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Abstract
The family of PDE-constrained Large Deformation Diffeomorphic Metric Mapping (LDDMM) methods is emerging as
a particularly interesting approach for physically meaningful diffeomorphic transformations. The original combination of
Gauss–Newton–Krylov optimization and Runge–Kutta integration shows excellent numerical accuracy and fast convergence
rate. However, its most significant limitation is the huge computational complexity, hindering its extensive use in Computa-
tional Anatomy applied studies. This limitation has been treated independently by the problem formulation in the space of
band-limited vector fields and semi-Lagrangian integration. The purpose of this work is to combine both in three variants of
band-limited PDE-constrained LDDMM for further increasing their computational efficiency. The accuracy of the resulting
methods is evaluated extensively. For all the variants, the proposed combined approach shows a significant increment of the
computational efficiency. In addition, the variant based on the deformation state equation is positioned consistently as the
best performing method across all the evaluation frameworks in terms of accuracy and efficiency.

Keywords Physically meaningful diffeomorphic registration · PDE-constrained LDDMM · Gauss–Newton–Krylov · Optimal
control optimization · Band-limited vector fields · Semi-Lagrangian Runge–Kutta integration
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1 Introduction

Computational Anatomy is a powerful interdisciplinary field
for the analysis of anatomical shape variability [19,20].
This discipline is based on Sir D’Arcy Thompson’s original
ideas for explaining the similarity of the anatomical shape
of homologous species using the transformations existing
between the anatomical structures [31]. In Computational
Anatomy, shape similarity is measured from the diffeo-
morphic transformations estimated between the anatomies.
These transformations yield a generative model for the anal-
ysis of shape variability. Diffeomorphisms are computed
from the anatomical images using diffeomorphic registration
methods [34].

There exists a vast literature on diffeomorphic registration
methods with differences in the transformation character-
ization, regularizers, image similarity metrics, optimization
methods, and additional constraints [29]. Although the differ-
entiability and invertibility of the transformations constitute
crucial features for Computational Anatomy applications,
the diffeomorphic constraint does not necessarily guaran-
tee that a transformation computed with a given method is
physically meaningful for the clinical domain of interest.
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PDE-constrained Large Deformation Diffeomorphic Metric
Mapping (PDE-LDDMM) has become relevant in the last
decade for the computation of transformations under plausi-
ble physical models of interest [1,7,10,13,14,18,32,33,36].

Our work focuses on the family of PDE-LDDMM meth-
ods pioneered by Hart et al. [7] and leading to the relevant
contributions in [9,13,14,17,22]. In this family of meth-
ods, the registration problem is approached from an optimal
control perspective, where different physical models are
imposed directly using the physical PDEs that are attached
to the LDDMM variational problem using hard constraints.
The numerical optimization is approached using gradient
descent [7,13,22] or second-order optimization in the form
of inexact reduced Newton–Krylov methods [9,13,14,17].
In particular, the combination of Gauss–Newton–Krylov for
optimization, with sophisticated multi-level precondition-
ers, spectral methods for differentiation, and Runge–Kutta
schemes for PDE integration, shows excellent numeri-
cal accuracy and an extraordinarily fast convergence rate.
However, the most significant limitation of Gauss–Newton–
Krylov PDE-LDDMM is the huge computational com-
plexity, which hinders the extensive use in Computational
Anatomy applied studies. This computational complexity is
due to:

1. The formulation of the problem in the spatial domain.
2. The large time sampling needed for the stability of

Runge–Kutta integration.

Both issues have been treated independently in the literature
yielding to PDE-LDDMM methods with increased efficiency
and an assumable cost in accuracy loss.

1.1 Computational Complexity due to Problem
Formulation

The computational complexity due to the formulation of
the problem in the spatial domain has been successfully
reduced using the band-limited vector field parameterization
proposed in [35,36]. LDDMM methods, and in particu-
lar PDE-LDDMM, involve the action of low-pass filters in
the optimization update equations of the velocities. There-
fore, the computation of the high-frequency components of
high-resolution velocity fields can be omitted since these
computations result equal or nearly equal to zero by the action
of the low-pass filters. The band-limited vector field param-
eterization allows a reduction in the dimensionality of the
problem that circumvents the high-frequency computations.

The works in [8,9] formulate three different variants of
PDE-LDDMM in the space of band-limited vector fields
and perform the computations in the GPU. Some configu-
rations of these variants have been really successful, greatly

outperforming the state-of-the-art methods in terms of com-
putational complexity while keeping a competitive accuracy.

1.2 Computational Complexity due to PDE
Integration

Runge–Kutta methods are explicit techniques. Hence, they
are only conditionally stable. This means that the time
sampling should be selected enough to preserve the Courant–
Friedrichs–Lewy (CFL) condition. For PDE-LDDMM, the
time sampling values that guarantee stability are usually
large. As a result, the time and memory requirements of the
problem are considerably increased. In particular, the mem-
ory requirements of PDE-LDDMM are increased to limits
that hinder the execution on limited memory devices such as
the GPU. In addition, one can experience that the time sam-
pling needed for the non-stationary parameterization is much
higher than for the stationary parameterization, increasing the
complexity of an already not particularly memory efficient
configuration. On the other side, when stability is satisfied,
the accuracy of PDE-LDDMM is high [8,9,13,14].

Semi-Lagrangian methods are semi-implicit techniques
that are unconditionally stable. Therefore, the time sampling
can be selected according to accuracy rather than stability
considerations. Semi-Lagrangian methods were originally
proposed in the 90’s in the context of modeling weather
predictions [30]. In the context of diffeomorphic registra-
tion, the original LDDMM method proposed in [3] already
used semi-Lagrangian integration for the solution of the
transport equation. The combination of semi-Lagrangian
integration with Runge–Kutta has been recently proposed
for solving some time-dependent PDEs. Runge–Kutta has
shown to increase the accuracy of first-order schemes in semi-
Lagrangian integration [6].

The computational complexity in [13,14] due to the use
of Runge–Kutta schemes for PDE integration has been
successfully reduced using semi-Lagrangian Runge–Kutta
integration [15,17] for the stationary parameterization of
diffeomorphisms. For PDE-LDDMM, the selected time
sampling is usually much smaller than the time sampling
typically selected with explicit schemes, yielding to a con-
siderable reduction in the computational complexity of the
problem. On the other hand, the expected accuracy of PDE-
LDDMM is lower than with explicit schemes.

Beyond the computational complexity improvement through
numerical schemes, Mang et al. proposed an efficient imple-
mentation of PDE-LDDMM that exploits massive CPU
based parallel computing architectures [16]. The source code
has been recently released with [17]. A GPU optimized
implementation of the method is being proposed in the ArXiv
paper [4].
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1.3 Our Contribution

The purpose of this work is to further increase the compu-
tational efficiency of BL PDE-LDDMM by combining the
two independent methodological approaches of circumvent-
ing the huge computational complexity of PDE-LDDMM
and to extensively analyze the accuracy of the resulting meth-
ods. We have implemented the band-limited methods in [8,9]
with the semi-Lagrangian Runge–Kutta integration scheme
originally proposed in [15] for the stationary and the non-
stationary parameterization of diffeomorphisms. The result-
ing methods have been evaluated in five different datasets
following the evaluation frameworks in [9,12,25]. To our
knowledge, this is the first time that semi-Lagrangian Runge–
Kutta integration is implemented in the space of band-limited
vector fields. It is also the first time that semi-Lagrangian
Runge–Kutta integration is used in PDE-LDDMM with the
non-stationary parameterization. Moreover, our work first
provides the position achieved by benchmark PDE-LDDMM
methods in the ranking of Klein et al. evaluation. The best
performing method of our work coincides with the best
performing variant in [9], PDE-LDDMM based on the defor-
mation state equation. The semi-Lagrangian Runge–Kutta
scheme proposed in this work has shown to outperform
the Runge–Kutta scheme in [9] in terms of computational
efficiency and accuracy. Indeed, the best performing PDE-
LDDMM variant in this work has recently reached the highest
sensitivity (97% vs a baseline of 88%) in the classification of
stable versus progressive mild cognitive impaired conversors
in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database using convolutional neural networks [23].

1.4 Manuscript Organization

In the following, Sect. 2 reviews the foundations of PDE-
LDDMM, with particular emphasis on the band-limited
vector field parameterization. Section 3 presents the proposed
semi-Lagrangian Runge–Kutta integration method. Next,
Sect. 4 details the experimental setup. Section 5 shows the
results and Sect. 6 discusses the most important highlights.
Finally, Sect. 7 gathers the most remarkable conclusions of
our work.

2 PDE-Constrained LDDMMMethods

2.1 Parameterization in the Spatial Domain

Let Ω ⊆ Rd be the image domain. Let Diff(Ω) be the
LDDMM Riemannian manifold of diffeomorphisms and V
the tangent space at the identity element. Diff(Ω) is a Lie
group, and V is the corresponding Lie algebra [3]. The Rie-
mannian metric of Diff(Ω) is defined from the scalar product

in V

〈v,w〉V = 〈Lv,w〉L2 =
∫

Ω

〈Lv(x), w(x)〉dx, (1)

where L is the invertible self-adjoint differential operator
associated with the differential structure of Diff(Ω). In tra-
ditional LDDMM methods, L = (I d − αΔ)s, α > 0, s ∈
N [3]. This is the operator used in this work.

Let I0 and I1 be the source and the target images. LDDMM
is formulated from the minimization of the variational prob-
lem

E(v) = 1

2

∫ 1

0
〈Lvt , vt 〉L2 dt + 1

σ 2 ‖I0 ◦ (φv
1 )−1 − I1‖2

L2 . (2)

The LDDMM variational problem [3] is posed in the
space of time-varying smooth flows of velocity fields, v ∈
L2([0, 1], V ). Given the smooth flow v : [0, 1] → V ,
vt : Ω → Rd , the solution at time t = 1 to the evolution
equation

∂t (φ
v
t )−1 = −vt ◦ (φv

t )−1 (3)

with initial condition (φv
0 )−1 = id is a diffeomorphism,

(φv
1 )−1 ∈ Diff(Ω). The transformation (φv

1 )−1, computed
from the minimum of E(v), is the diffeomorphism that solves
the LDDMM registration problem between I0 and I1. The
problem can be straightforwardly restricted to the space of
steady flows of velocity fields [11].

