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Abstract. We consider the Laplacian coflow of a G2-structure on warped products of the form M7 “

M6 ˆf S
1 with M6 a compact 6-manifold endowed with an SUp3q-structure. We give an explicit

reinterpretation of this flow as a set of evolution equations of the differential forms defining the SUp3q-

structure on M6 and the warping function f . Necessary and sufficient conditions for the existence of

solution for this flow are given. Finally we describe new solutions for this flow where the SUp3q-structure
on M6 is nearly Kähler, symplectic half-flat or balanced.

Introduction

The first author to consider flows of G2-structures was Bryant in 2006, [3]. Concretely he considered
the Laplacian flow of a G2-structure:

B

Bt
ϕptq “ ∆7ϕptq,

starting from a closed 3-form ϕ0 defining the G2-structure. ∆7 is the corresponding Hodge Laplacian,
given by the formula ∆7 “ ˚7 d7 ˚7 d7 ´ d7 ˚7 d7 ˚7.

In the last years there has been a lot of fundamental works on this issue. In [5] it was proved the short
time existence and uniqueness of solution on compact manifolds. The first examples of long time solutions
to this flow were described in [8]. These examples consist on non compact nilpotent Lie groups endowed
with a one-parameter family of closed G2-structures such that satisfies the Laplacian flow equation for
all t P pa,`8q with a ă 0.

Recent papers by Lotay and Wei [17, 18, 19] derived important properties of the Laplacian flow as long
time existence or convergence results. Even more recently Fino and Raffero on [11] obtained sufficient
conditions for the existence of solution of this flow on warped products of the form M6 ˆf S

1 with
M6 a 6-dimensional manifold endowed with an SUp3q-structure. Recall that, if pB, gBq and pF, gF q are
Riemannian manifolds and f is a non-vanishing differentiable function on B, then the warped product
W “ B ˆf F consists on the product manifold B ˆ F endowed with the metric g “ π˚1 pgBq ` f

2π˚2 pgF q
where π1 and π2 are the projections of W onto B and F respectively. They also reinterpret the flow as
a set of evolution equations on M6 involving the differential forms defining the SUp3q-structure and the
warping function f . More details about the Laplacian flow of a closed G2-structure can be found in the
reviews [9, 16] and the references therein. Another interesting result concerning this flow was due to Xu
and Ye in [23], where they proved long time existence and uniqueness of solution for this flow starting
near a torsion free G2-structure.

In this work we consider the so-called Laplacian “coflow” of G2-structures. This coflow was introduced
by Karigiannis, McKay and Tsui in [15] and can be considered as the analogous of the Laplacian flow of a
closed G2-structure where the 3-form ϕ0 is now considered to be coclosed instead of closed. Equivalently
this flow can be stated as:

B

Bt
˚7 ϕptq “ ´∆7 ˚7 ϕptq,

where the 4-form ˚7ϕ0 is closed and ˚7 denotes the Hodge star operator. These authors considered more
natural to define this flow with a minus sign in order to make it more likely to the heat equation. In order to
obtain solutions they consider 7-dimensional manifolds M6ˆL1 with L1 “ R or S1 where M6 is endowed
with a Calabi-Yau or a nearly Kähler structure. Grigorian in [13] introduced the modified Laplacian
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coflow, which consists on a modified version of the Laplacian coflow, proving short time existence and
uniqueness of solution for this modified flow. He also derives the modified Laplacian coflow for warped
G2-structures of the form M6 ˆf L

1 obtaining solution for M6 being Calabi-Yau or nearly Kähler. Long
time solutions for the Laplacian coflow on non compact nilpotent Lie groups were described in [1]. In this
work we present solutions for the coflow on warped products where the base manifolds are Lie groups
endowed with metrics belonging to the Gray-Hervella classes W1 ‘W2 ‘W3.

The paper is structured as follows. In Section 1 we give an introduction to SUp3q and G2-structures.
Section 2 is devoted to G2-structures of the form M6 ˆf S

1 (M6 being compact and endowed with an
SU(3)-structure) whose induced metric describes a warped product. In particular in Theorem 2.3 we
give an explicit description of the torsion forms of such a G2-structure in terms of the torsion forms
of the SUp3q-structure on the base manifold and the warping function. In Section 3 we reinterpret the
Laplacian flow and coflow of a G2-structure as a set of evolution equations of the SUp3q-structure and we
describe the Laplacian coflow operator of the warped G2-structure by means of the torsion forms of the
SUp3q-structure and the warping function. In particular for the Laplacian flow we reobtain the equations
due to Fino and Raffero in [11]. Finally the goal of Section 4 is to obtain new examples of solutions of
the Laplacian coflow constructed as warped products where the base manifolds are 6-dimensional and
they are endowed with nearly Kähler, symplectic half-flat or balanced SU(3)-structures.
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1. SUp3q and G2-structures

In this section we review some preliminaries concerning SUp3q and G2-structures. More concretely we
present these structures, their corresponding SUp3q and G2 type decomposition of the spaces of differential
forms and finally their torsion forms.

1.1. SUp3q-structures. An SUpnq-structure on a differentiable manifoldM2n consists on a triple pg, J,Ψq
where pg, Jq is an almost Hermitian structure on M2n and Ψ is a complex pn, 0q form, satisfying

p´1qnpn´1q{2
´ ı

2

¯n

Ψ^Ψ “
1

n!
ωn,

with Ψ the conjugated form of Ψ and ω the Kähler form of the almost Hermitian structure. An SUpnq-
structure can equivalently be described by the triple pω, ψ`, ψ´q where ψ` and ψ´ are, respectively the
real and the imaginary part of the complex form Ψ. In what follows we will focus on SUp3q-structures on
6-dimensional manifolds. Note that in this case, the metric gω,ψ˘ can be recovered from pω, ψ`, ψ´q as

gω,ψ˘pX,Y qvol6 “ ´3 pιXqω ^ pιY ψ`q ^ ψ`,

where ι denotes the contraction operator, vol6 “
1
3!ω

3 and X,Y P XpM6q.

The presence of such structure on a manifold M6 can also be characterized by the existence of a local
basis of 1-forms te1, . . . , e6u such that pω, ψ`, ψ´q can be described as:

(1)
ω “ e12 ` e34 ` e56,

ψ` “ e135 ´ e146 ´ e236 ´ e245, ψ´ “ ´e
246 ` e235 ` e145 ` e136,

where we denote, as usual in the related literature, eij the wedge product ei ^ ej and eijk the wedge
product ei^ ej ^ ek. In the following, a basis in which the SUp3q-structure has the expression (1) will be
called an adapted basis.
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In [6] it is described how the intrinsic torsion of an SUp3q-structure, namely τ , lies in a space of the
form

τ PW˘
1 ‘W˘

2 ‘W3 ‘W4 ‘W5,

where Wi denote the irreducible components under the action of the group SUp3q. This torsion can be
described by the exterior derivatives of ω, ψ` and ψ´ and also in terms of the so called torsion forms.
This latter description is given in [4] where the authors consider the natural action of the group SUp3q
on ΩkpM6q, the space of k-forms on M6. Thus, the different spaces of forms ΩkpM6q can be splitted into
SUp3q irreducible subspaces as follows:

