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Abstract. In this note prove the following Berwald-type inequality, showing

that for any integrable log-concave function f : Rn → [0,∞) and any concave

function h : L→ [0,∞), where L = {(x, t) ∈ Rn × [0,∞) : f(x) ≥ e−t‖f‖∞},
then

p→
(

1

Γ(1 + p)
∫
L e−tdtdx

∫
L
hp(x, t)e−tdtdx

) 1
p

is decreasing in p ∈ (−1,∞), extending the range of p where the monotonicity
is known to hold true.

As an application of this extension, we will provide a new proof of a func-

tional form of Zhang’s reverse Petty projection inequality, recently obtained
in [ABG].

1. Introduction and notation

Let K ⊆ Rn be a convex body, i.e., a compact, convex set with non-empty
interior, and let us denote by Kn the set of all convex bodies in Rn and by |K|
the Lebesgue measure of K. We will also denote by Kn0 the set of convex bodies
containing the origin. It is well known that, as a consequence of Hölder’s inequality,
for any integrable function f : K → [0,∞) the function

p→
(

1

|K|

∫
K

f(x)pdx

) 1
p

is increasing in p ∈ (0,∞).
A famous inequality proved by Berwald [Ber, Satz 7] (see also [AAGJV, Theorem

7.2] for a translation into English) provides a reverse Hölder’s inequality for Lp-
norms (p > 0) of concave functions defined on convex bodies. It states that for any
K ∈ Kn and any concave function f : K → [0,∞), one has

(1) p→

((
p+n
n

)
|K|

∫
K

f(x)p dx

) 1
p

is decreasing in p ∈ (0,∞).
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A function f : Rn → [0,∞) is called log-concave if, for every x, y ∈ Rn, 0 < λ < 1,
f(λx + (1 − λ)y) ≥ (f(x))λ(f(y))1−λ. Throughout the paper, we will denote by
F(Rn) the set of all integrable log-concave functions in Rn.

In the context of log-concave functions, the following version of Berwald’s in-
equality (1) on epigraphs of convex functions was proved in [AAGJV, Lemma 3.3]:

“Let f ∈ F(Rn) and let h : L → [0,∞) be a continuous concave non-identically
null function, where L = {(x, t) ∈ Rn+1 : f(x) ≥ e−t‖f‖∞} is the the epigraph of

− log f
‖f‖∞ . Then, the function

(2) p→
(

1

Γ(1 + p)
∫
L
e−tdtdx

∫
L

hp(x, t)e−tdtdx

) 1
p

is decreasing in p ∈ (0,∞).”
When providing a new proof of Zhang’s reverse Petty projection inequality, Gard-

ner and Zhang [GZ] extended (1) to the larger range of values p > −1 (see [GZ,
Theorem 5.1]). The first goal in this paper is to also extend (2) to the larger range
of values p > −1.

Theorem 1.1. Let f ∈ F(Rn) and let h : L→ [0,∞) be a concave function, where
L = {(x, t) ∈ Rn+1 : f(x) ≥ e−t‖f‖∞}. Then, the function

p→
(

1

Γ(1 + p)
∫
L
e−tdtdx

∫
L

hp(x, t)e−tdtdx

) 1
p

is decreasing in p ∈ (−1,∞).

For any K ∈ Kn, its polar projection body Π∗(K) is the unit ball of the norm
given by

‖x‖Π∗(K) := |x||Px⊥K|, x ∈ Rn,
where Px⊥K is the orthogonal projection of K onto the hyperplane orthogonal to
x, | · | denotes (besides the Lebesgue measure in the suitable space) the Euclidean
norm and ‖ · ‖K denotes the Minkowski functional of K, defined for every x ∈ Rn,
as ‖x‖K := inf{λ > 0 | x ∈ λK} ∈ [0,∞]. It is a norm if and only if K is centrally
symmetric.

The expression |K|n−1|Π∗(K)| is affine invariant and its extremal convex bodies
are well known: Petty’s projection inequality [P] states that the (affine class of the)
n-dimensional Euclidean ball, Bn2 , is the only maximizer and Zhang’s inequality
[Z1] proves that the (affine class of the) n-dimensional simplex ∆n, is the only
minimizer. That is, for any convex body K ⊆ Rn,

(3)

(
2n
n

)
nn

= |∆n|n−1|Π∗(∆n)| ≤ |K|n−1|Π∗(K)| ≤ |Bn2 |n−1|Π∗(Bn2 )| = |Bn2 |n

|Bn−1
2 |n

.

