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A B S T R A C T

Worst-case execution time (WCET) analysis of systems with data caches is one of the key challenges in real-
time systems. Caches exploit the inherent reuse properties of programs by temporarily storing certain memory
contents near the processor, in order that further accesses to such contents do not require costly memory
transfers. Current worst-case data cache analysis methods focus on specific cache organizations (set-associative
LRU, locked, ACDC, etc.), most of the times adapting techniques designed to analyze instruction caches. On
the other hand, there are methodologies to analyze the data reuse of a program, independently of the data
cache. In this paper we propose a generic WCET analysis framework to analyze data caches taking profit
of such reuse information. It includes the categorization of data references and their integration in an IPET
model. We apply it to a conventional LRU cache, an ACDC, and other baseline systems, and compare them
using the TACLeBench benchmark suite. Our results show that persistence-based LRU analyses dismiss essential
information on data, and a reuse-based analysis improves the WCET bound around 17% in average. In general,
the best WCET estimations are obtained with optimization level 2, where the ACDC cache performs 39% better
than a set-associative LRU.
1. Introduction

Real-time systems are increasingly present in industry and daily life.
We can find examples in many sectors including avionics, robotics,
automotive processes, manufacturing, and air-traffic control. A real-
time system consists of a number of tasks with a required functionality.
These tasks have to be scheduled in a way that they meet their dead-
lines. To ensure that this occurs, and hence that the system operates
correctly, worst-case execution time (WCET) and schedulability have
to be analyzed.

Analyzing the interactions between the program and the hardware
is a complex part, since current processors perform many operations
with a variable duration in order to improve performance. In particular,
the memory subsystem services the processor with variable latency
and can be the greatest contribution to the WCET. A memory hier-
archy made up of one or more cache levels exploits program reuse
and saves execution time and energy consumption by delivering data
and instructions with an average latency of a few processor cycles
instead of requiring costly memory transfers. Although cache designs
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are ubiquitous in contemporary processors, many details regarding
them are still ignored in the WCET analysis, and single-level LRU
(Least Recently Used) instruction caches are still an open issue [1].
This situation is even worse for data caches, since writing policies must
be also modeled. Most conventional data caches are writeback (store
instructions write just the cached data, and memory is updated when
the corresponding dirty cache line is evicted), which in general results
in fewer memory transfers than writethrough policy (store instructions
write to the cache as well as to the main memory) [2]. In turn, both
writeback and writethrough policies can be combined with different
write-miss allocation policies. Also, the interaction between the code
and the data cache is much more complex than with the instruction
cache. This can be seen in common scenarios such as loops, function
calls, and execution-time address computation. In loops, a memory
instruction may access different data memory addresses depending on
the loop iteration. In functions, memory instructions accessing local
variables use stack frames, whose base address depends, among other
things, on the nesting level. Regarding address computation, a memory
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Fig. 1. Context of our proposal. The compilation may be performed by any com-
piler, with any optimization options. The data cache description includes the cache
organization (set-associative LRU, ACDC, etc.), its policies (write-back, write-through,
write-allocate, fetch-on-write-miss, write-around, etc.), and its configuration (number
of sets, ways, size, etc.).

instruction may access a data-dependent memory address unknown at
compilation/static analysis time. Such complexity to bound data cache
hits and misses is hard enough so that, to the best of our knowledge,
there is no comprehensive comparison regarding the impact of data
caches to the WCET.

In this paper we propose a generic framework to analyze data caches
(see Fig. 1). Unlike most methods focused on analyzing which contents
are cached at a given program point for a particular cache configuration
(e.g. [1,3]), our approach is applied on top of a reuse analysis of the
compiled code [4]. We let such analysis to explore the reuse as a
property of the binary code (i.e. how data are reused, independently
of being cached or not), and then we analyze whether a particular
cache organization is able to exploit the detected data reuse. Our
proposal includes basic categories to classify data references, similar
to those used for the instruction cache, and how such categories are
translated to the Implicit Path Enumeration Technique (IPET) to obtain
the WCET bound. We describe the implementation of a conventional
set-associative LRU data cache (writeback, with write-allocate and fetch
on write-miss), a predictable ACDC cache [5], an unlimited size LRU
cache, and a system without cache to compare to. For the ACDC cache,
we also detail a new method to configure it heuristically. Since our
proposals take profit of the reuse information, our hit/miss bounds
are much more precise than current state of the art approaches. Such
precision allows us to perform a detailed comparison of the impact of
the considered data cache organizations to the WCET. Our results show
that, with our framework, the estimated WCET bound with LRU data
caches is reduced 17.23% in average with respect to existing methods.
Also, the WCET bound with the predictable cache ACDC is reduced
another 19.62% in average in respect of a system with LRU data cache.

Our contributions can be summarized as follows:

• Generic framework for the analysis of data caches in the worst
case based on reuse information, applicable to any data cache
organization.

• Description of its application to a conventional LRU cache, an
ACDC cache, and an LRU cache with unlimited size.

• Integration of the above WCET analysis into the IPET technique.
• Heuristic method to obtain good ACDC configurations.
• Experimental comparison of data hit ratio and WCET bound

for different data cache organizations, analysis methods, and
compiler optimization levels performed on ARM v7 binaries.
2

Fig. 2. Schematics of set-associative LRU and ACDC caches. The required hardware
to hold the LRU ordering of the ways in each set in the set-associative cache is not
represented.

The rest of the paper is organized as follows. Section 2 describes
related work, including a brief description of the ACDC cache. Section 3
details our proposed generic framework for the data cache WCET
analysis. Its integration into IPET is described in Section 4. Then,
Section 5 discusses the safety of our approach. In order to analyze the
ACDC, we propose a simple method to configure it in Section 6. Next,
Section 7 describes our experimental environment and our results.
Finally, Section 8 presents our conclusions.

2. Related work

Most current set-associative LRU cache (Fig. 2(a)) analysis methods
are based on the must/may analysis [6]. This method uses Abstract
Interpretation [7] to determine the possible contents of the cache with-
out requiring explicit address sequences. A recent improvement on this
methodology achieves its maximum possible precision [1]. Although
it works well on instructions, its application on data is limited due to
the fact that it is based on accesses to known and constant addresses
at compile time. For instance, if a given memory instruction accesses
a different data memory address each time it is executed (e.g. an
array traversal), the accessed addresses must be tagged as unknown.
As a future work, authors suggest that, with a preprocessing analysis,
it might be possible to bound the address space of a given memory
instruction, e.g. to an array. If such unknown access is repeated over
time so that the amount of data accessed is larger than their address
space, some hits may be guaranteed. However, guaranteeing that a
memory access does not go out of bounds is not trivial, and caches
are not designed to hold large data structures. Up to our knowledge,
feasibility of such preprocessing analysis has not been addressed yet.

Indeed, when whole data structures fit in cache, scratchpad memo-
ries or locked data caches would be preferable [8]. Locked data caches
are not explored in this work, since they are completely dependent on
the data size of the task and the cache size. That is, their worst-case
performance would be equal or better than any other option if all data
fit in cache, and worse than any other option when the percentage of
cached data is below certain threshold.

Although most WCET studies on caches assume a single level hierar-
chy, there are a few that analyze multi-level caches [9,10]. Essentially,
they apply the must/may analysis to each cache level. Our paper does
not consider multi-level caches, but a similar level-by-level approach
could be applied. Regarding data cache write policies, most studies
focus on writethrough (e.g. [11]), but writeback caches provide a better
WCET bound [12,13].

Alternatively to set-associative LRU caches, there are designs of
predictable caches for real-time systems [5,14]. Instead of conventional
data-driven caches, the ACDC (Address-Cache Data-Cache) is a small
instruction-driven data cache that effectively exploits reuse [5]. It oper-
ates from a fixed preselected subset of load/store instruction addresses
held in the AC part of the ACDC cache (see Fig. 2(b)). Such selected
load/store instructions have data cache replacement permission (DRP).
Each permission is associated with a particular data cache line in the
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Fig. 3. ACDC operation flow chart for a 𝑙𝑜𝑎𝑑∕𝑠𝑡𝑜𝑟𝑒 instruction (in 𝑃𝐶) to 𝑎𝑑𝑑𝑟, which
may evict a cache line 𝑢. 𝑃𝐶s in AC are those with DC replacement permission. Notice
that the first three decisions can be evaluated in parallel.

DC part of the ACDC. Thus, when executing a load/store instruction
that misses in DC, the replacement of the data line on DC will be only
allowed if such an instruction has DRP (i.e., the PC of this instruction is
kept in an AC entry). Since each selected memory instruction replaces
its own data cache line, pollution is prevented and performance is
independent of the size of the data structures in tasks. Fig. 3 shows
the flowchart of the ACDC behavior. For data accesses, there is a
fully-associative look-up, so that any access may benefit from the
cached content. On miss, if the missing load/store has DRP (its PC
is in AC), the DC line assigned to this load/store is replaced, as in
a conventional writeback write-miss allocate cache. However, misses
triggered by instructions without DRP bypass DC. That is, loads bring
the specified data to the processor without modifying DC, and stores
write directly to main memory without fetching the missing data, as
in a write-around cache [2]. There is a similar proposal, also based
on granting replacement permissions to specific memory instructions,
focused on temporal reuse for large data structures [14]. However, it is
not designed as a general purpose predictable cache, but as an auxiliary
cache targeted to codes optimized by tiling/blocking transformations.

Independently of the target data cache, the effects of context
switches to the WCET are important. There are many proposals to
bound the WCET increase related to context switches. Due to the small
size of the ACDC, the best option would probably be to save and restore
the cached data on every context switch, as proposed for lockable
instruction caches [15]. For larger caches, preemption costs are higher,
and other approaches may be preferable [16,17]. Although adding the
constant bound of preemption costs to the WCET estimation is trivial,
it is not included in this study, since this cost depends very much on
the tasks in the multitasking system.