Ω1pM6q is irreducible,

Ω2pM6q “ Ω2
1pM

6q ‘ Ω2
6pM

6q ‘ Ω2
8pM

6q,

with

Ω2
1pM

6q “ tfω|f P C8pM6qu,

Ω2
6pM

6q “ t˚6Jpη ^ ψ`q|η P Ω1pM6qu “ tσ P Ω2pM6q|Jσ “ σu,

Ω2
8pM

6q “ tσ P Ω2pM6q|σ ^ ψ` “ 0, ˚6Jσ “ ´σ ^ ωu “ tσ P Ω2pM6q|Jσ “ ´σ, σ ^ ω2 “ 0u;

and

Ω3pM6q “ Ω3
`pM

6q ‘ Ω3
´pM

6q ‘ Ω3
6pM

6q ‘ Ω3
12pM

6q,

with

Ω3
`pM

6q “ tfψ`| f P C8pM6qu, Ω3
6pM

6q “ tη ^ ω| η P Ω1pM6qu “ tγ P Ω3pM6q| ˚6 Jγ “ γu,

Ω3
´pM

6q “ tfψ´| f P C8pM6qu, Ω3
12pM

6q “ tγ P Ω3pM6q| γ ^ ω “ 0, γ ^ ψ˘ “ 0u,

where ˚6 denotes the Hodge star operator associated to the induced metric gω,ψ˘ and the volume form

vol6. Notice that ΩkdpM
6q denotes the SUp3q-irreducible space of k-forms having dimension d. Decompo-

sitions of the spaces of k-forms for k “ 4, 5 and 6 need not to be detailled since they can be achieved via
the Hodge star operator, ˚6ΩkdpM

6q “ Ω6´k
d pM6q.

With all these previous descriptions the derivatives of ω, ψ` and ψ´ can be decomposed into summands
belonging to the SUp3q-invariant spaces as follows (see [4] for details):

(2)

dω “ ´3
2 σ0ψ` `

3
2π0ψ´ ` ν1 ^ ω ` ν3,

dψ` “ π0 ω
2 ` π1 ^ ψ` ´ π2 ^ ω,

dψ´ “ σ0 ω
2 ` π1 ^ ψ´ ´ σ2 ^ ω,

where σ0, π0 P C8pM6q, π1, ν1 P Ω1pM6q, π2, σ2 P Ω2
8pM

6q and ν3 P Ω3
12pM

6q are the torsion forms of the
SUp3q-structure.

Some classes of SUp3q-structures that are useful for our purposes are given in Table 1.

Class Non-vanishing torsion forms Structure

t0u – Calabi-Yau

W´
1 σ0 Nearly Kähler

W´
2 σ2 Symplectic half-flat

W3 ν3 Balanced

Table 1. Some classes of SUp3q-structures
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1.2. G2-structures. A G2-structure on a 7-dimensional differentiable manifold consists on a three form
ϕ defining a metric, namely gϕ, a volume form vol7 and a 2-fold vector cross product, see [7, 14]. The
metric gϕ can be recovered from ϕ as

gϕpX,Y qvol7 “
1

6
pιXϕq ^ pιY ϕq ^ ϕ,

with X,Y P XpM7q. The presence of such structure on a manifold M7 can be characterized by the
existence of an adapted basis, i.e. a local basis of 1-forms te1, . . . , e7u such that ϕ can be described as:

ϕ “ e127 ` e347 ` e567 ` e135 ´ e146 ´ e236 ´ e245.

Concerning the intrinsic torsion of a G2-structure, namely T , in [7] it is described how this torsion lies
in a space of the form

T P X1 ‘ X2 ‘ X3 ‘ X4,

where Xi denotes the irreducible components under the action of the group G2. Thus, we can distin-
guish between 16 different classes of G2-structures, the so-called Fernández-Gray classes, which can be
characterized by the behavior of the exterior derivative of ϕ and ˚7ϕ where ˚7 is the Hodge star operator
induced by the G2-structure. In [3] it is given a description of the derivatives of ϕ and ˚7ϕ as summands
belonging to the different G2-invariant spaces Xi.

In order to obtain this description it is considered the natural action of the group G2 on ΩkpM7q.
Thus, the different spaces of forms ΩkpM7q can be splitted into G2-irreducible subspaces as follows:

Ω1pM7q is irreducible,

Ω2pM7q “ Ω2
7pM

7q ‘ Ω2
14pM

7q,

with

Ω2
7pM

7q “ t˚7pη ^ ˚7ϕq| η P Ω1pM7qu “ tσ P Ω2pM7q|σ ^ ϕ “ 2 ˚7 σu,

Ω2
14pM

7q “ tσ P Ω2pM7q|σ ^ ϕ “ ´ ˚7 σu;

and

Ω3pM7q “ Ω3
1pM

7q ‘ Ω3
7pM

7q ‘ Ω3
27pM

7q,

with

Ω3
1pM

7q “ tfϕ| f P C8pM7qu, Ω3
27pM

7q “ tγ P Ω3pM7q| γ ^ ϕ “ γ ^ ˚7ϕ “ 0u.

Ω3
7pM

7q “ t˚7pη ^ ϕq| η P Ω1pM7qu,

Similarly to the previous case, ΩkdpM
7q denotes the G2-irreducible space of k-forms which has dimen-

sion d. For the rest of dimensions (k “ 4, 5, 6 and 7) use the relation: ˚7ΩkdpM
7q “ Ω7´k

d pM7q.
Thus, the derivatives of ϕ and ˚7ϕ can be decomposed into summands belonging to the G2-invariant

spaces as follows (see [3]):

(3) dϕ “ τ0 ˚7 ϕ` 3τ1 ^ ϕ` ˚7τ3, dp˚7ϕq “ 4τ1 ˚7 ϕ` τ2 ^ ϕ,

where τ0 P C8pM7q, τ1 P Ω1pM7q, τ2 P Ω2
14pM

7q and τ3 P Ω3
27pM

7q are the torsion forms.

In particular:

(4)
τ0 “

1

7
˚7 pdϕ^ ϕq, τ2 “ ´ ˚7 d ˚7 ϕ` 4 ˚7 pτ1 ^ ˚7ϕq,

τ1 “
´1

12
˚7 p˚7dϕ^ ϕq, τ3 “ ˚7dϕ´ τ0ϕ´ 3 ˚7 pτ1 ^ ϕq.

The principal Fernández-Gray classes are given in Table 2:
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Class Non-vanishing torsion forms Structure

P ´ Parallel

X1 τ0 Nearly Parallel

X2 τ2 Closed

X3 τ3 Coclosed of pure type

X4 τ1 Locally conformal parallel

X1 ‘ X3 τ0, τ3 Coclosed

Table 2. Some classes of G2-structures

2. Warped G2-structures

Consider two Riemannian manifolds, namely pF, gF q and pB, gBq, and f a non-vanishing real differen-
tiable function on B. The warped product, denoted as B ˆf F , consists on the product manifold

W “ B ˆ F

endowed with the metric gf “ π˚1 pgBq`f
2π˚2 pgF q with π1 and π2 being the projections of W onto B and

F respectively.
Starting from an SUp3q-structure pω, ψ˘q over M6, and considering a function f P C8pM6q it is possible

to construct a G2-structure ϕ over M7 “M6 ˆ S1 such that:

(5) ϕ “ f ω ^ ds` pαψ` ´ β ψ´q,

with s the coordinate on S1 and α, β P R satisfying α2 ` β2 “ 1. Thus, the metric and the volume form
of this G2-structure are given in terms of the SUp3q-structure by:

gϕ “ gω,ψ˘ ` f
2ds2, vol7 “ fvol6 ^ ds.