LDDMM can be formulated from a dynamical systems
point of view. Thus, PDE-LDDMM arises from LDDMM as
an optimal control approach to diffeomorphic registration [7,
13]. PDE-LDDMM is formulated from the minimization of
the PDE-constrained variational problem

E(v) = 1

2

∫ 1

0
〈Lvt , vt 〉L2 dt + 1

σ 2 ‖m(1) − I1‖2
L2 , (4)

subject to the state equation with state variable m(t)

∂t m(t) + ∇m(t) · vt = 0 in Ω × (0, 1], (5)

with initial condition m(0) = I0.
Using optimal control terminology, the flow v is the con-

trol of the dynamical system. The system dynamics are driven
by the state equation which determines the evolution of the
state variable m of the dynamical system. The minimization
of Eq. 4 aims at finding the optimal control subject to the
system dynamics on the initial state I0.

The state equation constraint in Eq. 5 can be imposed in
two more different manners, yielding three different variants
of PDE-LDDMM [9]. Variant I corresponds with the varia-
tional formulation presented above and proposed in [7,13].
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The second variant (Variant II) is formulated from the mini-
mization of Eq. 4, where

m(t) = I0 ◦ φ(t) (6)

and φ is computed from the deformation state equation

∂tφ(t) + Dφ(t) · vt = 0 in Ω × (0, 1], (7)

with initial condition φ(0) = id. The third variant (Variant
III) is formulated from the minimization of Eq. 4 subject to
the deformation state equation, Eq. 7. It should be noticed that
φ(t) was used in Hart et al. [7] for referring to Beg et al. [3]
diffeomorphism path φt,0, which corresponds to (φv

t )−1 in
Eqs. 2 and 3.

The advantage of the optimal control approach is that the
complex dependence between I0 ◦ (φv

1 )−1 and v is removed
from E(v) and translated to the system dynamics. Thus,
the original LDDMM variational formulation is transformed
into a PDE-constrained formulation. The optimization is
approached using the adjoint method, where the computa-
tion of the optimality conditions of the system is performed
using the method of Lagrange multipliers, yielding a set of
state and adjoint differential equations. The solutions to these
equations arise in the expressions of the gradient and the
Hessian of the augmented energy used for the update of the
control variable. Indeed, the optimal control approach allows
imposing different system dynamics in the set of state equa-
tions providing a straightforward approach to obtain different
families of physically meaningful diffeomorphisms [13,14].

The best optimization method from among the algorithms
tested for PDE-LDDMM is Gauss–Newton–Krylov [9,13].
The expressions of the gradient and the Hessian vector
product are derived from the augmented Lagrangian of the
energy functional subject to the state or the deformation state
equations, respectively. The expressions of the augmented
Lagrangian, the gradient ∇v Eaug(v), and the Hessian vector
product Hv Eaug(v)δv for each variant are found in appendix.

The update equation has the form

vn+1 = vn + εδvn, (8)

where ε is the update length and δvn is computed from pre-
conditioned conjugate gradient (PCG) on the system

Hv Eaug(v
n)δvn = −∇v Eaug(v

n), (9)

with preconditioner L−1.

2.2 Parameterization in the Space of Band-Limited
Vector Fields

Let Ω̃ be the discrete Fourier domain truncated with fre-
quency bounds K1, . . . , Kd . We denote with Ṽ the space of
discretized band-limited vector fields on Ω with these fre-
quency bounds. The elements in Ṽ are represented in the
Fourier domain as ṽ : Ω̃ → Cd , ṽ(k1, . . . , kd). The applica-
tion ι : Ṽ → V denotes the natural inclusion mapping of Ṽ
in V . The application π : V → Ṽ denotes the projection of
V onto Ṽ [35,36].

The space Ṽ of band-limited vector fields has a finite-
dimensional Lie algebra structure using the truncated convo-
lution � in the definition of the Lie bracket [36]. We denote
with Diff(Ω̃) to the finite-dimensional Riemannian manifold
of diffeomorphisms on Ω̃ with corresponding Lie algebra Ṽ .
The Riemannian metric in Diff(Ω̃) is defined from the scalar
product

〈ṽ, w̃〉Ṽ = 〈L̃ ṽ, w̃〉l2 , (10)

where L̃ is the projection of operator L in the truncated
Fourier domain. Similarly, we will denote with ∗̃ to the pro-
jection in the truncated Fourier domain of the differential
operators ∗ involved in the differential equations.

The band-limited PDE-constrained variational problem is
given by the minimization of

E(ṽ) = 1

2

∫ 1

0
〈L̃ ṽt , ṽt 〉l2 dt + 1

σ 2 ‖m(1) − I1‖2
L2 . (11)

The band-limited version of Variant I is formulated from the
minimization of Eq. 11 subject to

∂t m(t) + ∇m(t) · ι(ṽt ) = 0 in Ω × (0, 1], (12)

with initial condition m(0) = I0. For Variant II, the diffeo-
morphism is computed from φ(t) = id − ι(ũ)(t) where ũ(t)
is computed from the deformation state equation formulated
in displacement field form

∂t ũ(t) + D̃ũ(t)�ṽt = ṽ(t) in Ω̃ × (0, 1]. (13)

Variant III is formulated analogously to the spatial case from
the minimization of Eq. 11 subject to the deformation state
equation, Eq. 13 [8,9].

The optimization is approached using Gauss–Newton–
Krylov methods in Ṽ with preconditioner L̃−1. The update
equation has the form

ṽn+1 = ṽn + εδṽn, (14)
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where δṽn is computed from

˜(Hṽ Eaug(ṽn))δṽn = − ˜(∇ṽ Eaug(ṽn)). (15)

In the next section, we provide the expressions of the gradient
and the Hessian for each variant.

2.3 BL PDE-Constrained LDDMM Equations

2.3.1 Original BL PDE-Constrained LDDMM (Variant I)

Originally proposed BL PDE-LDDMM uses the state equa-
tion in the augmented Lagrangian for the derivation of the
state and adjoint equations and their incremental counter-
parts [8]

Eaug(ṽ) = E(ṽ) +
∫ 1

0
〈λ(t), ∂t m(t)

+ Dm(t) · ι(ṽt )〉L2 dt + 〈η, m(0) − I0〉L2 , (16)

where λ and η are the Lagrangian multipliers associated with
the state equation (Eq. 12) and its initial condition.

The gradient and the Gauss–Newton approximation of
the Hessian vector product are computed from the first- and
second-order optimality conditions, derived from vanishing
the formal computations of δEaug and δ2 Eaug

˜(∇ṽ Eaug(ṽ))t = L̃ ṽt + λ̃(t)�∇̃m̃(t) (17)

˜(Hṽ Eaug(ṽ))tδṽ(t) = L̃δṽ(t) + δλ̃(t)�∇̃m̃(t), (18)

where the projected state variable m̃ and the projected adjoint
variable λ̃ are computed from π(m) and π(λ), and m and λ

are computed from

∂t m(t) + ∇m(t) · ι(ṽt ) = 0 (19)

−∂tλ(t) − ∇ · (λ(t) · ι(ṽt )) = 0. (20)

The incremental counterparts δm̃ and δλ̃ are the solutions of

∂tδm̃(t) + ∇̃δm̃(t)�ṽt + ∇̃m̃(t)�δṽ(t) = 0 (21)

−∂tδλ̃(t) − ∇̃ · (δλ̃(t)�ṽt ) = 0 (22)

in the BL domain. The initial conditions are, respectively,
m(0) = I0, λ(1) = − 2

σ 2 (m(1) − I1), δm̃(0) = 0, δλ̃(1) =
− 2

σ 2 δm̃(1). Algorithm 1 shows the pseudocode for Variant
I.

2.3.2 BL PDE-Constrained LDDMM Based on the State
Equation (Variant II)

This method departs from the original BL PDE-LDDMM
by using m(t) = I0 ◦ φ(t) and λ(t) = J (t)λ(1) ◦ ψ(t),

where φ is the direct map, ψ is the inverse map, and J is
the Jacobian determinant of ψ [7,9]. The transformations φ

and ψ and the scalar field J are computed from the inclusion
of the truncated displacement fields (ũ(t) and τ̃ (t)) and the
corresponding Jacobian

φ(t) = id − ι(ũ(t)), (23)

ψ(t) = id − ι(τ̃ (t)), (24)

J (t) = 1 − ι(Ũ (t)), (25)

where

∂t ũ(t) + D̃ũ(t)�ṽt = ṽt (26)

−∂t τ̃ (t) − D̃τ̃ (t)�ṽt = −τ̃t (27)

−∂t Ũ (t) − ṽt�∇̃Ũ (t) = −∇̃·ṽ + Ũ (t)�∇̃·ṽ(t) (28)

with initial conditions ũ(0) = 0, τ̃ (1) = 0, and Ũ (1) = 0.
The incremental state and adjoint variables are computed

from the differential of the expressions given for m(t) and
λ(t)

δm̃(t) = ∇ I0 ◦ φ(t) · ι(δũ(t)) (29)

δλ̃(t) = J (t)δλ̃(1) ◦ ψ(t) · ι(δτ̃ (t)) (30)

where the precedence of ∇, δ, and ◦ operators reads ∇ I0 ◦
φ(t) = (∇ I0) ◦ φ(t) and δλ̃(1) ◦ ψ(t) = (δλ̃(1)) ◦ ψ(t).
The incremental expressions δũ and δτ̃ are computed from
the differentiation of Eqs. 26 and 27, yielding

∂tδũ(t) + D̃δũ(t)�ṽt + D̃ũ(t)�δṽt = δṽt (31)

−∂tδτ̃ (t) − D̃δτ̃ (t)�ṽt − D̃τ̃ (t)�δṽt = −δτ̃t (32)

with initial conditions δũ(0) = 0 and δτ̃ (1) = 0. Algorithm
1 also shows the pseudocode for Variant II, which shares the
steps with Variant I.