As outlined above, the goal of caches is to keep local copies of data
that are likely to be used again. Cache Miss Equations (CMEs) [18] are
based on the reuse theory [19], and have been used to test whether
it is worth caching whole data structures [8]. However CMEs are
limited to perfectly nested loops. A similar approach is able to also
analyze imperfectly nested loops by transforming them to perfectly
nested loops with guards [20]. Although such transformation extends
the analyzable loops, the analysis of other constructs, and therefore
of general programs, is not possible with this approach. In order to
3

Fig. 4. Optimized matrix multiplication code, 𝐴 = 𝐵×𝐶, assuming matrix 𝐴 initialized
to zero. Induction variables 𝑖, 𝑗, 𝑘, and temporal variable 𝑡 should be allocated to
registers.

analyze general codes, symbolic names and a congruence analysis can
be used to determine whether accesses are mapped to the same LRU
cache set/line [3]. In this way hit/miss information may be obtained
even for accesses to unknown memory addresses. Such approach identi-
fies certain group reuse cases (two different instructions accessing to the
same data address), but does not perform a whole reuse analysis [19].
A more recent work provides the theoretical foundations to perform a
safe reuse analysis on tasks [4]. It uses polyhedra to track the content
of registers and memory by means of Abstract Interpretation [7]. Then
the access patterns of data references are extracted, along with its reuse
information [19]. So, it is able to analyze whole programs and gener-
ate their data reuse facts with equal or more precision than previous
methods. However, it does not address its practical application to any
specific data cache, nor its integration in a WCET analysis [4]. We
propose a generic methodology for data cache analysis and its WCET
analysis (see Fig. 1) that exploits these data reuse facts similarly to the
more common flow facts.

3. Generic data cache analysis

In order to evaluate the impact of caches in the WCET, it is required
to predict their behavior in the worst case as accurately as possible.
Typically, this is performed through an analysis of memory references
that classifies them into a few categories, and then integrates such
references into the WCET analysis based on their category. So, from
now on, we call reference to a memory operation in the (static) binary
code, and we call access to an actual execution (dynamic) of a memory
reference. For instance, for a typical array traversal in a loop, the
load instruction in the code contains a single memory reference for
traversing the array, which is translated into multiple accesses to the
specific address of each element in the array for each loop iteration.
This section describes how we classify each data reference depending
on the target data cache by means of reuse information.

3.1. Intuitive example

To illustrate the hit/miss computation on data in the worst case,
let us consider the optimized matrix multiplication code in Fig. 4. In
this example, the four existing references (three loads and one store)
result in accesses to different addresses, so an address-based analysis
would consider such accessed addresses as unknown. For this code,
Fig. 5(a) shows the representation of a typical persistence analysis [1].
In the worst case, conflicts must be assumed between all accesses, and
with such assumption all cached data lines must be safely considered
as evicted before being reused, resulting in always miss/no persistence
in all references. Notice that, even considering address subspaces (in
this case the rows of a matrix), interleaving accesses raise uncertainty
regarding conflicts in the worst case. Moreover, if matrices are parame-
ters of functions or they are processed by pointers (such as, for instance,
matrix1 benchmark in TACLeBench [21]), bounding the address space
of loads/stores may be impossible. So, except for constant addresses
(global scalar variables), address-based analyses are not adequate to
predict the hits/misses on data caches.

Alternatively, Fig. 5(b) shows a representation considering the ac-

cess patterns and reuse for the code in Fig. 4 [4]. It can be seen that
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Fig. 5. Representation of different data access analyses for the code in Fig. 4, with elements of 4 B.
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ach load/store is associated with a linear access pattern that results
n accesses to sequential elements in each array (self spatial reuse),
nd there is group temporal reuse between the load and the store to
[i][j]. This information is cache-independent, so the corresponding
euse analysis must be performed just once. Then, it can be used to
btain the hits/misses in the worst case for any particular data cache.
or instance, assuming an LRU cache with just 2 ways, both A and C
oads will have a high hit ratio (depending on how many array elements
it in each cache line) and the store to A will always hit, since it reuses
he data previously loaded. Notice that this can be asserted even if
he base addresses of the matrices are unknown. Also, group reuse
an be set even on unknown addresses/patterns, as long as it can be
uaranteed that two references access to the same memory address.
s it can be seen, an accurate hit/miss analysis cannot disregard data
ccess patterns nor reuse information.

.2. Limitations of this work

As outlined in Section 1, our framework requires a previous reuse
nalysis of the compiled code [4]. Currently, such analysis does not deal
ith recursive functions. It cannot analyze non-natural loops (loops
ith more than one entry point) either, which may appear in particular
ses of goto statements.

Although the data reuse facts provided by this previous analysis for
given binary code are safe, it is important to notice that programs

re sequences of instructions to be executed in order, so this safety
ay not hold if such an order is not respected. Therefore, processors

hat may not access data in program order are not analyzable with our
roposal. Such behavior might be found in out-of-order execution, data
refetchers, or speculative execution of loads/stores (e.g., performing
emory accesses in a mistaken branch).

.3. Categories of data references

In order to calculate whether a given memory access will result in a
ata hit or miss, most analysis methods first classify memory references
nto categories, and then a hit/miss computation is performed based on
hese categories. In this way, hits/misses are not calculated per memory
ccess (which would be intractable), but per memory reference.

Table 1 shows our proposed categories for data references. Except
or the 𝑘-miss (KM) category, explained below, they are adaptations
4

f the typical hit/miss categories used in instruction cache analysis [6,
able 1
ategories for data memory references.
Category Description

Always-hit (AH) All accesses hit
First-miss (FM) When iterating in its enclosing loop, only the first

access may miss
𝑘-miss (KM) When iterating in its enclosing loop, only up to

𝑘 accesses may miss
First-hit (FH) All accesses but the first one may miss
Not-classified (NC) All accesses may miss

22,23]. Also, Table 1 includes their description, since these categories
have slightly different/ambiguous meanings in previous papers [24].
Since data accesses present much uncertainty, our categories bound the
number of misses, but not the number of hits. This safe approach makes
it possible to dispense with an overlapping data analysis. Another
important detail is that first-miss (FM) and KM categories are associated
with the deepest enclosing loop containing the corresponding memory
instruction (e.g., in Fig. 4, loop 𝑘 encloses the reference to B, and loop 𝑗
encloses references to A and C). For instance, a FM reference in the
deepest loop of a nested loop structure means that, at most, it will miss
as many times as the deepest loop is reached.

Apart from previous categories, we introduce the KM category. It
has an extra parameter 𝑘 that specifies the calculated constant bound on
the number of misses for a given reference in its enclosing loop. Having
the access pattern of a self-reusing reference, obtaining its bound 𝑘 is
rivial. For instance, let us take 𝐴 + 4𝑛 ⋅ 𝑖 + 4 ⋅ 𝑗 from Fig. 5(b), which

sequentially traverses a matrix row of 4 byte elements in its enclosing
loop (𝑗). Let us assume cache lines of 4𝐿 bytes (𝐿 elements per cache
line). Also, let us assume aligned 𝑛 × 𝑛 matrices, with 𝑛 multiple of 𝐿.
In such case, each row would need 4𝑛∕4𝐿 cache lines, that is, 𝑘 = 𝑛∕𝐿
misses at most in loop 𝑗. This calculation may be trickier if the array
base address is unaligned or unknown, and may include overestimation
if part of the array is already cached.

3.4. Classification of references into categories

The classification of references into categories depends on the target
data cache, since not all cache organizations exploit the data reuse
in the same way. Essentially, we rely on the minimal cache life-span
metric (mls() function in algorithms below), which determines the

minimum number of accesses necessary to evict an element that has
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just been accessed [25]. Apart from the cache organizations detailed
below, other caches can be analyzed in a similar way by means of this
metric.

3.4.1. Background on data reuse theory
Access patterns (e.g., 𝐴+4𝑛⋅𝑖+4⋅𝑗) are based on loop nest data reuse

heory [19]. For the sake of a self-contained research, let us briefly
ntroduce such a theory, as it is outlined in previous papers [4,5]. Each
teration in a loop nest corresponds to a node in its iteration space. In
loop nest of depth 𝑛, this node is identified by its induction variables
ector �⃗� = (𝑖1, 𝑖2,… , 𝑖𝑛), where 𝑖𝑗 is the iteration value of the 𝑗th loop
n the nest, counting from the outermost to innermost loop. Let 𝑑 be
he number of dimensions of an array 𝐴. The reference 𝐴[𝑓 (�⃗�)] is said
o be uniformly generated if 𝑓 (�⃗�) = 𝐻�⃗� + 𝑐, where 𝑓 is an indexing
unction 𝑍𝑛 → 𝑍𝑑 , the 𝑑 × 𝑛 matrix 𝐻 is a linear transformation, and 𝑐
s a constant vector. Row 𝑘 in 𝐻 represents the linear combination of
he induction variables corresponding to the 𝑘th array index. Since any
ata structure is mapped to memory and memory can be seen as a single
imension space, 𝑓 can be transformed into an equivalent 𝑓 (�⃗�) = ℎ⃗⋅ �⃗�+𝑐.

So, for reference 𝐴+4𝑛 ⋅ 𝑖+4 ⋅ 𝑗 from Fig. 5(b), �⃗� = (𝑖, 𝑘, 𝑗), ℎ⃗ = (4𝑛, 0, 4),
and 𝑐 = 𝐴. A given reference is constant if all elements in ℎ⃗ are 0, and
it is array otherwise. If the reference cannot be described as ℎ⃗ ⋅ �⃗� + 𝑐,
hen it is non-linear.

