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Abstract
In this paper, we study the metric dimension problem in maximal outerplanar graphs.
Concretely, if β(G) denotes the metric dimension of a maximal outerplanar graph G
of order n, we prove that 2 ≤ β(G) ≤ � 2n

5 � and that the bounds are tight. We also
provide linear algorithms to decide whether the metric dimension of G is 2 and to
build a resolving set S of size � 2n

5 � for G. Moreover, we characterize all maximal
outerplanar graphs with metric dimension 2.

Keywords Metric dimension · Resolving set · Maximal outerplanar graph

Mathematics Subject Classification 05C12 · 05C10

1 Introduction

Let G = (V , E) be a finite connected simple graph. For two vertices u, v ∈ V , let
d(u, v) denote the length of a shortest path in G from u to v. If S = {x1, . . . , xk}
is a set of vertices of G, we denote by r(u|S) the vector of distances from u to the
vertices of S, that is, r(u|S) = (d(u, x1), . . . , d(u, xk)). We say that a vertex x ∈ V
resolves a pair of vertices u, v ∈ V if d(u, x) �= d(v, x). A set of vertices S ⊆ V is a
resolving set of G if every pair of distinct vertices of G are resolved by some vertex
in S. Therefore, S is a resolving set if and only if r(u|S) �= r(v|S) for every pair of
distinct vertices u, v ∈ V (G). The elements of r(u|S) are the metric coordinates of u
with respect to S. A resolving set S of G with minimum cardinality is a metric basis of
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G. The metric dimension of G, denoted by β(G), is the cardinality of a metric basis.
The metric dimension problem consists of finding a metric basis.

Resolving sets in general graphs were first studied by Slater [28] and Harary and
Melter [18]. Since then, computing resolving sets and the metric dimension of a graph
have beenwidely studied in the literature due to their applications in several areas, such
as network discovery and verification [2], robot navigation [23] or chemistry [6]. The
reader is referred to [1,4,5,12–17,19,25,27,33] and the references therein for different
results and variants of the metric dimension problem of graphs.

It is well known that the metric dimension problem in general graphs is NP-
hard [23]. The problem remains NP-hard even when restricting to some graph classes
such as bounded degree planar graphs [9]; split graphs, bipartite graphs and their
complements, and line graphs of bipartite graphs [11]; and interval graphs and per-
mutation graphs of diameter 2 [13]. Polynomial algorithms are known for trees [23];
outerplanar graphs [9]; chain graphs [12]; and k-edge-augmented trees, cographs and
wheels [11]. A weighted variant of the metric dimension problem in several graphs,
including paths, trees and cographs, can be also solved in polynomial time [11].

While the algorithms to solve the metric dimension problem in trees, wheels, or
chain graphs are linear, the time complexity of the algorithm given in [9] for an
outerplanar graph of order n is O(n12). Thus, an interesting problem for such graphs
is how to find more efficiently a not very large resolving set. Recall that a graph G is
outerplanar if it can be drawn in the plane without crossings and with all the vertices
belonging to the unbounded face.

In this paper, we focus on studying themetric dimension problem inmaximal outer-
planar graphs. A maximal outerplanar graph, MOP graph for short, is an outerplanar
graph such that the addition of an edge produces a non-outerplanar graph. In partic-
ular, given a MOP graph G of order n ≥ 3 we show that 2 ≤ β(G) ≤ � 2n

5 � and
that the bounds are tight. The lower bound is shown to be tight in Sect. 2. Moreover,
all MOP graphs with metric dimension 2 are characterized. We also provide in that
section a linear algorithm to decide whether the metric dimension of a MOP graph is
2. The tightness of the upper bound is shown in Sect. 3.1 by exhibiting a family of
MOP graphs attaining the given bound. Section 3.2 is devoted to show that the metric
dimension of a MOP graph G is at most � 2n

5 �, by building in linear time a resolving
set S for G such that |S| = � 2n

5 �. In [26], it is conjectured that β(G) ≤ � 2n
5 � for a

maximal planar graph G; hence, we are answering in the affirmative this conjecture for
the particular case of MOP graphs. We conclude the paper with some open questions
in Sect. 4. An extended abstract of this work has appeared at the 17th SpanishMeeting
on Computational Geometry (EGC 2017).

To finish this section, we recall some well-known properties of MOP graphs. A
MOP graph G of order at least 3 is biconnected, Hamiltonian, does not contain a
complete bipartite graph K2,3 as subgraph and always admits a plane embedding such
that all vertices belong to the unbounded face and every bounded face is a triangle.
Unless otherwise stated, we assume throughout the paper that the MOP graph has
order at least 3 and we are given this plane embedding of G. Thus, G can be seen as
a triangulation of a convex polygon. Every edge on the boundary of the unbounded
face belongs to only one triangle of G, and any other edge (called diagonal) belongs
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to two triangles. The removal of the endvertices of a diagonal makes the graph to be
disconnected. G always has at least 2 vertices of degree 2, and when removing any
of them (if |G| ≥ 4), the resulting graph is a MOP graph. From these properties, it is
straightforward to see the following result:

Remark 1 Let G be a MOP graph and let xy be a diagonal of G. If u and z
are two vertices belonging to different components of G\{x, y}, then d(u, z) >

min{d(u, x), d(u, y)}.
We also recall that, from an algorithmic point of view, deciding whether a graph

is planar (outerplanar) and building a (straight-line) plane embedding of a planar
(outerplanar) graph can be done in linear time and space. See, for example, [7,8,22,
24,32] and the references therein. In the case of a MOP graph G, a standard technique
to build in linear time and space a straight-line plane embedding such that all vertices
belong to the unbounded face is the following: Remove repeatedly vertices of degree
two until obtaining a triangle, draw this triangle in the plane and add the vertices of
degree two in the order opposite to the order in which they were removed. Since G is
a MOP graph, the vertex of degree two added in each step is always adjacent to two
consecutive vertices on the boundary of the unbounded face. In particular, in linear
time and space, the following properties of the embedding of the MOP graph can be
built and stored: the cyclic order of the vertices along the boundary of the unbounded
face, the triangular faces and their adjacencies, and, for each vertex, the cyclic order
of its neighbors.

2 MOP Graphs with Metric Dimension Two

Given a MOP graph G, its metric dimension must be greater than one, as paths are
the only graphs with metric dimension one (see, for example, [6]). In this section, we
characterize MOP graphs with metric dimension two.

There are several papers in the literature devoted to study properties of graphs with
metric dimension two and to characterize such graphs for certain families of graphs.
In [30], the authors give a general characterization for a graph G to have metric
dimension two, based on the distance partition {U1, U2, . . . , Uk} of the vertices of G,
where vertices belonging to Ui are at distance i from a distinguished vertex v. They
also give a O(n2D4) algorithm to check whether the metric dimension of a graph of
order n is two, where D is the diameter of the graph. In [23], the authors show several
properties that a graph with metric dimension two must satisfy.

Graphs with metric dimension two have been characterized for some families of
graphs. In particular, unicyclic graphs [10] and Cayley graphs [31]. An incorrect
characterization of the 2-trees with metric dimension 2 is given in [3]. Starting with a
triangle, a 2-tree is formed by repeatedly adding vertices of degree 2 in such a way that
each added vertex u is connected to two vertices v and w which are already adjacent.
Thus, the family of 2-trees includes MOP graphs as a subfamily.

In [3], the authors define a familyF of 2-trees such that a 2-tree G belongs toF if G
satisfies a set of twelve conditions, and they claim that a 2-tree G has metric dimension
2 if and only if G belongs to F . When proving that a 2-tree G with metric dimension
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a1 ak

bkb1
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(a) (b)

Fig. 1 aGiven a 2-tree G with metric dimension 2, a minimal induced 2-connected subgraph containing the
basis {a1, ak }, as claimed in [3]. b A 2-tree with metric basis {a1, ak } whose minimal induced 2-connected
subgraph containing a1 and ak is different from the claimed subgraph in [3]
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Fig. 2 Left: A graph G with metric basis S = {1, 3}. The metric coordinates of the vertices are: r(1|S) =
(0, 2), r(2|S) = (1, 1), r(3|S) = (2, 0), r(4|S) = (3, 1), r(5|S) = (2, 1), r(6|S) = (3, 2), r(7|S) =
(3, 3), r(8|S) = (2, 3), r(9|S) = (1, 3), r(10|S) = (1, 2) and r(11|S) = (2, 2). Right: The representation
G∗ of G as a subgraph of Pn � Pn with respect to S. Vertex v in G is mapped to vertex v∗ in G∗ such that
the Cartesian coordinates of v∗ are the metric coordinates of v

two must belong to F , the authors claim in one of the cases that the minimal induced
2-connected subgraph of G containing the two vertices a1 and ak of the basis of G
has the shape shown in Fig. 1a: two vertices of degree two (a1 and ak), two vertices of
degree three (b1 and bk), a set of quadrilaterals with one of the two possible diagonals,
and at most one vertex of degree five in the path a1, a2, . . . , ak . But, part (b) of Fig. 1
exhibits a 2-tree G (in fact a MOP graph) with metric dimension two, {a1, ak} being
the only basis of G and the minimal induced 2-connected subgraph of G containing
a1 and ak is precisely G, contradicting the shape claimed in [3]. As a consequence,
their claimed characterization cannot be used to characterize MOP graphs with metric
dimension 2.