In recent years, many relevant geometric inequalities have been extended to the
general context of log-concave functions (see for instance [AKM], [KM], [C], or
[HJM] and the references therein). Let us recall that Kn and Kn0 naturally embed
into F(Rn), via the natural injections

K → χK and K → e−‖·‖K ,

where χK is the characteristic function of K. These and other basic facts on convex
bodies and log-concave functions used in the paper can be found in [BGVV] and
[AGM].
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For any f ∈ F(Rn), the polar projection body of f , denoted as Π∗(f), is the unit
ball of the norm given by

‖x‖Π∗(f) := 2|x|‖f‖∞
∫ ∞

0

|Px⊥Kt(f)| e−tdt = 2‖f‖∞
∫ ∞

0

‖x‖Π∗(Kt(f))e
−tdt,

where Kt(f) := {x ∈ Rn : f(x) ≥ e−t‖f‖∞}, t > 0 (see [AGJV]).
In [ABG], an extension of Zhang’s inequality (i.e., the left hand side inequality

in (3)) was proved in the settings of log-concave functions.

Theorem 1.2. Let f ∈ F(Rn). Then,

(4)

∫
Rn

∫
Rn

min {f(y), f(x)} dydx ≤ 2nn!‖f‖n+1
1 |Π∗ (f)| .

Moreover, if ‖f‖∞ = f(0) then equality holds if and only if f(x)
‖f‖∞ = e−‖x‖∆n for

some n-dimensional simplex ∆n containing the origin.

Observe that when f = e−‖·‖K for some convex body K ∈ Kn0 , then (4) recovers
Zhang’s inequality.

Our second goal here is to provide a new proof of the functional version of Zhang’s
inequality (4) by using the extension of Berwald’s inequality given by Theorem 1.1,
in a similar way as Gardner and Zhang [GZ] proved the geometrical version of
Zhang’s inequality via their extension of Berwald’s inequality (1) to p > −1.

A common feature in both proofs, the one given in [ABG] and the one in this
paper, is the crucial role played by the functional form of the covariogram function
gf associated to the function f ∈ F(Rn). See [ABG] and its definition below. Recall
that in the geometric setting the covariogram function of a convex body K is given
by gK(x) = |K ∩ (x+K)|. Apart from this fact, the two proofs completely differ.

We introduce further notation: Sn−1 denotes the Euclidean unit sphere in Rn. If
the origin is in the interior of a convex body K, the function ρK : Sn−1 → [0,+∞)
given by ρK(u) = sup{λ ≥ 0 | λu ∈ K} is the radial function of K. It extends to
Rn \ {0} via tρK(tu) = ρK(u), for any t > 0, u ∈ Sn−1.

Finally, for any function f ∈ F(Rn) let gf be the covariogram functional of f ,
defined by

gf (x) :=

∫ ∞
0

e−t|Kt(f) ∩ (x+Kt(f))|dt

(cf. [ABG]).
The paper is organized as follows: Section 2 contains the aforementioned exten-

sion, Theorem 1.1, of the functional Berwald inequality to the larger range of values
of p > −1. In Section 3 we recall the celebrated family (with parameter p > 0)
of convex bodies associated to any log-concave function introduced by Ball in [B,
pg. 74]. We also recall the properties of the covariogram functional of a log-concave
function, proven in [ABG]. Another main ingredient in the proof in [GZ] is an
expression that connects the covariogram function of a convex body K and Ball’s
convex bodies. Such a connection can be extended to the functional form of the
covariogram gf of a log-concave function and moreover, the polar projection body
of f will appear as a limiting case of this new expression when the value of the
parameter p tends to −1.
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2. An extension of Berwald’s inequality

In this section we will prove the aforementioned extension of Berwald’s inequality,
see Theorem 1.1 above. We first state a 1-dimensional lemma that can be seen as
a degenerate version of Theorem 1.1.

Lemma 2.1. Let γ : [0,∞) → [0,∞) be a non-decreasing concave function and
define

Φγ(p) =

(
1

Γ(1 + p)

∫ ∞
0

γ(r)pe−rdr

) 1
p

, p > −1.

Then Φγ(p) is decreasing in p in (−1,∞). Furthermore, if there exist −1 < p1 < p2

such that Φγ(p1) = Φγ(p2), then γ is a linear function and Φγ is constant on
(−1,∞).

Remark 1. As usual, we define Φγ(0) = limp→0 Φγ(p) which by straightforward
computations (using L’Hôpital’s rule, interchanging the integral and the derivative

operations, and taking into account that ∂Γ(1+x)
∂x |x=0 = −A, where A ≈ 0.577 is

the Euler-Mascheroni constant) yields Φγ(0) = eA exp
( ∫∞

0
log γ(r)e−rdr

)
.