Observe that gϕ “ gf , so M7 is in fact a warped product. In what follows we will call warped G2-structure
to this G2-structure (5).

Remark 2.1. If we consider the pair pα, βq “ p1, 0q, this definition of warped G2-structure is exactly the
one already given in [11].

The metrics gω,ψ˘ and gϕ on the base manifold M6 and the warped product M6 ˆf S
1 respectively

define two star operators ˚6 and ˚7 related by the following:

Lemma 2.2 (Lemma 3.2, [11]). Let η P ΩkpM6q be a differential k-form on M6, and let ˚6 and ˚7 be the
Hodge star operator determined by the SUp3q-structure and the warped G2-structure, respectively. Then

˚7η “ f ˚6 η ^ ds,

˚7pη ^ dsq “ p´1qkf´1 ˚6 η.

Hence from (5) and the previous lemma it can be checked that

(6) ˚7 ϕ “
1

2
ω2 ` f pαψ´ ` β ψ`q ^ ds.

Remark 2.3. The key idea of this section is to study how the G2-geometry of the warped product M6ˆfS
1

forces conditions on the SUp3q-geometry of the base M6. Having this idea in mind, we are going to describe
the torsion forms (4) of the warped G2-structure in terms of the torsion forms of the SUp3q-structure and
the warping function.

In the spirit of [20, Theorem 3.4] we can prove:
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Theorem 2.4. Let pM6, ω, ψ˘q be an SUp3q-manifold with torsion forms π0, σ0, π1, ν1, π2, σ2 and ν3.
Then, the torsion forms (4) of a warped G2-manifold pM7 “M6 ˆf S

1, ϕq are given by

(7)

τ0 “ 12
7 pαπ0 ´ βσ0q,

τ1 “ 1
2 pασ0 ` βπ0qfds`

1
6η1,

τ2 “ ´ασ2 ´ βπ2 `
f
3 ˚6

`

η2 ^ ω
2
˘

^ ds´ 1
3 ˚6 pη2 ^ pαψ´ ` βψ`qq ,

τ3 “

”

2
7 pαπ0 ´ βσ0qfω ´

f
2 ˚6 pη3 ^ pαψ` ´ βψ´qq ` fpαπ2 ´ βσ2q

ı

^ ds´ 1
2 ˚6 pη3 ^ ωq´

3
14 pαπ0 ´ βσ0qpαψ` ´ βψ´q ´ ˚6ν3,

where ηi are the following 1-forms:

η1 “
1

f
d6f ` π1 ` ν1, η2 “

1

f
d6f ` π1 ´ 2ν1, η3 “

1

f
d6f ´ π1 ` ν1.

Proof. The result holds after long computations where the definition of the spaces ΩkdpM
6q are used. As

hint, let us write down the expressions for dϕ, ˚7pdϕq and dp˚7ϕq. From (5) and (6) one gets:

dϕ “

ˆ

df ^ ω ´
3

2
fσ0ψ` `

3

2
fπ0ψ´ ` f ν1 ^ ω ` f ν3

˙

^ ds

`pαπ0 ´ β σ0qω
2 ` π1 ^ pαψ` ´ βψ´q ´ pαπ2 ´ β σ2q ^ ω,

˚7pdϕq “ ´f´1 ˚6 pdf ^ ωq `
3

2
σ0ψ´ `

3

2
π0ψ` ´ ˚6pν1 ^ ωq ´ ˚6 ν3

`r2fpαπ0 ´ β σ0qω ` f ˚6 pπ1 ^ pαψ` ´ βψ´qq ` α f π2 ´ β f σ2s ^ ds,

dp˚7ϕq “ ν1 ^ ω
2 `

“

´fpασ2 ` βπ2q ^ ω ` fpασ0 ` βπ0qω
2 ` pdf ` fπ1q ^ pαψ´ ` βψ`q

‰

^ ds.

Finally, from (4) and using Lemma 2.2 the result is achieved after long and standard computations.
�

Most of the Fernández-Gray classes of G2-structures are characterized in terms of the cancellation of
some of their torsion forms (see Table 2). Using expressions (7), the cancellations of τ0, τ1, τ2 and τ3 are
expressed by using the SUp3q-torsion forms of the base M6 and the warping function f .

Corollary 2.5. Let pM6, ω, ψ˘q be an SUp3q-manifold. Thus, the torsion forms of the warped G2-
structure satisfy:

τ0 “ 0 ðñ
 

iq απ0 ´ βσ0 “ 0.

τ1 “ 0 ðñ

#

iiq ασ0 ` βπ0 “ 0,

iiiq η1 “ 0.

τ2 “ 0 ðñ

#

ivq η2 “ 0,

vq ασ2 ` βπ2 “ 0.

τ3 “ 0 ðñ

$

’

’

’

&

’

’

’

%

viq απ0 ´ βσ0 “ 0,

viiq η3 “ 0,

viiiq απ2 ´ βσ2 “ 0,

ixq ν3 “ 0,

In Table 3 we show how the G2-geometry of the warped product M6 ˆf S
1 forces conditions on the

SUp3q-geometry of the base M6.

Remark 2.6. From Corollary 2.5, τ3 “ 0 implies τ0 “ 0, therefore nearly Parallel structures can not be
achieved as warped G2-structures of the form (5).
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Class G2-torsion forms SUp3q-torsion forms Class

P τ0 “ τ1 “ τ2 “ τ3 “ 0
σi “ πi “ νi “ 0

0
d6f “ 0

X2 τ0 “ τ1 “ τ3 “ 0

π0 “ σ0 “ π1 “ ν3 “ 0

W˘
2 ‘W4απ2 ´ βσ2 “ 0

1
f
d6f “ ´ν1

X3 τ0 “ τ1 “ τ2 “ 0

π0 “ σ0 “ ν1 “ 0

W˘
2 ‘W3 ‘W5ασ2 ` βπ2 “ 0

1
f
d6f “ ´π1

X4 τ0 “ τ2 “ τ3 “ 0
σ2 “ π2 “ ν3 “ 0

W˘
1 ‘W4 ‘W5

1
f
d6f “

1
2
ν1 “

1
3
π1

X1 ‘ X3 τ1 “ τ2 “ 0

ασ0 ` βπ0 “ 0

W˘
1 ‘W˘

2 ‘W3 ‘W5ασ2 ` βπ2 “ 0

ν1 “ 0, 1
f
d6f “ ´π1

Table 3. Relation between torsion forms of the warped G2-structure and the SUp3q-structure

3. The Laplacian flow and coflow of warped G2-structure of the form M6 ˆf S
1

Recall the definitions of the Laplacian flow and coflow, that are respectively:

pLF q

$

&

%

B

Bt
ϕptq “ ∆tϕptq,

d7 ϕptq “ 0,
pLcF q

$

&

%

B

Bt
p˚tϕptqq “ ´∆tp˚tϕptqq,

d7 p˚tϕptqq “ 0,

where ϕptq is a one-parameter family of G2-structures and ∆t, ˚t denote the Laplacian and the Hodge
star operator induced by ϕptq for every t.

