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Abstract
The process TiO2/PAC/UV-vis has been under study and compared with the isolated treatments of adsorption and photocatalysis
determining possible synergies between adsorption and photocatalysis of target antibiotics: amoxicillin, enrofloxacin, sulfadia-
zine, and trimethoprim. The characterization of the TiO2/PAC mixture was carried out via FESEM and FTIR. Moreover, a
kinetic study has been performed. The effect of UV-vis radiation and the type of matrix was analyzed in TiO2/PAC/UV-vis
process. The performance of this treatment has beenmonitored during three cycles, evaluating also the regeneration of TiO2/PAC
mixture by UV-vis light. TiO2/PAC/UV-vis process allowed the removal of the antibiotics in the range 90–100% (an average
removal of 93% of the initial concentration) after 60 min of treatment. However, only amoxicillin showed a significant synergy
applying TiO2/PAC/UV-vis process. Regarding matrix effect, no influence of the matrix type (ultrapure water or treated waste-
water) was observed. Since PAC tends to be deactivated gradually, the TiO2/PAC/UV-vis process performance decreases after
each cycle in a 15% average. Finally, regeneration via UV-vis light started to be effective after a total of 4 h of regeneration.
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Introduction

Antibiotics have shown an incipient use to fight a variety of
diseases, leading to a rise of its global consumption.

Nowadays, antibiotics are mainly destined to human and vet-
erinary uses, thus creating a waste problem, as more than a
half of the antimicrobial agent given is excreted (Klein et al.,
2018; Kuehn, 2007). It is widely believed that massive and
improper use of these pharmaceuticals might cause a serious
problem on environment (Mceneff et al., 2014). Since the
consumption of antibiotics leads to the subsequent generation
of antimicrobial-resistant bacteria (AMR), apart from the en-
vironment, public health is also involved in the negative ef-
fects caused by the current use of antibiotics.

Urban wastewater treatment plants (WWTP), which re-
ceive the antibiotics and metabolites excreted, as well as other
pollutants, are not designed to remove antibiotics. Although
they reduce some of them (Mceneff et al., 2014), many studies
have monitored the occurrence of the most commonly admin-
istered pharmaceuticals in urban wastewater, groundwater,
and surface water worldwide. The literature informs that con-
centrations of antibiotics from ng/l to μg/l are detected in
waters (García-Galán et al., 2010; Jurado et al., 2019; Boy-
Roura et al., 2018; García-Gil et al., 2018). Among the differ-
ent families of antibiotics, sulfonamides (Senta et al., 2013;
Babić et al., 2006), trimethoprim (Golovko et al., 2014;
Aukidy et al., 2012), β-lactams (Tuc Dinh et al., 2011;
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Highlights
• The application of TiO2/PAC/UV-vis in suspension is a promising
process, because it is environmentally friendly reducing energy and
chemicals. This process allows effectively the removal of target
antibiotics.

• There is no influence of the matrix type (ultrapure water or treated
wastewater) in TIO2/PAC/UV-vis process applied in suspension.

• The TiO2/PAC mixture tends to be deactivated among various cycles.
According to the results, an average of 15% removal is reduced for the
target antibiotics per cycle. Nevertheless, the regeneration of PAC is
possible by applying, at least, 4 h of exposure to 3 W/l of UV-vis light,
allowing its reuse.
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Rossmann et al., 2014), and fluoroquinolones (Tamtam et al.,
2008; Wagil et al., 2014) represent a potential risk for the
environment. Consequently, a representative antibiotic from
each one of these groups was analyzed in this research work,
more precisely: sulfadiazine (veterinary use, sulfonamide), tri-
methoprim (human and veterinary use, trimethoprim), amox-
icillin (human and veterinary use,β-lactam), and enrofloxacin
(veterinary use, fluoroquinolone).