We next give a characterization for MOP graphs with metric dimension two, based
on embedding graphs with metric dimension 2 into the strong product of two paths.
The strong product of two paths of order n, Pn � Pn , has the Cartesian product
[0, n − 1] × [0, n − 1] as set of vertices and two different vertices (i, j) and (i ′, j ′)
are adjacent if and only if |i ′ − i | ≤ 1 and | j ′ − j | ≤ 1. The distance between two
vertices of this graph is d((i, j), (i ′, j ′)) = max{|i ′ − i |, | j ′ − j |}. We will consider
the representation of this graph in the plane identifying vertex (i, j) with the point
with Cartesian coordinates (i, j). In this representation, a path of length k between two
vertices (i, j) and (i ′, j ′) such that d((i, j), (i ′, j ′)) = k is contained in the rectangle
having (i, j) and (i ′, j ′) as opposite vertices and sides parallel to lines of slope 1
and −1 passing through these vertices. A set of four vertices of Pn � Pn of the form
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(d, 0)

(0, d)

Fig. 3 Left: Illustrating Proposition 1. The shortest path from (0, d) to (d, 0) and the set Ad , which is in
the shaded region. Right: Examples of horizontal and vertical MOP zigzags

{(i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j)}, for some i, j ∈ [0, D], is a unit square.
Three vertices of Pn � Pn are pairwise adjacent if and only if they all belong to a unit
square, and in such a case, the edges joining them form a triangle with two consecutive
sides one of a unit square and the diagonal joining them.

Let G be a graph with metric dimension 2 and let S = {u, v} be a metric basis
of G. It is straightforward to see that G is isomorphic to a subgraph of the strong
product Pn � Pn . See Fig. 2 for an example. Indeed, we identify vertex x ∈ V (G)

with vertex (x1, x2) ∈ V (Pn � Pn), where (x1, x2) = r(x |S) = (d(x, u), d(x, v)).
Recall that if two vertices w1 and w2 of G are adjacent and d(w0, w1) = d for some
vertex w0, then d(w0, w2) ∈ {d − 1, d, d + 1}. Thus, if x and y are adjacent vertices
in G, then |d(x, u) − d(y, u)| ≤ 1 and |d(x, v) − d(y, v)| ≤ 1; hence, r(x |S) and
r(y|S) are adjacent in Pn � Pn . We denote by G∗ this representation of G, that is,
V (G∗) = {r(x |S) : x ∈ V (G)} and r(x |S)r(y|S) ∈ E(G∗) if and only if xy ∈ E(G).
We say that G∗ is the representation of G as a subgraph of Pn � Pn with respect to
S, and vertex (i, j) is placed onto the point with Cartesian coordinates (i, j).

For every d ≥ 1, consider the set Ad = {(i, j) ∈ [0, n − 1] × [0, n − 1] : i + j ≥
d, | j − i | ≤ d} (see Fig. 3 left). The following properties can be easily derived.

Proposition 1 Let G be a graph with metric dimension 2, and let S = {u, v} be a
metric basis of G such that d(u, v) = d. Consider the representation G∗ of G as a
subgraph of Pn � Pn with respect to S. The following properties hold:

(1) S∗ = {(0, d), (d, 0)} is a metric basis of G∗ and all the vertices of G∗ are in Ad .
(2) There is only one shortest ((0, d), (d, 0))-path in G∗, and its vertices are the points

(i, j) such that i + j = d.

Proof (1) If d = d(u, v), then r(u|S) = (0, d) and r(v|S) = (d, 0). If x ∈ V (G),
then r(x |S) = (x1, x2) = (d(x, u), d(x, v)). On the one hand, x1 = d(x, u) ≤
d(x, v) + d(u, v) = d(x, v) + d = x2 + d and x2 = d(x, v) ≤ d(x, u) +
d(u, v) = d(x, u) + d = x1 + d; hence, |x1 − x2| ≤ d. On the other hand,
x1 + x2 = d(x, u) + d(x, v) ≥ d(u, v) = d.

(2) There is only one path of length d joining (0, d) and (d, 0) in Pn � Pn , and its
vertices are {(i, j) : i + j = d}. Thus, it is also the only shortest path between
(0, d) and (d, 0) in G∗ because we already know that dG∗((0, d), (d, 0)) = d.

��
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For n ≥ 5, we say that a MOP graph G is a MOP zigzag if G has two vertices of
degree 2, two vertices of degree 3, each one of them adjacent to a different vertex of
degree 2, and the rest of the vertices have degree 4. See Fig. 3 right for some examples
of MOP zigzags. One can see a MOP zigzag as a MOP graph in which the diagonals
form a zigzag path connecting the two vertices of degree 3. For n = 3, 4, we consider
a triangle and a quadrilateral with a diagonal as MOP zigzags, respectively. For n ≥ 5,
it is straightforward to check that the two vertices of degree 2 form a metric basis, if
n is odd, and two non-adjacent vertices of degree 2 and 3 form a metric basis, if n is
even.

Given the representation G∗ of a graph G, we say that an edge e ∈ E(G∗) is
horizontal if e = (i, j)(i +1, j), for some i, j ≥ 0; vertical if e = (i, j)(i, j +1), for
some i, j ≥ 0; 1-slope diagonal if e = (i, j)(i+1, j+1), for some i, j ≥ 0; and (−1)-
slope diagonal if e = (i, j + 1)(i + 1, j), for some i, j ≥ 0. A vertical MOP zigzag
with base line a vertical edge (i, j)(i, j+1) (see Fig. 3 right) is a subgraph of the strong
product induced by the set of vertices {(i +k, j +k) : 0 ≤ k ≤ r}∪{(i +k, j +1+k) :
0 ≤ k ≤ s}, for some r ≥ 1 and s ∈ {r − 1, r}, and a horizontal MOP zigzag with
base line a horizontal edge (i, j)(i +1, j) is a subgraph of the strong product induced
by the set of vertices {(i + k, j + k) : 0 ≤ k ≤ r} ∪ {(i + 1+ k, j + k) : 0 ≤ k ≤ s},
for some r ≥ 1 and s ∈ {r − 1, r}.

For any integer k ≥ 1, let Vk = {(i, j) : i + j = k}. The following theorem
characterizes the MOP graphs with metric dimension 2. Any of these MOP graphs
consist of a base graph similar to the one shown in Fig. 4c and several MOP zigzags
joined to this base graph (see Fig. 4d).

Theorem 1 Let G be a MOP graph. Then, β(G) = 2 if and only if there is a repre-
sentation G∗ of G as a subgraph of the strong product of two paths such that for some
d ≥ 1,

(1) V (G∗) ⊆ Ad, Vd ∩ Ad ⊆ V (G∗), and E(G∗) contains the edges of the shortest
path joining (0, d) and (d, 0).

(2) Vd+1 ∩ Ad ⊆ V (G∗) and for each (i, j) ∈ Vd+1 ∩ Ad, E(G∗) contains the edges
(i, j)(i − 1, j) and (i, j)(i, j − 1).

(3) For every pair of vertices (i, j + 1) and (i + 1, j) of Vd+1 with i, j ≥ 1, we have
either (i, j + 1)(i + 1, j) ∈ E(G∗) or {(i, j + 1)(i + 1, j + 1), (i + 1, j)(i +
1, j +1), (i, j)(i +1, j +1)} ⊆ E(G∗). Moreover, if (i, j +1)(i +1, j) ∈ E(G∗)
belongs to two triangles of G∗, then (i + 1, j + 1) ∈ V (G∗) and {(i, j + 1)(i +
1, j + 1), (i + 1, j)(i + 1, j + 1)} ⊆ E(G∗).

(4) Any other vertex or edge of the graph belongs to a vertical or horizontal MOP
zigzag with base line the edge (0, d)(1, d), or the edge (d, 0)(d, 1), or any other
edge of G from those described in the preceding items with an endpoint in Vd+1
and the other in Vd+2, with the additional condition that two distinct maximal
vertical or horizontal MOP zigzags do not share any edge.

Proof Let us see first that if a MOP graph has metric dimension 2, then it satisfies
items (1)–(4). Item (1) is a consequence of Proposition 1 (see Fig. 4a).

Let us prove now (2). Recall that every edge of a MOP graph belongs to at least
one triangle. Let (i, j − 1)(i − 1, j) be an edge of the ((0, d), (d, 0))-path (and thus,
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(d, 0)(d, 0)

(0, d)

(d, 0)

(0, d)

(d, 0)

(0, d)(0, d)

(a) (b) (c) (d)

Fig. 4 An example of a MOP graph G with metric dimension 2. If the vertices of a basis are at distance
d, then G can be represented as a subgraph G∗ of the strong product Pn � Pn such that all vertices of G∗
belong to the shaded region. Vertices described in Theorem 1 (1), (2), (3) and (4) are added in (a), (b), (c)
and (d), respectively. Observe that all vertices of G∗ belong to the unbounded face

i + j − 1 = d). The only triangle of the strong product with vertices in Ad containing
this edge is that with vertices (i, j − 1), (i − 1, j) and (i, j). From here, the second
item follows (see Fig. 4b).

To prove item (3), take (i, j) ∈ Vd . By item (2), we know that (i, j)(i, j + 1) and
(i, j)(i + 1, j) are edges of G∗. Notice that the edges of the shortest ((0, d), (d, 0))-
path belong to exactly one triangle of G∗; thus, any other edge incident to (i, j) ∈ Vd

belongs to two triangles of G∗. Therefore, the edges (i, j)(i, j +1) and (i, j)(i +1, j)
belong to two triangles of G∗, and there are only two possibilities, either (i, j +1)(i +
1, j) ∈ E(G∗) or {(i, j +1)(i +1, j +1), (i +1, j)(i +1, j +1), (i, j)(i +1, j +1)} ⊆
E(G∗). In addition, if (i, j + 1)(i + 1, j) ∈ E(G∗) belongs to two triangles, the only
possibility is that (i + 1, j + 1) ∈ V (G∗) and {(i, j + 1)(i + 1, j + 1), (i + 1, j)(i +
1, j + 1)} ⊆ E(G∗) (see Fig. 4c).

