.4%) infants were acidotic. In Figure 1 we show the flowchart of
the study, 72 acidemic fetuses were excluded from the analysis for lack of criteria. The
remaining 120 infants with arterial acidemia were included as cases, together with 258 in
the control group. The controls were selected using a non-randomized 1:2 consecutive
type method; each selected control is chronologically consecutive to a case, selecting two
controls for each case.
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We additionally recruited maternal and pregnancy information on parity, maternal
age, maternal pathologies, gestational age at birth, birthweight, estimated percentile weight,
and fetal gender.

2.2. Electronic Fetal Monitoring

For the monitoring of fetal well-being, as can be seen in Figure 2, a fetal activity
supervisor Corometrix 256CX was used. Two sensors were employed for this task: an
ultrasonic transducer to capture the electrocardiographic (ECG) fetal activity and a TOCO
(Tocotonometer) transducer to capture the uterine activity. Both were attached to the mother
with binding bands and the coming signals were analyzed continuously by obstetricians
during the final process of pregnancy prior to delivery.
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Figure 2. Electronic fetal monitoring.

The ultrasound transducer is placed on the maternal abdomen by means of one belt
and transmits the ultrasonic signal of the fetal heart. It operates with a pulse repetition
frequency of 4 kHz, a pulse duration of 92 uS, and a transmission frequency of 1151 MHz.
It is capable of measuring heart rate from 50 to 210 bpm and its precision is 1 bpm.

The TOCO transducer is also placed on the maternal abdomen by means of one belt
and it detects the forward displacement of the maternal abdominal muscles during a
contraction. The TOCO transducer is composed of several strain gauges configurated to
transduce pressure measurements into displacement. This device can measure pressures
from 0 to 13.3 KPa with a resolution of 0.13 kPa and a bandwidth from 0 to 0.5 Hz.

In our study, the last 30 min of EFM prior to delivery were retrospectively analyzed
and interpreted between two obstetricians attached to the delivery section, blind to the
neonatal outcome, using the criteria and the patterns described in the Category system of
the Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD) [41]. Five elements of the EFM recording were extracted using the definitions
from the NICHD criteria and then used to categorize the EFM recordings into one of the
three accepted categories: Category I, Category II, or Category III to describe EFM data.

Additionally, as our purpose was to use machine learning algorithms in order to
predict acidemia, we recruited information about the non-NICHD parameters These pa-
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rameters were obtained from the EFM recordings as it is described in Figure 3. In the graph
it can be seen the electrocardiographic fetus signal measured in beats per minute (above)
and the mother’s uterine contractions measured as mm Hg (below).
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not used for the analysis.

We divided the EFM signal into deceleration (y) and interdeceleration (x) periods.
The duration of reperfusions was defined as x (interdeceleration time), the duration of
decelerations was defined as y (deceleration time), and the depth of decelerations as z.

From x, y, and z, we calculated the parameters:

• Total reperfusion time as the sum in minutes of the period that the fetus remains at
baseline without deceleration during the last 30 min ∑ x.

• Deceleration time as the sum in minutes of the period of time that the fetus is deceler-
ating during the last 30 min ∑ y.

• Total deceleration area as the sum of all areas of deceleration, being the deceleration
area the product of the duration of deceleration in seconds and its maximum depth of
fall from baseline expressed in beats per minute divided by two ∑ yz

2 .

Additionally, we considered for the multivariate model the following variables: num-
ber of decelerations, minimum beats per minute (bpm), number of decelerations greater
than 60 s, number of decelerations greater than 60 beats per minute in depth, and the
presence of decelerations in more than 50% of contractions, considered to be recurring, thus
we defined the variables that describe the occurrence of recurrent decelerations greater
than 60 s, and recurrent decelerations with depth > 60 bpm.

2.3. Statistical Analysis

We descriptively analyzed data comparing acidotic and non-acidotic infants. The con-
tinuous variables were summarized by median and interquartile range (IQ) and categorical
variables by absolute and relative frequency of each category. Differences between acidotic
and non-acidotic groups were analyzed using the Mann Whitney or Chi-square test for
continuous or categorical data.