Our objective in this section is to particularize the Laplacian flow and coflow considering one-parameter
families of G2-structures obtained as warped products, i.e.

(8) ϕptq “ fptqωptq ^ ds` pαψ`ptq ` βψ´ptqq.

From the previous expression, we derive the following:

(9)

B

Bt
ϕptq “

ˆ

B

Bt
fptqωptq ` fptq

B

Bt
ωptq

˙

^ ds` α
B

Bt
ψ`ptq ´ β

B

Bt
ψ´ptq,

B

Bt
p˚7ϕptqq “

„

B

Bt
fptq pβψ`ptq ` αψ´ptqq ` fptq

ˆ

β
B

Bt
ψ`ptq ` α

B

Bt
ψ´ptq

˙

^ ds`
1

2

B

Bt
ω2ptq.

Now we focus on the 3-form ∆7ϕ, resp. the 4-form ∆7 ˚7 ϕ. For a generic G2-structure, considering
the formulas given in (3) of the exterior derivatives of ϕ and ˚7ϕ, a description of the Laplacian in terms
of the torsion forms can be given as

(10) ∆7ϕ “ d7pτ2 ´ 4 ˚7 pτ1 ^ ˚7ϕqq ` ˚7d7pτ0ϕ` 3 ˚7 pτ1 ^ ϕq ` τ3q.

Since the Laplacian commutes with the Hodge star operator, ∆7˚7 “ ˚7∆7, combining (7) and (10)
it is also posible to describe ∆7 ˚7 ϕ of a warped G2-structure in terms of the torsion forms of the
SUp3q-structure and the warping function f for particular classes of G2-structures.

Provided that we are interested in the Laplacian flow, resp. coflow, we consider the 3-form ∆7ϕ, resp.
the 4-form ∆7 ˚7 ϕ, when ϕ is closed, resp. coclosed. Let us start with the closed ones:
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Proposition 3.1. Let ϕ be a warped closed G2-structure (5) on M6 ˆf S
1 where pω, ψ˘q is an SUp3q-

structure on M6. Then ∆7ϕ has the following expression:

∆7ϕ “ ´d6pασ2 ` βπ2q ` d6 ˚6
`

ν1 ^ pαψ´ ` βψ`q
˘

` f
“

ν1 ^ ˚6pν1 ^ ω
2q ´ d6 ˚6 pν1 ^ ω

2q
‰

^ ds,

where απ2 ´ βσ2 “ 0.
In the particular case that the warping function f is constant pd6f “ 0q, then

∆7ϕ “ ´d6pασ2 ` βπ2q.

Proof. Since ϕ is closed, τ0 “ τ1 “ τ3 “ 0 and by (10)

∆7ϕ “ d7τ2,

where in view of (7)

τ2 “ ´ασ2 ´ βπ2 ` ˚6pν1 ^ pαψ´ ` βψ`qq ´ f ˚6 pν1 ^ ω
2q ^ ds.

For the case f constant, since 1
f d6f “ ´ν1 (see Table 3) then ν1 “ 0 and the result holds. �

Consider now coclosed G2-structures:

Proposition 3.2. Let ϕ be a warped coclosed G2-structure (5) on M6ˆf S
1 where pω, ψ˘q is an SUp3q-

structure on M6. Then ∆7 ˚7 ϕ has the following expression:

∆7 ˚7 ϕ “ 3
2 pαπ0 ´ βσ0q

“

pαπ0 ´ βσ0qω
2 ` π1 ^ pαψ` ´ βψ´q ´ pαπ2 ´ βσ2q ^ ω

‰

` d6 ˚6 pπ1 ^ ωq

´d6p˚6ν3q `
3
2d6pαπ0 ´ βσ0q ^ pαψ` ´ βψ´q

`f
”

2d6pαπ0 ´ βσ0q ^ ω ` pαπ0 ´ βσ0q p´2π1 ^ ω ´ 3σ0ψ` ` 3π0ψ´ ` 2ν3q ` d6pαπ2 ´ βσ2q

´π1 ^ ˚6
`

π1 ^ pαψ` ´ βψ´q ` d6 ˚6
`

π1 ^ pαψ` ´ βψ´q
˘

´ π1 ^ pαπ2 ´ βσ2q
ı

^ ds,

where ασi ` βπi “ 0 for i “ 0, 2.
Moreover, if f is constant, then

(11)
∆7 ˚7 ϕ “ 3

2 pαπ0 ´ βσ0q
`

pαπ0 ´ βσ0qω
2 ´ pαπ2 ´ βσ2q ^ ω

˘

´ d6p˚6ν3q

` 3
2d6pαπ0 ´ βσ0q ^ pαψ` ´ βψ´q

`f
”

2d6pαπ0 ´ βσ0q ^ ω ` pαπ0 ´ βσ0q p´3σ0ψ` ` 3π0ψ´ ` 2ν3q ` d6pαπ2 ´ βσ2q
ı

^ ds.

Proof. The condition ϕ being coclosed is equivalent to τ1 “ τ2 “ 0 and as a consequence of (10):

∆7 ˚7 ϕ “ ˚7∆7ϕ “ d7pτ0ϕ` τ3q.

Now, using (7):

∆7 ˚7 ϕ “ d7

”

f
´

2pαπ0 ´ βσ0qω ` ˚6
`

π1 ^ pαψ` ´ βψ´q
˘

` pαπ2 ´ βσ2q
¯

^ ds

` 3
2 pαπ0 ´ βσ0qpαψ` ´ βψ´q ` ˚6pπ1 ^ ωq ´ ˚6ν3

ı

,

and the result follows. In order to prove (11), observe that π1 “ 0 according to Table 3.
�

Remark 3.3. In what follows, and similarly as in [11], we restrict our attention to the case of the
warping function f is constant over the base manifold M6.

In order to obtain solutions of the Laplacian flow of a warped closed G2-structure, combining the
expressions (9) and Proposition 3.1, we can set the system of equations that must be satisfied:
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Proposition 3.4. For a closed warped G2-structure (5), the equation of the Laplacian flow (LF) is
equivalent to:

$

’

&

’

%

f 1ptqωptq ` fptq
B

Bt
ωptq “ 0,

α
B

Bt
ψ`ptq ´ β

B

Bt
ψ´ptq “ ´d6pασ2ptq ` βπ2ptqq.

where απ2ptq ´ βσ2ptq “ 0.

Remark 3.5. For the particular case of pα, βq “ p1, 0q, we recover the system already studied by Fino
and Raffero in [11, Prop. 5.2].

Similarly, for the coflow, we get the following system of equations:

Proposition 3.6. For a coclosed warped G2-structure (5), the equation of the Laplacian coflow (LcF) is
equivalent to:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bω2ptq

Bt
“ ´3pαπ0ptq ´ βσ0ptqq

2ω2ptq ` 3pαπ0ptq ´ βσ0ptqqpαπ2ptq ´ βσ2ptqq ^ ωptq

`2d6p˚6ν3ptqq ´ 3d6pαπ0ptq ´ βσ0ptqq ^ pαψ`ptq ´ βψ´ptqq,

f 1ptq

fptq
pβψ`ptq ` αψ´ptqq `

ˆ

β
Bψ`ptq

Bt
` α

Bψ´ptq

Bt

˙

“

´pαπ0ptq ´ βσ0ptqq r´3σ0ptqψ`ptq ` 3π0ptqψ´ptq ` 2ν3ptqs

´d6pαπ2ptq ´ βσ2ptqq ´ 2d6pαπ0ptq ´ βσ0ptqq ^ ωptq,

where ασiptq ` βπiptq “ 0 for i “ 0, 2.