Finally, let us prove item (4). Let t be the number of triangles of the MOP graph
G. The vertices and edges described in the preceding items (1), (2) and (3) induce a
MOP graph, G∗

0, with t0 triangles.
If t = t0, then G∗

0 = G∗ and we are done. Suppose now that t > t0. In such a
case, one of the edges of G∗

0 limiting only one triangle in G∗
0 must belong to two

triangles in G∗. Let e0 = xy be one of these edges, and let z be the third vertex of
the triangle in G∗

0 containing the endpoints of e0. By definition of G∗
0, e0 must be a

horizontal edge or a vertical edge. Besides, (0, d), (d, 0) and z belong to the same
component in G∗ −{x, y}. Assume that e0 = (i, j)(i +1, j) if e0 is a horizontal edge,
and e0 = (i, j)(i, j + 1) if e0 is a vertical edge, with i, j ≥ 0. By Remark 1, we have
that the third vertex of the other triangle of G∗ limited by e0 must be (i + 1, j + 1).

Let G∗
1 be the graph obtained by adding to the graph G∗

0 the vertex (i + 1, j + 1)
and the edges joining (i + 1, j + 1) with the endpoints of e0. Notice that one of the
edges added to G∗

0 is a 1-slope diagonal edge, and the other one is a horizontal edge
if e0 is vertical, or a vertical edge if e0 is horizontal.

Now, if G∗ = G∗
1, we are done. Otherwise, there is an edge e1 belonging to exactly

one triangle inG∗
1 and to two triangles inG∗. ByRemark 1, there is no 1-slope diagonal

edge (i, j)(i + 1, j + 1), with i + j ≥ d + 1, limiting two triangles in G∗. Hence, e1
must be a horizontal edge or a vertical edge and we proceed as for e0. We repeat this
procedure until we have added t − t0 triangles to G∗

0.
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(0, d)

(d, 0)

(i, j)

(d, 0) (d, 0)

(i, j)

(0, d) (0, d)

(i, j)

Fig. 5 A (0, d) − (i, j) path of length i when i − j and d have distinct parity (left); when i − j and d have
the same parity and i − j �= −d (center) and when i − j = −d (right)

Observe that the new triangles added to G∗
0 form a vertical or horizontal MOP

zigzag with one of the considered base lines, since the triangles recursively added
to G∗

0 share vertical or horizontal edges. Finally, it is not possible that two maximal
vertical or horizontal MOP zigzags share an edge e. Indeed, in such a case, the edge
e should be a 1-slope diagonal edge e = (i, j)(i + 1, j + 1), with i + j ≥ d + 1, and
G∗ − {(i, j), (i + 1, j + 1)} would be connected, a contradiction because e is not an
edge of the unbounded face (see Fig. 4d).

Now, we are going to prove that every graph satisfying (1) to (4) is a MOP graph
with metric dimension 2. By construction, a graph satisfying conditions (1)–(4) is a
biconnected plane graph with all vertices belonging to the unbounded face and any
other face is a triangle. Therefore, G is a MOP graph. Moreover, d((0, d), (i, j)) = i
and d((d, 0), (i, j)) = j . Indeed, it is easy to give a path of length i from (0, d) to (i, j)
using some vertices of the shortest (0, d)−(d, 0) path; all the vertices (i ′, j ′) such that
i ′ ≤ i , j ′ ≤ j and i ′− j ′ = i− j ; and vertex ((d+i− j)/2, 1+(d−(i− j))/2) ∈ Vd+1,
whenever d and i − j have the same parity and with i − j �= −d (see Fig. 5). In a
similar way, a path of length j from (d, 0) to (i, j) can be given. Thus, {(0, d), (d, 0)}
is a resolving set. Since G is not a path, we have β(G) = β(G∗) = 2. ��

If G is a MOP graph with metric dimension 2, we denote by G∗
0 the graph induced

by the vertices and edges described in items (1)–(3) of Theorem 1.
Deciding whether the metric dimension of a MOP graph is 2 can be done in linear

time, as the following theorem shows.

Theorem 2 Given a MOP graph G of order n, we can decide in linear time and space
whether the metric dimension of G is 2.

Proof We first recall that (straight-line) plane embeddings of MOP graphs such that
all vertices belong to the unbounded face can be found in linear time and space, so
we may assume that the cyclic order of the vertices of G along the boundary of the
unbounded face is known, as well as faces, and adjacency lists in which the neighbors
of each vertex are sorted.

The statement is obvious for n ≤ 5, since all MOPs of order at most 5 have metric
dimension 2. From now on, suppose that n ≥ 6.

From Theorem 1, the representation of a MOP graph G with metric dimension
2 consists of the graph G∗

0 together with some vertical and horizontal MOP zigzags
joined to G∗

0. Note that every vertical or horizontal MOP zigzag finishes in a vertex of
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w

v

u x u w

v

x

ev
ev

Fig. 6 Examples of maximal MOP zigzags around v. On the left, vertices x and u are non-adjacent, and on
the right, vertices x and w are non-adjacent

degree 2 in G. Hence, in the first step of the algorithm we calculate the maximal MOP
zigzag around v for every vertex v of degree 2, denoted by Gv . The set of vertices of
Gv is the maximal set of consecutive vertices Sv = {u, . . . , v, . . . , w} of G around v

such that the subgraph induced by Sv is aMOP zigzag. This subgraph can be calculated
by alternately exploring the vertices preceding and following v (see Fig. 6). Note that
by definition uw is an edge of Gv such that one of its endvertices has degree 2 in Gv

and the other one has degree 3 if Gv is not a triangle. We call this edge the base edge
of Gv and will be denoted by ev . Since the complexity of computing Gv depends only
on its size dv , computing Gv requires O(dv) time and space.

If dv = n for some vertex v of degree 2, then G is a MOP zigzag and its metric
dimension is 2. Thus, we may assume that G is not a MOP zigzag and we may also
assume that the vertices of G are clockwise ordered along its boundary. The cyclic
order of the vertices of degree 2 along the boundary of G implies a cyclic order on the
maximal MOP zigzags that we will call their natural order. According to this natural
order, we can store in a cyclic ordered list L the base edges ev . This can be done in
linear time and space.

Observe that if the base edge ev of a maximal MOP zigzag Gv belongs to another
maximalMOPzigzag, then the union of these twomaximalMOPzigzags isG, because
maximal MOP zigzags consist of consecutive vertices around the vertices of degree
2. This implies that G has only two vertices of degree 2, and since G is not a MOP
zigzag by assumption, G must be a MOP zigzag plus a vertex of degree 3 (see Fig. 7a
for an example). In this case, checking whether G has metric dimension 2 is done in
linear time, since by Theorem 1 only vertices of degree 2 or 3 can belong to a metric
basis. Thus, we may assume that G is neither a MOP zigzag nor a MOP zigzag plus
a vertex of degree 3. Hence, two base edges can share at most one endpoint.

Since the base edges are diagonals of the MOP, they separate all maximal MOP
zigzags (see Fig. 7b for an example), implying that two maximal MOP zigzags are
disjoint or have exactly one common vertex, being this last case possible only if the
MOPzigzags are consecutive in the natural order and the commonvertex is an endpoint
of both base edges. We can also store in linear time and space the sizes of the maximal
MOP zigzags and their (possible) common vertices.

Since two maximal MOP zigzags share at most one vertex, the sum of the sizes of
all maximalMOP zigzags, dv+dv′ +· · · , is at most 2n. Then, the overall complexity of
computing all maximal MOP zigzags is O(dv)+ O(dv′)+· · · = cvdv +cv′dv′ +· · · ≤
c (dv + dv′ + · · · ) ≤ c 2n, where cv, cv′ , . . . are constants and c is the maximum of
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(a) (b)

Fig. 7 a A MOP zigzag plus a vertex of degree three. The two maximal MOP zigzags have the same base
edge (thick edge). b A MOP graph and its maximal MOP zigzags. Thick edges are the base edges of the
maximal MOP zigzags

these constants. Therefore, this first step of computing all maximal MOP zigzags only
requires linear time and space.

In the second step of the algorithm, we check whether there exists a pair of vertices
defining a metric basis. Before explaining this step, we make some observations.

Suppose that G has metric dimension 2 with metric basis {x, y}, and consider the
graph G∗

0 for this basis.
First, notice that if v is a vertex of degree 2 not belonging to {x, y}, then themaximal

MOP zigzag Gv does not always coincide with a horizontal or vertical MOP zigzag of
those described in the embedding of Theorem 1, because the base edge ev of Gv can
be a (−1)-slope diagonal edge of G∗

0. This case (see, for example, the fourth MOP
zigzag when moving along the border of G∗

0 from (0, d) in Fig. 4d) only happens
when the triangle defined by the vertices (i, j + 1), (i + 1, j) and (i + 1, j + 1), with
(i, j + 1), (i + 1, j) ∈ Vd+1, belongs to G∗

0 and Gv at the same time. Besides, all
maximal MOP zigzags (except the ones defined by the vertices in the metric basis, if
any of these vertices has degree 2) must be connected to G∗

0 precisely in their natural
order.