Proof of Lemma 2.1. Fix 0 6= p1 > −1 and write γ(r) = Φγ(p1) · r, r ≥ 0. For any
p > −1,

Φγ(p) =

(
1

Γ(1 + p)

∫ ∞
0

Φγ(p1)prpe−rdr

) 1
p

= Φγ(p1).

Therefore

(5) 0 = Φp1
γ (p1)− Φp1

γ (p1) =
1

Γ(1 + p1)

∫ ∞
0

(γ(r)p1 − γ(r)p1)e−rdr,

or equivalently, ∫ 1

0

(γ(− log t)p1 − γ(− log t)p1)dt = 0.

We first consider the case −1 < p1 < p2 < 0.
Since the function γ is non-negative and concave and (5) holds, if γ is not iden-

tically equal to γ, i.e., γ is not linear, there exists a unique r0 ∈ (0,∞) such that
γ(r) > γ(r) if r ∈ (0, r0) and γ(r) < γ(r) if r ∈ (r0,∞). Denoting t0 = e−r0 ,
we have that γ(− log t) < γ(− log t) if t ∈ (0, t0) and γ(− log t) > γ(− log t) if
t ∈ (t0, 1). Now,

Γ(1 + p2)(Φp2
γ (p2)− Φp2

γ (p2)) =

∫ ∞
0

(γ(r)p2 − γ(r)p2)e−rdr

=

∫ 1

0

(γ(− log t)p2 − γ(− log t)p2)dt

=

∫ 1

0

(γ(− log t)p1 − γ(− log t)p1)ψ(t)dt,

where

ψ(t) =
γ(− log t)p2 − γ(− log t)p2

γ(− log t)p1 − γ(− log t)p1
.

Since w(x) = x
p2
p1 is strictly concave in (0,∞),

w(x)− w(y)

x− y
is strictly decreasing

in x and y and, since γ(− log t)p1 is non-decreasing and γ(− log t)p1 is strictly
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increasing in t, ψ(t) is strictly decreasing. Now, by the mean value theorem, there
exist c1 ∈ (0, t0) and c2 ∈ (t0, 1) such that∫ 1

0

(γ(− log t)p1 − γ(− log t)p1)ψ(t)dt

=

∫ t0

0

(γ(− log t)p1 − γ(− log t)p1)ψ(t)dt+

∫ 1

t0

(γ(− log t)p1 − γ(− log t)p1)ψ(t)dt

= ψ(c1)

∫ t0

0

(γ(− log t)p1− γ(− log t)p1)dt+ ψ(c2)

∫ 1

t0

(γ(− log t)p1− γ(− log t)p1)dt

= (ψ(c1)− ψ(c2))

∫ t0

0

(γ(− log t)p1 − γ(− log t)p1)dt > 0,

since ψ is strictly decreasing, γ(− log t) < γ(− log t) for t ∈ (0, t0) and p1 < 0.
Therefore, if γ is not linear, Φγ(p2) < Φγ(p2) = Φγ(p1) = Φγ(p1).

The case 0 < p1 < p2 follows analogously with straightforward changes (in
this case, if γ is not linear w is strictly convex and ψ is strictly decreasing). The
continuity of Φγ at 0 then implies that Φγ(p) is decreasing in p > −1.

If Φγ(p1) = Φγ(p2) for some −1 < p1 < p2, since Φγ(p) would not be strictly
decreasing in [p1, p2], then γ would be linear, thus concluding the case of equality.

�

Our next result is the aforementioned extension of [AAGJV, Lemma 3.3] to
p ∈ (−1,∞).

Proof of Theorem 1.1. Consider the probability measure on Rn+1 given by

dµ(x, t) :=
e−tχL(x, t)∫
L
e−tdtdx

dtdx.

Denote Cs(h) = {(x, t) ∈ L : h(x, t) ≥ s} and define the function Ih : [0,∞) →
[0,∞) as

Ih(s) :=
1∫

L
e−tdtdx

∫
Cs(h)

e−tdtdx = µ(Cs(h)).

Ih is non-increasing, Ih(0) = µ(L) = 1 and since h is concave, Ih is log-concave
(see [AAGJV, Lemma 3.2]).