To predict acidotic infants in the last 30 min of labor, multivariate models were built
using logistic regression models, random forest, and neural networks. For building and
testing models the original database was randomly split into training (80%) and validation
data (20%).
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Validation of models was estimated by its discrimination measured by means of the
area under the receiver characteristic curve (AUC), and its calibration through calibration
curves and of the two informative parameters: ‘intercept’ (calibration-in-the-large) that
measures the difference between average predictions and average outcome; and ‘slope’,
which reflects the average effect of predictions on the outcome [42]. The AUC can be
interpreted as the probability that the model assigns a greater probability of being acidotic
for an acidotic case rather than a non-acidotic case, it ranges from 0 to 1, corresponding the
0.5 value to a random model, 0.7 to an acceptable model, 0.8 to a good model, 0.9 excellent
model, and 1 perfect discrimination. The 95% confidence intervals for AUC were calculated
using DeLong estimation [43]. The calibration curve analyzes graphically the concordance
between predictions and the real occurrence of the outcome, a perfect calibration corre-
sponds with the diagonal line. The predictive ability of the models summarized by their
AUC was compared using the De Long test [43].

We also analyzed the clinical utility of the developed machine learning models. This
property analyzes the practical use of a prediction model, that as a dichotomic classification
model, using a cutoff point that classified individuals as positive (1) or negative (0), above or
below the cutoff point. Several methods have been implemented for this purpose, probably
the most used is the decision curve [44], that measures for different cutoff points the net
benefit of the application of the model in comparison to classify all individual as 0 or 1, that
also can be applied to compare models. Although this proposal provides a good guide to
select the range of cutoff points with good net benefit, their interpretation is a weighted
estimation and cannot be interpreted as a parameter with an easy clinical interpretation.
Predictiveness curve also analyze the benefit of the application of a model, but with a less
wide diffusion in this field [45].

Here, we used to analyze the clinical utility of the developed models the clinical utility
curve [46] that we proposed previously in prostate cancer prediction with satisfactory
results. In this curve, the X axis corresponds to the threshold probability to consider
a neonate as acidotic, and on the Y axis we represent the percentage for two different
measures. The first corresponds to the percentage of missing acidotic infants below the
selected cut-off point, and the second one to the number of infants below the cut-off point.
Using this curve for different cutoff points we can evaluate the percentage of acidotic
fetuses with a wrong classification, and the fetuses with a very low risk of acidemia that
are going to be saved from an unnecessary cesarean section for loss of fetal well-being, that
are clinical practice parameters.

All analyses were performed using the R language programming v.4.0.3 (The R foun-
dation for statistical computing, Vienna, Austria) with the addition of the rms, random-
ForestSRC, nnet, neuralnet, and NeuralNetTools libraries [47].

3. Results
3.1. Descriptive Analysis

Descriptive analysis of data is shown in Table 1. In the maternal–fetal variables of
the study, we found statistically significant differences between acidotic and non-acidotic
groups in the nulliparity, type of delivery, and SGA variables. Regarding EFM variables, the
ACOG categories, № Decelerations > 60 sg, Recurrent decelerations > 60 sg, № Decelerations
depth > 60 bpm, Recurrent decelerations depth > 60 bpm, Deceleration area, Minimum
deep bpm, Maximum deep bpm, and Mean deep bpm showed differences between groups.



Entropy 2022, 24, 68 7 of 16

Table 1. Descriptive characteristics.

Variable Acidotic (n = 120) Non-Acidotic
(n = 258) p-Value

Maternal–fetal variables
Maternal age 33 (29–37) 34 (30–36) 0.499

Hypertension disorders 5 (4.2%) 5 (1.9%) 0.362
Gestational diabetes 15 (12.5) 29 (11.2%) 0.855

Nulliparity 132 (51.2%) 80 (66.7%) 0.007
Gestational age 280 (274–285) 280 (273–286) 0.841

Male gender 64 (53.3%) 145 (56.2%) 0.681
Delivery <0.001
Vaginal 60 (50.0%) 187 (72.5%)

Operative vaginal 30 (25.0%) 52 (20.1%)
Cesarean 30 (25.0%) 19 (7.4%)

Birthweight 3238 (2918–3638) 3295 (2975–3620) 0.645
Percentile birthweight 43. 1 (20.0–74.5) 49.3 (24.1–77.4) 0.553

Small for gestational age 22 (18.3%) 28 (10.9%) 0.066
Large for gestational age 21 (17.5%) 32 (12.4%) 0.185