2.3.3 BL PDE-Constrained LDDMM Based on the
Deformation State Equation (Variant III)

The third method is formulated from the minimization of
Eq. 11 subject to the truncated displacement state equation
(Eq. 13) [9]

∂t ũ(t) + D̃ũ(t)�ṽt = ṽt . (33)

In this variant, the augmented Lagrangian is given by

Eaug(ṽ) = E(ṽ) +
∫ 1

0
〈ρ̃(t), ∂t ũ(t)

+ D̃ũ(t)�ṽt − ṽt 〉l2 dt + 〈μ̃, ũ(0)〉l2 , (34)
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Algorithm 1. Band-limited PDE-LDDMM. Variants I and II.

Data: I0, I1, ṽ0
t ∈ Ṽ , L̃ , σ , ε, PCG_i ts.

Results: ṽt ∈ Ṽ , m(1) solutions of Equation 11 subject to 12.
for n ← 0 to convergence do

1) Compute mn+1(t) forward in time from Equation 19 and m(0) = I0
or m(t) = I0 ◦ φ(t).

2) Compute λn+1(t) backward in time from Equation 20 or λ(t) =
J (t)λ(1) ◦ ψ(t), where λ(1) = − 2

σ 2 (m(1) − I1).

3) Compute ˜(∇ṽ Eaug(ṽn+1)) from Equation 17.
4) Compute δṽn+1 from Equation 15.

for k ← 0 to PCG convergence or PCG_i ts do
4.1) Compute δm̃k+1(t) from Equation 21 or Equation 29.
δm̃(1) is needed in the computation of δλ̃(1) used as initial
condition in step 4.2.
4.2) Compute δλ̃k+1(t) from Equation 22 or Equation 30.

4.3) Compute ˜(Hṽ Eaug(ṽn))δṽk from Equation 18.
4.4) Compute δṽk+1 from PCG at iteration k.
4.5) Check PCG convergence.

end
5) Compute ṽn+1 from Equation 14.
6) Check algorithm convergence.

end

Algorithm 2. Band-limited PDE-LDDMM. Variant III.

Data: I0, I1, ṽ0
t ∈ Ṽ , L̃ , σ , ε, PCG_i ts.

Results: ṽt ∈ Ṽ , m(1) solutions of Equation 11 subject to 13.
for n ← 0 to convergence do

1) Compute ũn+1(t) forward in time from Equation 37 and ũ(0) = 0.
2) Compute ρ̃n+1(t) backward in time from Equation 38, where ρ̃(1) =

π(− 2
σ 2 (m(1) − I1)∇m(1)).

3) Compute ˜(∇ṽ Eaug(ṽn+1)) from Equation 35.
4) Compute δṽn+1 from Equation 15.

for k ← 0 to PCG convergence or PCG_i ts do
4.1) Compute δũk+1(t) from Equation 31.
4.2) Compute δρ̃k+1(t) from Equation 40.

4.3) Compute ˜(Hṽ Eaug(ṽn))δṽk from Equation 36.
4.4) Compute δṽk+1 from PCG at iteration k.
4.5) Check PCG convergence.

end
5) Compute ṽn+1 from Equation 14.
6) Check algorithm convergence.

end

where ρ̃ and μ̃ are the Lagrangian multipliers associated
with the BL deformation state equation (Eq. 33) and its initial
condition.

The gradient and the Hessian vector product, computed
from the first- and second-order optimality conditions, are
given by the equations

˜(∇ṽ Eaug(ṽ))t = L̃ ṽt + ρ̃(t) − D̃ũ(t)�ρ̃(t) (35)

˜(Hṽ Eaug(ṽ))tδṽ(t) = L̃δṽ(t) + δρ̃(t) − D̃δũ(t)�ρ̃(t),(36)

where the displacement state variable ũ, the adjoint variable
ρ̃, and their incremental counterparts δũ and δρ̃ are computed

from

∂t ũ(t) + D̃ũ(t)�ṽt = ṽt (37)

−∂t ρ̃(t) − ∇̃·(ρ̃(t)�ṽt ) = 0 (38)

∂tδũ(t) + D̃δũ(t)�ṽt + D̃ũ(t)�δṽ(t) = δṽ(t) (39)

−∂tδρ̃(t) − ∇̃·(δρ̃(t)�ṽt ) = 0 (40)

with initial conditions ũ(0) = 0, ρ̃(1) = π(− 2
σ 2 (m(1) −

I1)∇m(1)), δũ(0) = 0, and δρ̃(1) = π(− 2
σ 2 δm(1)∇m(1)).

Algorithm 2 shows the pseudocode for Variant III.

3 Semi-Lagrangian Runge–Kutta Integration

3.1 Semi-Lagrangian Integration in a Spatial
Domain

Semi-Lagrangian (SL) integration methods [30] allow solv-
ing transport equations of the general form

Dt u = f (u, v), (41)

where u : Ωd × [0, 1] → R is a scalar or a vector function
varying in time, and

Dt u = ∂t u + Du · v.

SL methods combine the most interesting properties of Eule-
rian and Lagrangian schemes. On the one hand, SL methods
involve following the characteristic lines of the differential
equation, similarly to Lagrangian approaches. On the other
hand, the equation is solved on the regular grid, similarly to
Eulerian approaches. As a result, SL methods are uncondi-
tionally stable as Lagrangian schemes. This means that the
time sampling can be selected according to accuracy con-
siderations rather than stability considerations. SL methods
allow selecting a number of time steps usually much smaller
than Eulerian methods yielding a sensible reduction in the
computational complexity.

SL schemes involve two steps. First, the departure points
are computed solving the characteristic equation

Dt X(t) = v(X(t), t), (42)

with initial condition X(0) = x . The direction of the time
integration can be forward or backward, depending on the
direction of the time integration of the transport equation.
From several methods proposed in the literature for solving
the characteristic equation, we use the approach given by
Mang et al. in [15]

X∗ = x − δt · v (43)
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v∗ = v ◦ X∗ (44)

X∗ = x − 0.5 δt · (v∗ + v). (45)

Second, the transport equation (Eq. 41) is solved in the
Eulerian grid

Dt u(X(t), t) = f (u(X(t), t), v(X(t), t)) (46)

along the characteristic line X . The use of Runge–Kutta (RK)
integration has been recently proposed in this step, yielding a
higher-order accurate SL-RK method [6]. The velocity field
needs to be estimated at points that do not belong to the
Eulerian grid. Therefore, an interpolator is needed. Cubic
interpolation is the method of choice for SL schemes [24].

Algorithm 3. Semi-Lagrangian Runge-Kutta integration of BL PDE-
LDDMM equations.

Data: ũ0 or ũ1, ṽ, X
Results: ũt solution of Equation 50.

1) Compute f̃ (ũ, ṽ).
2) Project f̃ on Ω , f = π( f̃ ).
3) Compute f ◦ X using cubic interpolation.
4) Include f ◦ X in Ω̃ , providing f̃ (X̃).

5) Use f̃ as the right hand side of the Runge-Kutta solver.

end

3.2 Semi-Lagrangian Integration in a Band-Limited
Domain

In Ω̃ , the transport equations are of the general form

Dt ũ = f̃ (ũ, ṽ), (47)

where

Dt ũ = ∂t ũ + D̃ũ�ṽ. (48)

The characteristics are computed from

Dt X(t) = ι(ṽ)(X(t), t), (49)

and the transport equation is solved from

Dt ũ(X̃(t), t) = f̃ (ũ(X̃(t), t), ṽ(X̃(t), t)). (50)

3.3 Semi-Lagrangian Runge–Kutta Integration in
PDE-LDDMM

In this work, SL-RK integration has been implemented in Ω

and Ω̃ for the spatial and band-limited versions of the three

PDE-LDDMM variants. To be able to apply SL integration,
the differential equations need to be written in the shape of
Eqs. 46 or 50, respectively. We focus on the derivation for
the BL domain Ω̃ . The derivation for the spatial domain can
be performed analogously and it is provided in appendix.

The state equations, the deformation state equations, and
their incremental counterparts (Eqs. 19, 26, 21, 31) are
already in the shape of Eq. 50 by just moving to the right-
hand side of the equation a remaining term. For the adjoint
and the incremental adjoint equations (Eqs. 20, 38, 22, 40),
we use the identity

∇̃·(ũ�ṽ) = ũ∇̃·ṽ + ṽ�∇̃ũ in Ω̃ (51)

and move the divergence term to the right-hand side of the
transformed equation. Table 1 gathers the expressions of the
resulting differential equations, needed for the implementa-
tion of BL PDE-LDDMM methods in SL form. For SL-RK,
the right-hand side expressions can be directly plugged into
an RK differential solver. Algorithm 3 shows the pseudocode
for SL-RK integration.

4 Experimental Setup

In this work, we evaluate the performance of SL-RK integra-
tion in all the variants of PDE-LDDMM (see Table 2). The
evaluation has been performed consistently with our previ-
ous work [8,9], in order to show the improvement in the
proposed integration method over RK integration. In addi-
tion, we have performed an extensive evaluation of the most
memory efficient stationary methods in the frameworks of
Klein et al. [12] and Rohlfing et al. [25] in order to establish
the position achieved by PDE-LDDMM methods in these
evaluation rankings. Finally, we show some complementary
experiments justifying the selection of SL-RK as integration
scheme for PDE-LDDMM.

4.1 Datasets

We have used five different databases in our evaluation:
NIREP16 contains 16 skull-stripped brain images with

the segmentation of 32 gray matter structures. The dimen-
sion of the images is 256 × 300 × 256 with a voxel size
of 0.7 × 0.7 × 0.7 mm. The acquisition and post-processing
details can be found at the web page (http://www.nirep.org).
The most remarkable features of this dataset are the excellent
image quality and the ventricle sizes that are usually small.
The geometry of the segmentations provides a specially chal-
lenging framework for deformable registration evaluation.