Second, also notice that if a maximal MOP zigzag Gv is connected to G∗
0 using a

horizontal edge (i, j)(i + 1, j) or using a vertical edge (i, j)(i, j + 1) as base edge,
then (i, j) must be an endpoint of ev of degree 2 in Gv (see Fig. 3 right). When Gv

is different from a triangle and is connected to G∗
0 using a (−1)-slope diagonal edge

(i, j)(i + 1, j − 1) as base edge, then either (i, j) or (i + 1, j − 1) is the vertex of
degree 2 of the base edge ev , depending on whether Gv contains the horizontal edge
(i + 1, j)(i + 2, j) (see, for example, the fourth MOP zigzag in Fig. 4d) or contains
the vertical edge (i + 1, j)(i + 1, j + 1), respectively. Therefore, given an edge e on
the boundary of G∗

0, deciding whether a maximal MOP zigzag Gv can be connected to
G∗

0 using e (or the diagonal edge incident to it) only requires constant time checking
ev and the degree of its vertices in Gv .

Lastly, twomaximalMOP zigzags cannot be connected to two consecutive edges on
the boundary of G∗

0 if the first edge is vertical and the second one is horizontal, because
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otherwise they would share at least one edge, contradicting item (4) of Theorem 1.
For the same reason, if two maximal MOP zigzags are connected to two consecutive
edges on the boundary of G∗

0, the first one horizontal and the second one vertical, then
at least one of these zigzags is a triangle (see, for example, the second and third MOP
zigzags in Fig. 4d). As a consequence, deciding whether two maximal MOP zigzags
can be connected consecutively to G∗

0 can also be done in constant time.
With all these observations, we now describe the second step of the algorithm. Let

S = {u1, u2, . . . , uk} be the set of vertices of degree 2 or 3 of G, clockwise ordered
when moving along the boundary of G. From Theorem 1, we deduce that, if G has
metric dimension 2, then a metric basis of G is formed by two consecutive vertices ui

and ui+1 in S (where uk+1 = u1). Thus, in the second step of the algorithm, we check
whether the set {ui , ui+1} is a metric basis of G, for every i ∈ {1, . . . , k}.

Given a pair {ui , ui+1}, this can be done as follows. Suppose that there are di − 1
vertices between ui and ui+1 when traveling clockwise along the boundary of G. Note
that using these vertices, checking (and building) whether a graph G∗

0 as described in
items (1), (2) and (3) of Theorem 1 exists can be done in O(di ) time and space. If G∗

0
does not exist, we continue with the following pair {ui+1, ui+2}.

If such a graph G∗
0 exists and {ui , ui+1} is a metric basis, the rest of the vertices of

G must belong to maximal MOP zigzags joined to G∗
0 in their natural order. Note that,

if a vertex of {ui , ui+1} has degree 2, then its maximal MOP zigzag is included in G∗
0.

Checking whether the rest of maximal MOP zigzags can be joined to G∗
0 is done in

O(di ) time, by simultaneously visiting the edges on the boundary of G∗
0 (clockwise)

and exploring the cyclic ordered list L . The first active edge is the one after ui+1 along
the boundary of G∗

0, clockwise, and the first active base edge is the base edge of the
first maximal MOP zigzag with endpoints after ui+1 in the natural order. If the active
base edge is neither the active edge nor a (−1)-slope diagonal edge of G∗

0 incident to
the active edge of G∗

0, then we go through the following edge of G∗
0 that will be the

new active edge of G∗
0.When the active base edge coincides with the active edge of G∗

0
or with the (−1)-slope diagonal of the triangle of G∗

0 to which the active edge belongs,
we check whether the corresponding active maximal MOP zigzag can be connected
to G∗

0 satisfying the former analyzed restrictions of a MOP of metric dimension 2: A
vertex of degree 2 of the active base edge matches with the type of the active edge,
and there is no conflict with the last maximal MOP zigzag previously connected to
G∗

0. If it is not possible to connect the active maximal MOP zigzag to G∗
0, we stop

the exploration because {ui , ui+1} cannot be a metric basis. Otherwise, we join the
maximal MOP zigzag to G∗

0 and continue the exploration with the following edge on
the boundary of G∗

0 (or the following one if the maximal MOP zigzag has been joined
using a diagonal edge) and the following base edge in L that become the active edges.

After visiting all the edges of the boundary of G∗
0, if all maximal MOP zigzags

(different from the ones corresponding to ui and ui+1 whenever these vertices have
degree 2) have been joined to G∗

0 and the resulting graph contains all the vertices of
G, then G has metric dimension 2. Otherwise, {ui , ui+1} is not a metric basis and
we proceed with the following pair of vertices {ui+1, ui+2}. Recall that, during the
exploration, deciding whether a maximal MOP zigzag can be connected to G∗

0 or
whether two maximal MOP zigzags can be connected consecutively only requires
constant time. Moreover, at each step, the number of vertices added to G∗

0 can be

123



M. Claverol et al.

Fig. 8 Fan F1,6. Black vertices
form a metric basis S. For a
vertex not in S, its metric
coordinates are given

x1

x3
(1, 1, 1)

(1, 2, 2)

(2, 2, 2)

x2

(2, 2, 1)

updated in constant time since the sizes of the maximal MOP zigzags have been
stored. This number is the size of the joined maximal MOP zigzag minus the number
of common vertices with G∗

0, that is, 2 if the base edge matches with a horizontal
or vertical edge and 3 if it matches with a diagonal edge. Thus, checking whether
{ui , ui+1} is ametric basis is done in O(di ) time.Therefore, the complexity of checking
for all possible pairs if they form a metric basis is

∑
O(di ), and since

∑
di = n, this

second step also requires linear time and space. ��

3 Upper Bound on theMetric Dimension of MOP Graphs

In this section, we show that β(G) ≤ � 2n
5 � for any MOP graph G of order n. We

also show that, for some special MOP graphs of order n, their metric dimension is
� 2(n−2)

5 �. Hence, the upper bound � 2n
5 � is tight when n is a multiple of 5.

In the figures, we will assume that the vertices of a MOP graph G are placed on a
circle labeled clockwise from 1 to n. The edges will be drawn on or inside the circle
as segments or arcs.

3.1 Fan Graphs

We first study the metric dimension of a special family of MOP graphs, the fan graphs.
A fan graph of order n, denoted by F1,n−1, is aMOP graph such that one of the vertices
is connected to the n − 1 remaining vertices. Fans are closely related to wheels. A
wheel graph of order n is obtained by adding a new vertex adjacent to all vertices of
a cycle of order n − 1. Thus, a fan of order n can be obtained from a wheel of order n
by deleting an edge not incident to the vertex of degree n − 1. It is known that wheels
of order n have metric dimension equal to � 2n

5 � [27]. We prove in this section a close

result for fans, concretely, that the metric dimension of a fan of order n is � 2(n−2)
5 �.

For n = 3, 4, 5, 6, one can easily verify that β(F1,n−1) = 2. For n = 7, we have
β(F1,6) ≥ 3. This result follows from the fact that n ≤ β + Dβ for a graph with
metric dimension β and diameter D (see [23]). As F1,6 has diameter 2, if it had metric
dimension 2, then n would be at most 6. In addition, the three black vertices of Fig. 8
form a metric basis for F1,6, so β(F1,6) = 3.

In the following theorem, we prove that β(F1,n−1) = � 2(n−2)
5 �, for n ≥ 8. The

proof is based on locating–dominating sets. Given a graph G = (V , E), let N (u) be
the set of neighbors of u in G, that is, N (u) = {v : uv ∈ E(G)}. A set S ⊆ V is a
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Fig. 9 The set of black vertices is a metric basis of the fans of order 15, 16, 17, 18 and 19

dominating set if every vertex not in S is adjacent to some vertex in S. A set S ⊆ V
is a locating–dominating set, if S is a dominating set and N (u) ∩ S �= N (v) ∩ S for
every two different vertices u and v not in S. The location–domination number of G,
denoted by λ(G), is the minimum cardinality of a locating–dominating set. It is easy
to show that any locating–dominating set is a resolving set. Thus, β(G) ≤ λ(G).

Theorem 3 Let n ≥ 8. Then,

β(F1,n−1) =
⌈
2(n − 2)

5

⌉

.

Proof Observe that β(F1,n−1) ≥ 3, because F1,n−1 is not a path and graphs with
metric dimension 2 and diameter 2 have order at most 6. Suppose that the vertices of
F1,n−1 are labeled so that n is the vertex of degree n −1, and let P be the path of order
n − 1 induced by vertices from 1 to n − 1.

We first prove that β(F1,n−1) ≤ ⌈ 2(n−2)
5

⌉
. In [29], it is shown that a path of order

n − 2 has a locating–dominating set of size
⌈ 2(n−2)

5

⌉
such that at least one endpoint

of the path does not belong to it. Using this fact, we derive that the path of order
n − 2 induced by the vertices from 2 to n − 1 has a locating–dominating set S of
size

⌈ 2(n−2)
5

⌉
such that 2 /∈ S. We claim that S is a resolving set for F1,n−1. On the

one hand, as n ≥ 8, then |S| ≥ 3, so n is the only vertex at distance 1 from every
vertex of S. On the other hand, 1 is the only vertex at distance 2 from every vertex
of S, because of the choice of S. Finally, every other vertex has a different vector of
distances to S because their neighborhoods in S are different, so that the 1’s in the
vectors of distances to S are located in different places. Consequently, S is a resolving
set of F1,n−1, and hence, β(F1,n−1) ≤ ⌈ 2(n−2)

5

⌉
.

We now prove that β(F1,n−1) ≥ ⌈ 2(n−2)
5

⌉
. Let S be a metric basis of F1,n−1.