Corollary 3.7. For the particular case of pα, βq “ p0, 1q, the Laplacian coflow becomes:

(12)

$

’

’

&

’

’

%

Bω2ptq

Bt
“ ´3σ0ptq

2ω2ptq ` 3σ0ptqσ2ptq ^ ωptq ` 2d6p˚6ν3ptqq ´ 3d6σ0ptq ^ ψ´ptq,

f 1ptq

fptq
ψ`ptq `

Bψ`ptq

Bt
“ ´3σ0ptq

2ψ`ptq ` 2σ0ptqν3ptq ` d6σ2ptq ` 2d6σ0ptq ^ ωptq.

Remark 3.8. For the Laplacian coflow we chose the parameters pα, βq to be p0, 1q in order to obtain
equations depending on the torsion forms σ0, σ2 and ν3 (see (2)) which are the ones that appear in the
canonical definitions of the SUp3q-structures, nearly Kähler, symplectic half-flat and balanced, respectively
(see equations (19), (22) and (28) in the next sections).

4. New solutions to the Laplacian coflow

Our main objective is to provide new solutions ϕptq for the Laplacian coflow (12). In what follows we
will consider one parameter families of warped G2-structures (8) on G ˆ S1, being G a Lie group. The
underlying SUp3q-structures pωptq, ψ`ptq, ψ´ptqq are left-invariant and can be locally described as

(13)
ωptq “ x12 ` x34 ` x56,

ψ`ptq “ x135 ´ x146 ´ x236 ´ x245, ψ´ptq “ ´x
246 ` x235 ` x145 ` x136,

where txiptqu denotes for every t a local adapted basis, xij stands for xiptq ^ xjptq and xijk stands for
xiptq ^ xjptq ^ xkptq. Our ansatz consists on stating that

(14) xiptq “ fiptqh
i,

where fiptq are differentiable non-vanishing real functions satisfying fip0q “ 1 and th1, . . . , h6u is an
adapted basis for the SU(3)-structure for t “ 0. Notice that (14) defines in fact a global basis since we
are considering parallelizable manifolds.
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Observe that the volume induced by ϕptq is given by vol7ptq “ fptqvol6ptq ^ ds where

vol6ptq “ x123456ptq “
6
ź

i“1

fiptqh
123456 “

6
ź

i“1

fiptqvol6,

that is

(15) vol7ptq “

˜

6
ź

i“1

fiptq

¸

fptq vol6 ^ ds.

Direct computations show:

Bωptq

Bt
“

3
ÿ

k“1

ˆ

f 12k´1ptq

f2k´1ptq
`
f 12kptq

f2kptq

˙

x2k´1ptq ^ x2kptq.(16)

(17)
Bω2ptq

Bt
“ 2

ř

pi,j,k,lqPJ

ˆ

f 1iptq

fiptq
`
f 1jptq

fjptq
`
f 1kptq

fkptq
`
f 1l ptq

flptq

˙

xijkl,

with J “ tp1, 2, 3, 4q, p1, 2, 5, 6q, p3, 4, 5, 6qu.

(18)

f 1ptq

fptq
ψ`ptq `

Bψ`ptq

Bt
“

ˆ

f 1ptq

fptq
`
f 11ptq

f1ptq
`
f 13ptq

f3ptq
`
f 15ptq

f5ptq

˙

x135

´
ř

pi,j,kqPI

ˆ

f 1ptq

fptq
`
f 1iptq

fiptq
`
f 1jptq

fjptq
`
f 1kptq

fkptq

˙

xijk,

with I “ tp1, 4, 6q, p2, 3, 6q, p2, 4, 5qu.
As we mentioned before, the G2-geometry of the warped product imposes conditions on the SUp3q-

geometry of the base M6. Concretely, the G2-structure is coclosed if and only if the corresponding
SUp3q-structure lies on the space W˘

1 ‘W˘
2 ‘W3 ‘W5 (see Table 3). Notice that if we consider a

one-parameter family of SU(3)-structures pωptq, ψ˘ptqq belonging to the previous space for any t, then
the corresponding warped G2-structure will remain coclosed for any t. Moreover, in what follows we
will impose that pωptq, ψ˘ptqq belongs to W´

1 , W´
2 or W3 for any t. Now we particularize (12) for some

interesting cases of SUp3q-structures lying on these particular subspaces.

4.1. The nearly Kähler case (W´
1 ). Recall that a nearly Kähler SU(3)-structure satisfies

(19) dω “ ´
3

2
σ0 ψ`, dψ` “ 0, dψ´ “ σ0ω

2.

In particular, σ2 “ ν3 “ 0. Particularizing (12) for σ2ptq “ ν3ptq “ 0, we get

$

’

’

&

’

’

%

Bω2ptq

Bt
“ ´3σ0ptq

2ω2ptq ´ 3d6σ0ptq ^ ψ´ptq,

f 1ptq

fptq
ψ`ptq `

Bψ`ptq

Bt
“ ´3σ0ptq

2ψ`ptq ` 2d6σ0ptq ^ ωptq.

Observe that with this particular ansatz, the left-hand side of the first equation above is a combination
of the 4-forms x1234, x1256 and x3456 (see (17)); however, it can be easily proved that if η is a one-form,
then η ^ ψ´ptq never belongs to the space generated by x1234, x1256 and x3456, unless η “ 0. Therefore,
we need d6σ0ptq “ 0, which means that σ0ptq is constant as a differentiable function on M6.

Now, the previous system simplifies as:

(20)

$

’

&

’

%

Bω2ptq

Bt
“ ´3σ0ptq

2ω2ptq,

f 1ptq
fptq ψ`ptq `

Bψ`ptq

Bt
“ ´3σ0ptq

2ψ`ptq.

Let us solve this system (as before, we denote fiptqfjptq simply as fij).
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Lemma 4.1. If
Bω2ptq

Bt
“ ´3σ0ptq

2 ω2ptq, then, f12 “ f34 “ f56, where fiptq are the functions in (14).

Proof. Using the symplectic operator L : ΩqpMq Ñ Ωq`2pMq defined by Lpηq “ η ^ ω, the previous
equation can be expressed as:

Bω2ptq

Bt
` 3σ0ptq

2 ω2ptq “ 0 ðñ Lt

ˆ

2
Bωptq

Bt
` 3σ0ptq

2 ωptq

˙

“ 0.

It happens that L is injective for q ď n´ 1, being dimM “ 2n [2]. Since in our case n “ 3, we have that

Lt

ˆ

2
Bωptq

Bt
` 3σ0ptq

2 ωptq

˙

“ 0 ðñ
Bωptq

Bt
“ ´

3

2
σ0ptq

2 ωptq.