Conventional treatments, such as coagulation-flocculation-
decantation or biologic processes, are not able to completely
remove these pollutants. However, other type of treatments
has been studied in the last decade to remove emerging pol-
lutants. Photocatalysis and adsorption have been demonstrat-
ed to be effective for pharmaceuticals removal (USEPA,
2007; Mirzaei et al., 2017; Biancullo et al., 2019; Cai & Hu,
2017). An alternative approach to remove antibiotics from
water could be the combination of the adsorbent activated
carbon (AC) and the catalyst TiO2. The immobilized system
based on porous adsorbents, such as carbon fibers or zeolites,
is quite common for carbonaceous-TiO2 composites.
Activated carbon (AC), carbon nanotubes or carbon fibers,
and graphene are mainly applied to synthetize carbonaceous-
TiO2 composites, for instance, bymeans of thermal treatments
which induces to high-energy consumption. Many methods
have been developed for preparing carbonaceous-TiO2 com-
posites. These systems have been widely investigated and are
promising materials for future high-activity photocatalysts for
pharmaceuticals such as amoxicillin (Moura et al., 2018;
Awfa et al., 2018). The presence of the carbonaceous material
may facilitate enhanced photocatalytic activity through one or
all of the three primary mechanisms: (i) band-gap tuning or
extension of excitation wavelength through photosensitiza-
tion, (ii) retardation of electron–hole recombination, and (iii)
provision of high-surface area for adsorption of reactants and
provision of active sites. The carbonaceous-TiO2

photocatalysts have the potential to address all three aspects.
Moreover, they are widely reported to enhance photocatalytic
activity over that of TiO2 alone. However, many of them
require many chemicals and are expensive, complicated, and
time-consuming. Therefore, the development of relatively
cheap, easy, scalable, and environmentally friendly method
is a one of the very high priorities according to literature
(Awfa et al., 2018).

However, though immobilized systems such as the afore-
mentioned carbonaceous-TiO2 composites are the most com-
mon way to combine carbon and TiO2, more options are re-
ported in literature to achieve this combination (Awfa et al.,
2018; Moles et al., 2020; Andriantsiferana et al., 2014; Matos
et al., 1998). The general trend nowadays consists on the im-
mobilization of the catalyst in the surface or the adsorbent
(Andriantsiferana et al., 2014). Nevertheless, in this research,
work is considered the application of powered activated car-
bon (PAC) and TiO2 in suspension resulting in an amalgam of

them. The application of TiO2/PAC mixture in suspension
allows a better contact surface between the pollutants and
the mixture and previous results in our research group show
that separation processes based on coagulation-flocculation-
decantation work very well (Moles et al., 2020). This alterna-
tive has been applied for the removal of emerging pollutants
from waters, such as azo-dye (Andriantsiferana et al., 2014),
phenol (Matos et al., 1998), or 4-clorophenol (Herrmann et al.,
1999), reporting a synergistic effect. This effect was observed
not only in the photocatalysis but also in the adsorption
(Herrmann et al., 1999; Bahrudin & Nawi, 2018). Some au-
thors have pointed that this synergy does not really takes
place, and it comes from a misinterpretation of the
Langmuir-Hinshelwood equation (Asenjo et al., 2013).
Some previous studies can be found coupling two metal ox-
ides (Qiu et al., 2012), or combining metal oxides and MOFs,
reporting a synergetic effect in the removal of sulfamethazine
(Yu et al., 2019), methylene blue (Mills, 2012), and bacterial
inactivation (Milosevic et al., 2017). However, there is not
literature about the removal of antibiotics applying TiO2/
PAC mixture in suspension combined with UV-vis light
(TiO2/PAC/UV-vis). Consequently, there is a need to deter-
mine the possible synergy of these materials in water
treatments.

This work evaluates the capacity of PAC/TiO2/UV-vis pro-
cess applied in suspension in the removal of antibiotics. The
TiO2/PAC mixture was characterized via FTIR and FESEM.
Moreover, the kinetic mechanism was proposed for the re-
moval of antibiotics. The performance of this treatment has
been monitored during three cycles. Finally, this research
work has evaluated the effect of the TiO2/PACmixture regen-
eration applying UV-vis light. Furthermore, a comparison
with the isolated processes (PAC adsorption and TiO2

photocatalysis) is featured to determine possible synergies of
PAC/TiO2/UV-vis in the removal of target antibiotics. The
effect of the matrix and UV-vis radiation per unity of volume
has been investigated as well.