.4.2. Conventional set-associative LRU cache
Let us begin with the classification for conventional LRU caches. In

rder to classify data references into categories, multiple approaches
an be used. For references to constant addresses, a classification via
inary Decision Diagrams is probably the most efficient [1]. In addition,
eferences with group reuse could be accurately analyzed if such infor-
ation were provided [4]. However, integrating linear patterns might
ot be possible, due to the fact that the accessed address varies for each
ccess. Since our goal is to evaluate the impact of an LRU data cache
n the WCET bound with precision, we implement an analysis based on
he reuse information (Algorithm 1).

For references without group-reuse (Algorithm 1, line 36), hits are
ossible if the reference is inside a loop (self-reuse, Algorithm 2). So,
ur implementation analyzes the cache lines accessed in the loop by
nterleaving references (function conflictingAccessesInLoop) in order to
ee how many of them may be mapped to the set (or sets) used by the
elf-reuse reference. If the number of possible conflicting cache lines
s lower than the LRU minimal cache life-span [25] (i.e., lower than
he number of ways), a hit is guaranteed (FM category for constant
ddresses, and KM for sequential accesses). Otherwise, this reference is
ategorized as NC.

If a reference has group-reuse, reuse information provides its last
ominant reference with group reuse (reference 𝑑𝑜𝑚𝑟𝑒𝑓 in
lgorithm 1). 𝑑𝑜𝑚𝑟𝑒𝑓 dominates 𝑟𝑒𝑓 if every path to 𝑟𝑒𝑓 goes through
𝑜𝑚𝑟𝑒𝑓 . So, 𝑑𝑜𝑚𝑟𝑒𝑓 is the last previous reference that has compulsorily
ccessed the same data. Hence, a cache hit is guaranteed if the accesses
etween them do not evict the content to be reused. Similarly as above,
ur implementation explores the possible paths between each pair of
eferences with group-reuse, retrieving the accessed cache lines that
ap to the analyzed cache set (function conflictingAccessesBetween). If

he number of conflicting cache lines is lower than the number of ways,
hit is guaranteed (AH category).

For references with self-reuse within a given loop and group-reuse
ith respect to another reference dominating this loop (Algorithm 1,

ine 17), if they present hit on group-reuse (first iteration), this added
it is taken into account in the self-reuse classification performed
bove. That is, FM are translated to AH, NC to FH, and the 𝑘 misses
n KM are decremented in 1 miss. For simplicity, Algorithm 1 does not
how some details, for instance those regarding references in unfeasible
aths.

Both Algorithms 1 and 2 use conflictingAccessesBetween() and con-
5

lictingAccessesInLoop() functions to explore the CFG, respectively. Such
unctions recursively explore the targeted paths in the CFG, either
etween two references, or between the same reference in different
terations of a loop. Although this targeted brute force exploration is not
articularly efficient, notice that both functions work with a perfectly
elimited subset of the CFG, and compilers place reusing accesses as
lose as possible. Also, if the number of conflicting cache lines gets
igher than the number of ways (mls() function), our implementation
erminates the analysis (not show in Algorithms 1 and 2). Based on our
xperiments, performance seems acceptable, as we show in Section 7.5.

Algorithm 1 Algorithm to classify data memory references in a system
with a LRU cache.
1: for all 𝑟𝑒𝑓 do # ∀ data references in the program
2: if 𝑟𝑒𝑓 has group reuse then # group reuse
3: 𝑑𝑜𝑚𝑟𝑒𝑓 ← 𝑙𝑎𝑠𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡𝑊 𝑖𝑡ℎ𝐺𝑟𝑜𝑢𝑝𝑅𝑒𝑢𝑠𝑒(𝑟𝑒𝑓 )
4: if 𝑟𝑒𝑓 is not enclosed in any loop then
5: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑑𝑜𝑚𝑟𝑒𝑓 , 𝑟𝑒𝑓 ) < 𝑚𝑙𝑠(𝐿𝑅𝑈,𝑊 𝑎𝑦𝑠)
then

6: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← AH # single hit
7: else
8: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← NC # single unclassified
9: end if

10: else # 𝑟𝑒𝑓 inside loop
11: if 𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 ) = 𝑙𝑜𝑜𝑝(𝑑𝑜𝑚𝑟𝑒𝑓 ) then # both in the same loop
12: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑑𝑜𝑚𝑟𝑒𝑓 , 𝑟𝑒𝑓 ) < 𝑚𝑙𝑠(𝐿𝑅𝑈,𝑊 𝑎𝑦𝑠)

then
3: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← AH

14: else
15: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← NC
16: end if
17: else # reference (𝑑𝑜𝑚𝑟𝑒𝑓 ) dominating a loop and reused (𝑟𝑒𝑓 )

within it
18: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑆𝑒𝑙𝑓𝑅𝑒𝑢𝑠𝑒(𝑟𝑒𝑓 )
19: if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] = KM then
20: 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] ← 𝑐𝑎𝑙𝑐𝐿𝑜𝑜𝑝𝑀𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠(𝑟𝑒𝑓 )
21: end if
22: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑑𝑜𝑚𝑟𝑒𝑓 , 𝑟𝑒𝑓 ) < 𝑚𝑙𝑠(𝐿𝑅𝑈,𝑊 𝑎𝑦𝑠)

then
3: if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] = FM then

24: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← AH
25: else if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] = KM then
6: 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] ← 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] − 1

27: if 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] = 0 then
28: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← AH
29: end if
30: else if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] = NC then
1: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← FH

32: end if
33: end if
34: end if
35: end if
6: else # no group reuse

37: if 𝑟𝑒𝑓 is inside loop then # self reuse
8: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑆𝑒𝑙𝑓𝑅𝑒𝑢𝑠𝑒(𝑟𝑒𝑓 )

39: if 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] = KM then
40: 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] ← 𝑐𝑎𝑙𝑐𝐿𝑜𝑜𝑝𝑀𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠(𝑟𝑒𝑓 )
41: end if
42: else # no reuse
3: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← NC

44: end if
5: end if

46: end for
Function 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑟𝑒𝑓1, 𝑟𝑒𝑓2) returns the maximum num-
ber of conflicting accesses between two references with group reuse with a
dominance relation. Function 𝑚𝑙𝑠(𝑝𝑜𝑙𝑖𝑐𝑦,𝑤𝑎𝑦𝑠) returns the minimal life-span
metric in the cache [25].
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Algorithm 2 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑆𝑒𝑙𝑓𝑅𝑒𝑢𝑠𝑒(𝑟𝑒𝑓 ): Function to classify a data mem-
ory reference inside a loop considering only its self reuse in a system
with a LRU cache.
1: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐼𝑛𝐿𝑜𝑜𝑝(𝑟𝑒𝑓 ) < 𝑚𝑙𝑠(𝐿𝑅𝑈,𝑤𝑎𝑦𝑠) then # not evicted

between accesses of 𝑟𝑒𝑓
2: if 𝑟𝑒𝑓 is constant then # self-temporal only
3: return FM
4: else if 𝑟𝑒𝑓 is array then # self-spatial reuse
5: return KM
6: else if 𝑟𝑒𝑓 is nonlinear then # reuse not guaranteed
7: return NC
8: end if
9: else # accessed line may be evicted
0: return NC
1: end if
unction 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝐼𝑛𝐿𝑜𝑜𝑝(𝑟𝑒𝑓 ) returns the maximum number of

conflicting accesses in the loop enclosing 𝑟𝑒𝑓 between two accesses of 𝑟𝑒𝑓
in different iterations.

Algorithm 3 𝑐𝑎𝑙𝑐𝐿𝑜𝑜𝑝𝑀𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠(𝑟𝑒𝑓 ): Function to get the potential
data misses for 𝑟𝑒𝑓 [5].
1: if 𝑒𝑛 ∈ 𝐾𝑒𝑟(𝐻𝑠) then # self-spat. (may have self-temp.)
2: if 𝑒𝑛 ∈ 𝐾𝑒𝑟(𝐻) then # self-temporal
3: return 1 # access to the same address always
4: else # self-spatial reuse
5: if 𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒 ≤ |ℎ𝑛| then # cache line size ≤ stride
6: return 𝑙𝑜𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 # always may miss
7: else # exploitable self-spatial reuse
8: if ℎ𝑛 > 0 then # forward traversal
9: 𝑓𝑖𝑟𝑠𝑡𝐿𝑖𝑛𝑒𝐸𝑙𝑒𝑚𝑠 ← 𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒 −

⌊

𝑐 mod 𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒
ℎ𝑛

⌋

0: else # backward traversal
11: 𝑓𝑖𝑟𝑠𝑡𝐿𝑖𝑛𝑒𝐸𝑙𝑒𝑚𝑠 ←

⌊

𝑐 mod 𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒
−ℎ𝑛

⌋

2: end if
13: return 1 +

⌈

𝑙𝑜𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠−𝑓𝑖𝑟𝑠𝑡𝐿𝑖𝑛𝑒𝐸𝑙𝑒𝑚𝑠
𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒∕|ℎ𝑛 |

⌉

14: end if
15: end if
6: else # ref without reuse: may always miss
7: return 𝑙𝑜𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
8: end if
unction 𝐾𝑒𝑟(𝐻) performs the kernel operation on matrix 𝐻 , i.e., obtains the
et of vectors that are mapped to the null vector by 𝐻 . Matrix 𝐻 is the linear
ransformation of 𝑟𝑒𝑓 , ℎ𝑛 is its stride in the enclosing loop, and 𝑐 is its base
ddress (see Section 3.4.1). 𝑒𝑖 is a vector with all elements equal to 0 except
he one in position 𝑖, matrix 𝐻𝑆 is 𝐻 with all elements of its last row replaced
y 0, and 𝑛 is the number of columns of 𝐻 , i.e. the depth of the nested
oops in 𝑟𝑒𝑓 [5,19]. Constant 𝑙𝑖𝑛𝑒𝑆𝑖𝑧𝑒 represents the size of the cache line,
nd 𝑙𝑜𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of iterations in loop 𝑛.