EFM variables
ACOG categories <0.001

Category 1 13 (10.8%) 123 (47.7%)
Category 2 57 (47.5%) 110 (42.6%)
Category 3 50 (41.7%) 25 (9.7%)

Reperfusion time (min) 18.1 (14.8–20.8) 21.8 (18.2–25.2) <0.001
Number of decelerations 8 (5–10) 7.5 (4–10) 0.509
№ Decelerations > 60 sg 2.5 (0–5) 0 (0–2) <0.001

Recurrent decelerations > 60 sg 25 (20.8%) 20 (7.8%) <0.001
№ Decelerations depth > 60 bpm 3 (1–5) 0 (0–3) <0.001

Recurrent decelerations depth > 60 bpm 33 (27.5%) 43 (16.7%) 0.021
Deceleration area 16.5 (11.3–22.6) 9.6 (5.1–15.5) <0.001

Minimum deep bpm 40 (30–54) 31 (24–40) <0.001
Maximum deep bpm 79 (68–92) 60 (52–78) <0.001

Mean deep bpm 58 (48–69) 48 (40–69) <0.001
EFM: electro fetal monitoring; ACOG: American College of Obstetricians and Gynecologists; bpm: beats
per minute.

3.2. Multivariable Prediction of Acidemia
3.2.1. Building Models

To predict acidemia we used a traditional approach in classification problems as
the logistic regression model, and the machine learning algorithms: random forest and
neural networks.

The logistic regression model was built using a backward stepwise selection process.
In Table 2 we show the significant variables in the multivariate analysis.

Table 2. Multivariate logistic regression model.

Variable Odds Ratio (95% C.I.) p-Value

Nulliparity 0.413 (0.217–0.763) 0.006
Large for gestational age 4.562 (1.969–10.840) <0.001

Reperfusion time (min) 0.809 (0.729–0.889) <0.001
Number of decelerations 0.804 (0.694–0.919) 0.002
№ Decelerations > 60 sg 1.190 (1.037–1.369) 0.013

№ Decelerations depth > 60 bpm 1.328 (1.111–1.599) 0.002
Recurrent decelerations depth > 60 bpm 0.178 (0.056–0.530) 0.005

Minimum deep bpm 1.034 (1.010–1.060) <0.001

The model showed good accuracy, with an AUC value in training data (80% data)
of 0.826 (0.778–0.875) (95% confidence interval (C.I.)), and 0.840 (0.750–0.930 95% C.I.) in
validation data (20% data).

Regarding the additive model of classification trees that is the random forest, it
was training with different set of parameters, and the best model was attained with the
configuration shown in Table 3.
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Table 3. Random forest parameter configuration.

Parameter Value

Number of trees 100
Forest terminal node size 5

Average number of terminal nodes 29.9
Resampling used to grow trees SWOR

Resample size used to grow trees 191
Splitting rule MSE

Number of random split points 10
SWOR: sampling without replacement; MSE: mean squared error.

The AUC value in training data was 0.991 (0.984–0.999 95% C.I.), and 0.865 (0.774–0.955
C.I.) in validation data. We found a slightly greater discrimination ability than that obtained
with the logistic regression model in the validation data. Random forest is an additive
model of classification trees where each model is built with different data and set of
variables, to quantify the effect of the predictor variables to predict acidemia, we show in
Figure 4 the variable importance (VIMP) plot. The VIMP measures the difference between
prediction error under a perturbed predictor, where a permutation is designed to push a
variable to a terminal node different than its original assignment, and the original predictor,
these are calculated for each tree and averaged over the forest. This yields Breiman–Cutler
VIMP [48]. The most influential variables in the prediction of acidemia were the number of
decelerations with a deep greater than 60 beats per minute, the reperfusion time and the
number of decelerations greater than 60 s.
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Figure 4. Error rate plot (left panel) and Breiman–Cutler variable importance plot (right panel) in
random forest model.

Additionally, neural networks were trained with different architectures. We used
the multilayer perceptron model with 1 or 2 hidden layers, different activation functions,
initial weights, and training parameters. The best model on validation data was attained
using the 13-10-1 architecture with 151 weights, and the activation function was logistic.
The cross-entropy was used as the optimization function, this loss function measures the
discrepancy between predictions and real occurrence of acidemia.