Since d(i, n) = 1 for 1 ≤ i ≤ n − 1, vertex n belongs to S only if it has the same
coordinates as another vertex i with respect to the set S\{n}. Then, (S\{n}) ∪ {i}
is also a metric basis of F1,n−1. Hence, we may assume that n /∈ S and n is the
only vertex with all metric coordinates 1, because β(F1,n−1) ≥ 3. Since F1,n−1 has
diameter 2, all metric coordinates of vertices not in S are 1 or 2. There is at most one
vertex with all metric coordinates 2. If there is no vertex with all metric coordinates
2, then S is also a locating–dominating set of the path P of order n − 1. Hence,
β(F1,n−1) ≥ λ(Pn−1) = ⌈ 2(n−1)

5

⌉ ≥ ⌈ 2(n−2)
5

⌉
. If there is one vertex i0 with all metric

coordinates 2, then S must be a locating–dominating set for P − i0. If i0 ∈ {1, n − 1},
then P − io is a path of order n − 2 and β(F1,n−1) ≥ λ(Pn−2) = ⌈ 2(n−2)

5

⌉
. If

i0 ∈ {3, . . . , n −3}, then P − i0 has two connected components that are paths of order
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Fig. 10 Vertices i and j are
resolved either by i − 1 or j + 1

ji

j + 1i− 1

r = i0 − 1 and s = n − 1 − i0, respectively, with r + s = n − 2, and we have

β(F1,n−1) ≥ λ(Pr ) + λ(Ps) =
⌈
2r

5

⌉

+
⌈
2s

5

⌉

≥
⌈
2(n − 2)

5

⌉

.

Finally, if i0 = 2, then 1 /∈ S and 1 would also be at distance 2 from every vertex
in S, a contradiction. Therefore, i0 �= 2, and analogously, i0 �= n − 2. ��

It can be easily verified that if n is 5k, 5k + 1 or 5k + 2 for some k, then S =
{2+ 5r : 0 ≤ r < �n/5�} ∪ {4+ 5r : 0 ≤ r < �n/5�} is a metric basis of F1,n−1, and
if n is 5k + 3 or 5k + 4 for some k, then S = {2 + 5r : 0 ≤ r < �n/5�} ∪ {4 + 5r :
0 ≤ r < �n/5�} ∪ {n − 1} is a metric basis of F1,n−1 (see Fig. 9).

3.2 Upper Bound

The main goal of this section is to show that every MOP graph G = (V , E) of order
n has a resolving set S of size � 2n

5 � that can be built in linear time. For this purpose,
we will begin with a certain set S of vertices of size � 2n

5 �. If S is a resolving set, we
are done. Otherwise, we will describe how S can be modified to obtain a resolving
set of the same size. We will refer to the vertices belonging to S as black vertices and
vertices not in S as white vertices. Recall that the vertices of G are placed on a circle
and labeled clockwise from 1 to n, so that all the edges are drawn inside the circle. A
run will be a maximal set of consecutive vertices of the same color along the circle.
We will denote by [i, j] the set of vertices {i, i + 1, . . . , j − 1, j}, if i < j , and the
set {i, i + 1, . . . , n, 1, . . . , j − 1, j}, if i > j .

We next prove some technical results.

Lemma 1 Let G be a MOP graph of order n and i, j ∈ [1, n]. If i , j , i − 1 and j + 1
are four different vertices, then i and j are resolved by either i − 1 or j + 1 (mod n).

Proof Observe that G cannot contain at the same time the edges (i, j +1) and ( j, i −1)
because they cross, whenever j + 1 �= i − 1 (mod n). Then, either i − 1 or j + 1
resolves i and j . See Fig. 10. ��

We have seen in Sect. 3.1 that a resolving set of the fan can be obtained with
alternating white runs of size 1 and 2 separated by black runs of size 1. Such a set
is not a resolving set for a general MOP graph G; however, these kinds of sets will
play an important role to construct a resolving set of G. This leads us to the following
definition.

We say that an interval [i, j] is (1,2)-alternating if and only if all its white runs
have size one or two, black runs have size one and there are no consecutive white runs
of the same size.
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Fig. 11 Eight cases in which two white vertices i and j , squared in the figure, are not resolved by black
vertices

The next lemma shows when two white vertices of a (1,2)-alternating interval are
not resolved by any black vertex of the interval.

Lemma 2 Let G be a MOP graph and let [i1, i2] be a (1,2)-alternating interval such
that the first and last vertices, i1 and i2, are black. Let S′ be the set of black vertices
in the interval. The following properties hold.

(1) Let i ∈ [i1, i2] belong to a white run of size 1. Then, r(i |S′) = r( j |S′) for some
j ∈ [i1, i2] if and only if j belongs to a white run of size 2 and one of the four
cases (a), (b), (c) or (d) of Fig. 11 holds.

(2) Let i, j ∈ [i1, i2] belong to white runs of size 2. Then, r(i |S′) = r( j |S′) if and
only if one of the four cases (e), (f), (g), or (h) of Fig. 11 holds.

(3) If i ∈ [i1, i2] is a white vertex, then there is at most one white vertex j ∈ [i1, i2]
such that r(i |S′) = r( j |S′).

Proof Let us prove item (1). ByLemma1, twowhite vertices belonging to twodifferent
runs of size 1 are always resolved by vertices in S′. Suppose now that i belongs to
a white run of size 1 and j belongs to a white run of size 2. If r(i |S′) = r( j |S′),
then, again by Lemma 1, either j is i + 2 and j is connected to i − 1, or j is i − 2
and j is connected to i + 1 (see Fig. 11 top). Suppose first that j = i + 2 and j is
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connected to i − 1, so that i − 1 and i + 4 are black and i + 3 is white. Since j is
connected to i − 1, we have that 2 ≤ d(i, i + 4) = d( j, i + 4) ≤ 2. Hence, vertex
i −1 is connected to i +3 and to i +4. Depending on which edge belongs to G, either
(i − 1, i + 1) or (i, i + 2), we have Cases (a)–(b) of Fig. 11. Conversely, if Cases (a)
or (b) hold, then for any black vertex i ′ ∈ [i1, i2], the distances from i ′ to i and j are
equal because the shortest path from i ′ to i or j goes through either i − 1 or i + 4,
and in these cases, the distances from i and j to i − 1 (resp. to i + 4) are the same.
Thus, r(i |S′) = r( j |S′). For the other case, that is, when j = i −2 and j is connected
to i + 1, we have by symmetry that r(i |S′) = r( j |S′) if and only if Cases (c)–(d) of
Fig. 11 hold. Therefore, we have proved (1).

We now prove item (2). By Lemma 1, it is clear that two white vertices i and i + 1
belonging to the same white run are resolved by either i − 1 or i + 2. Suppose now
that i and j belong to different white runs of size 2 and r(i |S′) = r( j |S′). In such a
case, by Lemma 1, if i −1 is a black vertex, then j −1 is a black vertex, and there is an
edge connecting i and j −1 and another edge connecting j and i −1. Also notice that,
because of the assumption made in the hypothesis, i + 2 and j + 2 are black vertices.
Since 2 ≤ d(i, j + 2) = d( j, j + 2) ≤ 2, the only possibility for these two distances
to be equal is that vertex i − 1 is connected to both j + 1 and j + 2. Analogously,
taking into account that 2 ≤ d( j, i +2) = d(i, i +2) ≤ 2, we derive that vertex j −1
must be connected to i + 1 and i + 2. Depending on which edge belongs to G, either
(i, j) or (i − 1, j − 1), we have Cases (e)–(f) in Fig. 11. Conversely, if Cases (e)–(f)
hold, then one can easily check that r(i |S′) = r( j |S′), as there are always shortest
paths from i and j to any other black vertex passing through either i − 1 or j − 1.
Cases (g)–(h) of Fig. 11 appear by symmetry when i + 1 is black instead of i − 1.
Therefore, (2) follows. Finally, item (3) is a direct consequence of items (1) and (2).

��
Before proving the main result of this section, we give some additional definitions.

The vertex of degree two of Case (c) of Fig. 11 will be called a special vertex. Let
G = (V , E) be a graph. Given two subsets S ⊂ V and W ⊂ V we say that S
discriminates W if every pair of distinct vertices with at least one of them belonging
to W is resolved by some vertex in S. Note that this condition is stronger than saying
that S resolves W , used when every pair of vertices in W are resolved by a vertex in S
(see [20,21]). Observe that, by definition, if S1 discriminates W1 and S2 discriminates
W2, then S1 ∪ S2 discriminates W1 ∪ W2. We next prove another technical lemma and
the main result of this section, Theorem 4.

Lemma 3 If G = (V , E) is a MOP graph of order n, then there is a set S0 ⊂ V = [1, n]
of black vertices such that |S0| = � 2n

5 �, {2} is a white run of size 1, the interval [4, n]
is (1, 2)-alternating and S0 discriminates the white run {2}.
Proof Suppose that n = 5k + t , t ∈ {0, 1, 2, 3, 4}, for some k ≥ 1. If t ∈ {0, 1, 2, 3},
we begin defining S0 as the set of size

⌈ 2n
5

⌉
that consists of all the vertices of [1, n]

of the form 5 j + 1 and 5 j + 3. Vertices in S0 are colored black and the rest, white.
We can assume that S0 discriminates {2}. Indeed, if {2} is discriminated by S0 with
the considered numbering of the vertices, we are done. Otherwise, by Lemmas 1 and
2, the set {2} is the white run of size 1 of some of the subgraphs (a)–(d) of Fig. 11.
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In this case, we renumber all the vertices by increasing the corresponding labels by
one unit and update the set S0 according to the new numbering (that is S0 contains the
vertices with new labels of the form 5 j + 1 and 5 j + 3). Then, the new vertex with
label 2 forms a white run of size 1 not belonging to any of the subgraphs (a)–(d) of
Fig. 11. Hence, S0 discriminates {2}. If t = 4, we define S0 as the set formed by vertex
1 and all the vertices of [1, n] of the form 5 j + 3 and 5 j + 5, with j ≥ 0. Then, {n},
{2} and {4} are three consecutive white runs of size 1 separated by black vertices. By
Lemma 1, S0 discriminates {2}, and the interval [4, n] is (1, 2)-alternating. ��
Theorem 4 If G = (V , E) is a MOP graph, then there exists a resolving set S ⊂ V
such that |S| = � 2n

5 �. Moreover, S can be computed in linear time.