LPBA40 contains 40 skull-stripped brain images with-
out the cerebellum and the brain stem. LPBA40 is provided
with the segmentation of 50 gray matter structures together
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Table 1 Original PDEs
involved in BL PDE-LDDMM
and corresponding PDEs written
in SL form

Equation in original form Equation in SL form

∂t m(t) + ∇m(t) · ι(ṽt ) = 0 (Eq. 19) Dt m(t) = 0

−∂tλ(t) − ∇ · (λ(t) · ι(ṽt )) = 0 (Eq. 20) −Dtλ(t) = λ(t)∇ · ι(ṽt )

∂t ũ(t) + D̃ũ(t)�ṽt = ṽt (Eq. 26) D̃t ũ(t) = ṽt

−∂t ρ̃(t) − ∇̃·(ρ̃(t)�ṽt ) = 0 (Eq. 38) −D̃t ρ̃(t) = ρ̃(t)�∇̃·ṽt

∂tδm̃(t) + ∇̃δm̃(t)�ṽt + ∇̃m̃(t)�δṽ(t) = 0 (Eq. 21) D̃tδm̃(t) = −∇̃m̃(t)�δṽt

−∂tδλ̃(t) − ∇̃ · (δλ̃(t)�ṽt ) = 0 (Eq. 22) −Dtδλ̃(t) = λ̃(t)�∇̃·ṽt

∂tδũ(t) + D̃δũ(t)�ṽt + D̃ũ(t)�δṽ(t) = δṽ(t) (Eq. 39) D̃tδũ(t) = δṽt − D̃ũ(t)�δṽ(t)

−∂tδρ̃(t) − ∇̃·(δρ̃(t)�ṽt ) = 0 (Eq. 40) −D̃tδρ̃(t) = δρ̃(t)�∇̃·ṽt

with the caudate, putamen, and hippocampus. LPBA40 pro-
tocols can be found at: http://www.loni.ucla.edu/Protocols/
LPBA40.
The image quality in LPBA40 is, overall, acceptable. The
variability of the ventricle sizes is high.

IBSR18 contains 18 brain images with the segmentation
of 96 cerebral structures. The masks for skull-stripping are
available with the dataset. In addition, the release IBSR_V2.0
skull-stripped NIFTI [25] contains 18 skull-stripped brain
images with the segmentation of 62 cerebral structures. This
dataset provides the segmentation of brain structures of inter-
est for the evaluation of image registration methods. The
image quality is low. For example, most of the images show
motion artifacts. The variability of the ventricle sizes is high.

CUMC12 contains 12 full brain images with the seg-
mentation of 130 cerebral structures. The masks for skull-
stripping are available with the dataset. Overall, the image
quality is acceptable, although some of the images are noisy.
The contrast of the images is low. The variability of the ven-
tricle sizes is high.

MGH10 contains 10 full brain images with the segmenta-
tion of 106 cerebral structures. The masks for skull-stripping
are available with the dataset. Overall, the image quality is
acceptable, although some of the images are noisy. The con-
trast of the images is low. Ventricle sizes are usually all big.

4.2 Image Registration Pipeline

The evaluation consistent with our previous work was per-
formed in a subsampled NIREP16 database. The registrations
were carried out from the first subject to every other subject
in the database, yielding to a total of 15 registrations per
method. The subsampled NIREP16 database was obtained
from the resampling of the images into volumes of size
180×210×180 with a voxel size of 1.0×1.0×1.0 mm after
the alignment to a common coordinate system using affine
transformations. The images were scaled between 0 and 1.
The affine alignment and subsampling were performed using
the Insight Toolkit (ITK). The PDE-constrained registration
methods were executed directly on this dataset. For bench-

marking, we run single- and multi-resolution versions of the
SyN version of ANTS diffeomorphic registration [2] with L2

image similarity (ANTS-SSD).
The evaluation in the framework of Klein et al. was

performed in NIREP16, LPBA40, IBSR18, CUMC12, and
MGH10 databases. The IBSR18, CUMC12, and MGH10
images normalized with respect to the MNI152 space were
used as input data. The registrations were carried out from
every subject to every other subject in each database yielding
to a total of 2328 registrations per method. The evalua-
tion in the framework of Rohlfing et al. was performed
in IBSR18 database, with a total of 306 registrations per
method. The NIREP16, LPBA40, IBSR18, CUMC12, and
MGH10 images were preprocessed similarly to [12]. In the
first place, N4 bias field correction and histogram matching
were applied to all the images. To perform these preprocess-
ing steps we used the algorithms available in ITK. The images
were scaled between 0 and 1. Next, we performed an affine
registration between all the image pairs. Instead of using the
affine registered images as input of our non-rigid registration
methods, we used the affine transformation as input, and it
was included in the parameterization of the diffeomorphic
transformations.

Subsampled NIREP16 experiments were run on a clus-
ter equipped with one NVidia Titan RTX with 24 GBS of
video memory and an Intel Core i7 with 64 GBS of DDR3
RAM. NIREP16, LPBA40, IBSR18, CUMC12, and MGH10
experiments were run on a cluster equipped with four NVidia
GeForce GTX 1080 ti with 11 GBS of video memory and
an Intel Core i7 with 64 GBS of DDR3 RAM. The codes
were developed in the GPU with MATLAB 2017a and Cuda
8.0. Since MATLAB lacks a 3D GPU cubic interpolator, we
implemented in a Cuda MEX file the GPU cubic interpolator
with prefiltering proposed in [26].

4.3 Parameter Configuration

Regularization parameters were selected from a search of the
optimal parameters in the registration experiments performed
in our previous work [9]. We selected the parameters σ 2 =
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Table 3 Subsampled NIREP16

Method ingredients Variant nt Etotal Ereg Eimg MSErel ‖g‖∞,rel

St. RK I 50 (2.43 ± 0.19)e−3 (1.48 ± 0.18)e−3 (1.69 ± 0.20)e−3 18.29 ± 2.83 0.07 ± 0.05

St. RK II 30 (2.48 ± 0.36)e−3 (1.51 ± 0.20)e−3 (1.72 ± 0.37)e−3 18.42 ± 2.71 0.18 ± 0.19

St. RK III 30 (2.36 ± 0.19)e−3 (1.59 ± 0.11)e−3 (1.56 ±0.17)e−3 16.83 ±1.53 0.16 ± 0.08

St. SL I 5 (2.66 ± 0.22)e−3 (1.69 ± 0.11)e−3 (1.82 ± 0.20)e−3 19.55 ± 1.76 0.14 ± 0.13

St. SL II 5 (2.57 ± 0.22)e−3 (1.73 ± 0.20)e−3 (1.70 ± 0.16)e−3 18.34 ± 1.68 0.23 ± 0.21

St. SL III 5 (2.46 ±0.18)e−3 (1.74 ± 0.17)e−3 (1.59 ±0.15)e−3 17.10 ±1.50 0.12 ± 0.05

NSt. RK I 50 (2.62 ± 0.29)e−3 (1.04 ± 0.52)e−3 (2.10 ± 0.47)e−3 22.68 ± 5.49 0.26 ± 0.12

NSt. RK II 25∗ (3.22 ±0.30)e−3 (0.89 ± 0.36)e−3 (2.78 ± 0.26)e−3 29.92 ± 2.41 0.32 ± 0.10

NSt. RK III 30 (2.18 ±0.19)e−3 (1.36 ± 0.15)e−3 (1.50 ±0.21)e−3 16.10 ±1.70 0.20 ± 0.08

NSt. SL I 5 (3.14 ± 0.49)e−3 (2.11 ± 0.54)e−3 (2.09 ± 0.64)e−3 22.44 ± 6.26 0.51 ± 0.18

NSt. SL II 5 (2.99 ± 0.24)e−3 (1.91 ± 0.37)e−3 (2.03 ± 0.31)e−3 21.82 ± 2.51 0.49 ± 0.19

NSt. SL III 5 (2.47 ±0.18)e−3 (1.81 ± 0.25)e−3 (1.57 ±0.20)e−3 16.86 ±1.91 0.13 ± 0.04

BL 40x St. RK I 25 (2.09 ± 0.28)e−3 (0.27 ± 0.04)e−3 (1.95 ± 0.29)e−3 20.99 ± 2.59 0.04 ± 0.03

BL 32x St. RK II 25 (1.85 ± 0.15)e−3 (0.26 ± 0.03)e−3 (1.72 ± 0.14)e−3 18.53 ± 1.71 0.02 ± 0.01

BL 32x St. RK III 25 (1.75 ±0.15)e−3 (0.29 ± 0.03)e−3 (1.61 ±0.14)e−3 17.32 ±1.68 0.03 ± 0.01

BL 40x St. SL I 5 (2.02 ± 0.15)e−3 (0.25 ± 0.03)e−3 (1.89 ± 0.14)e−3 20.41 ± 1.89 0.02 ± 0.00

BL 32x St. SL II 5 (1.96 ± 0.14)e−3 (0.22 ± 0.02)e−3 (1.84 ± 0.13)e−3 19.89 ± 1.76 0.01 ± 0.00

BL 32x St. SL III 5 (1.79 ±0.15)e−3 (0.29 ± 0.02)e−3 (1.65 ±0.15)e−3 17.77 ±1.66 0.04 ± 0.01

BL 40x NSt. RK I 25 (2.79 ± 0.39)e−3 (0.12 ± 0.05)e−3 (2.73 ± 0.40)e−3 29.30 ± 3.50 0.21 ± 0.08

BL 32x NSt. RK II 25 (2.89 ± 0.18)e−3 (0.32 ± 0.18)e−3 (2.73 ± 0.19)e−3 29.21 ± 3.96 0.24 ± 0.11

BL 32x NSt. RK III 25 (1.57 ±0.15)e−3 (0.23 ± 0.03)e−3 (1.46 ±0.14)e−3 15.68 ±1.52 0.04 ± 0.01

BL 40x NSt. SL I 5 (2.03 ± 0.20)e−3 (0.50 ± 0.08)e−3 (1.78 ± 0.20)e−3 19.14 ± 2.06 0.11 ± 0.05

BL 32x NSt. SL II 5 (2.10 ± 0.16)e−3 (0.39 ± 0.04)e−3 (1.90 ± 0.16)e−3 20.49 ± 1.75 0.17 ± 0.15

BL 32x NSt. SL III 5 (1.70 ±0.15)e−3 (0.29 ± 0.02)e−3 (1.56 ±0.14)e−3 16.80 ±1.57 0.07 ± 0.03

Convergence results. Mean and standard deviation of the total energy Etotal, regularization Ereg, image similarity energy Eimg, relative image similar-
ity error expressed in % (MSErel), and the relative gradient magnitude (‖g‖∞,rel ). The method ingredients are the diffeomorphism parameterization
in the spatial or band-limited domain and the integration scheme. St. stands for the stationary and NSt. for the non-stationary parameterization of
diffeomorphisms. The best performing Etotal, Eimg, and MSErel values in each group are highlighted with boldface. The bad performing values
are set in italics. The ‖g‖∞,rel values indicating convergence stagnation are also highlighted in italics. (*) The number of time steps nt selected for
NSt. PDE-LDDMM, st. eq. with RK integration was due to a memory load greater than the GPU maximum capacity (24 GBS)

1.0, α = 0.0025, and s = 2 and a unit-domain discretization
of the image domain Ω [3].