Observe that (x, t) ∈ L if and only if x ∈ Kt(f), which happens if and only if

ρKt(f)(x) ≥ 1, and that, by Fubini’s theorem,

∫
L

e−tdtdx =

∫ ∞
0

e−t|Kt(f)|dt. Now

define h1 : L→ [0,∞) as

h1(x, t) := sup

{
s ∈ [0,∞) : Ih(s) >

1

ρnKt(f)(x)

}
.

h1 has two important properties:
- h and h1 are equally distributed with respect to µ, that is Ih1 ≡ Ih. In order

to prove this, notice that for every s ≥ 0, and every (x, t) ∈ L, we have that
h1(x, t) > s if and only if ρnKt(f)(x) > 1

Ih(s) and so by Fubini’s theorem,

Ih1
(s) =

∫
Cs(h1)

dµ(x, t) =

∫ ∞
0

e−t|Kt(f)|Ih(s)
dt∫

L
e−tdtdx

= Ih(s).
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- h1(rρKt(f)(u)u, t) does not depend on t and u since for any r, t > 0, u ∈ Sn−1,

h1(rρKt(f)(u)u, t) = sup {s ∈ [0,∞) : Ih(s) > rn} := γ(r).

Therefore, for any p > 0,∫
L

hp(x, t)dµ(x, t) =

∫
Rn

∫ ∞
0

χ{hp(x,t)≥r}drdµ(x, t) =

∫ ∞
0

Ih(r
1
p )dr

=

∫ ∞
0

Ih1(r
1
p )dr =

∫
L

hp1(x, t)dµ(x, t).

By Fubini’s theorem and integrating in polar coordinates,∫
L

hp1(x, t)e−tdxdt =

∫ ∞
0

e−t
∫
Kt(f)

hp1(x, t)dxdt

= n|Bn2 |
∫ ∞

0

e−t
∫
Sn−1

∫ ρKt(f)(u)

0

hp1(ru, t)rn−1drdσ(u)dt

= n|Bn2 |
∫ ∞

0

e−t
∫
Sn−1

∫ 1

0

γp(r)ρnKt(f)(u)rn−1drdσ(u)dt

= n

∫ ∞
0

e−t|Kt(f)|
∫ 1

0

γp(r)rn−1drdt

and so, since
∫∞

0
e−t|Kt(f)|dt =

∫
L
e−tdtdx,∫

L

hp(x, t)dµ(x, t) = n

∫ 1

0

γp(r)rn−1dr.

If p < 0 the same equality holds. Indeed, we have∫
L

hp(x, t)dµ(x, t) =

∫ ∞
0

∫
Rn

χ
{h(x,t)≤r

1
p }
dµ(x, t)dr =

∫ ∞
0

(1− Ih(r
1
p ))dr

=

∫ ∞
0

(1− Ih1
(r

1
p ))dr =

∫
L

hp1(x, t)dµ(x, t)

and we proceed as before. If p = 0 the equality is obviously true.
Notice that since Ih is log-concave the function γ is non-increasing and for every

r1, r2 ∈ [0, 1],

γ(r1−λ
1 rλ2 ) ≥ (1− λ)γ(r1) + λγ(r2).

If we denote γ1(r) = γ(e−r/n) the previous statement means that γ1 is non-
decreasing and concave in [0,∞) and we have∫

L

hp(x, t)dµ(x, t) = n

∫ 1

0

γp(r)rn−1dr =

∫ ∞
0

γp1 (r)e−rdr.

We can apply now Lemma 2.1 to the function γ1 and conclude that(
1

Γ(1 + p)
∫
L
e−tdtdx

∫
L

hp(x, t)e−tdtdx

) 1
p

is non-decreasing in (−1,∞). �
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3. Proof of functional Zhang’s inequality

In this section we will give the proof of the functional version of Zhang’s inequal-
ity (4). For any g ∈ F(Rn) such that g(0) > 0 and p > 0, we will consider the
following important family of convex bodies, which was introduced by K. Ball in
[B, pg. 74]. We denote

K̃p(g) :=

{
x ∈ Rn :

∫ ∞
0

g(rx)rp−1dr ≥ g(0)

p

}
.

It follows from the definition that the radial function of K̃p(g) is given by

ρp
K̃p(g)

(u) =
1

g(0)

∫ ∞
0

prp−1g(ru)dr.

Remark 2. It is well known (cf. [BGVV, Proposition 2.5.7]) that, for any g ∈ F(Rn)
such that ‖g‖∞ = g(0) and 0 < p ≤ q,

Γ(1 + p)
1
p

Γ(1 + q)
1
q

K̃q(g) ⊆ K̃p(g) ⊆ K̃q(g).

We will make use of the following well known relation (cf. [B]) between the

Lebesgue measure of K̃n(g) and the integral of g.

Lemma 3.1 ([B]). Let g ∈ F(Rn) be such that g(0) > 0. Then

|K̃n(g)| = 1

g(0)

∫
Rn

g(x)dx.