Proof The general procedure to obtain a resolving set for G is the following.We begin
with the set S := S0 defined in the proof of Lemma 3 that discriminates the white
run {2} of size 1. If S0 is a resolving set for G, we are done. Otherwise, we explore
clockwise the white runs of S. Suppose that, after exploring the first h runs, S is a set
consisting of � 2n

5 � vertices which is a candidate to be a resolving set for G. If the next
white run is not discriminated by S because it belongs to some of the subgraphs shown
in Fig. 11, then we define a new set S′ by removing some vertices in S and including
new ones, such that |S′| = |S| and all explored white runs are discriminated by S′.
Then, we update the set S, S := S′, and continue the exploration.

More precisely, suppose that, in a generic step of the exploration, the vertices in
the interval I = [1, i − 1] have already been explored. Then, we denote by S the set
of � 2n

5 � black vertices of G and by W the set of white vertices of I , that is, W = I\S.
We then prove that I and S satisfy the following invariant.

Invariant 1. If I = [1, i − 1], S ⊆ V and W = I\S, then:

Property P1 |S| = � 2n
5 � and S discriminates W .

Property P2 Vertex i is white, vertices 1 and i − 1 are black (that is, {1, i − 1} ⊆ S
and i /∈ S), and [i, n] is a (1, 2)-alternating interval.

Property P3 For every white vertex w ∈ W\{i − 2} and every white special vertex
l ∈ V \I , there exists a black vertex v ∈ S ∩ (I\{i − 1}) such that v

resolves w and l.

Obviously, byPropertyP1, S will be a resolving set of size � 2n
5 � forG after exploring

all white runs. Properties P2 and P3 are technical facts that will be needed to proceed
with the proof.

We begin verifying that Invariant 1 holds for S = S0 and I = [1, 3]. By Lemma 3,
S0 discriminates {2}, and the interval [4, n] is (1, 2)-alternating. Thus, Property P2
obviously holds and Property P3 is true because in this case the set W\{2} = ∅.

Assuming that Invariant 1 is true for given sets I = [1, i − 1] and S, we next show
that it holds for new sets I ′ and S′ defined after exploring clockwise the next white
run r not belonging to I . We will distinguish whether r is already discriminated by S
or not.

Suppose first that r is discriminated by S. If r only consists of the white vertex i ,
then one can easily check that Invariant 1 holds for S′ = S and I ′ = I ∪ [i, i + 1].
Indeed, as S discriminates W and i , then S obviously discriminates W ′ = W ∪ {i}.
Property P3 follows from the fact that a vertex in W\{i − 2} satisfies Property P3, and
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Fig. 12 Squared vertices have the same coordinates. Case (a): interchanging the colors of i and i − 1, and
j = i + 2 and i + 1. Case (b): interchanging the colors of i + 1 and j = i + 2

a special vertex l cannot be connected to i − 1, so i − 1 resolves i − 2 and l. Hence,
I ′ satisfies Property P3. If r consists of two white vertices, i, i + 1, consider S′ = S
and I ′ = I ∪ [i, i + 2]. Sets S′ and I ′ satisfy Property P1 of Invariant 1, because S
discriminates W ′ = W ∪{i, i +1}. To see that Property P3 is true, notice that a special
vertex l ∈ V \I ′ is not connected to i − 1. Hence, i − 1 resolves l and any of i − 2 and
i .

Suppose now that r is not discriminated by S. As S discriminates W , the white
vertices not resolved by S must belong to the interval [i, n]. Lemma 2 can be applied
to the interval [i − 1, 1], if n is white, or to the interval [i − 1, n], if n is black, since
the interval [i, n] is (1, 2)-alternating by Property 2. Hence, r belongs to one of the
subgraphs of Cases (a)–(h). Note that if r has size 1, then r consists of vertex i , and if
r has size 2, then r consists of vertices i and i + 1.

In each one of these 8 cases, the general framework to construct new sets S′ and
I ′ satisfying Invariant 1 is the following. The set I ′ is obtained by adding an interval
[i, i ′] to I , where i ′ is a black vertex and the vertices of the run r are in [i, i ′]. Then,
we interchange the colors of some vertices from [i − 1, i ′], so that the updated set S′
of black vertices satisfies |S′| = |S| = � 2n

5 �, and Invariant 1 holds for the new sets
I ′ = I ∪ [i, i ′] and S′. To complete the validity of Property P1, it is needed to show
that S′ discriminates W ′ after interchanging some colors in I ′. This will be proved in
two steps. First, we give a subset of S′ that discriminates the set of new white vertices,
X = W ′\W . Secondly, we show that every pair of white vertices x and y, with x ∈ W
and y ∈ V \X , that was resolved by a vertex from S\S′, is now resolved by a vertex
from S′\S. Property P2 follows, because we have not changed the colors of the vertices
from V \I ′. Finally, to prove that the sets S′ and I ′ satisfy Property P3, it is enough to
show that it holds for the white vertices in (X\{i ′ − 1})∪ {i − 2}. We next analyze the
different cases.
Case (a) The two vertices not resolved by S are i and j as shown in Fig. 12a. In this
case, we interchange the colors of vertices i and i − 1 and the colors of the vertices
j(= i +2) and i +1.We claim that Invariant 1 holds for the new sets I ′ = I ∪[i, i +4]
and S′ = (S\{i − 1, i + 1}) ∪ {i, i + 2}.

Let us see that S′ discriminatesW ′ = W ∪{i−1, i+1, i+3}. On the one hand, the set
S∗ = {i, i +2, i +4} discriminates {i −1, i +1, i +3}, because r(i −1|S∗) = (1, 1, 1),
r(i + 1|S∗) = (1, 1, 2) and r(i + 3|S∗) = (2, 1, 1), respectively, and the only vertices
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Fig. 13 Squared vertices have the same coordinates. Case (c): Interchanging the colors of i+1 and i+2, when
{i + 3} is discriminated by (S\{i + 2}) ∪ {i + 1}. Case (d): Interchanging the colors of i + 1 and i + 2

adjacent to i + 2 are precisely i − 1, i + 1 and i + 3. On the other hand, the shortest
path from i ′ ∈ [i + 5, i − 2] to i , i + 1 or i + 2 necessarily goes through i − 1, so
d(i ′, i) = d(i ′, i − 1) + 1 and d(i ′, i + 2) = d(i ′, i + 1). This implies that if i − 1
(resp. i + 1) resolves two vertices in [i + 5, i − 2] then i (resp. i + 2) also resolves
them. In particular, S′ discriminates W ′.

Let us see that Property P3 also holds. Take a specialwhite vertex l in V \I ′. Property
P3 clearly holds for the vertices of W\{i − 2}. Moreover, since d(l, i + 2) ≥ 3 and
the distance from i + 2 to any of {i − 2, i − 1, i + 1} is at most two, then we have that
i + 2 resolves l and any white vertex of {i − 2, i − 1, i + 1}. Therefore, Property P3
is satisfied, and Invariant 1 holds as claimed.
Case (b) The two vertices not resolved by S are i and j as shown in Fig. 12b. In this
case, we only need to interchange the colors of vertices j(= i +2) and i +1.We claim
that Invariant 1 holds for the new sets I ′ = [1, i + 4] and S′ = (S\{i + 1}) ∪ {i + 2}.
Notice that W ′ = W ∪ {i, i + 1, i + 3}.

The set S∗ = {i + 2, i + 4} discriminates {i, i + 1, i + 3} because r(i |S∗) = (1, 2),
r(i + 1|S∗) = (1, 3) and r(i + 3|S∗) = (1, 1), and the only white vertices adjacent
to i + 2 are precisely i , i + 1 and i + 3 (see Fig. 12b). Moreover, observe that for a
vertex i ′ ∈ [i + 5, i − 2], we have d(i ′, i + 2) = d(i ′, i + 1) − 1, so if i + 1 resolves
two vertices in [i + 5, i − 2], then i + 2 resolves them as well. As a consequence, S′
discriminates W .

Finally, to prove Property P3, note that the distance from i + 2 to a special vertex
l ∈ V \I ′ is at least 3. Thus, i + 2 resolves the pairs formed by l and a vertex from
{i − 2, i, i + 1}.

Case (c) In this case, the vertices not resolved by S are i +1 and i +3 (see Fig. 13c).
We begin by interchanging the colors of the vertices i + 1 and i + 2, and distinguish
two cases depending on whether (S\{i + 2}) ∪ {i + 1} discriminates {i + 3} or not.