Materials and methods

Antibiotic characterization

The four target antibiotics were supplied by Sigma-Aldrich.
Their characteristics are shown in Table 1 including the mo-
lecular structure and physicochemical properties of the
molecules.

Antibiotic concentration was quantified by UV-vis absorp-
tion molecular spectrometry, using a Helios ThermoSpectronic
and a quartz cell with a 1.0 cm path and repeating the absor-
bance measure of the solution by triplicate. The samples were
filtrated with GVS 0.45 μm nylon filters previously to the anal-
ysis. The characteristic wavelength for sulfadiazine was 254
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nm, 202 nm for trimethoprim, 225 nm for amoxicillin, and
271 nm for enrofloxacin. Calibration curves were made using
solutions of each antibiotic in deionized water in a range of 1–
20 mg/l. The calibration curves for all the antibiotics showed a
high linearity (r > 0.99). Therefore, concentrations as low as 1
mg/l could be reliably measured under these conditions.

Adsorbent characterization

VPlus vegetal powdered activated carbon (PAC) supplied by
Chemivall was used as the adsorbent. According to the spec-
ifications given by the manufacturer, the particle size of 90%
of the constituent particles was under 0.044 μm. Further spec-
ifications given are 10.3% humidity when packaging, 1.8%
ashes on dry basis, as well as an iodine index of 950 mg/g.

Partial elemental analysis was also carried out, obtaining
the carbon (95.8%), hydrogen (0.1%), and nitrogen (0.2%)
contents. A scanning electron microscope (SEM) study
complemented this information with other relevant elements
such as oxygen (2.9%), aluminum (0.4%), silicon (0.7%), and
iron (0.2%). In addition, a BET isotherm was performed,
using a Chemisorb 2700 (micrometrics Instruments), measur-
ing the flux of N2 at a temperature of 77 K, yielding a super-
ficial area of 745.4 m2/g.

Catalyst characterization

In this study, TiO2 FN2 was used (aqueous suspension) com-
mercialized by Levenger. Crystalline phases were analyzed by
X-Ray Diffraction (XRD) with a diffractometer Rigaku
D/Max-2500, provided with a graphite monochromator to

select the Cu Kα radiation. Measure interval (2θ) went from
10 to 80° at a speed of 1.8°/min. Determination and quantifi-
cation of phases and size particle calculus were carried out
with the software MDI-Jade7 and the data base JCPDS-
International Centre for Diffraction Data-2000. For the
semi-quantitative analysis of X-Ray fluorescence (XRF),
a sequential XRF spectrophotometer Thermo Electron
ARL ADVANT’XP was used. This XRF equipment was
provided with an X-Ray tube with frontal window of be-
ryllium (Be) and a rhodium (Rh) anode and it permitted
the semi-quantitative detection of the elements between
sodium (Na) and uranium (U). Particle morphology was
studied by field emission scanning electron microscopy
(FESEM) with a FESEM microscope Carl Zeiss
MERLIN™ containing a secondary and retro-dispersed
electrons detector.

Figure S1 presents the XRD patterns of TiO2 Levenger.
The peaks observed in the diffractogram showed crystalline
structures of gypsum CaSO4·H2O (8%) and smithsonite
ZnCO3 (4%), along with the phases of TiO2, anatase (79%),
and rutile (9%).

The results obtained by XRD were confirmed by the semi-
quantitative elemental analysis of X-ray fluorescence.
Average particle size was calculated from the XRD data,
resulting in 23 nm for TiO2 Levenger. Figure S2 shows a
FESEM image of the catalyst. TiO2 Levenger features the
presence of bigger size (> 300 nm) particles with straight
edges was also detected. Probably, these particles correspond
to the CaSO4·H2O identified by XRD and XRF. TSS in TiO2

Levenger was 106 g/l, which means a concentration of around
93 g/l TiO2.