For any f ∈ F(Rn), we collect below the properties of its covariogram functional
gf , whose proof can be found in [ABG, Lemma 2.1].

Lemma 3.2. Let f ∈ F(Rn). Then the function gf : Rn → R defined by

gf (x) =

∫ ∞
0

e−t|Kt(f) ∩ (x+Kt(f))|dt

verifies that

gf (x) =

∫
Rn

min

{
f(y)

‖f‖∞
,
f(y − x)

‖f‖∞

}
dy

is even, log-concave, 0 ∈ int(supp gf ) with ‖gf‖∞ = gf (0) =

∫ ∞
0

e−t|Kt(f)|dt =∫
Rn

f(x)

‖f‖∞
dx > 0, and

∫
Rn

gf (x)dx =

∫
Rn

∫
Rn

min

{
f(y)

‖f‖∞
,
f(x)

‖f‖∞

}
dydx.

In the particular case of gf as in Lemma 3.2, we can provide an alternative

definition for K̃p(gf ) in terms of its radial function that will allow us to obtain the
polar projection body of f as a limiting case of this expression when p tends to −1.

Lemma 3.3. Let f ∈ F(Rn) and let gf : Rn → R be the function

gf (x) =

∫ ∞
0

e−t|Kt(f) ∩ (x+Kt(f))|dt.

Then, for any u ∈ Sn−1 and p > 0,

ρp
K̃p(gf )

(u) =
1

(p+ 1)
∫
Rn

f(x)
‖f‖∞ dx

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f) ∩ (y + 〈u〉)|p+1dydt,
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where 〈u〉 denotes the 1-dimensional subspace spanned by u.

Remark 3. Notice that the right hand side in the equality above is defined for
p > −1 and that, since (p+ 1)Γ(1 + p) = Γ(2 + p), if p→ −1+ then

1

(p+ 1)Γ(1 + p)
∫
Rn

f(x)
‖f‖∞ dx

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f)∩(y+〈u〉)|p+1dt→
‖u‖Π∗(f)

2‖f‖1
.

Proof of Lemma 3.3. By Lemma 3.2, gf (0) > 0 and

ρp
K̃p(gf )

(u) =

=
p

gf (0)

∫ ∞
0

rp−1gf (ru)dr

=
1

gf (0)

∫ ∞
0

prp−1

∫ ∞
0

e−t|Kt(f) ∩ (ru+Kt(f))|dtdr

=
1

gf (0)

∫ ∞
0

e−t
∫ ρKt(f)−Kt(f)(u)

0

prp−1|Kt(f) ∩ (ru+Kt(f))|drdt

=
1

gf (0)

∫ ∞
0

e−t
∫ ρKt(f)−Kt(f)(u)

0

prp−1

∫
P

u⊥Kt(f)

max{|Kt(f) ∩ (y + 〈u〉)| − r, 0}dydrdt

=
1

gf (0)

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

∫ |Kt(f)∩(y+〈u〉)|

0

prp−1 (|Kt(f) ∩ (y + 〈u〉)| − r) drdydt

=
1

(p+ 1)gf (0)

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f) ∩ (y + 〈u〉)|p+1dydt.

�

Proof of inequality (4). Let u ∈ Sn−1 and consider a function h : L→ [0,∞) given
by

h(x, t) = |Kt(f) ∩ {(x, t) + λu : λ ≥ 0}|,
where L is the epigraph of − log f

‖f‖∞ . Since L is convex, h is concave. For any

p > −1 we have,

1

(p+ 1)

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f)∩ (y+ 〈u〉)|p+1dxdt =

∫ ∞
0

∫
Kt(f)

e−th(x, t)pdxdt.

Therefore, by Theorem 1.1, for every −1 < p < 0,

1

(p+ 1)Γ(1 + p)
∫
Rn

f
‖f‖∞

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f) ∩ (y + 〈u〉)|p+1dtdx ≤

≤

(
1

(n+ 1)n!
∫
Rn

f
‖f‖∞

∫ ∞
0

e−t
∫
P

u⊥Kt(f)

|Kt(f) ∩ (y + 〈u〉)|n+1dtdx

) p
n

=
ρK̃n(gf )(u)p

n!
p
n

.

Taking limit as p→ −1 and by Lemma 3.3 we obtain

ρK̃n(gf )(u) ≤ 2(n!)
1
n ‖f‖1ρΠ∗(f)(u),

that is,

K̃n(gf ) ⊆ 2(n!)
1
n ‖f‖1Π∗ (f) .

Taking Lebesgue measure and using Lemmas 3.2 and 3.1 we obtain inequality (4).
�
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