Using (16),
Bωptq

Bt
“ ´ 3

2σ0ptq
2 ωptq if and only if

ˆ

f 11ptq

f1ptq
`
f 12ptq

f2ptq

˙

“

ˆ

f 13ptq

f3ptq
`
f 14ptq

f4ptq

˙

“

ˆ

f 15ptq

f5ptq
`
f 16ptq

f6ptq

˙

“ ´
3

2
σ0ptq

2,

which is equivalent to say

d

dt
pln f12q “

d

dt
pln f34q “

d

dt
pln f56q “ ´

3

2
σ0ptq

2.

In particular,
f12
f34

“ c1,
f12
f56

“ c2,
f34
f56

“ c3,

where ci are constants. Since fip0q “ 1, we obtain that f12 “ f34 “ f56. �

For the second equation we get:

Lemma 4.2. If f 1ptq
fptq ψ`ptq `

Bψ`ptq

Bt
“ ´3σ0ptq

2 ψ`ptq, then, f1ptq “ f2ptq, f3ptq “ f4ptq, f5ptq “ f6ptq,

where fiptq are the functions in (14).

Proof. Arguing as before, if f 1ptq
fptq ψ`ptq `

Bψ`ptq

Bt
“ ´3σ0ptq

2 ψ`ptq, then:

d

dt
plnpfptqf135qq “

d

dt
plnpfptqf146qq “

d

dt
plnpfptqf236qq “

d

dt
plnpfptqf245qq “ ´3σ0ptq

2.

In particular, observe that:

d

dt
plnpfptqfijkqq “

d

dt
plnpfptqfipqqq ðñ

d

dt

ˆ

ln
fptqfijk
fptqfipq

˙

“ 0 ðñ ln
fjk
fpq

“ cðñ
fjk
fpq

“ 1,

where c is a constant and we have used the fact that fip0q “ 1. So:

d

dt
plnpfptqf135qq “

d

dt
plnpfptqf146qq “

d

dt
plnpfptqf236qq “

d

dt
plnpfptqf245qq ðñ

#

f13 “ f24, f14 “ f23, f15 “ f26,

f16 “ f25, f35 “ f46, f36 “ f45,

ðñ f1ptq
2 “ f2ptq

2, f3ptq
2 “ f4ptq

2, f5ptq
2 “ f6ptq

2 ðñ f1ptq “ f2ptq, f3ptq “ f4ptq, f5ptq “ f6ptq,

where for the last equivalence we have used that fiptq are continuous functions satisfying fip0q “ 1. �

We can combine the two previous results to conclude that fiptq “ fjptq for i, j “ 1, . . . , 6. If we denote
fiptq “ F ptq for all i “ 1, . . . , 6, then pωptq, ψ˘ptqq has the particular form:

(21) ωptq “ F 2ptqω, ψ`ptq “ F 3ptqψ`, ψ´ptq “ F 3ptqψ´.

Lemma 4.3. Let pωptq, ψ˘ptqq be the one-parameter family of SUp3q-structures given in (21) where
pω, ψ˘q is a nearly Kähler structure. Then pωptq, ψ˘ptqq is nearly Kähler for all t if and only if σ0ptq “
σ0

F ptq .



LAPLACIAN COFLOW FOR WARPED G2-STRUCTURES 12

Proof. Equation (21) implies that dωptq “ F 2ptqdω, and dψ´ptq “ F 3ptqdψ´. Since pω, ψ˘q is nearly
Kähler, one has

dωptq “ ´
3

2
σ0F

2ptqψ`, dψ´ptq “ σ0F
3ptqω2,

or equivalently

dωptq “ ´
3

2

σ0
F ptq

ψ`ptq and dψ´ptq “
σ0
F ptq

ω2ptq.

Therefore,
`

ωptq, ψ˘ptq
˘

is nearly Kähler for all t if and only if σ0ptq “
σ0

F ptq , and the result follows. �

In the next result we show how to solve the Laplacian coflow in this particular case.

Proposition 4.4. Let M6 be a manifold endowed with a nearly Kähler structure pω, ψ˘q. Then the
one-parameter family of warped G2-structures on M6 ˆf S

1 given by

ϕptq “

ˆ

1´
3σ2

0

2
t

˙3{2

pc ω ^ ds´ ψ´q and ˚t ϕptq “

ˆ

1´
3σ2

0

2
t

˙2ˆ
1

2
ω2 ` cψ` ^ ds

˙

is a solution of the Laplacian coflow for t P
´

´8, 2
3σ2

0

¯

, being fptq “ c
´

1´
3σ2

0

2 t
¯1{2

, c P R˚.

Proof. From Lemmas 4.1, 4.2 and 4.3, the system (20) with pωptq, ψ˘ptqq nearly Kähler for all t is
equivalent to

$

&

%

4F 1ptqF ptq “ ´3σ2
0 ,

f 1ptq
fptq F

2ptq ` 3F 1ptqF ptq “ ´3σ2
0 .

whose solution is

F ptq “
´

1´
3σ2

0

2
t
¯1{2

, fptq “ c
´

1´
3σ2

0

2
t
¯1{2

and the result follows. �

Corollary 4.5. In the conditions above, the volume form induced by the one-parameter family of warped
G2-structures on M6 ˆf S

1 is such that

lim
tÑT´

vol7ptq “ 0,

where T “ 2
3σ2

0
is the maximal existence time of the solution.

Proof. Just observe that, using (15), vol7ptq “ c
´

1´
3σ2

0

2 t
¯7{2

vol6 ^ ds. �

Remark 4.6. Not many examples of nearly Kähler manifolds are known. Recently, new complete exam-
ples on S6 and S3ˆS3 have been described in [12] and [21]. Next we solve the Laplacian coflow using an
explicit example of nearly Kähler structure appeared in [21].

Example 4.7. Consider the sphere S3, viewed as the Lie group SUp2q with the basis of left-invariant
one-forms tλ1, λ2, λ3u satisfying

dλ1 “ λ23, dλ2 “ ´λ13, dλ3 “ λ12.

Thus, sup2q ‘ sup2q is the Lie algebra of S3 ˆ S3 and its structure equations are:

sup2q ‘ sup2q “ pλ23,´λ13, λ12, ν23,´ν13, ν12q

with tνiu the basis of left-invariant 1-forms on the second sphere. The pair pω, ψ`q with

ω “

?
3

18
pλ1 ^ ν1 ` λ2 ^ ν2 ` λ3 ^ ν3q,

ψ` “

?
3

54
pλ23 ^ ν1 ´ λ1 ^ ν23 ´ λ13 ^ ν2 ` λ2 ^ ν13 ` λ12 ^ ν3 ´ λ3 ^ ν12q,

where ω is the Kähler form and ψ` is the real part of the complex (3,0)-form, defines a nearly Kähler
SU(3)-structure on S3 ˆ S3. Observe that the basis tλi, νiu is not adapted to the SU(3)-structure.
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Consider th1, . . . , h6u the basis of left-invariant 1-forms on S3 ˆ S3 given by

h1 “
1

3
λ1 ´

1

6
ν1, h2 “

?
3

6
ν1, h3 “

1

3
λ2 ´

1

6
ν2, h4 “

?
3

6
ν2, h5 “

?
3

6
ν3, h6 “ ´

1

3
λ3 `

1

6
ν3.