3.4.3. ACDC
Classification for the ACDC (Algorithm 4) is much easier, since the

ACDC prevents undesired evictions and its behavior depends on the
preconfigured data replacement permissions. For references with group-
reuse, hits are guaranteed (AH category) if any dominant reference with
group reuse has been granted data replacement permission. For refer-
ences without exploitable group-reuse, hits are guaranteed if the reference
is inside a loop (self-reuse) and has been granted data replacement
permission (FM category for constant addresses, and KM for sequential
accesses). Otherwise, the reference is classified as NC.

3.4.4. Unlimited size data cache
For comparison purposes, we also analyze an unlimited size data

cache. Since no data overlapping can be assumed in the worst case,
we resort to the reuse information. That is, accesses without self/group
6

a

Algorithm 4 Algorithm to classify data memory references in a system
with an ACDC cache.
1: for all 𝑟𝑒𝑓 do # ∀ data references in the program
2: if 𝑟𝑒𝑓 has group reuse and any dominant reference has DRP then #

exploitable group reuse
3: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← AH
4: else if 𝑟𝑒𝑓 is inside loop and 𝑟𝑒𝑓 has DRP then # exploitable self

reuse
5: if 𝑟𝑒𝑓 is constant then # self-temporal reuse only
6: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← FM
7: else if 𝑟𝑒𝑓 is array then # self-spatial reuse
8: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← KM
9: 𝑚𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠[𝑟𝑒𝑓 ] ← 𝑐𝑎𝑙𝑐𝐿𝑜𝑜𝑝𝑀𝑎𝑥𝑀𝑖𝑠𝑠𝑒𝑠(𝑟𝑒𝑓 )

10: else if 𝑟𝑒𝑓 is nonlinear then # reuse not guaranteed
11: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← NC
12: end if
3: else # no reuse
4: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦[𝑟𝑒𝑓 ] ← NC

15: end if
16: end for

reuse are assumed to access non-cached memory lines. This would be
equivalent to the previous LRU analysis assuming that all reused data
hit, or to the previous ACDC analysis assuming that all references have
data cache replacement permission. In any case, there would be no
replacements in an unlimited size data cache, so writebacks are not
considered.

3.4.5. Example of classification
Let us illustrate how the code in Fig. 4 would behave depending

on the selected data cache and analysis method. For simplicity, let us
consider potential misses as misses.

Table 2 shows the category, number of misses, and number of write-
backs, for five different systems, namely a system without data cache,
two systems with a conventional LRU data cache with at least two ways
assuming two different analysis for data references (persistency/address
only and reuse/pattern), a system with an ACDC with at least three
entries, and a system with a data cache of unlimited size.

Without cache (column ‘‘No cache’’), all accesses go to main mem-
ory, so there is no need of categorization. Also it presents no writebacks.
For an address-only LRU analysis (Fig. 5(a)), in column ‘‘LRU-addr’’,
all accessed addresses are unknown, so they are classified as NC. In
addition, the data modified by the store instruction must be written to
memory on every access.

If we consider a pattern-based LRU analysis (Fig. 5(b)), in column
‘‘LRU-pattern’’, categories are much more accurate than those in the
address-only LRU analysis. The ld B is still categorized as NC due to the
nterleaving accesses. On the other hand, the reuse information allows
n AH categorization of st A, since the number of possible conflicting
ata lines between this reference and ld A (just one, brought by ld C) is
ower than the number of cache ways (assuming a cache with 2 ways
t least). Furthermore, both ld A and ld C are classified as KM, with
= 𝑛∕𝐿 in its enclosing loop (𝑗) as detailed above. Since loop 𝑗 is

nside two nested loops, both iterating 𝑛 times, the maximum number
f misses for both KM references is bounded to 𝑛2 ⋅𝑘 = 𝑛3∕𝐿. Moreover,
he store to A sets the dirty flag for the data brought by the load of
, so it triggers as many writebacks as misses by ld A. We associate
ritebacks with the reference that brings the data from memory, but

hey could be associated with the reference that sets the dirty flag, or
he reference that evicts the cache line.

Let us now consider an ACDC with at least 3 entries for data replace-
ent permissions (column ‘‘ACDC’’). We assume that all references but

he store are granted DRP, that is, they have an exclusively assigned
ata cache line to replace, and no other instruction can evict it. The
tore to A reuses the data cached by ld A, so it always hits. For ld A

nd ld C, ACDC performs as the LRU-pattern case, that is, KM categories
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Table 2
Estimated number of misses and writebacks in the worst case for different data caches for the matrix multiplication code in
Fig. 4, assuming aligned non-overlapping matrices. The considered LRU data cache has 2 ways at least, and the ACDC may
hold 3 data replacement permissions at least.

No cache LRU-addr LRU-pattern ACDC Unlimited size

Ref. Access Cat Miss WB Cat Miss WB DRP Cat Miss WB Cat Miss WB

ld B 𝑛2 NC 𝑛2 0 NC 𝑛2 0 Yes KM 𝑛2∕𝐿 0 KM 𝑛2∕𝐿 0
ld A 𝑛3 NC 𝑛3 0 KM 𝑛3∕𝐿 𝑛3∕𝐿 Yes KM 𝑛3∕𝐿 𝑛3∕𝐿 KM 𝑛3∕𝐿 0
ld C 𝑛3 NC 𝑛3 0 KM 𝑛3∕𝐿 0 Yes KM 𝑛3∕𝐿 0 KM 𝑛3∕𝐿 0
st A 𝑛3 NC 𝑛3 𝑛3 AH 0 0 No AH 0 0 AH 0 0

Total 3𝑛3 + 𝑛2 4𝑛3 + 𝑛2 3
𝐿
𝑛3 + 𝑛2 3

𝐿
𝑛3 + 1

𝐿
𝑛2 2

𝐿
𝑛3 + 1

𝐿
𝑛2
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with no more than 𝑛3∕𝐿 misses. For the ld B reference, since it has an
ssociated cache line, interleaving accesses cannot evict it, so it is also
lassified as KM with 𝑘 = 𝑛∕𝐿. Since its enclosing loop is reached 𝑛
imes in loop 𝑖, ld B is bounded to 𝑛2∕𝐿 misses.

Finally, let us discuss our estimation for an unlimited size data
ache (column ‘‘Unlimited size’’). Reused content (st A) always hits and,
iven the unlimited size, there would be no replacements/writebacks.
lso, all sequential accesses miss as many times as cache lines the
ata structures occupy, that is, KM with 𝑘 = 𝑛∕𝐿 per matrix row

traversal. As above, our analysis multiplies those misses by the number
of times they occur (𝑛 for ld B, and 𝑛2 for ld A and ld C). However,
otice that this may involve overestimations, as can be seen for ld A
nd ld C. Since matrices A and C occupy 𝑛2∕𝐿 cache lines, ideally
here cannot be more than 𝑛2∕𝐿 misses, but our analysis estimates
3∕𝐿 misses. To try to avoid such overestimation, an address space
nalysis of data structures plus an out-of-bounds analysis on references
ould be required. However, notice that such overestimation for the
nlimited size cache does not affect its value as a baseline, since it is
till a lower bound for our analyzed caches. As stated above, such lower
ound corresponds to an LRU-pattern that always takes profit of the
xisting reuse, or an ACDC with unlimited DRPs, in both cases without
ritebacks.

In this example, the pattern-based LRU analysis gives the highest
stimate of the number of memory accesses in the worst case, even
orse than a system without cache. ACDC performs less memory ac-

esses than LRU-pattern in the worst case, but note that it has a limited
mount of DRPs to grant. If such number is not enough, references that
ould benefit from DRP will be categorized as NC. These details are

onsidered in the IPET model.

. IPET integration

The last part of the WCET analysis commonly involves generating
n integer linear programming (ILP) model to obtain the WCET bound.
he Implicit Path Enumeration Technique (IPET) defines a flow-based
LP model of the control-flow graph (CFG) by means of a variable 𝑥𝑖
or each basic block 𝑖 in the CFG, and variables 𝑑𝑒 for the CFG edges 𝑒
etween basic blocks, both representing the number of times that they
re traversed [26]. Two virtual basic blocks start and end are also linked
o the CFG, with their corresponding 𝑥 variables set to 1. The execution
ime is defined as:

𝑇 =
∑

𝑖
𝑐𝑖 ⋅ 𝑥𝑖 (1)

here 𝑐𝑖 is the constant cost of traversing basic block 𝑖 a single time.
hen, the WCET bound is obtained by maximizing Eq. (1). In order to
onsider a LRU data cache, the data memory latency cost is removed
rom 𝑐𝑖, and other variables and constraints are added [26]. In our case,
he data cache is not modeled as defined by previous studies, but based
n our previous categories, as we detail below. Table 3 describes the
riginal IPET variables and constants, and also the new ones used in
ur approach.