The optimization was run a maximum of 10 iterations
with the stopping conditions used in [13]. The maximum
number of PCG iterations was selected equal to 5. These
parameters were selected as optimal in our previous work
since the methods achieved state of the art accuracy at a
reasonable amount of time [8].

The experiments were performed with band sizes of 32 ×
32 × 32 for BL PDE-LDDMM based on the state and on
the deformation state equations (Variant II and III), and band
sizes of 40×40×40 for original BL PDE-LDDMM (Variant
I). This selection was found as optimal for each method in
our previous work [8,9].

For SL-RK integration, the number of time steps nt was
selected equal to 5 for all the methods. For RK integration, nt

was selected equal to 25 for the BL PDE-LDDMM based on

the state and on the deformation state equations, and 50 for
the spatial methods due to stability issues. In the evaluation
with LPBA40, IBSR18, CUMC12, and MGH10 datasets,
nt = 25 showed stability issues in a considerable number
of experiments and it was raised to 50.

ANTS-SSD was run with the following parameters for the
single-resolution experiments
$synconvergence="[50,1e-6,10]",
$synshrinkfactors="1",
and $synsmoothingsigmas="3vox".

For the multi-resolution experiments the parameters were
set to
$synconvergence="[50x50x50,1e-6,10]",
$synshrinkfactors="4x2x1",
and $synsmoothingsigmas="3x2x1vox".
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Table 4 Subsampled NIREP16

Method ingredients Variant min(J (φv
1 )−1) max(J (φv

1 )−1)

St. RK I 0.16 ± 0.05 3.70 ± 0.51

St. RK II 0.07 ± 0.06 2.95 ± 0.41

St. RK III 0.12 ± 0.05 4.12 ± 1.41

St. SL I 0.03 ± 0.04 3.25 ± 0.29

St. SL II 0.03 ± 0.04 3.46 ± 0.69

St. SL III 0.14 ± 0.05 5.02 ± 1.01

NSt. RK I 0.16 ± 0.05 3.38 ± 0.90

NSt. RK II 0.11 ± 0.07 2.93 ± 0.78

NSt. RK III 0.09 ± 0.03 4.55 ± 0.69

NSt. SL I 0.02 ± 0.02 3.96 ± 0.65

NSt. SL II 0.01 ± 0.02 4.20 ± 0.94

NSt. SL III 0.09 ± 0.02 7.35 ± 2.63

BL 40x St. RK I 0.21 ± 0.04 3.32 ± 0.41

BL 32x St. RK II 0.11 ± 0.07 3.10 ± 0.35

BL 32x St. RK III 0.13 ± 0.05 3.76 ± 0.49

BL 40x St. SL I 0.32 ± 0.02 9.65 ± 4.77

BL 32x St. SL II 0.29 ± 0.03 7.94 ± 2.81

BL 32x St. SL III 0.21 ± 0.03 8.23 ± 3.24

BL 40x NSt. RK I 0.24 ± 0.05 2.25 ± 0.51

BL 32x NSt. RK II 0.15 ± 0.06 2.71 ± 0.48

BL 32x NSt. RK III 0.09 ± 0.04 4.77 ± 0.78

BL 40x NSt. SL I 0.01 ± 0.07 5.25 ± 0.80

BL 32x NSt. SL II 0.07 ± 0.03 4.51 ± 0.61

BL 32x NSt. SL III 0.09 ± 0.03 7.37 ± 1.43

Mean and standard deviation of the Jacobian determinant extrema asso-
ciated with the transformation (φv

1 )−1. The method ingredients are the
diffeomorphism parameterization in the spatial or band-limited domain
and the integration scheme. St. stands for the stationary and NSt. for
the non-stationary parameterization of diffeomorphisms

The selection of the number of iterations was in agreement
with the number of outer × inner iterations used in Gauss–
Newton–Krylov optimization.

5 Results

5.1 Subsampled NIREP16 Evaluation Results

5.1.1 Convergence Analysis

Table 3 shows, averaged by the number of experiments, the
mean and standard deviation of the total, regularization, and
image similarity energies after registration (Etotal, Ereg, and
Eimg), the relative image similarity error,

MSErel = ‖m(1) − I1‖2
L2

‖I0 − I1‖2
L2

,

and the relative gradient magnitude,

‖g‖∞,rel = ‖∇v E(vn)‖∞
‖∇v E(v0)‖∞

,

obtained with PDE-LDDMM in the subsampled NIREP16
dataset. In addition, Table 4 shows the mean and the standard
deviation of the extrema of the Jacobian determinant.

Overall, the worst-performing methods show high val-
ues for the relative gradient in Table 3, which indicate the
stagnation of the convergence. For most of the BL methods,
the relative gradient was reduced to average values rang-
ing from 0.02 to 0.04, which means that the optimization
was stopped in acceptable energy values. All the Jacobians
remained above zero.

Next, we group the analysis of Table 3 by integration
scheme, variant, image domain, and diffeomorphism param-
eterization:

– RK versus SL-RK. In absolute terms, the Etotal values
obtained with SL-RK methods tend to be greater than
those achieved by RK integration. Both Ereg and Eimg val-
ues contribute to the greater Etotal values for the SL-RK
methods. However, in relative terms, the MSErel values
achieved by SL-RK methods at convergence are close
or even improve RK methods. It drives our attention to
the bad performance of Variant II for the non-stationary
parameterization and RK integration which is indeed
improved by SL-RK integration.

– Variants. The best performing variant, with the best Etotal,
Eimg, and MSErel values, is Variant III. This result is per-
sistent for different integration schemes, the spatial or
BL parameterization, and the diffeomorphic parameteri-
zation.

– SP versus BL. Due to the high-frequency suppression
property of the BL parameterization, the Ereg values
are all smaller for the BL methods. The MSErel values
obtained with the spatial methods are slightly degraded
by the BL methods as expected. The degradation is only
shown in some cases.

– St. versus NSt. The Ereg values for the stationary
parameterization are greater than for the non-stationary
parameterization. On the one hand, the stationary param-
eterization yields one-parameter subgroups that are not
geodesics due to the non-bi-invariance of the metric. On
the other hand, the minimizing Ereg property of geodesics
is expected for the solutions with the non-stationary
parameterization. Therefore, the obtained Ereg results
are consistent with these two facts. The non-stationary
methods do not outperform the stationary methods in a
consistent manner. The (out)performance depends on the
variant.
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5.1.2 Evaluation

The evaluation is based on the accuracy of the registration
results for template-based segmentation. The Dice Similarity
Coefficient (DSC) is selected as the evaluation metric. Given
two segmentations S and T , the DSC is defined as

DSC(S, T ) = 2Vol(S ∩ T )

Vol(S) + Vol(T )
. (52)

This metric provides the value of 1 if S and T exactly overlap
and gradually decreases toward 0 depending on the overlap
of the two volumes.

Figure 1 shows, in the shape of box and whisker plots,
the statistical distribution of the DSC values obtained after
the registration across the 32 segmented structures. For the
single-resolution experiments, the performance of the bench-
mark method ANTS-SSD was under 50%. For the multi-
resolution experiments, the average DSC value achieved by
ANTS-SSD equals to 55.59%. We have selected this value
as a baseline of good registration accuracy for methods with
L2-based image similarity.

A great number of PDE-LDDMM methods showed sim-
ilar values or even improved ANTS-SSD performance. The
best performing variant was our PDE-LDDMM based on
the deformation state equation, Variant III (boxes in pink
tones). This variant showed similar results for RK and SL-RK
integration regardless the image domain and diffeomorphism
parameterization.

For the variant associated with the PDE-constrained
benchmark methods [13,15], Variant I (boxes in blue tones),
RK integration slightly outperformed SL-RK integration
for the stationary parameterization. For the non-stationary
parameterization the median DSC value for RK integration
was under the value for SL-RK integration. Similarly, RK
slightly outperformed SL-RK integration for Variants I and
II of stationary BL PDE-LDDMM. On the contrary, SL-RK
integration greatly outperformed RK integration for the non-
stationary parameterization.

Variant II (boxes in green tones) performed similarly
to benchmark Variant I for the stationary parameterization
for the same integration scheme. However, it is remarkable
the low performance achieved by this variant for the non-
stationary parameterization and RK integration in both image
domains.