This basis is adapted to the SU(3)-structure and pω, ψ`q turns out to be nearly Kähler with σ0 “ ´2.
Therefore, in view of Proposition 4.4, the one-parameter family of warped G2-structures on pS3ˆS3qˆfS

1

given by

ϕptq “
´

1´ 6 t
¯3{2”

cph12 ` h34 ` h56q ^ ds` h246 ´ h235 ´ h136 ´ h145
ı

and

˚tϕptq “
´

1´ 6 t
¯2”

h1234 ` h1256 ` h3456 ` cph135 ´ h146 ´ h236 ´ h245q ^ ds
ı

,

where fptq “ c p1´ 6tq
1
2 , is a solution of the Laplacian coflow for all t P

`

´8, 16
˘

.

4.2. The symplectic half-flat case (W´
2 ). Recall that a symplectic half-flat SU(3)-structure satisfies

(22) dω “ 0, dψ` “ 0, dψ´ “ ´σ2 ^ ω.

In particular, σ0 “ ν3 “ 0. Particularizing (12) for σ0ptq “ ν3ptq “ 0, we get

(23)

$

’

’

&

’

’

%

Bω2ptq

Bt
“ 0,

f 1ptq

fptq
ψ`ptq `

Bψ`ptq

Bt
“ d6σ2ptq.

Now, we get necessary conditions in order to solve the Laplacian coflow. Arguing similarly as
Lemma 4.1 and providing that σ0ptq “ 0, it is straightforward to see that the first equation of (23)
holds if and only if

(24) f2ptq “
1

f1ptq
, f4ptq “

1

f3ptq
, f6ptq “

1

f5ptq
.

In this setting, the behaviour of the induced volumen is vol7ptq “ fptqvol6 ^ ds (see (15)).
The following technical result, that makes use of equation (18), states how to solve the coflow in the

symplectic half-flat case:

Lemma 4.8. Consider a warped coclosed G2-structure ϕ on M6 ˆf S
1 where pω, ψ˘q is a symplectic

half-flat SUp3q-structure. Then ϕptq, given by (8), is a solution of the coflow (23) using the ansatz (14)
if and only if fptq, f1ptq, f3ptq and f5ptq satisfy:

(25)

$

’

’

&

’

’

%

A135ptq “
f 1ptq

fptq
`
f 11ptq

f1ptq
`
f 13ptq

f3ptq
`
f 15ptq

f5ptq
, A146ptq “

f 1ptq

fptq
`
f 11ptq

f1ptq
´
f 13ptq

f3ptq
´
f 15ptq

f5ptq
,

A236ptq “
f 1ptq

fptq
´
f 11ptq

f1ptq
`
f 13ptq

f3ptq
´
f 15ptq

f5ptq
, A245ptq “

f 1ptq

fptq
´
f 11ptq

f1ptq
´
f 13ptq

f3ptq
`
f 15ptq

f5ptq
,

where functions A135ptq, A146ptq, A236ptq, A245ptq are such that

d6σ2ptq “ A135ptqx
135 ´A146ptqx

146 ´A236ptqx
236 ´A245ptqx

245,

and pωptq, ψ˘ptqq is symplectic half-flat for all t.

In order to obtain examples and inspired in the solutions given in Proposition 4.4, we will consider the
functions fiptq of potential type, i.e.

(26) fiptq “ p1` ktq
αi

with αi and k real numbers. Thus the solutions of the coflow are of the form:
(27)
ϕptq “ fptq

“

p1` ktqα1`α2h12 ` p1` ktqα3`α4h34 ` p1` ktqα5`α6h56
‰

^ ds

´ p1` ktqα2`α4`α6h246 ` p1` ktqα2`α3`α5h235 ` p1` ktqα1`α4`α5h145 ` p1` ktqα1`α3`α6h136,

where the basis th1, . . . , h6u is defined in (14).
Next we solve the Laplacian coflow on unimodular solvable Lie algebras.
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Example 4.9. Consider the Lie algebra ep1, 1q ‘ ep1, 1q whose structure equations are

ep1, 1q ‘ ep1, 1q :“ p0, 0,´h14,´h13, h25,´h26q.

The corresponding connected and simply connected Lie group G admits a left-invariant symplectic half-
flat structure which is given canonically by (1) in basis thiu. Let us consider a one-parameter family of
SUp3q-structures given by (13) with xiptq “ fiptqh

i being fiptq of potential type as in (26). The structure
equations of ep1, 1q ‘ ep1, 1q with respect to the time-dependent basis txiptqu are

p0, 0,´p1` ktqα3´α1´α4x14,´p1` ktqα4´α1´α3x13, p1` ktq´α2x25,´p1` ktq´α2x26q.

In order to obtain solutions for the Laplacian coflow, and in view of (24), we can set

α2 “ ´α1, α4 “ ´α3, and α6 “ ´α5.

With these values, we impose the preservation of the symplectic half-flat condition. It is easy to verify
that dωptq “ 0 for all t; ψ`ptq remains closed if and only if α1 “ α3 “ 0, since

dψ`ptq “
`

´ p1` ktqα1 ` p1` ktq´α1´2α3
˘

x1235 `
`

´ p1` ktqα1 ` p1` ktq´α1`2α3
˘

x1246.

So, pωptq, ψ˘ptqq is symplectic half-flat for all t if and only if α1 “ α2 “ α3 “ α4 “ 0. Observe that the
structure equations are simply:

ep1, 1q ‘ ep1, 1q :“ p0, 0,´x14,´x13, x25,´x26q.

Finally, to solve the second equation of (23) we make use of (25). Since pωptq, ψ˘ptqq is symplectic
half-flat for all t, σ2ptq “ ´ ˚t dψ´ptq, see (2), and therefore

dσ2ptq “ ´2x135 ` 2x146 ` 2x236 ` 2x245,

which means that Aijkptq “ ´2. We obtain the system
$

&

%

f 1ptq
fptq ` kα5p1` ktq

´1 “ ´2,

f 1ptq
fptq ´ kα5p1` ktq

´1 “ ´2.

which can be solved taking

α5 “ 0 and fptq “ c e´2t, c P R˚.

Therefore, the one-parameter family of G2-structures on Gˆf S
1 given by (27)

ϕptq “ c e´2tph12 ` h34 ` h56q ^ ds´ h246 ` h235 ` h145 ` h136

is a solution of the Laplacian coflow for all t P R. Since limtÑT fptq “ 0, where T “ `8 is the maximal
existence time of the solution, we obtain that limtÑT vol7ptq “ 0.

In [10], the authors classify the 6-dimensional unimodular solvable Lie algebras admitting symplectic
half-flat SUp3q-structure and show that all the corresponding solvable Lie groups admit a co-compact
discrete subgroup. In addition to the Lie algebra ep1, 1q ‘ ep1, 1q, in terms of an adapted basis thiu6i“1 to
the SUp3q-structure, the structure equations of these algebras are the following:

g5,1 ‘ R “ p0, 0, 0, h15, 0, h13q,

A´1,´1,1
5,7 ‘ R “ ph16,´h26,´h36, h46, 0, 0q,

A´a,´a,15,17 ‘ R “ pah15 ` h35,´ah25 ` h45,´h15 ` ah35,´h25 ´ ah45, 0, 0q,

g6,N3 “ p0,´2h35, 0,´h15, 0, h13q,

g06,38 “ p2h36, 0,´h26, h25 ´ h26,´h23 ´ h24, h23q,

g0,´1
6,54 “

ˆ

h16
?

2
` h45,´

h26
?