Table 1 Characteristics of the antibiotics selected: name, group, CAS number, molecular weight, acid dissociation constant, and molecular structure

Antibiotics Group CAS pKa MW 

(g/mol)

Structure

Amoxicillin β-lactam 26787-78-0 3.2 (carboxyl)

11.7 (amine)

365.4

Enrofloxacin Fluoroquinolone 93106-60-6 6.2 359.4

Sulfadiazine Sulfonamide 68-35-9 6.4 250.3

Trimethoprim Trimethoprim 738-70-5 7.1 290.3
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TiO2/PAC mixture characterization

The TiO2/PAC mixture was characterized via FTIR spec-
troscopy before and after the adsorption of amoxicillin in
a Bruker Vertex 70 spectrometer. The measurement of the
samples was carried out in a KBr disk. The acquisition
range of the characterization was 400–12800 cm-1, the
resolution was 4 cm-1, and the number of cumulative
spectra was 32.

The characterization of the solid TiO2/PAC is shown in
Fig. 1. According to the graph, the main functional groups
of the TiO2/PAC mixture present vibrations at 633, 1443,
1632, and 3448 cm-1, which usually appear in TiO2 according
to literature (León et al., 2017; Maletić et al., 2019; Al-Amin
et al., 2016). The 3448 cm-1 corresponds to the stretching of
O–H bonds formed between the hydrogen atoms present in
PAC or the water molecules entrapped and the oxygen atoms
of TiO2, and the 1632 cm-1 corresponds to the bending of an
O–H bond associated to a Ti atom. The peak in 1443 cm-1

could be related to the Ti-O bond, as well as the peak present
in 663 cm-1. In the NIR, a composed peak is observed around
12000 cm-1 that could be associatedwith the “band gap” of the
mixture. The findings would confirm the formation of TiO2
nanoparticles.

To complement the characterization of the TiO2/PACmix-
ture, particle morphology was studied by field emission scan-
ning electron microscopy (FESEM) with a FESEM micro-
scope Carl Zeiss MERLIN™ containing a secondary and
retro-dispersed electrons detector.

FESEM results are shown in Fig 2. According to the
graphs, it can be observed that activated carbon has a
porous and smooth surface of the order of 5–10 μm, while
TiO2 is agglomerated in round particles (300–1500 nm).
Electron backscatter diffraction allows the determination

of the particles and the lightest ones. In this case, titanium
oxide particles are the heaviest ones (white) while PAC is
observed in black. Figures 2c and 2d (zoom of the graph)
suggest that TiO2 is adsorbed covering the small pores
and surface of the PAC. Since PAC has an affinity for
antibiotics, the application of the catalyst and the adsor-
bent simultaneously could have a capacity to generate
synergy and increase the performance of the process, as
occurs in other treatments in which the carbonaceous ma-
terial is impregnated with titanium dioxide

Experimental procedure

The experiments were performed in ultrapure water (pH 6.5)
and in a real-treated urban wastewater (WWTP of 80,000
inhabitants located in the Ebro Basin) fortified with 15 mg/l
of the selected antibiotics individually.

PAC adsorption experiments were conducted in pres-
ence of PAC Vplus (supply by ChiemiVall) concentration
of 0.1 g/l in the dark in 200 ml of sample with a stirring
of 150 rpm.

Atlas Suntest CPS+ solar chamber provided with a xenon
lamp was used for the photo-treatments. For the TiO2/UV-vis
experiments, the samples were exposed to a light intensity of
540 W/m2 and temperature of 35 °C in presence of 1 g/l of
TiO2 FN2. The essays were carried out with 200 ml of sample
in sterile 250 ml quartz beakers with continuous stirring of
150 rpm. TiO2/PAC/UV-vis experiments were carried out in
the aforementioned solar chamber applying a dose of 0.1 g/l of
PAC and 1 g/l of TiO2. The samples were exposed to different
light intensities per volume unit (Iv) ranging from 1 to 3 W/l.
The rest of the parameters remain constant for each tested
antibiotic.

Fig. 1 FTIR-NIR of the mixture
TiO2/PAC entre 400–12800 cm-1
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The three tested processes were conducted for treatment
times of 10, 30, and 60 min. The antibiotic removal rate from
the solution was calculated following Eq. 1:

%Removal ¼ C0−C f

C0
100 ð1Þ

Reuse experiments in PAC/TiO2/UV-vis process

Reuse experiments were performed in ultrapure water fortified
individually with 15 mg/l of the four target antibiotics, apply-
ing a suspension of 0.1 g/l of PAC and 1 g/l of TiO2, as well as
a radiation per volume unit of 1 W/l. These experiments con-
sist of three consecutive cycles of 60 min. The mixture was
filtered with a nylon filter, manufactured by GVS (0.45 μm
pore size). Between each cycle, the TiO2/PAC mixture was
dried in a stove at 105 °C for 30 min and was weighed before
and after the drying in order to quantify mass losses between
cycles.