Suppose first that {i +3} is discriminated by (S\{i +2})∪{i +1}. Then, Invariant 1
holds for the sets S′ = (S\{i + 2}) ∪ {i + 1} and I ′ = I ∪ [i, i + 4]. Note that
W ′ = W ∪ {i, i + 2, i + 3}. Indeed, observe that S∗ = {i − 1, i + 1} discriminates
{i, i + 2}, because r(i |S∗) = (1, 1), r(i + 2|S∗) = (2, 1), and the only white vertices
at distance 1 from i + 1 are i and i + 2. Besides, d(i ′, i + 2) = d(i ′, i + 1) for every
vertex i ′ ∈ [i +5, i −2], implying that every pair of vertices belonging to [i +5, i −2]
that were resolved by i + 2 are now resolved by i + 1. In particular, S′ discriminates
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Fig. 14 Case (c): Squared
vertices have the same
coordinates. When {i + 3} is not
discriminated by
(S\{i + 2}) ∪ {i + 1}, the colors
of i + 3 and i + 4 are
interchanged
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W . Therefore, S′ discriminates W ′, and Property P1 holds. Since a special vertex l
in V \I ′ is not connected to either i − 1 or i + 1, then l together with a vertex from
{i − 2, i, i + 2} are resolved by either i − 1 or i + 1. Then, Property P3 also holds.

Suppose now that (S\{i + 2}) ∪ {i + 1} does not discriminate {i + 3}. Let us see
which vertex j has the same coordinates as i + 3 in relation to this set. Notice that
by Property 3, since i + 3 is a special vertex, for any vertex j ∈ W\{i − 2} there is a
vertex in I ∩ S resolving i + 3 and j . Besides, i − 1 resolves the pair i + 3 and i − 2,
and i + 1 resolves i + 3 and any of i and i + 2. Hence, j /∈ [1, i + 2]. By Property P2,
a vertex j ∈ [i + 5, n] is adjacent to a black vertex j ′, but j ′ is not adjacent to i + 3
unless j ′ = i + 4 and j = i + 5. Then, i + 6 is white and i + 7 is black (see Fig. 14).
Since 2 ≤ d(i + 3, i + 7) and d(i + 5, i + 7) ≤ 2, we have that both distances are
equal only when the edges (i + 4, i + 7) and (i + 4, i + 6) belong to G.

If this situation happens, then i + 3 and i + 5 have the same coordinates in relation
to (S\{i +2})∪{i +1}. We remark that Property P3 is important at this time to ensure
that i + 5 is the only vertex with the same coordinates as i + 3. Otherwise, if Property
P3 does not hold, then a vertex x in W could have the same coordinates as i + 3,
because i + 2 could be the only vertex in S to resolve i + 3 and x .

We interchange the colors of vertices i + 3 and i + 4, as shown in Fig. 14, and
set I ′ = [1, i + 7] and S′ = (S\{i + 2, i + 4}) ∪ {i + 1, i + 3}. Thus, W ′ =
W ∪ {i, i + 2, i + 4, i + 5, i + 6}. The argument to prove that Invariant 1 holds for
these new sets is similar to the previous ones, but a bit more elaborated.

Let us show that S′ discriminates W ′. On the one hand, if S∗ = {i −1, i +1, i +3} ⊆
S′, then r(i |S∗) = (1, 1, 2), r(i + 2|S∗) = (2, 1, 1) and r(i + 4|S∗) = (1, 1, 1). In
addition, the only vertices at distance 1 from i + 1 are i , i + 2 and i + 4. Hence, S′
discriminates {i, i + 2, i + 4}. On the other hand, for every vertex i ′ ∈ [i + 5, i − 2],
we have d(i ′, i +2) = d(i ′, i +1) and d(i ′, i +3) = d(i ′, i +4)+1. This implies that
any pair of vertices from [i +5, i −2] resolved by i +2 or i +4 is also resolved by i +1
or i + 3. Therefore, since W ⊆ [i + 5, i − 2] and S discriminates W , we derive that S′
discriminates W . It only remains to prove that S′ discriminates {i + 5, i + 6}. Notice
that i + 7 resolves the pair i + 5 and i + 6. Moreover, by Property P2, a white vertex
j in V \I ′ is adjacent to a black vertex j ′. Since i + 5 and i + 6 cannot be connected
to j ′, then j ′ resolves j and any vertex of i + 5 and i + 6. Note that if j = i + 8,
then i + 9 is such a vertex j ′. Finally, as S′ discriminates W and {i, i + 2, i + 4}, a
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vertex from {i + 5, i + 6} and a vertex from [1, i + 4] are resolved by some vertex of
S′. Hence, Property P1 is satisfied.

To show that Property P3 holds, we only need to prove this property for the vertices
i − 2, i , i + 2, i + 4 and i + 5. For a special vertex l in V \I ′, its distance to i + 3 is
at least 3. Since the distance from i + 3 to i , i + 2, i + 4, or i + 5 is at most 2, vertex
i +3 resolves l and any of these four vertices. The pair l and i −2 is resolved by i −1,
because l is not adjacent to i − 1.
Case (d) In this case, the vertices not resolved by S are i +1 and i +3 in the subgraph
shown in Fig. 13d. This case is symmetric to Case (b). Following the same kind of
arguments used in that case, one can easily prove that Invariant 1 holds for the sets
I ′ = [1, i + 4] and S′ = (S\{i + 2}) ∪ {i + 1}, defined after interchanging the colors
of vertices i + 1 and i + 2 (see Fig. 13d).
Case (e) In this case, the vertices not resolved by S are i and j in the subgraph
shown in Fig. 15e. We interchange the colors of vertices i − 1 and i and we define
I ′ = I ∪ [i, i + 2] and S′ = (S\{i − 1}) ∪ {i}. Thus, W ′ = W ∪ {i − 1, i + 1} (see
Fig. 15e).

Let us see first that S′ discriminates W ′. On the one hand, the set S∗ = {i, i + 2}
discriminates {i − 1, i + 1}. Indeed, r(i − 1|S∗) = (1, 3), r(i + 1|S∗) = (1, 1), and
the only white vertices belonging to V at distance 1 from i are i − 1, i + 1 and j ,
but r( j |S∗) = (1, 2). On the other hand, d(i ′, i) = d(i ′, i − 1) + 1 for every vertex
i ′ ∈ [ j + 1, i − 2]. Hence, since W ⊆ [ j + 3, i − 2], every pair of vertices with at
least one of them belonging to W and the other to [ j + 3, i − 2] that was resolved by
i −1 ∈ S is now resolved by i ∈ S′. It only remains to prove that every pair formed by
a vertex i ′ from W and a white vertex j ′ ∈ [i + 3, j] is resolved by some vertex of S′.
This is true because, by Property P2, j ′ is adjacent to a black vertex in S′ ∩ [i + 3, j]
that is not adjacent to i ′. Hence, Property P1 holds. To prove property P3, it suffices
to check that it holds for the vertices i − 1 and i − 2. If l ∈ V \I ′ is a special vertex
different from j − 2, then d(l, i) ≥ 3. Hence, the pairs formed by l and a vertex from
{i −1, i −2} are resolved by i , whenever l �= j −2. Suppose that l = j −2 is a special
vertex. If we take a black vertex j ′′ �= i −1 in I , then d( j −2, j ′′) = 3+ d(i −1, j ′′)
and d(i − 2, j ′′) ≤ d(i − 2, i − 1) + d(i − 1, j ′′) = 1+ d(i − 1, j ′′). Hence, j ′′ ∈ I ′
resolves j − 2 and any of i − 1 and i − 2.
Case (f) In this case, the vertices not resolved by S are i and j in the subgraph
shown in Fig. 15f. This case is very similar to the previous one. By interchanging the
colors of vertices i − 1 and i (see Fig. 15f), the proof that sets I ′ = [1, i + 2], and
S′ = (S\{i − 1}) ∪ {i} satisfy Invariant 1 is essentially the same as the proof done
in Case (e), with small differences due to the fact that the edge (i − 1, j − 1) now
belongs to G instead of edge (i, j).
Case (g) In this case, the vertices not resolved by S are i +1 and j +1 in the subgraphs
shown in Fig. 16. We begin by interchanging the colors of vertices i + 1 and i + 2.
We distinguish two cases depending on whether (S\{i + 2}) ∪ {i + 1} discriminates
{i + 3} or not.

Suppose first that (S\{i + 2}) ∪ {i + 1} discriminates {i + 3} (see Fig. 16, top). We
claim that S′ = (S\{i + 2}) ∪ {i + 1} and I ′ = I ∪ [i, i + 4] satisfy Invariant 1. Note
that W ′ = W ∪ {i, i + 2, i + 3}.
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Fig. 15 Cases (e) and (f): squared vertices have the same coordinates. Interchanging the colors of i − 1 and
i

On the one hand, the set S∗ = {i − 1, i + 1} discriminates {i, i + 2, j + 1}. Indeed,
r(i |S∗) = (1, 1), r(i +2|S∗) = (3, 1), r( j +1|S∗) = (2, 1) and the onlywhite vertices
adjacent to i +1 are i , i +2 and j +1.We include here vertex j +1 to ensure that j +1
and a vertex in W are resolved. On the other hand, a white vertex i ′ ∈ [i + 4, j] is
adjacent by Property P2 to a black vertex j ′ in this interval. Thus, j ′ resolves any pair
formed by i ′ togetherwith everywhite vertex of W ⊆ [ j+3, i−2] because the vertices
of this last interval are not adjacent to j ′. In addition, since d(i ′, i +1) = d(i ′, i +2)−1
for every vertex i ′ ∈ [ j +3, i −1] and W ⊆ [ j +3, i −1], every pair of vertices in this
interval, with one of them in W , that was resolved by i + 2 is now resolved by i + 1.
Hence, S′ discriminates W . Besides, since a special white vertex l is not connected to
either i + 1 or i − 1, and vertices i − 2, i and i + 2 are adjacent to at least one of them,
Property P3 holds.