2
, h25 ´

h36
?

2
,
h46
?

2
, 0, 0

˙

,

g0,´1,´1
6,118 “ p´h15 ` h36, h25 ` h46,´h16 ´ h35,´h26 ` h45, 0, 0q.

In Table 4 we present long time solutions to the Laplacian coflow for G2-structures obtained as warped
products of solvmanifolds endowed with symplectic half-flat SUp3q-structures. These solutions can be
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obtained as follows: consider Lemma 4.8 with the potential functions given in (26) and a warping function
also of potential type

fptq “ c p1` ktqβ , c P R˚.
Thus, using (25), we obtain a linear system of equations in αi, β and k that can be easily solved. Known
the values of αi, β and k and considering (27) we can give an explicit description of the solutions of the
Laplacian coflow for each example. We also include the value of dσ2ptq in each case, necessary to compute
the parameters of the solutions.

Lie algebra dσ2ptq pα1, . . . , α6q β k

g5,1 ‘ R A135 “ ´2p1` ktq´2α1´2α3´2α5 p 16 ,´
1
6 ,

1
6 ,´

1
6 ,

1
6 ,´

1
6 q

1
6 ´3

A´1,´1,1
5,7 ‘ R A146 “ A236 “ ´4p1` ktq2α5 p0, 0, 0, 0,´ 1

2 ,
1
2 q

1
2 ´4

A´a,´a,15,17 ‘ R A135 “ A245 “ ´4a2p1` ktq´2α5 p0, 0, 0, 0, 12 ,´
1
2 q

1
2 ´4a2

g6,N3 A135 “ ´6p1` ktq´2α1´2α3´2α5 p 16 ,´
1
6 ,

1
6 ,´

1
6 ,

1
6 ,´

1
6 q

1
6 ´9

g06,38 A236 “ ´6p1` ktq2α1´4α3 p´ 1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 ,

1
6 q

1
6 ´9

g0,´1
6,54

A146 “ A236 “ ´2p1` ktq2α5

p´ 1
2 ,

1
2 ,´

1
2 ,

1
2 ,´

1
2 ,

1
2 q

3
2 ´1

A245 “ ´2p1` ktq2α1`2α3´2α5

g0,´1,´1
6,118

A135 “ A245 “ ´4p1` ktq´2α5

p0, 0, 0, 0, 12 ,´
1
2 q

1
2 ´4

A146 “ A236 “

´2p1` ktq2α5p´1` p1` ktq2α1´2α3q

Table 4. Solutions of the Laplacian coflow in the SHF-case

In particular, in any case limtÑT´ fptq “ 0, where T “ ´1
k is the maximal existence time of the

solution, and therefore, limtÑT´ vol7ptq “ 0.

4.3. The balanced case (W3). Recall that a balanced SU(3)-structure satisfies

(28) dω “ ν3, dψ` “ 0, dψ´ “ 0.

In particular, σ0 “ σ2 “ 0. Particularizing (12) for σ0ptq “ σ2ptq “ 0, we get

(29)

$

’

’

&

’

’

%

Bω2ptq

Bt
“ 2d6p˚6ν3ptqq,

f 1ptq

fptq
ψ`ptq `

Bψ`ptq

Bt
“ 0.

In this case, we can apply Lemma 4.2 with σ0ptq “ 0 (compare the second equations in (20) and (29))
obtaining the same conclusion, i.e., f2kptq “ f2k´1ptq for k “ 1, 2, 3. Now, the behaviour of the induced
volumen is vol7ptq “ f1ptq

2f3ptq
2f5ptq

2fptqvol6 ^ ds.
Similarly to Lemma 4.8, we can set:

Lemma 4.10. Consider a warped coclosed G2-structure ϕ on M6 ˆf S
1 where pω, ψ˘q is a balanced

SUp3q-structure. Then ϕptq, given by (8), is a solution of the coflow (29) using the ansatz (14) if and
only if fptq, f1ptq, f3ptq and f5ptq satisfy:

B1234ptq “ 2

ˆ

f 11ptq

f1ptq
`
f 13ptq

f3ptq

˙

, B1256ptq “ 2

ˆ

f 11ptq

f1ptq
`
f 15ptq

f5ptq

˙

, B3456ptq “ 2

ˆ

f 13ptq

f3ptq
`
f 15ptq

f5ptq

˙

,

where functions B1234ptq, B1256ptq, B3456ptq are such that

d6p˚ν3ptqq “ B1234ptqx
1234 `B1256ptqx

1256 `B3456ptqx
3456,

and pωptq, ψ˘ptqq is balanced for all t.
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The examples that we present in this case are the 6-dimensional nilpotent Lie algebras admitting
balanced SUp3q-structures, that are classified in [22]. In terms of an adapted basis to the balanced
SUp3q-structure, the structure equations are:

h2 “ p0, 0, 0, 0, 2h12 `
´

2
?

2´ 2
¯

h13 `
´

´2´ 2
?

2
¯

h24 ´ 2h34, 4
?

2h12 ` 4
?

2h23 ´ 4
?

2h34q,

h3 “ p0, 0, 0, 0, 0,´2h12 ` 2h34q,

h4 “ p0, 0, 0, 0, 2h13, h14 ` h23q,

h5 “ p0, 0, 0, 0, h13 ´ h24, h14 ` h23q,

h6 “ p0, 0, 0, 0, h13, h14q,

h´19 “ p0, 0,´h15,´h25, 0,´h13 ´ h24q.

We present long time solutions for the Laplacian coflow of G2-structures obtained as warped products
of balanced nilmanifolds endowed with SUp3q-structures. These solutions remain balanced for any t.
As before, with the notation in Lemma 4.10 and functions of potential type (26) giving an explicit
description of these solutions is equivalent to obtain the values of the parameters αi, β and k. Solving
the corresponding linear equations these values are given in Table 5. The solutions ϕptq of the coflow are
of the form (27). We also include the value of d˚ν3ptq in each case, necessary to compute the parameters
of the solutions.

Lie algebra d ˚ ν3ptq pα1, . . . , α6q β k

h2 B1234 “ ´128p1` ktq´4α1`2α5 p 16 ,
1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 q ´ 1

6 ´192

h3 B1234 “ ´8p1` ktq´4α1`2α5 p 16 ,
1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 q ´ 1

6 ´12

h4 B1234 “ ´6p1` ktq´2α1´2α3`2α5 p 16 ,
1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 q ´ 1

6 ´9

h5 B1234 “ ´4p1` ktq´2α1´2α3`2α5 p 16 ,
1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 q ´ 1

6 ´6

h6 B1234 “ ´2p1` ktq´2α1´2α3`2α5 p 16 ,
1
6 ,

1
6 ,

1
6 ,´

1
6 ,´

1
6 q ´ 1

6 ´3

h´19
B1234 “ ´2p1` ktq´2α1´2α3`2α5

p 12 ,
1
2 , 0, 0, 0, 0q ´ 1

2 ´2
B1256 “ ´2p1` ktq´2α1`2α3´2α5

Table 5. Solutions of the Laplacian coflow in the balanced case

Observe that in these cases, limtÑT´ vol7ptq “ limtÑT´p1`ktq
2α1`2α3`2α5`β “ limtÑT´p1`ktq

´β “ 0,
where T “ ´1

k is the maximal existence time of the solution.
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