Table 5 shows the results of the analysis of variance
(ANOVA) for the effects of variant (I, II, III), integration
scheme (RK, SL-RK), domain (SP, BL), and parameteriza-
tion (St, NSt) selection on the distribution of the DSC values
obtained in the subsampled NIREP16 evaluation experi-
ments. The tests showed statistical significance in all the
considered factors except for the domain factor. This means
that the accuracy of the methods using the spatial domain is

statistically indistinguishable from the accuracy of the corre-
sponding methods using the band-limited domain. From the
analysis for each separated variant of the effects of integra-
tion scheme, domain, and parameterization, the tests showed
statistical significance for Variants I and II. For the best per-
forming variant (Variant III), no factor showed any statistical
significance.

Figure 2 shows the p values of pairwise right-tailed
Wilcoxon rank-sum tests for the assessment of the statistical
significance of the difference of medians for the distribution
of the DSC values obtained in the registration experiments.
The alternative hypothesis is that the median of the first dis-
tribution is higher than the median of the second one. For
increasing the interpretability of the tests, we have grouped
the comparisons into the spatial methods, the band-limited
methods, and Variant III methods. The figure shows statistical
significance for the better performance of Variant III methods
over ANTS-SSD and the combinations of Variants I and II
underperforming ANTS-SSD. For Variant III, the differences
in the distribution of the DSC for the different combinations
of integration and parameterization are not statistically sig-
nificant.

5.1.3 Computational Complexity

The analysis of the memory complexity performed in [9]
for RK integration reported an O(T N ) for Variant I, and an
O(T N d) for Variants II and III, where T represents the time
sampling selected for PDE integration, N is the size of the
discretized domain, and d is the dimensionality of the image
domain (3D). The memory complexity analysis holds for SL-
RK integration. Therefore, it is still expected a reduction in
the VRAM usage since the nt for SL-RK is considerably
smaller than the nt for RK.

The time complexity for RK integration is O(T N log N )

for Variant I, and O(T N d log N ) for Variants II and III. The
time complexity analysis also holds for SL-RK integration.
Despite the extra computations of the departure points, the
cubic interpolation of the right-hand-side values of the PDEs,
and the extra projection-inclusion from Ṽ to V needed in the
BL version of the variants, it is expected a reduction in the
computation time for SL-RK with respect to RK integration
due to the dependence of the complexity with T .

Table 6 shows the VRAM peak memory reached through
the computations, and the average and standard deviation
of the total computation time in the subsampled NIREP16
experiments. For the spatial methods, SL-RK integration
achieved a substantial time and memory reduction over RK
integration, as expected. The time and memory reduction
achieved by SL-RK over RK integration was also consider-
able for the BL parameterized methods. For the stationary
parameterization, the BL parameterization further decreased
the complexity of spatial SL-RK integration methods, as
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Fig. 1 Subsampled NIREP16. Volume overlap obtained by the regis-
tration methods measured in terms of the DSC between the warped and
the corresponding manual target segmentations. Box and whisker plots
show the distribution of the DSC values averaged over the 32 NIREP
manual segmentations. The whiskers indicate the minimum and max-

imum of the DSC values. The horizontal lines in the plot indicate the
first, second, and third quartiles of multi-resolution ANTS-SSD. Vari-
ant I corresponds with boxes in blue tones, Variant II in green tones,
and Variant III in pink tones

Table 5 Subsampled NIREP16

Variant Integration Domain Param.

All variants

0.0001 0.0093 0.2495 0.0004

Separated variants

I 0.0712 0.3339 0.0041

II 0.0016 0.8407 0.0000

III 0.3235 0.3908 0.5469

Results of ANOVA tests for the effects of variant, integration, domain,
and parameterization selection. Up table shows the results of the four
factors. The down table shows the results of the effects of integration,
domain, and parameterization for each separated variant. Statistical sig-
nificance is highlighted in boldface

expected. However, SL-RK integration did not reduced the
VRAM memory usage for the non-stationary parameteriza-
tion. The total computation time was effectively reduced.

5.1.4 Qualitative Assessment

For a qualitative assessment of the proposed registration
methods, we show the registration results obtained by Mang
et al. benchmark methods [13,18] (Variant I), and PDE-
LDDMM based on the deformation state equation (Variant
III) in a selected experiment representative of a difficult
deformable registration problem. For the non-stationary
parameterization the images for a qualitative assessment
were similar to the stationary parameterization. Figure 3
shows the warped images, the difference between the warped
and the target images after registration, and the velocity field.
All the methods provide visually acceptable results.

5.2 NIREP16, LPBA40, IBSR18, CUMC12, andMGH10
Evaluation Results

From the evaluation measurements used in Klein et al. frame-
work, we focus on the accuracy of the registration results
for template-based segmentation. Since [12], this has been
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Fig. 2 Subsampled NIREP16. Results of the pairwise right-tailed
Wilcoxon rank-sum tests. Up figure, methods with the spatial parameter-
ization. Center figure, methods with the band-limited parameterization.
Down figure, Variant III methods (Color figure online)

adopted as a widely extended criterion for non-rigid regis-
tration evaluation. From the metrics proposed in [12], we
select the Dice Similarity Coefficient (DSC) as evaluation
metric. Figures 4, 5 and 6 show the statistical distribution
of the DSC values obtained after the registration across the
manually segmented structures for the five databases. For the
NIREP16 dataset, we show the results obtained with ANTS-
SSD. For the remaining databases, we include the results
reported in [12] for affine registration (FLIRT), and three dif-
feomorphic registration methods: Diffeomorphic Demons,
SyN, and Dartel.

The results from NIREP16 show how PDE-LDDMM
based on the deformation state equation (Variant III) outper-
formed the other variants of PDE-LDDMM. The distribution
of the method parameterized in the BL domain resulted
almost identical to the distribution of the method parame-
terized in the spatial domain. As happened with subsampled
NIREP16 evaluation, ANTS-SSD was among the worst per-
forming methods. The band-limited versions of Variant I and
II with RK integration exceeded the maximum VRAM capac-
ity of our GPUs for this dataset.

The results obtained from LPBA40, IBSR18, CUMC12,
and MGH10 show that, from the PDE-LDDMM methods, the
best performing method was BL PDE-LDDMM based on the
deformation state equation (Variant III) and SL-RK integra-
tion. The performance of the method with RK integration
was slightly lower. The performance of the spatial versions
of Variant I and II and their band-limited versions was signif-
icantly lower in IBSR18, CUMC12, and MGH10 databases.
For these methods, RK integration performed slightly bet-
ter than SL-RK integration. These results are consistent with
NIREP16 evaluation results.

In IBSR18, CUMC12, and MGH10 databases, our PDE-
LDDMM methods were not able to reach SyN or Dartel
performance. This is probably because the image similarity
metrics used in these methods (Cross-Correlation and multi-
nomial model, respectively) favor the accuracy in template-
based segmentation. In contrast, PDE-LDDMM uses SSD,
which is known to restrict the performance in template-based
segmentation. However, in LPBA40 databases, our best per-
forming PDE-LDDMM methods overpass Dartel and almost
reached SyN performance, while showing a significantly
reduced number of outliers.

Our methods significantly outperformed FLIRT and Dif-
feomorphic Demons, where the third quartile in the distribu-
tion of our best performing method was close to the median
of Demons for the four databases. It should be noticed that
Diffeomorphic Demons also uses SSD as image similarity
metric.
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Table 6 Computational
complexity. GPU peak memory
usage and mean and standard
deviation of the total
computation time. Experiments
run in an NVidia Titan RTX
with 24 GBS of video memory

Method ingredients Variant VRAM (MBS) Total time (s)

St. RK I 10,311 2281.40 ± 378.56

St. RK II 17,229 877.85 ±176.03

St. RK III 15,321 1298.50 ± 151.19

St. SL I 3901 118.29 ±4.77

St. SL II 6267 139.91 ± 22.06

St. SL III 5935 221.01 ± 2.40

NSt. RK I 14,913 3443.17 ± 932.45

NSt. RK II 20,635 816.79 ±480.61

NSt. RK III 19,065 2222.04 ± 369.96

NSt. SL I 11,155 191.96 ±45.53

NSt. SL II 12,429 214.09 ± 48.54

NSt. SL III 12,065 355.47 ± 4.38

BL 40x St. RK I 5709 312.45 ±5.22

BL 32x St. RK II 4743 315.00 ± 2.73

BL 32x St. RK III 1819 377.56 ± 4.26

BL 40x St. SL I 2685 68.66 ±1.32

BL 32x St. SL II 2877 80.76 ± 0.35

BL 32x St. SL III 2365 116.99 ± 1.04

BL 40x NSt. RK I 6657 825.15 ± 19.93

BL 32x NSt. RK II 4789 535.52 ±279.65

BL 32x NSt. RK III 1863 905.48 ± 25.13

BL 40x NSt. SL I 6131 158.79 ±15.29

BL 32x NSt. SL II 6171 159.49 ± 20.59

BL 32x NSt. SL III 5577 249.60 ± 10.85

The most efficient methods in each group are highlighted in bold

5.3 IBSR18V2.0 Evaluation Results

Figure 7 shows the statistical distribution of the DSC values
obtained by our proposed registration methods in the regions
of interest of Rohlfing et al. evaluation framework [25].
Consistently with the rest of the evaluation results, the best
performing method was BL PDE-LDDMM based on the
deformation state equation (Variant III), which significantly
outperformed the others in the great majority of regions.

5.4 Some Insights of Runge–Kutta and
Semi-Lagrangian Integration

Finally, we show some interesting experiments justifying the
selection of SL-RK as integration scheme for PDE-LDDMM
beyond the evaluation based on the accuracy for template-
based segmentation shown in this experimental section. The

experiments have been performed with the spatial version of
Variant III.