Regeneration experiments in PAC/TiO2/UV-vis process

Regeneration essays were performed applying a radiation per
volume (Iv = 1 W/l) in ultrapure water fortified with 15 mg/l

of sulfadiazine. The experiment was composed of three cycles
with a maximum treatment time of 60 min. The control pa-
rameter (molecular absorbance) was measured at 30 and
60 min in presence of 1 g/l of TiO2 and 0.1 g/l of PAC. The
TiO2/PACmixture was recovery from the solution bymean of
0.45 μm nylon filters. The regeneration procedure consists of
two steps; first, dried in a stove at 105 °C for 15 min to
determine mass losses. Immediately after, the dried catalyst
was rinsed with 200 ml of water and was placed in a flask and
mixed in the solar chamber for 2 h at Iv = 3 W/l.

Results and discussion

Performance comparison of the three treatments

In Fig. 3, the TiO2/PAC/UV-vis results are reflected, the indi-
vidual treatments (PAC adsorption and TiO2/UV-vis), and the
results of the application of both treatments as sequential steps
(TiO2/UV-vis process followed by PAC adsorption). The re-
sults suggest that higher removal of amoxicillin, enrofloxacin,
and sulfadiazine was found in the TiO2/PAC/UV-vis treat-
ment compared to the individual PAC adsorption and TIO2/
UV-vis oxidation. By contrast, trimethoprim removal degree
was similar in the isolated treatments and in the TiO2/PAC/

Fig. 2 FESEM of the mixture TiO2/PAC. Electron dispersive spectroscopy (a, c). Electron backscatter diffraction (b, d)
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Fig. 3 Evolution of antibiotic
removal degree applying different
treatment a amoxicillin, b
enrofloxacin, c sulfadiazine, d
trimethoprim.C0 = 15mg/l, Iv = 1
W/l, 1 g/l TiO2, 0.1 g/l PAC
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UV-vis treatment. The enhancement of photocatalytic degra-
dation of pharmaceuticals by using TiO2/PAC mixture is in
accordance with the finding of other researchers who exam-
ined the immobilization of TiO2 on activated carbon for re-
moval of different organic compounds (Asenjo et al., 2013).
This fact suggests that the process improvement depends on
the antibiotic family and chemical properties. Amoxicillin was
the only of the four antibiotics that showed a significant syn-
ergy applying the TiO2/PAC/UV-vis treatment, reaching a
30% higher removal than the removal percentage obtained
by applying TiO2 photocatalysis and PAC adsorption in se-
quential treatments. This fact could be explained by a com-
bined adsorption and decomposition process under light and
OH radicals, leading to a higher availability of unoccupied

adsorption sites. Moreover, since carbonaceous material is
well known as an effective adsorbent due to hydrophobic
interactions, hydrogen-bounding interactions, and electrostat-
ic and dispersion interactions (Awfa et al., 2018), the adsorp-
tion is enhanced by the structure of the amoxicillin degrada-
tion products (Trovó et al., 2011), capable of establishing π-π
interactions, as well as hydrogen bonds and electrostatic inter-
actions (Moura et al., 2018; Peng et al., 2016). The antibiotic
removal degree achieved by TiO2/PAC/UV-vis process in
suspension in 30 min of treatment is significantly higher if it
is compared to research works where other pharmaceuticals
were treated by composite of AC impregnated with TiO2/UV-
vis (Gu et al., 2019; El Mouchtari et al., 2020). The results of
amoxicillin removal are consistent with the trend reported in

Table 2 Kinetic fitting parameters for amoxicillin, enrofloxacin, sulfadiazine, and trimethoprim