In order to integrate our proposal, we represent the total data access
osts in the program as a new variable dac, to be added to Eq. (1):

𝑇 = 𝑑𝑎𝑐 +
∑

𝑐𝑖 ⋅ 𝑥𝑖
7

𝑖
s

able 3
ariables and constants of our IPET proposal.
Variable Description

𝑑𝑒 Times that edge 𝑒 is traversed (original IPET)
𝑑𝑎𝑐 Cumulative data access cost in the program
𝑑ℎ𝑟𝑒𝑓 Times that data reference 𝑟𝑒𝑓 hits
𝑑𝑚𝑟𝑒𝑓 Times that data reference 𝑟𝑒𝑓 misses
𝑤𝑏𝑟𝑒𝑓 Times that data cached by reference 𝑟𝑒𝑓 are written back
𝑥𝑖 Times that basic block 𝑖 is traversed (original IPET)

Constant Description

𝑐𝑖 Cost of traversing basic block 𝑖 (original IPET), without
including data memory access costs

𝑘 Constant associated with a given 𝑟𝑒𝑓 classified as KM
ℎ𝑐 Data hit cost
𝑚𝑐 Data miss cost
𝑤𝑏𝑐 Writeback cost

This variable is the sum of the number of possible occurrences (data
hits 𝑑ℎ, data misses 𝑑𝑚, and writebacks 𝑤𝑏) times their constant cost
(hit cost ℎ𝑐, miss cost 𝑚𝑐, and writeback cost 𝑤𝑏𝑐) for each reference
𝑟𝑒𝑓 in the program:

𝑑𝑎𝑐 =
∑

𝑟𝑒𝑓
ℎ𝑐 ⋅ 𝑑ℎ𝑟𝑒𝑓 + 𝑚𝑐 ⋅ 𝑑𝑚𝑟𝑒𝑓 +𝑤𝑏𝑐 ⋅𝑤𝑏𝑟𝑒𝑓

Then, such occurrences (𝑑ℎ𝑟𝑒𝑓 , 𝑑𝑚𝑟𝑒𝑓 , and 𝑤𝑏𝑟𝑒𝑓 ) are constrained
sing the original IPET variables 𝑥 and 𝑑 as described below. For a
learer notation, let us define the following functions: 𝐵𝐵(𝑟𝑒𝑓 ) returns
he basic block 𝑖 where reference 𝑟𝑒𝑓 is located, 𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 ) returns the
oop 𝑙 enclosing reference 𝑟𝑒𝑓 , and 𝐸𝐸(𝑙) returns the set of entry edges
f loop 𝑙, that is, the set of edges reaching loop 𝑙 that are not back-edges
given two basic block nodes 𝑎, 𝑏 from a control-flow graph, a back-edge
s an edge 𝑎 → 𝑏 whose head 𝑏 dominates its tail 𝑎 [27], i.e., all edges
hat enter the loop header 𝑏 from the loop body are back-edges). In
eneral, the sum of data hits and misses of a given reference equals the
umber of times its corresponding basic block is traversed:

ℎ𝑟𝑒𝑓 + 𝑑𝑚𝑟𝑒𝑓 = 𝑥𝐵𝐵(𝑟𝑒𝑓 ) (2)

owever, some instruction sets (e.g. ARM) provide predicated
oad/store instructions. That is, load/store operations together with a
ondition so that, when the instruction is executed, the memory access
s performed only if the condition is true. In such case Eq. (2) must be
et as an ≤ inequality.

For each reference, we bound its number of misses depending on its
ategory, as follows.

≤ 𝑑𝑚𝑟𝑒𝑓 ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑟𝑒𝑓 is AH,
∑

𝑑∈𝐸𝐸(𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 )) 𝑑 if 𝑟𝑒𝑓 is FM,
∑

𝑑∈𝐸𝐸(𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 )) 𝑘 ⋅ 𝑑 if 𝑟𝑒𝑓 is KM,
𝑥𝐵𝐵(𝑟𝑒𝑓 ) − 1 if 𝑟𝑒𝑓 is FH,
𝑥𝐵𝐵(𝑟𝑒𝑓 ) if 𝑟𝑒𝑓 is NC.

s it can be seen, such constraints are a straightforward translation of
he categories in Table 1. For AH, no misses are possible. For NC, all
ccesses (𝑥𝐵𝐵(𝑟𝑒𝑓 )) may miss. For FH, all but one access (𝑥𝐵𝐵(𝑟𝑒𝑓 ) − 1)
ay miss. Notice that in FH cases with 𝑥𝐵𝐵(𝑟𝑒𝑓 ) = 0 the model is infea-
ible. If this happens, FH cases can be safely modeled as NC. For FM
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and KM, the actual misses must be equal or lower than the maximum
possible number of misses (1 for FM and 𝑘 for KM) in the corresponding
enclosing loop (reached ∑

𝑑 times, ∀ 𝑑 ∈ 𝐸𝐸(𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 ))). The accesses
to scalar variables with group reuse in the ACDC are simpler than our
generic FM category, since they can present a single miss at most. So, its
precision in the IPET representation can be improved by 0 ≤ 𝑑𝑚𝑟𝑒𝑓 ≤ 1,
which also simplifies the analysis.

In a similar way, the number of writebacks can be bounded. As
outlined in Table 2, the number of writebacks, if any, is equal to
the number of misses in the updated data structure. So, we associate
the writebacks to the reference that brings the content that will be
eventually evicted. The number of writebacks depends on the type of
cache. For LRU, writebacks will eventually occur for store misses, and
also for load misses that are modified before being evicted. This second
situation occurs for loads with both a dominance relation and a group
reuse relation to stores, without misses to the reused data between
them. In any case, a single writeback per data line occurs, even if the
same line is rewritten multiple times.

𝑤𝑏𝑟𝑒𝑓 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑚𝑟𝑒𝑓 if 𝑟𝑒𝑓 is store NC/FH/KM/FM,
𝑑𝑚𝑟𝑒𝑓 if 𝑟𝑒𝑓 is load NC/KM/FM followed

(dominating group reuse) by zero
or more loads AH, followed by a
store AH,

1 + 𝑑𝑚𝑟𝑒𝑓 if 𝑟𝑒𝑓 is load FH followed (dom-
inating group reuse) by zero or
more loads AH, followed by a store
AH,

0 otherwise.

For the ACDC, only the instructions with data replacement permis-
ion may replace content in cache, so only them can cause writebacks.
otice that the FH category is not possible for the ACDC.

𝑏𝑟𝑒𝑓 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑚𝑟𝑒𝑓 if 𝑟𝑒𝑓 is store NC/KM/FM with DRP,
𝑑𝑚𝑟𝑒𝑓 if 𝑟𝑒𝑓 is load NC/KM/FM with DRP fol-

lowed (dominating group reuse) by zero
or more loads AH, followed by a store
AH,

0 otherwise.

. Safety of our approach

Our approach is essentially a series of transformations, from the data
euse facts of the references in the CFG, to an ILP model to be solved.
afety of the data reuse facts is guaranteed by its own analysis based
n Abstract Interpretation [4,7]. Our proposed algorithms classify these
euse facts into categories (Section 3.4). These algorithms are based on
he algebraic foundations of the well known reuse theory [19], briefly
ntroduced in Section 3.4.1. For each situation, these algorithms always
ssume the most loose category (that with less guaranteed information).
uch behavior guarantees their safety.

IPET is the most widely used method to model the CFG for a static
CET analysis. It declares the relation between basic blocks, and lets

he solver to maximize the objective function of the model, i.e., to
btain the WCET. Our proposal to integrate our categories in the IPET
odel also follows this approach: For each reference, we declare its
ossible outcomes (hits plus misses, and writebacks), bound them to
he number of times that each reference is executed, and bound the
isses and writebacks according to its corresponding category. With

uch relations and bounds, the solver explores the integer variables
number of hits, misses, etc.) and maximizes the WCET function.

As it can be seen, all parts of our proposal follow the standard safety
uidelines in the field. Additionally, below we evaluate two baselines
always hit, and unlimited size data cache) to further validate our
8

esults. a
. ACDC configuration

The ACDC is a configurable component [5]. As such, it requires
n adequate configuration, dependent on the task to be run. This
onfiguration consists of the set of program counters (PCs) of load/store
nstructions with granted data cache replacement permission (DRP). As
etailed in Section 3.4, classification of data references into categories
s based on DRPs. However, selecting a set of PCs that effectively
inimizes the WCET bound when granted DRPs is hard. An existing
roposal generates the optimal ACDC configuration for single-path
asks [5]. Since our tested benchmarks are not single-path, we propose
feasible heuristic method to generate the ACDC configuration. Essen-

ially, we perform an always miss WCET analysis without writebacks
equivalent to having an ACDC with no DRPs) and, for each instruction
𝑃𝐶) suitable to be granted DRP, we estimate the benefit 𝑏𝑃𝐶 that the
RP would provide. Instructions suitable to be granted DRP are those
hich do not reuse data from other loads/stores, and their data are

eused by itself or others. As shown in the following equation, to esti-
ate the benefit of granting DRP to one of these candidate instructions,
e must add a cost (positive number of cycles) with a benefit estimate

negative numbers). The cost corresponds to writing once (𝑝𝑟𝑒𝑙𝑜𝑎𝑑)
he PC of the selected instruction in the AC part. The benefits can
e estimated by adding the savings with respect to the always-miss
odel due to: (a) the access to the data of the selected instruction itself
𝑎𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑓 ), (b) the access of other load/store instructions that reuse the
ame data (𝑟𝑒𝑢𝑠𝑒𝑟𝑒𝑓 ), and (c) the writebacks (𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑟𝑒𝑓 ).

𝑃𝐶 = 𝑝𝑟𝑒𝑙𝑜𝑎𝑑 +
∑

𝑟𝑒𝑓 𝑖𝑛 𝑃𝐶
𝑎𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑓 + 𝑟𝑒𝑢𝑠𝑒𝑟𝑒𝑓 +𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑟𝑒𝑓

The benefit in the access cost of the reference (𝑎𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑓 ) can be
alculated depending on the access type. A reference outside loops is
orcefully scalar, and if it is being considered for DRP means that it
oes not reuse the data of other loads/stores. In such case, it will miss,
s already considered for the always-miss model, so the benefit is 0. For
eferences inside loops, the benefit in the access cost of the load/store
an be calculated depending on whether it is a scalar reference (self-
emporal reuse) or an array reference (self-spatial reuse). In both cases
e calculate always a hit cost instead of the original miss cost for all
ccesses (𝑑𝑚𝑟𝑒𝑓 ) of this instruction, and then revert to miss cost the
otential misses, that is, one miss for scalars and, for arrays, 𝑘 misses
ach time its enclosing loop is reached. Other cases are not suitable to
e granted DRP. @Summarizing:

𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑓 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 𝑟𝑒𝑓 is (scalar) outside loop,
(ℎ𝑐 − 𝑚𝑐) ⋅ 𝑑𝑚𝑟𝑒𝑓 + (𝑚𝑐 − ℎ𝑐)

if 𝑟𝑒𝑓 is scalar inside loop,
(ℎ𝑐 − 𝑚𝑐) ⋅ 𝑑𝑚𝑟𝑒𝑓 + (𝑚𝑐 − ℎ𝑐) ⋅

∑

𝑑∈𝐸𝐸(𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 ))
𝑘 ⋅ 𝑑

if 𝑟𝑒𝑓 is array inside loop.