5.4.1 Euler Versus RK Versus SL-RK Integration

Euler integration is one of the simplest ODE integration
methods. Compared with more sophisticated RK schemes, it
is noticeably less accurate. The local truncation error of Euler
method is h2, while for RK method, it is h5. This does not
seem to be a problem for LDDMM methods based on gradient
descent. For example, Euler integration has been extensively
used even in geodesic methods based on the solution of the
EPDiff equation [36]. However, PDE-LDDMM with Gauss–
Newton–Krylov optimization shows convergence problems
when combined with Euler method. Table 7 compares the
registration results obtained with Euler, RK, and SL-RK inte-
gration in a selected subsampled NIREP16 experiment. With
Euler integration and nt = 10, the optimization gets stag-
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source (I0) target (I1)

PDE-LDDMM RK

PDE-LDDMM SL

PDE-LDDMM def. SL

BL PDE-LDDMM def. RK

BL PDE-LDDMM def. SL

m(1) m(1) − I1 v

Fig. 3 Subsampled NIREP16. Sagittal view of the warped sources, the
intensity differences, and the velocity field after registration for Mang
et al. benchmark methods (Variant I) and PDE-LDDMM based on the

deformation state equation (Variant III). Experiments with the station-
ary parameterization (Color figure online)
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Fig. 4 NIREP16. Distribution
of the DSC values averaged over
the 32 NIREP manual
segmentations in the 240
experiments. The whiskers
indicate the minimum and
maximum of the DSC values.
The methods running out of 11
GBS VRAM are indicated in the
plots. The horizontal red lines
indicate the first and third
quartiles of BL PDE-LDDMM
based on the deformation state
equation
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nated in the initial iterations. For nt = 25, nt = 30, and
even nt = 50, PCG detects a definite negative Hessian. With
RK integration and nt = 10, PCG detects a definite negative
Hessian. With RK integration and nt = 25 and nt = 30, the
method shows an appropriate convergence behavior. With
SL-RK integration and nt = 5, the method shows an appro-
priate convergence behavior. The best performing method is
SL-RK.

5.4.2 Small into Big Parallelepiped Experiment

Figure 8 shows the results of a simulated experiment con-
sisting in the registration of a small into a big parallelepiped
noisy image. This example is provided as test images with
Mermaid software (http://mermaid.readthedocs.io).

The MSErel reached by RK integration after the registra-
tion was equal to 18.37% while, for SL-RK, it was 2.77%.
Both integration schemes do not seem to have problems with
noise. In the figure, it can be appreciated that RK integra-
tion shows problems to adjust the diffeomorphic warp in the
corners of the structure while SL-RK integration is much
more accurate in these difficult locations. Therefore, in this
particular experiment, SL-RK integration overpasses RK in
accuracy.

5.4.3 Stability Beyond t = 1

In LDDMM and PDE-LDDMM literature, the time domain
is typically selected to be [0, 1]. This domain is discretized in
a number of time samplings enough to achieve the stability in

the numerical solvers involved in the computations. However,
there are applications where it may be of interest to extend
the time domain beyond t = 1. For example, time extrapola-
tion may be interesting to predict the anatomical evolution of
subjects across time beyond the time limits of temporal defor-
mation models [27]. Integrating beyond t = 1 will eventually
lead to instabilities of the advected magnitudes. For exam-
ple, in the deformation state equation, it would mean reaching
non-diffeomorphic solutions. This experiment is intended to
show the feasibility of using RK and SL-RK integration for
time extrapolation.

Figures 9 and 10 show the results of composing the source
image with the transformations resulting from the integration
of the deformation state equation beyond t = 1. For RK inte-
gration, we observe that for small extensions of the temporal
domain such as t = 1.25, the equation has developed insta-
bilities leading to unacceptable results at t = 1.5. On the
contrary, SL-RK is able to integrate beyond t = 1, reach-
ing t = 3 with recognizable warped images. This may be
due to the unconditionally stable property of SL schemes.
Therefore, SL-RK may be appropriate for extrapolation in
temporal deformation models.

6 Discussion

The increase in the computational efficiency achieved by
the combined over the split BL and SL-RK approaches was
significant in terms of computation time and memory. The
reduction in the memory requirements allowed us to perform
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Fig. 5 LPBA40 and IBSR18.
Distribution of the DSC values
averaged over the manual
segmentations in the registration
experiments. The whiskers
indicate the minimum and
maximum of the DSC values.
The horizontal red lines indicate
the first and third quartiles of BL
PDE-LDDMM based on the
deformation state equation
(Color figure online)
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the evaluation of the SL-RK PDE-LDDMM methods exten-
sively, even in the highest-resolution level of NIREP16.

In all the evaluation frameworks, BL PDE-LDDMM based
on the deformation state equation with SL-RK integration
resulted our best performing method. This method achieved
an identical DSC distribution compared with RK integration
in the NIREP16 database. The method greatly outper-
formed ANTS-SSD in this database. In LPBA40, IBSR18,
CUMC12, and MGH10 databases, the method outperformed
Diffeomorphic Demons. In addition, the evaluation results
in the regions of interest of Rohlfing et al. corroborated its
excellent performance.

For Mang et al. benchmark PDE-LDDMM methods [13,
15], our evaluation results reported a significative loss of
accuracy between RK and SL-RK integration. Interestingly,
this loss of accuracy was not observed for our best performing
method.

In IBSR18, CUMC12, and MGH10 databases, our PDE-
LDDMM methods were not able to reach SyN or Dartel
performance. This is because SSD image similarity metric
restricts the performance of the methods in template-based
segmentation. This problem will be tackled in future work by
formulating the PDE-constrained problem with other image
similarity metrics such as Normalized Cross-Correlation,
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Fig. 6 CUMC12 and MGH10.
Distribution of the DSC values
averaged over the manual
segmentations in the registration
experiments. The whiskers
indicate the minimum and
maximum of the DSC values.
The horizontal red lines indicate
the first and third quartiles of BL
PDE-LDDMM based on the
deformation state equation
(Color figure online)
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local Normalized Cross-Correlation, or Mutual Informa-
tion [21]. We expect that this change in the formulation of
the problem will increase the performance results of PDE-
LDDMM. In addition, it will allow us to apply these methods
to other clinical applications involving multi-modal registra-
tion.

Simultaneously to the development of this work, Mang et
al. released Claire software [17]. The software is intended
to exploit massive CPU based parallel computing architec-
tures to accelerate the computation time of PDE-LDDMM.
The codes implement original PDE-LDDMM (Variant I)

with a variational extension to nearly incompressible fluids
and include H1 and H2 regularization terms. The software
is restricted to the stationary parameterization of diffeo-
morphisms. The PDE integration scheme is SL-RK. The
software includes a sophisticated multi-level preconditioner
that shows to improve the convergence of PCG with respect
to the original proposal in [13]. The massive computation
allows increasing the number of inner and outer iterations
and use the norm of the gradient as stopping condition for
achieving an extraordinary accuracy at convergence in a sim-
ulated experiment.
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Fig. 7 IBSR18 V2.0. Volume
overlap obtained by the
proposed registration methods.
The box and whisker plots show
the distribution of the DSC
values averaged over the manual
segmentations for each region.
The whiskers indicate the
minimum and maximum of the
DSC values. For each group of
plots, the first three correspond
with the spatial domain
parameterization and the three
last with the band-limited
domain parameterization. WM
and GM stand for white matter
and grey matter, respectively
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In contrast with Claire, our BL methods are intended to run
completely in the VRAM of commodity GPUs (< 4GBS).
We have limited the variational formulation to the one pro-
posed in [13], although it is straightforwardly extendible to
the nearly incompressible fluid problem. We have limited our
study to the traditional LDDMM regularizer. Our software
works for the stationary and the non-stationary parameteriza-
tion of diffeomorphisms. We have limited the preconditioner
to the one proposed in [13] since we are interested on the
comparison of the three different variational variants. We
used the stopping conditions suggested in [21] and used for

PDE-LDDMM in [8–10,13,18]. The variety of methods, the
extensive evaluation conducted in this work, and our modest
hardware capacity hindered us the use of the inner and outer
iteration values needed for achieving the stopping conditions
based on the norm of the gradient suggested in [17]. In fact,
we observed in a selected NIREP experiment that increasing
the number of inner iterations in PCG resulted into a faster
initial convergence that finally stagnated in greater MSErel

values and lower DSC scores than our considered stopping
conditions. This stagnation was also reported in [17] for the
simulated experiment. Instead, our selected inner and outer
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Table 7 Euler versus RK versus SL-RK results

Euler

nt 10 25 30 50

i tstop 2 3 3 3

MSErel 30.04 27.76 22.54 22.84

DSC 55.02 55.44 56.09 56.90

RK

nt 10 25 30

i tstop 2 6 10

MSErel 30.36 17.50 15.44

DSC 54.98 58.92 59.83

SL-RK

nt 5

i tstop 10

MSErel 15.91

DSC 59.91

Registration results in a selected subsampled NIREP16 experiment. The
table shows the number of time steps nt , the iteration where the method
stopped, and MSErel and DSC values for assessing the accuracy of the
solutions

values consumed a reasonable amount of time while obtain-
ing state of the art results for the evaluation metrics.

Comparing Claire and our results, we believe that it would
be of interest to implement our best performing variant as a
part of Claire’s software. In the other direction, it would be
very interesting to adopt the multi-level preconditioners in
our methods.

With the arise of FlowNet architecture for learning the
optical flow in [5], there has been an explosion of meth-
ods for non-rigid registration based on deep-learning. These
data-driven approaches learn how to build a generative model
of deformations from the source and target images. Mer-
maid (mermaid.readthedocs.io) provides a library of methods
where data-driven solutions are based on optimal-transport
loss functions, highly related to Variants I and II of PDE-
LDDMM formulation. We believe that Mermaid methods
may benefit from the parameterization of the problem in the
space of band-limited vector fields and the semi-Lagrangian
Runge-Kutta schemes proposed in this work. In the other
direction, PDE-LDDMM may also benefit from the ingre-
dients of the loss functions defined within these data-driven
approaches [28].