E = − 1
N ∑N

i=1 yi· log(p(yi)) + (1 − yi)· log(1 − p(yi)) (1)

being yi the dichotomic outcome, acidotic (yi = 1) or non-acidotic (yi = 0), and p(yi) the
predicted probability of being acidotic for observation i out of N observations.

The architecture of the network is plotted in Figure 5, positive weights between layers
are plotted as black lines, and the negative weights as grey lines. Line thickness is in
proportion to relative magnitude of each weight.
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Figure 5. Neural network architecture with input (I), hidden (H), and output (O) layers. (B) is the
result obtained after applying the activation function.

The neural networks had an AUC value of 0.995 (0.985–1) (95% C.I.) for training data
and 0.857 (0.751–0.963 95% C.I.) for validation data, greater than that obtained using logistic
regression model but lower than the AUC that corresponds to random forest. Additionally,
we present the variable importance plot for the multilayer perceptron, shown in Figure 6,
following the method described by Garson 1991 [49], where the relative importance of
explanatory variables for a single response in a supervised neural network is estimated
by deconstructing the model weights. The most influential variables were the number of
decelerations, being large for gestational age fetus, and the number of decelerations greater
than 60 s.
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Figure 6. Variable importance in neural network. dbpm: deep in beats per minute; SGA: small for
gestational age; RDd > 60: recurrent decelerations depth > 60 beats per minute; NDd > 60: number of
decelerations depth > 60 beats per minute; Rep_T: reperfusion time; Null: nulliparity; RD > 60 sg:
recurrent decelerations > 60 s; ND > 60 sg: number of decelerations > 60 s; LGA: large for gestational
age; ND: number of decelerations.

3.2.2. Validation of Models

In this section, we present the validation of the models developed using the validation
data. The agreement between predictions and real outcomes was analyzed by calibration
curves in Figure 7. For the logistic regression model, we found an overestimation of real
acidemia occurrence, this is even more clear for neural networks. In the X axis of the graph,
we show the predicted probabilities provided by models, for a 60% probability of acidemia,
the actual occurrence of acidosis (Y axis) was 40% for logistic regression model, and 30%
for neural networks, therefore, both models overestimate the real occurrence of acidosis.
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neural network (bottom panel) models.

For the random forest model, this overestimation was present only for probabilities
below 0.4. The intercept showed also worse mean predictions for logistic regression (−0.591)
and neural networks (−0.917) than random forest (−0.273) which is closer to 0. The slope
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was closer to 1 for logistic regression (0.895) with better concordance between predicted
probabilities and real outcome.

The discrimination ability of models is shown by ROC curves in Figure 8. All models
show a good discrimination capacity. To compare the AUC of the models, we used the
Delong comparison test. Differences between areas were not significant in our study,
logistic regression vs. random forest (p = 0.561), logistic regression vs. neural networks
(p = 0.736), random forest vs. neural networks (p = 0.888).
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Finally, the clinical utility of models was analyzed. As our purpose was to predict
acidemia, the most important issue was to analyze, for different threshold points, the false
negative cases, that is, patients that by means of a cut-off point are going to be classified
as non-acidotic below the cut-off point being acidotic. In the clinical utility curve, we
analyzed this measure and the number of cases below a cut-off point, which in our study
are candidates to a cesarean section that are going to avoid it.

Figure 9 presents the clinical utility curves. If we choose a maximum admissible level
of 5% missing acidemia cases wrongly classified, in the curves we can analyze the threshold
point that corresponds to this value. For the logistic regression model, this corresponds to
a 23% cut-off point, and the number of deliveries saved with a minimum loss of acidotic
cases was 40.8%. For the random forest model, it corresponds to a 33% acidotic probability
threshold point, with 46.1% saved deliveries. Finally, for the neural network, it corresponds
to a 1% cut-off point with 25% saved deliveries. Considering the clinical utility of the
models, it is clear that the random forest proved superior.
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4. Discussion

Here, we developed a comparison analysis of machine learning techniques to predict
acidemia using FHR variables derived from the last 30 min of a continuous electronic fetal
monitoring during intrapartum period. Built models showed a good and similar discrimi-
nation ability, but with clear differences in the calibration and clinical utility analysis, in
which the random forest model showed the best performance.