For the references 𝑟 reusing the data brought by 𝑟𝑒𝑓 (group reuse
elation and dominance relation), the benefit implies considering cache
it costs instead of miss costs for all their accesses (𝑑𝑚𝑟).

𝑒𝑢𝑠𝑒𝑟𝑒𝑓 = (ℎ𝑐 − 𝑚𝑐) ⋅
∑

𝑟 𝑟𝑒𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑓
𝑑𝑚𝑟

The costs of writebacks, not present in always-miss, can be calcu-
ated as above, depending on whether the working data set is modified
r not.

𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑟𝑒𝑓 =

⎧

⎪

⎨

⎪

⎩

𝑤𝑏𝑐 ⋅
∑

𝑑∈𝐸𝐸(𝑙𝑜𝑜𝑝(𝑟𝑒𝑓 ))
𝑘 ⋅ 𝑑 if 𝑟𝑒𝑓 has group reuse

stores,
0 otherwise.

Previous constraints do not affect the maximization objective for the
lways-miss system, but just calculate a 𝑏𝑃𝐶 value for each load/store
nstruction. Once the model is solved, we select as many candidates

s entries in the target ACDC, ordered by their calculated 𝑏𝑃𝐶 (the
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lower the better, considering negative values only). It is important
to notice that such a selection is not necessarily optimal, since DRPs
may affect the worst path, and their effect may depend on the other
DRPs. Nevertheless, such estimations provide good results with a simple
analysis.

7. Evaluation

In this section we describe the considered target hardware archi-
tecture and the benchmarks, and also discuss our experiments and
results.

7.1. Target hardware

The target instruction set architecture considered in our experi-
ments is ARMv7 with instructions of 4 bytes. We assume a memory
architecture consisting of separated L1 instruction and data caches,
both below RAM modules as main memory. At present, a common
general purpose L1 cache configuration might be 8-way set-associative,
with 64 sets, lines of 64 bytes, and PLRU replacement [28]. In this
study we assume LRU instruction and data caches with the same
configuration, keeping the number of sets to 64 and varying the number
of ways between 4 and 32 (each cache stores between 16 and 128 KiB
of instructions/data). This includes configurations with less ways than
current general purpose processors, which may be currently dominant
in the embedded domain, and also configurations with more ways, to
provide an insight of future trends. Notice that PLRU is not adequate
for real-time systems, so any PLRU cache would imply larger WCETs
than LRU. As an alternative to the data cache, we also test the ACDC
cache [5]. As described in Section 2, it works by associating specific
data cache lines to preconfigured load/store instructions. The selection
of such associations is detailed in Section 6. So, these instructions
perform replacements in a controlled way (no other instruction can
evict the content in the associated cache line), and other instructions
are forced to bypass the cache in case of miss. We assume the same
number of entries for the AC (storing PCs with data cache replacement
permission) and DC (holding the data), varying from 4 to 32, as the
number of ways in the LRU cache. This means 4 to 32 instructions with
data replacement permission to their associated data cache line. So, the
ACDC may store between 256 and 2048 bytes of data, that is, 64 times
less data than its LRU counterpart, since it has no sets (see Fig. 2).

In order to focus on data, we model an instruction cache with
unlimited size. This is done by limiting the number of misses of each
instruction memory line to 1, although previous LRU size suffices to
completely hold any of the tested benchmarks. We assume a mem-
ory latency of 13 cycles both for instructions and data, which is
a realistic value for main memories such as the Automotive DRAM
MT46V16M16 [29] clocked at 100 MHz, and has been used in previous
studies [1].

We assume a typical 5-stage pipeline (fetch FE, decode DE, execute
EX, memory MEM, writeback WB) performing ideally (ideal branch
prediction and 1 cycle/stage), except for memory operations (instruc-
tion fetch and data memory transfers). FE stage takes 1 cycle for an
instruction cache hit, and 14 for a miss (look-up plus memory transfer).
Regarding data memory accesses, the address computation is performed
in the EX stage (1 cycle), and the data cache look-up/hit for loads
is performed in the MEM stage (1 cycle). If the target address is not
cached, a memory transfer is triggered, forcing the pipeline to halt
until the memory transfer is completed. For stores, we assume the same
procedure (although located in the WB stage): 1 cycle to reach the data
cache, and 13 additional cycles if the line to write to must be brought
from memory (fetch on write-miss policy). For stores with write-around
(ACDC only), in the WB stage, we also assume 1+13 cycles, even though
a cycle could be saved by performing the AC look-up in the MEM stage.
9

So, for an instruction performing a single memory access, given that
Table 4
Timing (cycles) considered in data cache operations for the corresponding data access
pipeline stage, assuming 1 cycle for cache look-up and 13 cycles of memory latency.

Operation (cache type) Cost of stage

Cache hit (LRU/ACDC) 1
Load/store (no cache) 13
Cache miss with replacement (LRU/ACDC) 1 + 13
Cache miss without replacement (ACDC) 1 + 13
Cache write-around store (ACDC) 1 + 13
Cache miss with repl. and writeback (LRU/ACDC) 1 + 13 + 13
Multiple access (push/pop instructions) Sum of each access

the pipeline hides the address computation and the data cache look-
up, only accesses that require a memory transfer suffer a penalty of
13 cycles (memory latency). If any missing access evicts a dirty cache
line, a writeback is triggered, and its corresponding memory latency
is also added to the completion time of the instruction. Finally, in
case of push/pop instructions with multiple data memory accesses, the
corresponding stage is repeated as many times as requested accesses,
and the cost of each access is computed independently, i.e., no burst
memory transfers are considered. Table 4 summarizes these costs. It
is important to notice that, on data misses, a system with data cache
performs worse than without it, specially if the missed data replaces a
dirty cache line.

Although we assume a simple pipeline, more complex pipelines can
be integrated into IPET (e.g., [30]). In such case, our bounds on the
number of misses would be applied to the specific pipeline constraints
in the model.

7.2. Benchmarks

Table 5 shows the benchmarks used in our experiments, compiled
by gcc 9.2.1, from the TACLeBench suite [21]. Recursion has not been
addressed in this work, so recursive benchmarks have been discarded.
We use angr version 9.0.4663 to extract and process the CFGs [31].
Although our proposal has no restrictions regarding the CFG, it must be
taken into account that angr is in active development stage, and it may
decode some instructions incorrectly. In the cases that such errors result
in invalid CFGs, the corresponding benchmarks have been discarded.
Also, benchmarks deg2rad and rijndael_dec have been discarded because
their results are almost identical to those of rad2deg and rijndael_enc,
respectively. Benchmark cover has also been discarded due to the fact
that it has very few memory references and none of them inside a loop.
For each one of the binaries, flow information (flow facts) has been
manually set based on the annotations in the source code, carefully
studying the effect of compiler optimizations. Nevertheless, existing
loop bound analysis methods could be used [32,33]. Table 5 shows
the considered benchmarks, along with an estimation of the number of
data memory accesses in the estimated WCET case for each compiler
optimization level, discussed below. Most of these benchmarks contain
procedures, which can be transformed in different ways, depending on
compiler optimizations, such as inlining, cloning, or specialization for
constant parameters.

In order to provide some insight into the data complexity, Fig. 6
shows the number of static load/store instructions for each benchmark
and optimization level. Benchmarks are ordered by the number of
such instructions when compiled without optimizations. As it can be
seen, benchmarks on the left side contain very few memory instruc-
tions, whereas those on the right have up to two orders of magnitude
more load/store instructions. In general, binary codes compiled without
optimizations have redundant loads/stores, which are removed when
optimizing. A few exceptions can be found with optimization level 3,
which tries to unroll loops with few iterations. If so, loads/stores inside
these loops are replicated, as can be seen for instance in complex_updates
and cjpeg_transupp. All figures in this section follow this ordering for the
benchmarks.
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Fig. 6. Number of static load/store instructions.
Table 5
Benchmarks, and estimation of their number of data memory accesses in the estimated
WCET case.

Name O0 O1 (%) O2 (%) O3 (%)

audiobeam 225681 31.55 29.38 29.49
binarysearch 568 49.35 24.19 24.51
bsort 4039 16.43 13.96 16.13
cjpeg_transupp 32938 23.63 17.34 51.74
complex_updates 1356 35.53 34.99 25.66
cosf 18576 20.50 19.00 13.54
countnegative 503 44.40 28.26 28.26
dijkstra 15482 101.32 42.79 26.33
fft 81591 51.19 32.70 34.94
filterbank 8172 53.61 23.82 29.45
fir2dim 3226 33.10 32.76 34.85
g723_enc 26136 43.54 53.11 177.76
gsm_dec 14999 42.39 31.33 89.16
iir 1350 30.76 30.49 30.49
insertsort 620 35.42 34.08 77.38
isqrt 1309 68.08 59.13 23.75
jfdctint 3004 15.58 20.83 20.83
lms 4413 55.22 46.81 19.33
ludcmp 803 31.38 25.29 106.09
matrix1 2754 25.03 22.22 34.82
minver 663 44.78 44.37 66.34
petrinet 1615 99.71 72.74 72.63
powerwindow 1846228 49.47 48.34 47.70
rad2deg 7320 0.38 0.15 0.15
rijndael_enc 511469 29.52 29.71 169.28
st 102432 23.56 12.72 12.70
statemate 101685 66.62 57.53 55.54

7.3. Data cache hit ratio

In this section we present the hit ratio for different cache configura-
tions. Data cache hit ratio is the percentage of data hits out of the total
data accesses. So, it is the most direct measure of the effectiveness of
the cache.