Pseudo-second order Amoxicillin Enrofloxacin Sulfadiazine Trimethoprim

qe (mg/g) 133.7 158.5 152.05 134.8

k2 (g/mg min) 3.31 × 10-3 7.76 × 10-4 1.08 × 10-3 1.61 × 10-3

R 0.999 0.9992 0.9991 0.9984

Intraparticular diffusion Amoxicillin Enrofloxacin Sulfadiazine Trimethoprim

k (mg/g min1/2) 2.83 7.13 7.14 4.91

I (mg/g) 103.6 77.0 75.8 81.9

R 0.9073 0.9622 0.8445 0.9023

Pseudo-first order Amoxicillin Enrofloxacin Sulfadiazine Trimethoprim

qe (mg/g) 21.2 88.1 60.3 22.1

K1 (l/min) 0.034 0.041 0.052 0.023

R 0.9301 0.9894 0.9726 0.55

Fig. 4 Percentage of removal in WWTPE and Ultrapure water after 60 min of treatment of PAC/TiO2/UV-Vis
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other studies focused on the removal of sulfamethazine (Yu
et al., 2019) and methylene blue (Mills, 2012) with MOFs and
metal oxides, while the rest of the selected antibiotics do not
show the same behavior.

Regarding the antibiotics removal achieved by other ad-
vanced oxidation processes, the photo-Fenton treatment is re-
ported to be more effective in Fenton-like processes.
Furthermore, some authors suggested that the estimated costs
of TiO2/PAC photocatalysis and photo-Fenton are similar
(Gar Alalm et al., 2016). Comparing the operational condi-
tions of both advanced oxidation processes, photo-Fenton pro-
cess is reported known to be favored at acidic conditions
(Zepp et al., 1992), which might induce to operational prob-
lems such as corrosion. Moreover, since traces of iron
remained in the treated effluent, it might cause environmental
problems; meanwhile, TiO2 is not harmful to the environment
(Byrne et al., 2018).

Kinetic study

Regarding the kinetics, the experimental data fulfills follows
pseudo-first order (Eq. 2), pseudo-second order (Eq. 3), and
Weber-Morris intraparticular diffusion (Eq. 4) and as reported
in the bibliography (Ensano et al., 2019; Yue et al., 2014;
Ahmed & Theydan, 2014). In Eq. 2, k1 is the rate constant
of the pseudo-first-order model (L/min). In Eq. 3,K2 is the rate
constant of the pseudo-second-order model (g/(mg·min)). In
Eq. 4, l is a parameter relating to the thickness of the boundary
layer and k is the intraparticle diffusion rate constant.

ln qe−qtð Þ ¼ lnqe−k1t ð2Þ

t
q
¼ 1

K2q2e
þ 1

qe
t ð3Þ

q ¼ kt1=2 þ l ð4Þ

The q (mg/g) of every experiment was fitted to the pseudo-
second order, Morrison-Weber intra-particle diffusion, and
pseudo-first order models. Regardless of the tested antibiotic
or the initial concentration, the kinetics of the adsorption pro-
cess presented an overall better fitting to the pseudo-second
order equation, ruling out intraparticle diffusion as a limiting
step. Table 2 gathers the adsorption kinetics parameters for the
fitting the equations to the data of the antibiotics. The sug-
gested kinetics are consistent with the reported bibliography
for enrofloxacin (Berges et al., 2020; Chowdhury et al., 2019),
trimethoprim (Ngo et al., 2010), amoxicillin (Moussavi et al.,
2013; Limousy et al., 2017), and sulfadiazine (Liu et al.,
2017).

Matrix influence

The influence of matrix has been studied in the TiO2/PAC/
UV-vis treatment, comparing the performance of the treat-
ment in ultrapure water (UW) and real-treated urban wastewa-
ter (WWTPE). Literature suggests that the removal percentage
tends to decrease when the treatment is applied in real waste-
waters rather than ultrapure water. This behavior has been
reported by other authors, using treatments based onTiO2/
UV-vis oxidation (Cabrera-Reina et al., 2019) or PAC adsorp-
tion (Guillossou et al., 2020). The presence of suspended

Table 3 Influence of UV-vis radiation in the % removal of amoxicillin and enrofloxacin after among 60min of TiO2/PAC/UV-vis.C0 = 15mg/l Iv = 1
W/l, 1 g/l TiO2, 0.1 g/l PAC