The external monitoring of FHR is based mainly on the transmission of a transducer
placed on the maternal abdomen, binding by an elastic band encircling the abdomen,
localized at the fetal heart, although there is variability on CGT monitors [2]. Conductive
gel placed between the abdomen and sensor favors the transmission of sound waves,
but the signal can be affected by movement of maternal vessels or the fetus extremities,
causing artefacts. This is a limitation for all systems that try to predict acidemia in real time,
specially, in cases where the signal must be processed as in fractal analysis [17,18].

The development of devices to extract and monitor data should be followed by new
software to analyze the FHR. The information theory is an essential issue to transmit,
process, analyze data, and provide accurate information to the obstetrician in real time.
In this context, there is a variety of applications of the theory of information in signal
processing [50]. The digitalization of the signal provides the possibility of processing it
by means of convolutional type networks or even more complex encoder–decoder deep
learning structures in order to predict acidemia. Tang [27] designs a convolution neural
network (CNN) model named MKNet with an AUC value of 0.95, they proposed their use
by a real-time monitoring of fetal health on portable devices. Zhao [28] also uses CNN to
provide predictions with an AUC above 0.95 in a 10-fold cross validation procedure. The
accuracy of both models is very high but there is no analysis of calibration and clinical utility.

A different approach to the modeling of the complete signal is the extraction of
variables from the signal that are combined in binary classification models of acidemia. In
our analysis, we trained logistic regression, random forest, and neural networks using as
predictor variables EFM features easily obtained from the EFM recording. Our best model
was reached using random forest algorithm. These additive models provide robust models
as their prediction is based on the sum of combination of trees building using different
sets of data and variables. In our study, the best model was found using 100 trees, those
trees are built using the 40% of predictor variables and 63% of the training data sample.
The purpose of this selection is to guarantee that each tree explores the predictive ability
of predictor variables in different data sample and over a different set of variables. In
addition, the trees had a maximum number of cases at a terminal node of 5, preventing the
overfitting that occurs in trees with too many branches.

The AUC obtained in validation data was 0.86, below results of the previous CNN
models [27,28], but with good accuracy. Unfortunately, these studies lack a complete
validation analysis, this would make them more comparable with ours. In our calibration
analysis, we found that probabilities of acidemia provided by logistic regression and
random forest model are well distributed in a wide range between 0 and 1. By contrast, in
neural networks most probabilities are very close to 0 and 1, this is a clear sign of overfitting
in the model. As a consequence, it is very difficult to choose a threshold probability point
that separates acidotic and non-acidotic cases because probabilities are very concentrated
in a narrow range. Logistic regression and random forest are more robust models, allowing
the analysis of the advantages and disadvantages in terms of wrong classification of acidotic
cases and avoided cesarean sections. In the case of the random forest model, to prevent 46%
of unnecessary deliveries with a minimum loss of 5% of acidotic cases is a promising result.

Zhao [24] used an AdaBoost model with sensitivity of 92%, and specificity of 90%,
similar to our results, showing the robustness of the additive tree models, although there is
no information about how many cesarean sections could be saved with the 10% of academic
cases wrongly classified. Iraji [29] used neural networks to reach a sensitivity of 99% and
specificity of 97% which is near perfect classification. These values are extremely high and
probably need an external validation to verify them. Balayla [20] in a metanalysis conclude
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that the use of AI and computer analysis for the interpretation of EFM during labor does
not improve neonatal, but their conclusions are based only on risk ratio analysis. As we
showed in our study, global measures of accuracy such as AUC can give the appearance
that models are very similar, but their performance should be further explored using a
complete validation process.

As a strength of our study, we found a classification model developed by means
of a machine learning algorithm applied to EFM features that are easy to obtain from
EFM recording. These predictor variables have proved as good predictors of acidemia in
previous studies [14,15], but few studies have combined them in a predictive model using
different machine learning algorithms. In addition, this model has shown good clinical
utility to apply it in real clinical practice.

A limitation of the study is that it was a retrospective analysis with data sourced from
a unique hospital without an external validation.

5. Conclusions

Using EFM recording, based on fetal resilience parameters, we developed a random
forest model to predict acidemia that showed good accuracy, with AUC = 0.86 in validation
data. This model can be applied in clinical practice using a cutoff point of 33% for the prob-
ability of acidemia, that showed 5% of missing acidemia but prevented 46% of unnecessary
cesarean sections.
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