Since Fig. 6 shows benchmarks with very few memory instructions,
it is important to verify that the number of performed memory accesses
is reasonably high. This is a complex problem on its own, since the
number of performed memory accesses depends on the taken path, and
the path associated to the WCET bound may depend on factors such as
the tested data cache. In order to provide a path-independent context,
we define the number of data memory accesses in the estimated WCET
case (NMAWC) as:

𝑁𝑀𝐴𝑊𝐶 =
𝑊𝐶𝐸𝑇𝑁𝐶 −𝑊𝐶𝐸𝑇𝐴𝐻
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𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑡𝑒𝑛𝑐𝑦 −𝐻𝑖𝑡𝐶𝑜𝑠𝑡
where 𝑊𝐶𝐸𝑇𝑁𝐶 and 𝑊𝐶𝐸𝑇𝐴𝐻 refer to the WCET bounds of sys-
tems with no data cache and always hit on data, respectively, and
𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑡𝑒𝑛𝑐𝑦 and 𝐻𝑖𝑡𝐶𝑜𝑠𝑡 are the costs of accessing data for the
previous systems. That is, 𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑚𝑐 − ℎ𝑐, and 𝐻𝑖𝑡𝐶𝑜𝑠𝑡 =
ℎ𝑐. Specific data caches would present a number of memory accesses
between these two opposite baselines, so the NMAWC provides an
insight of such value. Also, when changing parameters, there is very
little variation in the path associated to the estimated WCET, since
usually the task to perform does not change. The obtained NMAWC
values can be seen in Table 5, as an absolute value for O0 and as a
percentage with respect to O0 for optimized binaries. It can be seen that
optimizations reduce very much the number of data memory accesses.
In a few cases, the O3 versions of the binaries increase the number of
estimated accesses, which is especially noticeable in g723_enc, ludcmp,
and rijndael_enc. The reason is the aggressive code transformations
carried out under the O3 flag, such as vectorization, which usually
requires loop cloning to deal with remainders of the iteration space.
For all the cloned loops, we conservatively keep the bounds specified
by TACLeBench. Hence, if they contain data references, the estimated
accesses in the worst case may increase.

In systems with one level of cache memory, the data cache hit ratio
is calculated by counting as hits all accesses (ld/st) that do not require
communication with the off-chip memory. Note, however, that write-
back caches, while preventing some memory transfers, can also add
additional ones. This occurs when a dirty line is evicted from the cache,
which requires writing the modified line to memory, usually without
stalling the processor, through a copyback buffer operating in the
background. However, notice that a write operation from the copyback
buffer uses both the data bus and the corresponding memory banks. So,
if there are other memory instructions nearby, such operation does stall
the pipeline. Also, stalls occur if the copyback buffer is full, which may
depend on the previously taken paths. Since representing such details
as an ILP model may be unfeasible, a safe approach is to assume a
copyback buffer that always stalls the pipeline. Thus, in order to have a
metric that also takes into account the copyback overhead, we propose
the following. First, we consider the classical data miss ratio, that is,
number of misses out of number of explicit accesses (hits plus misses).
Then, we add the writeback ratio (number writebacks out of number of
hits plus misses) to previous value, in order to get a memory transfer
ratio (average number of lines read or written to memory per memory
reference). Finally, we use 1 minus the previous memory transfer ratio
to obtain an effective data hit ratio (EDHR), i.e., the average number
of accesses being serviced within cache time per reference, without
accessing memory to read or write lines.

𝐸𝐷𝐻𝑅 = 1 − 𝑚𝑖𝑠𝑠𝑒𝑠 +𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑠 = ℎ𝑖𝑡𝑠 −𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
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Notice that EDHR may result in negative values. Positive values indi-
cate that the cache is effectively saving memory accesses. On the other
hand, negative values mean that the number of saved accesses does not
compensate the extra memory transfers for writebacks. As a baseline,
the EDHR of a system without data cache would be 0. We estimate the
EDHR of the estimated WCET case from the solved IPET model:

𝐸𝐷𝐻𝑅 =
∑

𝑟𝑒𝑓 𝑑ℎ𝑟𝑒𝑓 −𝑤𝑏𝑟𝑒𝑓
∑

𝑟𝑒𝑓 𝑑ℎ𝑟𝑒𝑓 + 𝑑𝑚𝑟𝑒𝑓
(3)

We test a system with the following data caches: LRU data cache
based on a persistence analysis (LRU-addr) [1], LRU data cache based
on a pattern analysis (LRU-pattern), and ACDC. Remember that the
persistence analyses, which may be considered the state-of-the-art com-
petitive baseline, consider just known constant addresses in memory
references, whereas the reuse analysis (used in LRU-pattern and ACDC)
also provides information regarding access patterns and reuse.

Fig. 7 shows the effective data hit ratio in the estimated WCET
case (EDHR, Eq. (3)), in percentage, for ACDC and LRU caches with
4 to 32 ways. That is, the ACDC has a data storage capacity of 256 to
2048 B, and the LRU (64 sets) can store from 16 to 128 KiB. Values
of 100 represent the unreachable always-hit case, and values of 0
represent the no-cache case (highlighted with dashed lines). This is
shown for each benchmark (top tags) and compiler optimization level
(right tags).

Let us first focus on the LRU results. Perhaps the most important
detail is that many times the effective data hit ratio for the LRU cache
is below 0, that is, the bound on the number of data memory accesses
with a conventional cache is worse than without cache. This may be
surprising, given that it is well known that caches have a high hit ratio
in average, and the data workload of the tested benchmarks is not
excessively large. Such negative values are due to writebacks, which
generate memory transfers that do not occur without data cache (see
Eq. (3)).

Focusing on LRU-addr, even though persistence analysis guarantees
an exact result, it is not adequate for unknown or variable memory
addresses [1]. Thus, in order to support them, the analysis must assume
that the cache line used by anyone of these accesses may be in any set,
resulting in the eviction, in the worst case, of whole LRU ways (between
1/4 and 1/32 of the cached data in our experiments).

For LRU-pattern, results are always better than LRU-addr, since it
takes profit of the reuse information [4]. With such information, much
more hits are guaranteed, even if the specific address of accesses is
unknown. However, the pollution they introduce may severely harm
the hit ratio, if data may be evicted before being reused. In most cases
(and in the average case) it can be seen that the hit ratio increases
as the number of ways grows. Notice that, the more the ways in
the cache, the more pollution it tolerates. That is, more interleaving
accesses may occur between a given access that brings data and another
reusing them. In order to confirm that the LRU problems come from
accesses to unknown addresses/patterns (which pollute all sets), we
have performed the same experiments with a fully-associative LRU with
4 to 32 ways (256 to 2048 B). The results (not shown) are almost
identical to having 64 sets. That is, given a fully-associative LRU cache,
increasing its capacity by adding sets does not provide significant
benefits to the hit ratio in the estimated WCET case.

Regarding the ACDC, in most cases it provides better results than
LRU. This is done with a size 64 times smaller than the tested LRU,
which effectively confirms that the sets in the LRU are practically
useless regarding the WCET bound. The ACDC has several key features
that explain its good results. First, it has no pollution, which is the
main drawback of LRU. Since only the instructions with replacement
permission can evict contents, all evictions are controlled, meaning that
there are no unexpected/undesired evictions. Second, when correctly
configured, only worthy instructions are granted permission to replace
cache contents, so that instructions with little or no reuse in the worst
11

case bypass the cache. This is specially interesting when considering s
that cached stores require at least two memory accesses, one for
bringing the cache line from memory and eventually another to write
it back to memory after its update, so not caching them may be better
than the blind cache-anything policy of conventional caches. However,
the ACDC also has drawbacks. The first one is its limited size. It is
important to notice that the ACDC is preloaded similarly to a locked
cache, although the ACDC does not preload data but data replacement
permissions. So, it can only grant as many replacement permissions as
available entries, that is, between 4 and 32 in our experiments. Such
permissions are fixed for the whole benchmark execution, so they may
suffice for small benchmarks but not so for large ones. When the size of
the ACDC is enough to completely accommodate the benchmark, Fig. 7
shows flat results. That is, adding more ways/entries does not provide
any improvement (e.g., leftmost benchmarks). On the other hand slopes
indicate that there is room for further improvements.

The configurable behavior of the ACDC can also be seen as a
drawback, since finding a good configuration is not easy. Although
our methodology for obtaining such configuration makes the ACDC
results better than LRU in general, they are not optimal. This can be
clearly seen, for instance, in insertsort-O3, where the ACDC hit ratio
decreases as the ACDC capacity grows. This cannot occur for optimal
configurations, which demonstrates that our heuristic configurations
for 8, 16, and 32 ways are not adequate for this binary. Similar sit-
uations appear in some configurations for dijkstra, ludcmp, and minver.

lso, particularly bad results such as those found for audiobeam-O0 and
ijndael_enc-O0 seem to suggest that better configurations are possible.
ndeed, we have obtained better results by manually setting the data
eplacement permissions in some benchmarks (not shown).

.4. WCET

Although previous section analyzes the improvements directly pro-
ided by the data cache, a significant part of the WCET is related to
he instruction flow. So, it is required to study how previous results
ctually impact the WCET. In this section we focus on the results for
ata caches with 8 ways. Currently, such configuration is broadly used
y general purpose commercial processors (i.e. Intel and AMD) in their
1 cache memories, so future embedded processors are likely to use
imilar caches. Results for 4, 16, and 32 ways present similar trends.