Amoxicillin % Removal Enrofloxacin % Removal

Radiation/volume 1 W/l 2 W/l 3 W/l Radiation/volume 1 W/l 2 W/l 3 W/l

Time 10 min 81% 81% 78% Time 10 min 62% 68% 73%

30 min 90% 93% 90% 30 min 77% 84% 92%

60 min 95% 94% 95% 60 min 94% 97% 98%

Table 4 Influence of UV-vis radiation in the % removal of sulfadiazine and trimethoprim after among 60 min of TiO2/PAC/UV-vis.C0 = 15 mg/l Iv =
1 W/l, 1 g/l TiO2, 0.1 g/l PAC

Sulfadiazine % Removal Trimethoprim % Removal

Radiation/volume 1 W/l 2 W/l 3 W/l Radiation/volume 1 W/l 2 W/l 3 W/l

Time 10 min 37% 51% 68% Time 10 min 63% 58% 69%

30 min 73% 84% 91% 30 min 74% 80% 86%

60 min 93% 95% 97% 60 min 89% 89% 90%
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Fig. 5 Evolution of % removal
per gram of TiO2 + PAC during 3
cycles of 60 min for each
antibiotic. a Enrofloxacin, b
sulfadiazine, c amoxicillin, d
trimethoprim. C0 = 15 mg/l Iv = 1
W/l, 1 g/l TiO2, 0.1 g/l PAC
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solids, organic matter, and other substances known as
scavengers is known to lead to a reduction in the concen-
tration of OH·radicals in water, having also an effect on
light propagation through the reactor, resulting in the
aforementioned decrease of photocatalytic efficiency of
the process TiO2/PAC/UV-vis. Moreover, the presence
of organic matter and suspension solids and other sub-
stances susceptible to be adsorbed causes a reduction of
available adsorption sites in the TiO2/PAC mixture
(Wang et al., 2019). However, the results of antibiotics
removal after 60 min of TiO2/PAC/UV-vis treatment in
treated wastewater and ultrapure water (Fig. 4) show that
the effect of water matrix is practically negligible. The
TiO2/PAC/UV-vis process reaches the complete removal
of trimethoprim and sulfadiazine, in these operational
conditions in both matrixes. By contrast, amoxicillin and
enrofloxacin do not reach the total removal; more than
90% removal was achieved for both antibiotics in the
studied matrixes. This trend might be attributed to the
presence of inorganic species such as H2O2, SO3

2-, and
BrO3

- present in wastewater. Literature suggest that these
species can improve the photocatalytic remediation of
pharmaceuticals by acting as electron scavengers, and
consequently increasing the production of hydroxyl radi-
cals and thus generating oxidizing species (Lee et al.,
2017).

Some authors suggest that dissolved organic matter com-
petes with some micro pollutants for the available active sites
(Maletić et al., 2019; Al-Amin et al., 2016). By contrast, the
results might suggest that antibiotics adsorption is enhanced
by their structure, and the structure of degradation products
capable of establishing electrostatic interactions (Moura et al.,
2018; Peng et al., 2016). Finally, since OH· radicals are non-
selective, the results suggest the concentration of OH radicals
enough to remove simultaneously dissolved organic matter
and target antibiotics.

Study of radiation per unity of volume influence

Antibiotic removal evolution during 60 min of TiO2/PAC-UV
treatment is shown in Tables 3 and 4. The results suggest an
influence of the radiation intensity in the effectivity of the
process. In a treatment time of 10 min, an increase of the
removal rate is observed when the applied radiation by vol-
ume unit increases as well. However, as treatment progresses,
the influence of the radiation decreases. As a result, taking into
account that at least an hour of treatment is needed in order to
reach removal rates superior to 90%, it would be convenient to
work at the minor radiation (1 W/l), as it would constitute
energy savings. Other authors have obtained similar results
studying the influence of radiation in photocatalytic processes,
such as the degradation of phenol (Chiou et al., 2008).

Independently from the studied antibiotic and the sched-
uled radiation, the antibiotic rate removal remains constant
with treatment times superior to 30 min. For these treatment
times, a removal rate near to 100% is observed: up to 98% of
initial enrofloxacin, 97% of sulfadiazine, 95% of amoxicillin,
and a 90% of trimethoprim (Tables 2 and 3).