Suppose now that (S\{i +2})∪{i +1} does not discriminate {i +3}. Let us seewhich
white vertex j ′ has the same coordinates as i +3 with respect to this set. A vertex in the
interval [ j, i +1] is not adjacent i +4; thus, j ′ ∈ [i +2, j −2]. Moreover, j ′ �= i +2,
because i + 3 is not adjacent to i + 1, and consequently, j ′ ∈ [i + 5, j − 2]. Observe
now that if d(i + 3, i + 1) = d( j ′, i + 1) = 2 then d(i + 3, i + 2) = d( j ′, i + 2) = 1.
Taking vertex i + 2 as a black vertex, we can apply Lemma 2 to the (1, 2)-alternating
interval [i + 2, n] (or [i + 2, 1]), giving rise to the only two possibilities shown in
Fig. 16, middle and bottom, for a vertex j ′ = i + 5 to have the same coordinates as
i + 3.

Consider the case shown in Fig. 16, middle: vertex i + 2 connected to vertices
i + 3, i + 4, i + 5, i + 6 and i + 7. In addition to the changes of color of i + 1 and
i + 2, we interchange the colors of vertices i + 4 and i + 5. We claim that the sets
S′ = (S\{i +2, i +4})∪{i +1, i +5} and I ′ = I ∪[i, i +7] satisfy Invariant 1. Note
that W ′ = W ∪ {i, i + 2, i + 3, i + 4, i + 6}. The set S∗ = {i − 1, i + 1, i + 5, i + 7}
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Fig. 16 Case (g): Squared vertices have the same coordinates. Top: Interchanging the colors of i + 1 and
i + 2. Middle and bottom: Interchanging the colors of i + 1 and i + 2 and the colors of i + 4 and i + 5

discriminates {i, i + 2, i + 4, i + 6, j + 1}, since {i, i + 2, i + 4, i + 6, j + 1}
are the only white vertices adjacent to i + 1 or i + 5 and r(i |S∗) = (1, 1, 3, 3),
r(i + 2|S∗) = (3, 1, 1, 1), r(i + 4|S∗) = (4, 2, 1, 2), r(i + 6|S∗) = (4, 2, 1, 1), and
r( j +1|S∗) = (2, 1, 2, 2). On the other hand, i +3 has no black neighbor. Hence, any
other white vertex i ′ ∈ V \W ′ has at least a black neighbor that resolves i + 3 and i ′.
If i ′ ∈ W ⊆ [ j + 3, i − 2], then i + 5 resolves i ′ and i + 3, because d(i ′, i + 5) ≥ 4,
but d(i + 3, i + 5) = 2. Thus, S′ discriminates {i + 3}. Finally, as S discriminates
W and W ⊆ [ j + 3, i − 2], then S′ also discriminates W taking into account that (1)
j + 1 is already resolved from a vertex in W , (2) for every vertex i ′ ∈ [ j + 3, i − 2],
we have d(i ′, i + 5) = d(i ′, i + 4) and d(i ′, i + 1) = d(i ′, i + 2) − 1 and that (3)
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a black vertex adjacent to a white vertex of V \I ′ in the interval [i + 8, j] cannot be
connected to a vertex in W . Therefore, S′ discriminates W ′ and Property P1 holds.

To show that Property P3 holds we only need to resolve the pairs formed by a
special vertex l ∈ V \I ′ and one of the vertices from {i −2, i, i +2, i +3, i +4} using
a vertex from S′ ∩ [1, i + 5]. Vertex i − 1 resolves l and any of {i − 2, i} because l
is not adjacent to i − 1, and i + 5 resolves l and any of {i + 2, i + 3, i + 4} because
d(l, i + 5) ≥ 3. Therefore, Property P3 also holds, and Invariant 1 is satisfied, as
claimed.

For the last case, the one shown in Fig. 16, bottom, the analysis is very similar to the
previous one. Following the same steps as described in the two previous paragraphs,
one can prove that S′ = (S\{i +2, i +4})∪{i +1, i +5} and I ′ = I ∪[i, i +7] satisfy
Invariant 1. The set W ′ is W ∪{i, i +2, i +3, i +4, i +6}. In this case, it can be shown
that the set S∗ = {i−1, i+1, i+5, i+7} discriminates {i, i+2, i+3, i+4, i+6, j+1}.
Moreover, for everywhite vertex i ′ ∈ [ j+3, i−2],wehaved(i ′, i+1) = d(i ′, i+2)−1
and d(i ′, i +5) = d(i ′, i +4)−1. Thus, every pair of white vertices from [ j +3, i −2]
that was resolved by i + 2 or i + 4 is resolved now by i + 1 or i + 5. For every white
vertex i ′ ∈ [i + 8, j], the black vertex adjacent to i ′ is not adjacent to a vertex in
W ⊆ [ j + 3, i − 2]. Hence, S′ discriminates W .

Finally, to show that Property P3 holds we only need to resolve the pairs formed
by a special vertex l ∈ V \I ′ and one of the vertices from {i − 2, i, i + 2, i + 3, i + 4}
using a vertex from S′ ∩ [1, i + 5]. All the vertices in {i − 2, i, i + 2, i + 3, i + 4} are
adjacent to either i − 1 or i + 5, but a special vertex l ∈ V \I ′ is not adjacent to either
i − 1 or i + 5, so i − 1 or i + 5 resolves l and any of these five vertices. From this,
Invariant 1 holds as claimed.
Case (h) In this case, the vertices not resolved by S are i +1 and j +1 in the subgraphs
shown in Fig. 17. The analysis of Case (h) follows the same steps as Case (g), although
there are small changes due to the fact that now the edge (i + 2, j + 2) belongs to G
instead of the edge (i + 1, j + 1).

If (S\{i +2})∪{i +1} discriminates {i +3}, it can be checked that S′ = (S\{i +2})∪
{i +1} and I ′ = [1, i +4] satisfy Invariant 1 (see Fig. 17, top). If (S\{i +2})∪{i +1}
does not discriminate {i + 3}, arguing exactly as in Case (g), we have that the vertex
with the same coordinates as i + 3 is j ′ = i + 5, and one of the cases shown in
the middle and bottom of Fig. 17 holds. It can be checked in both cases that the sets
S′ = (S\{i + 2, i + 4}) ∪ {i + 1, i + 5} and I ′ = I ∪ [i, i + 7] satisfy Invariant 1 (see
Fig. 17, middle and bottom).

To finish the proof of the theorem, let us see that S can be computed in linear time.
Building S = S0 obviously requires linear time. Besides, for every run r , we have
to check whether subgraphs (a)–(h) appear in G and, if it is the case, to update S
accordingly. All of this can be done in constant time. Therefore, S can be computed
in linear time. ��

4 Conclusions and Open Problems

In this paper, we have studied the metric dimension problem for maximal outerplanar
graphs, and we have shown that 2 ≤ β(G) ≤ � 2n

5 � for any maximal outerplanar graph
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Fig. 17 Case (h): Squared vertices have the same coordinates. Top: Interchanging the colors of i + 1 and
i + 2. Middle and bottom: Interchanging the colors of i + 1 and i + 2 and the colors of i + 4 and i + 5

G. In relation to the lower bound, we have characterized all maximal outerplanar
graphs with metric dimension two, based on embedding such graphs into the strong
product of two paths. A first question is whether this technique can be applied to
characterize graphs with metric dimension two in other families of graphs, as 2-trees
or near-triangulations.

With respect to the upper bound, we have provided a linear algorithm to build a
resolving set of size � 2n

5 � for any maximal outerplanar graph. Another question is
whether similar techniques as those described in the algorithm can be used to find effi-
ciently resolving sets for other families of graphs, asHamiltonian outerplanar graphs or
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near-triangulations. For near-triangulations, our conjecture is that there always exists
a resolving set of size � 2n

5 � for any near-triangulation.
Finally, let us point out that using similar reasonings, it can be proved that a MOP

of order n ≥ 4 has a locating–dominating set of cardinality �n/2�. This fact reinforces
the veracity of the conjecture given in [15], stating that every twin-free graph has a
locating–dominating set of size at most half the order. Recall that two vertices are
twins if they have the same open or closed neighborhood, and a graph is twin-free if it
has no twins. Since MOPs of order at least 5 have no twins, the conjecture holds for
this class of twin-free graphs.

Proposition 2 If G is a MOP of order at least 4, then G has a locating–dominating
set of cardinality �n/2�.

Proof There is only one MOP of order 4 and the set consisting of a vertex of degree 2
and a vertex of degree 3 is a locating dominating set. The onlyMOP of order 5 is a fan,
and in this case, the set formed by the two vertices of degree 2 is a locating–dominating
set.

For n ≥ 6, let us number the vertices of the outerface cycle of the MOP with
consecutive numbers, from 1 to n, so that vertex 1 has degree 2 (note that this is
possible since every MOP has at least 2 vertices of degree 2) and consider the set S
consisting of even vertices. We claim that S is a locating–dominating set of cardinality
�n/2�. On the one hand, every vertex not in S has a neighbor in S. On the other hand,
for every pair of vertices not in S, that is, for every pair of odd vertices i and j , their
sets of neighbors in S are different. Indeed, if either n is odd with i and j different
from 1, or n is even, then there are at least three distinct vertices in S that are neighbors
of i or j . Hence, i and j have different sets of neighbors in S because a MOP does
not contain a complete bipartite graph K2,3 as subgraph. If n is odd and one of the
vertices is 1, we may assume i = 1. By construction of S, the only neighbor of 1 in S
is 2 and any other odd vertex j has at least two neighbors in S (recall that, if n is odd,
then n is adjacent to n − 1 and 2, both in S). Hence, the set of neighbors of 1 and j in
S are different. ��
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