Fig. 8 shows the computed WCET bound with respect to the no-
ache WCET bound compiled without optimizations, for each binary
both with and without optimizations). Results are grouped by bench-
ark (top tags) and cache type (right tags), namely ACDC (512 B),

RU-pattern (32 KiB), and LRU-addr (32 KiB). For each optimization
evel, it also shows the no-cache WCET bound (diamond mark), the
nreachable always-hit WCET bound (square mark), and the estimation
f the WCET bound for an unlimited size data cache (× mark). This
nlimited size baseline is computed as described in Section 3.4, and
rovides a lower bound that might be reachable (unlike the always-
it bound). Finally, the fill color of bars represents the benefit of the
btained WCET bound, that is, how close it is from the no-cache WCET
ound (0% benefit) to the unlimited size baseline (100% benefit), or
ow much it gets worse (negative benefits, truncated to −100%).

In order to prevent bad results from shrinking the most interesting
art of Fig. 8, we let these values go beyond the represented area. The
o-cache WCET bounds for these cases are 177% for g723_enc-O3, and
69% for rijndael_enc-O3. Notice that these are the benchmarks that,
hen optimized with O3, show aggressive code transformations that

ncrease their number of memory accesses (see Table 5).
As it can be seen, the no-cache WCET bound for non-optimized

enchmarks is always 100%, since this is the baseline WCET bound.
ptimized benchmarks present lower WCET bounds for the no-cache

ystem, except for dijkstra-O1, ludcmp-O3, g723_enc-O3, and rijndael_enc-
3. In average, compiling with optimizations reduces the no-cache
CET bound to 41.7% (O1), 33.0% (O2), and 49.1% (O3) with re-
pect to not optimizing. Notice that these reductions are due to both
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Fig. 7. Effective data hit ratio in the estimated WCET case (EDHR, Eq. (3)) for different data cache ways (4, 8, 16, 32) and optimization levels (-O0, -O1, -O2, -O3).
instruction and data optimizations. Previous studies pointed out O3 as
the best optimization level for the WCET bound [34]. However, such
studies focused on instruction caches and assumed always hit on data.
Fig. 8 also shows the estimated always-hit WCET baseline. Although
such a WCET value is unreachable, in general it is useful to know that
no lower WCET values are possible. For instance, we can see that its
distance to the no-cache WCET bound is inappreciable in rad2deg for
optimized codes, due to that they perform just 30 memory accesses
for O1, and 12 for O2 and O3. For some other cases (e.g., cosf ) both
ACDC and LRU reach a WCET bound close enough to this unreachable
baseline so that it is not worth to look for further improvements.

Regarding the ACDC and LRU results, for non-optimized codes most
caches present improvements with respect to no-cache. For optimized
binaries, LRU-addr bars are mostly reddish, LRU-pattern have mixed
colors (white in average), and ACDC bars are bluish in all cases. This
confirms the data cache hit ratio results depicted in Fig. 7, where
in average the ACDC effective hit ratio is always better than that of
LRU, even with just 8 instructions with data replacement permission.
Remember that our proposed method for the ACDC configuration is
not optimal, so the ACDC might provide results even better than
those in Fig. 8. Nevertheless, in average the WCET bound obtained
with an ACDC is 39.04% shorter than that of an LRU-pattern for the
optimization level that results in the shortest WCET bounds (O2). For
other optimization levels, the ACDC also provides shorter WCET bounds
than LRU-pattern, namely 19.62% (O0), 36.35% (O1), and 25.79%
(O3).

7.4.1. General discussion on WCET
Let us discuss our previous baselines and WCET estimations. All of

them are generated by state-of-the-art static analysis, so we assume
that any introduced overestimation is tight enough for our results to
be realistic. Otherwise, differences between them may look closer than
12
they are. In any case, both the baselines and the estimated WCETs are
calculated by the same methodology, so any possible overestimation
would deviate them in the same way.

Assuming a hard real-time system, our results demonstrate that the
ACDC is probably the most adequate data cache. For soft or mixed-
criticality real-time systems, if there is a high volume of non-critical
tasks and the hardware is dimensioned considering them, LRU (or even
PLRU) caches could probably provide better overall results than the
ACDC. Nevertheless, considering that the WCET bounds in presence
of an LRU cache would be longer, mixed-criticality systems would be
forced to overdimension the hardware to accommodate the WCETs of
just the most important tasks. Using an ACDC the WCET bounds would
be shorter (notice also that the small size of the ACDC allows context
switches with a very low penalty), and such a system could be able to
schedule all the tasks, not just the most important ones.

In many cases, the cache hierarchy is partitioned in order to isolate
tasks and avoid interferences between them [35,36]. With our pro-
posal, applying set/way partitioning to L1 caches is straightforward,
since it would imply to simply assume a cache configuration with less
sets/ways. Also, there are studies that extend the may/must analy-
sis to multilevel caches by providing categorizations for each cache
level [13]. Our approach could be extended in a similar way. Consid-
ering multicore systems with tasks running in parallel, the problem is
harder. In such case, cache partitioning would be the only option to
avoid interferences between tasks, so it would be required in order to
obtain reasonable WCET bounds.

7.5. Analysis time

In this section we discuss the analysis time of our experiments,
measured on a 3.36 GHz AMD Ryzen Threadripper 1920X processor.
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Fig. 8. WCET bounds for different optimization levels, and benefit with respect to a system without data cache. ACDC has 8 entries (512 B for data storage) and LRU is an 8-way
set-associative cache (64 sets, 32 KiB for data storage).
Fig. 9. WCET analysis times for the systems without data cache, with ACDC, and with LRU data cache. Horizontal lines mark 1 second, 1 minute, 1 hour, and 1 day.
Table 6 shows the reuse analysis time [4], required to feed our
proposal. Since the reuse information it provides is independent of the
cache, it must be performed just once for each benchmark.

Fig. 9 shows the required time for the WCET analysis for our tested
data cache architectures, and also for the system without data cache
13
as a baseline, as boxplots, without including the reuse analysis time
(Table 6). Except the no-cache experiments, each boxplot includes
16 experiments (4 optimization levels times 4 cache configurations).
The WCET analysis time includes the processing of the CFG, the gener-
ation of the IPET model, and its solving time by lp-solve 5.5.2.5. Both
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Table 6
Data reuse analysis times [4] to generate the data reuse facts required for our proposal,
in seconds.

Name O0 O1 O2 O3

audiobeam 1134 1124 742 40345
binarysearch 3 2 1 93
bsort 1 1 1 1
cjpeg_transupp 96 66 71 28298
complex_updates 13 7 7 377
cosf 49 24 29 47
countnegative 8 3 2 2
dijkstra 36 54 162 72
fft 26 62 61 49
filterbank 1 1 2 10
fir2dim 63 19 12 192
g723_enc 3250 1192 4026 3205
gsm_dec 3543 4544 2189 13757
iir 6 2 3 5
insertsort 39 41 29 29
isqrt 7 5 4 19
jfdctint 149 47 55 56
lms 146 26 45 38
ludcmp 28 49 49 344
matrix1 9 5 3 17
minver 66 200 134 1298
petrinet 138 87 48 50
powerwindow 23712 4653 17173 15727
rad2deg 1 0 0 0
rijndael_enc 14606 1009 1632 2553
statemate 1157 3751 10121 5330
st 191 27 15 35

the processing of the CFG and the generation of the IPET model run
on python, which may require an execution time around two orders of
magnitude longer than an equivalent compiled analyzer. Nevertheless,
it can be seen that all times are below one minute, except for the LRU
analysis of 4 benchmarks, with only 5 experiments requiring more than
one hour. As detailed in Section 3.4, our LRU analysis is implemented
as a targeted brute force analysis, i.e., it is not meant to be efficient but
to provide accurate results. On the other hand, the analysis time of the
system without cache and the system with ACDC is very similar. In both
cases, building the IPET model is straightforward, and the whole WCET
analysis takes less than 10 seconds except for some experiments for
gsm_dec and powerwindow. Globally, the median of the WCET analyses
s under 1 second for all the tested architectures. In most cases, reuse
nalysis (Table 6, required for our approach) takes more time than our
ctual WCET analysis.

. Conclusions

In this paper we propose a generic framework for analyzing the
CET of binary programs in a system with data cache. This frame-
ork includes the categories for data references, and how they can
e classified depending on the specific cache organization and the
euse information of the task. We apply it to analyze set-associative
onventional LRU data caches (writeback with fetch on write-miss
nd write allocate), an ACDC, an unlimited size data cache, a system
ithout cache, and an ideal always-hit data cache. For the LRU data

ache we study both a persistence-based analysis and a reuse-based
nalysis, and for the ACDC we propose an heuristic method to obtain a
ood configuration of its data replacement permissions. We also detail
ow to integrate our data cache categories into an IPET model to obtain
he WCET bound.

Our results show that a persistence-based LRU analysis is not ad-
quate for data caches, providing worse hit ratio and WCET bounds
han a system without data cache. With a reuse-based analysis, a
onventional LRU cache provides a better worst-case performance, but
et similar to a system without cache. In general, the more the ways,
14

he better it performs, since it tolerates more pollution. On the other
hand, a high number of sets provides marginal benefits only. Also,
writebacks amplify the good/bad results in LRU: writebacks reduce
memory accesses when there are few undesired evictions, whereas
they increase memory accesses when inconvenient evictions must be
assumed. The ACDC provides the best results in general, even with
its much smaller size, since its predictable design avoids pollution. In
average, the WCET bound obtained with an ACDC is 19.62%, 36.35%,
39.04%, and 25.79% shorter than that of a set-associative conventional
LRU data cache for benchmarks compiled with optimization level 0,
1, 2, and 3, respectively. Globally, O2 is the optimization level that
results in the shortest WCET bound in average for all our tested cache
organizations.

Regarding the required analysis time of our proposal, most of our
analyses take less than 10 seconds (below 1 second in median), and
only 5 of those implemented by means of targeted brute force take more
than one hour. In most cases, reuse analysis (required for our approach)
takes more time than our actual WCET analysis.
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