Study of TiO2/PAC mixture reuse and regeneration

Figure 5 shows the efficiency of the mixture of TiO2/PAC in
the antibiotic removal process for each one of the three-reuse
cycles. The highest antibiotic removal rate corresponds to the
first cycle and the removal decreases with subsequent cycles
as other authors have suggested (Moles et al., 2020; Wang
et al., 2019), presenting the second cycle lesser removal rates
than the first one and higher rates than the third cycle. This
reduction could be explained by the clogging of the surface of
PAC active sites by the antibiotics and its degradation prod-
ucts, causing a reduction on the pore size. This phenomenon
allowed the adsorption of less antibiotic molecules in each
cycle, with the subsequent reduction on the removal

Fig. 6 Reuse performance
without regeneration (cycle 1,
cycle 2, and cycle 3) and applying
UV-light regeneration (Cycle2_
Reg and Cycle3_Reg). Evolution
of sulfadiazine removal per gram
of TiO2/PAC.C0 = 15mg/l, Iv = 1
W/l, 1 g/l TiO2, 0.1 g/l PAC
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percentage (Wang et al., 2019). This reduction on the efficien-
cy of removal is greater for the antibiotics which can be easier
removed when they are treated exclusively with PAC rather
than a treatment using only TiO2 (amoxicillin, sulfadiazine,
and trimethoprim) supporting this theory.

Finally, catalyst regeneration is considered a key step to
achieve a cheap, scalable, and environmentally friendly meth-
od to apply photocatalysis by means of TiO2/PAC mixture.
The results of the regeneration experiment carried out with
sulfadiazine and a radiation intensity of 1 W/l are shown in
Fig. 4. It can be observed that, while the second cycle (C2)
presents less efficiency when the TiO2/PAC mixture is regen-
erated (C2_Reg), the third cycle of the regeneration (C3_Reg)
experiments is able to remove more antibiotics than its homo-
logue for the reuse experiments (C3). The change in efficiency
relative to the reuse experiments between cycles might be
explained by the time of the regeneration stage. Each regen-
eration cycle consists of 2 h of treatment, insufficient for a
complete regenerate the TiO2/PAC mixture, and reach the
initial performance, leading to smaller efficiencies
(Andriantsiferana et al., 2014; Sharma & Lee, 2017).
However, in the (C3_Reg), TiO2/PAC mixture has been ex-
posed to a total of 4 h of regeneration, and thereby, it gets
higher capacities than its homologue without regeneration via
UV-vis (C3) Fig 6.

Conclusions

The application of TiO2/PAC/UV-vis in suspension is a
promising process, because it reduces energy and chemical
consumption. Consequently, this research work has studied
the performance of the process, as well as operational condi-
tions such as radiation per unity of volume and performance
evolution after three cycles. Regarding the results of this
study, the following conclusions can be drawn:

(1) The application of TiO2/PAC mixture in suspension al-
lows the removal of the target antibiotics in the range 90-
97% in 60 min of treatment

(2) Amoxicillin was the only of the four antibiotics that
showed a significant synergy applying the TiO2/PAC/
UV-vis treatment, and this fact might be attributed to
their structure capable of stablishing electrostatic inter-
actions with the TiO2/PAC mixture.

(3) There is no influence of the water matrix (ultrapure water
or treated wastewater) in TIO2/PAC/UV-Vis process.
Though dissolved organic matter of treated wastewater
might decrease the performance of the process, the efflu-
ent of the WWTP also contains inorganic matter, which
increases the concentration of oxidizing species resulting
in a similar performance of the process in both matrixes.

(4) The regeneration of the TiO2/PAC mixture is possible
applying, at least, 4 h of exposure to 3 W/l of UV-vis
light. By contrast, the reuse essays without regeneration
showed that the aforementioned mixture tends to be
deactivated gradually among various cycles, according
to the results a 15% inferior removal of all antibiotics per
cycle in average.

(5) FTIR and FESEM characterization of the material prove
the formation of TiO2 nanoparticles in both the pores
and the surface of PAC, thus confirming the possibility
of establishing a synergy on the degradation of certain
antibiotics.
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