7 Conclusions

In this work, we have proposed to combine the two different
methodological approaches used to circumventing the huge
computational complexity of Gauss–Newton–Krylov PDE-

I0 I1

mRK(1) mSL−RK(1)

|mRK(1) − I1| |mSL−RK(1) − I1|

Fig. 8 Small into big parallelepiped registration results

LDDMM. In particular, we have included semi-Lagrangian
Runge–Kutta integration [15] in the variants of band-limited
PDE-LDDMM proposed in [8,9] for further increasing the
computational efficiency of these methods. The resulting
methods have been extensively evaluated in five different
datasets following three different evaluation frameworks. To
our knowledge, this is the first time that SL-RK integration
is implemented in the framework of PDE-LDDMM for the
non-stationary parameterization and in the space of band-
limited vector fields. Moreover, our work first provides the
position achieved by PDE-LDDMM methods in the ranking
of Klein et al. evaluation.

This study positions the formulation of BL PDE-LDDMM
based on the deformation state equation and SL-RK inte-
gration as the best performing among all PDE-LDDMM
methods in terms of accuracy and efficiency. The proposed
method has reached the highest sensitivity in the classifi-
cation of stable versus progressive mild cognitive impaired
conversors in the Alzheimer’s Disease Neuroimaging Initia-
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RK SL-RK

Fig. 9 Integration scheme stability beyond t = 1 for RK and SL-RK.
Warped images at time samples t = 1 (first row), t = 1.25 (second
row), and t = 1.5 (third row)

Fig. 10 Integration scheme stability beyond t = 1 for SL-RK. Warped
images at time samples t = 1, t = 2, and t = 3

tive (ADNI) database using convolutional neural networks.
This result has been recently published in [23].

In future work, we will extend this formulation to other
relevant physically meaningful LDDMM approaches such as
the nearly incompressible method in [14], and the geodesic
shooting approach in [10]. We will explore the advantages
of using the multi-level preconditioner in [17]. We will
adapt our methods for the use of alternative image simi-
larity metrics that usually outperform SSD in registration
evaluation rankings. We will try to bridge the gap between
constrained variational approaches and data-driven solutions
based on optimal-transport loss functions. Finally, we will
work in the understanding of which of the features of PDE-
LDDMM allow the exceptional classification rates related
with Alzheimer’s disease conversion shown in [23].
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Appendix

Appendix gathers the expressions of the gradient and the
Hessian for the PDE-LDDMM variants defined in the spatial
domain and the method for SL-RK integration.

A.1 Original PDE-Constrained LDDMM (Variant I)

Let E(v) be the PDE-constrained variational problem given
in Eq. 4. Let us define the Lagrange multipliers λ : Ω ×
[0, 1] → R and η : Ω → R associated with the state
equation (Eq. 5) and its initial condition. The augmented
Lagrangian corresponds with the expression

Eaug(v) = E(v) +
∫ 1

0
〈λ(t), ∂t m(t)

+Dm(t) · vt 〉L2 dt + 〈η, m(0) − I0〉L2 . (53)

The first- and second-order optimality conditions are derived
from the formal computations of

δEaug(v, m, λ, η; dv, dm, dλ, dη) (54)

and

δ2 Eaug(v, m, λ, η; dv, dm, dλ, dη). (55)

The details of the formal derivations can be found in [9].
Since δEaug needs to vanish for any dv, dm, and dη, we

get the necessary first-order optimality conditions for Variant
I. In particular, the expression of the gradient is given by

(∇v Eaug(v))t = Lvt + λ(t) · ∇m(t), (56)

where m and λ are computed from the state and the adjoint
equations

∂t m(t) + ∇m(t) · vt = 0 (57)

−∂tλ(t) − ∇ · (λ(t) · vt ) = 0 (58)
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with their corresponding initial conditions m(0) = I0 and
λ(1) = − 2

σ 2 (m(1) − I1).
The necessary second-order optimality conditions are

obtained vanishing δ2 Eaug for any dv, dm, and dη. Thus, the
Gauss–Newton approximation of the Hessian vector product
is given by

(Hv Eaug(v))tδv(t) = Lδvt + δλ(t) · ∇m(t), (59)

where δλ is computed from the incremental adjoint equation

−∂tδλ(t) − ∇ · (δλ(t) · vt ) = 0 (60)

with initial condition δλ(1) = − 2
σ 2 δm(1), where δm(1) is

computed from the incremental state equation

∂tδm(t) + ∇δm(t) · vt + ∇m(t) · δv(t) = 0 (61)

with initial condition δm(0) = 0.

A.2 PDE-Constrained LDDMMBased on the State
Equation (Variant II)

Variant II consists in replacing the computation of the state
and the adjoint variables, m and λ, from the solution of the
state and adjoint PDEs to the identities m(t) = I0 ◦ φ(t)
and λ(t) = J (t)λ(1) ◦ ψ(t), where φ(t) is the direct map,
ψ(t) is the inverse map, and J is the Jacobian determinant
of ψ . As a result, Variants I and II are two theoretically but
not numerically equivalent formulations of the original PDE-
LDDMM problem.

For Variant II, the derivation of the gradient and the Hes-
sian vector product proceeds as for Variant I. However, the
computation of the state and adjoint variables is performed
using their identities, transferring PDE resolution to the
deformation state equation for φ and ψ

∂tφ(t) + Dφ(t) · vt = 0 (62)

−∂tψ(t) − Dψ(t) · vt = 0 (63)

with initial condition φ(0) = id and ψ(1) = id, and the
Jacobian equation for J

−∂t J (t) − vt · ∇ J (t) = −J (t)∇ · vt (64)

with initial condition J (1) = 1. The incremental state and
adjoint variables are computed from the incremental expres-
sion of the identities

δm(t) = ∇ I0 ◦ φ(t) · δφ(t) (65)

δλ(t) = J (t)∇λ(1) ◦ ψ(t) · δψ(t), (66)

and, again, the PDE resolution is transferred to the incremen-
tal deformation state equations for δφ and δψ

∂tδφ(t) + Dδφ(t) · vt + Dφ(t) · δv(t) = 0 (67)

−∂tδψ(t) − Dδψ(t) · vt − Dψ(t) · δv(t) = 0. (68)

A.3 PDE-Constrained LDDMMBased on the
Deformation State Equation (Variant III)

For Variant III, the Lagrange multipliers are ρ : Ω×[0, 1] →
Rd , associated with the deformation state equation (Eq. 7),
and μ : Ω → Rd , associated with its initial condition. The
augmented Lagrangian corresponds with

Eaug(v) = E(v) +
∫ 1

0
〈ρ(t), ∂tφ(t)

+ Dφ(t) · vt 〉L2 dt + 〈μ, φ(0) − id〉L2 . (69)

The first- and second-order optimality conditions are derived
from the formal computations of

δEaug(v, φ, ρ, μ; dv, dφ, dρ, dμ) (70)

and

δ2 Eaug(v, φ, ρ, μ; dv, dφ, dρ, dμ). (71)

The necessary first- and second-order optimality condi-
tions are obtained from the need to vanish δEaug and δ2 Eaug

for any dv, dφ, dρ, and dμ, yielding

(∇v Eaug(v))t = Lvt + Dφ(t) · ρ(t)

(Hv Eaug(v))tδv(t) = Lδvt + Dφ(t) · δρ(t). (72)

where φ is computed from the deformation state equation,
ρ from the deformation adjoint equation, and δρ from the
incremental deformation adjoint equation

∂tφ(t) + Dφ(t) · vt = 0 (73)

−∂tρ(t) − ∇ · (ρ(t) · vt ) = 0 (74)

−∂tδρ(t) − ∇ · (δρ(t) · vt ) = 0 (75)

with initial conditions φ(0) = id, ρ(1) = λ(1)∇m(1),
δρ(1) = δλ(1)∇m(1). It should be noticed that the diver-
gence operator acting on tensors operates row-wise.

A.4 Semi-Lagrangian Runge–Kutta Integration

As we mentioned in Sect. 3, to be able to apply SL integra-
tion, the differential equations for different spatial variants
need to be written in the shape of Eq. 46. The state equa-
tions, the deformation state equations, and their incremental
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Table 8 Original PDEs
involved in PDE-LDDMM and
corresponding PDEs written in
SL form

Equation in original form Equation in SL form

∂t m(t) + ∇m(t) · vt = 0 (Eq. 57) Dt m(t) = 0

−∂tλ(t) − ∇ · (λ(t) · vt ) = 0 (Eq. 58) −Dtλ(t) = λ(t)∇ · vt

∂tφ(t) + Dφ(t) · vt = 0 (Eq. 62) Dtφ(t) = 0

−∂tρ(t) − ∇ · (ρ(t) · vt ) = 0 (Eq. 74) −Dtρ(t) = ρ(t)∇ · vt

∂tδm(t) + ∇δm(t) · vt + ∇m(t) · δv(t) = 0 (Eq. 61) Dtδm(t) = −∇m(t) · δvt

−∂tδλ(t) − ∇ · (δλ(t) · vt ) = 0 (Eq. 60) −Dtδλ(t) = λ(t) · ∇ · vt

∂tδφ(t) + Dδφ(t) · vt + Dφ(t) · δv(t) = 0 (Eq. 67) Dtδφ(t) = Dφ(t) · δv(t)

−∂tδρ(t) − ∇ · (δρ(t) · vt ) = 0 (Eq. 75) −Dtδρ(t) = δρ(t) · ∇ · vt

counterparts (Eqs. 57, 62, 61, 67) are already in the shape of
Eq. 46 by just moving to the right-hand side of the equation
a remaining term. For the adjoint and the incremental adjoint
equations (Eqs. 58, 74, 60, 75), we use the identity

∇ · (u · v) = u∇ · v + v∇u (76)

and move the divergence term to the right-hand side the
transformed equation. Table 8 gathers the expressions of the
resulting differential equations, needed for the implementa-
tion of PDE-LDDMM methods in SL form. For SL-RK, the
right-hand side expressions can be directly plugged into an
RK differential solver. Algorithm A1 shows the pseudocode
for SL-RK integration.

Algorithm A1. Semi-Lagrangian Runge-Kutta integration of PDE-
LDDMM equations.

Data: u0 or u1, v, X
Results: ut solution of Equation 46.

1) Compute f (u, v).
2) Compute f ◦ X using cubic interpolation.
3) Use f as the right hand side of the Runge-Kutta solver.

end
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