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Abstract
Wildfires substantially disrupt and reshape the structure,
composition and functioning of ecosystems. Monitoring post-
fire recovery dynamics is crucial for evaluating resilience and
securing the relevant information that will enhance manage-
ment and support ecosystem restoration after fires. Compared
to the extensive and labour-intensive field campaigns, remote
sensing provides a time- and cost-effective tool to monitor
post-fire vegetation recovery (PVR). This concise literature
review presents tools and recent advances in remote sensing
techniques, focusing on the most commonly used sensors and
indicators/metrics. It also provides recommendations on the
use of these tools for assessing vegetation recovery and on
existing gaps regarding technical limitations that could guide
future research.
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Introduction
Wildfires are an important modelling agent in terrestrial

ecosystems, influencing the dynamics and interaction of
soil and vegetation components [1]. In the immediate
aftermath, the most significant impact on the landscape
www.sciencedirect.com
is the total or partial combustion of vegetation cover.
The intensity of the subsequent regrowth process
(often called recovery [2]) is heavily dependent on the
following: the effectiveness of the anatomical and
physiological regeneration strategies of the affected
species, the degree of alteration of the other elements of
the soilevegetation complex, and their interactions in
light of environmental factors and post-fire temporal

conditions [3]. Monitoring post-fire vegetation recovery
(PVR) is crucial, as it provides valuable information for
analysing ecosystem resilience, for determining land-
scape dynamics, and for forest management purposes.

Compared to extensive and labour-intensive field cam-
paigns, remote sensing (RS) techniques are a time- and
cost-effective way to monitor post-fire ecosystem re-
covery [4]. Numerous studies have affirmed the capac-
ity of satellite imagery to quantify fire impacts over vast
zones and different ecosystems. In this sense, RS has

been identified as an effective tool for understanding
how ecosystems respond to fire, which can provide an
enhanced understanding of vegetation recovery patterns
and make a positive contribution to sustainable forest
management [5]. Spectral trajectories (considered a
proxy for vegetation recovery) are usually used to anal-
yse the spatialetemporal dynamics of vegetation cover
following wildfires, using different indices, metrics, and
temporal perspectives.

A concise and nonsystematic review of different publi-

cations on the trends in RS applications for analysis of
PVR is presented in this article. The emphasis is on
contextualizing the use of the different temporal per-
spectives applied, and the most commonly used sensors,
indicators, and metrics. It is important to highlight that
there are a large number of reviews on change detection
techniques and trend analysis using RS products. For
example, Gitas et al. [6] and Chu & Guo [5] provided
one of the first systematic reviews of post-fire moni-
toring methods and techniques. Banskota et al. [7], Zhu
[8], Tewkesbury et al. [9] and Hirschmugl et al. [10]

addressed a complete revision of the different algo-
rithms developed to analyse imagery time series,
including applications for monitoring areas affected by
wildfires. Bartels et al. [11] undertook a quantitative
review of the literature, to determine recovery times
following wildfire, whereas Cohen et al. [12] conducted
a comparative analysis of the main algorithms used to
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map the full range of magnitudes of forest disturbance.
Martı́nez et al. [13] and Szpakowski and Jensen [14] are
two of the most recent and up-to-date studies that deal
with RS techniques for post-fire monitoring. All these
reviews provide insightful contributions on the topics
summarized in the present paper (sensors, indicators
and metrics used in PVR).
Sensors and RS products
For decades, PVR has been mainly analysed through
multispectral optical satellite imagery, both with coarse
spatial resolution instrumentsdAdvanced Very High
Resolution Radiometer, Système pour l’observation de la
Terre and Moderate Resolution Imaging Spectroradi-
ometer (MODIS)das well as with tools that provide a
finer resolutiondThematic Mapper, Enhanced The-
matic Mapper Plus, Operational Land Imager and
MultiSpectral Instrument (MSI). These sensors
generate images that go beyond simply capturing verti-
cal views of the Earth’s surface; they provide informa-
tion on spectral regions that capture vegetation
conditions, such as near- and mid-infrared, and thereby
support detailed monitoring of post-fire dynamics.

Among the finer spatial resolution RS data sets, the
Landsat program (NASA-USGS) is the main source of
time-series data for monitoring vegetation at regional
scales because of the following advantages: (1) good
temporal, spectral and spatial characteristics (30 m
spatial resolution and 16 days of revisiting time); (2)
long time span coverage (from 1980s to today); and (3)
the derived data sets can be easily accessed free of
charge [15e18]. Moreover, the RS data sets derived
from the MSI sensors onboard the Sentinel-2 satellites
of the European Space Agency have grown in impor-
tance since the start of the mission in 2015. Their in-

formation is also freely available and provides greater
spatial and temporal resolution than Landsat (10e20 m
and up to a 5-day revisiting cycle). More recently, the
development of harmonized Landsat and Sentinel-2
products has received special attention in the RS com-
munity [19]. By providing more frequent acquisitions,
they enable the detailed monitoring that is necessary to
uncover the short-term, post-fire dynamics in ecosys-
tems that recover quickly, like tropical savannas and
grasslands. Regarding the coarse spatial resolution
products, the MODIS series stands out. With an almost

daily temporal resolution (1e2 days, with a spatial res-
olution of up to 250 m), it allows broader spatial scales,
which can explore in more detail the effects of season-
ality and land surface phenology (LSP) associated with
the vegetation’s response to fire.

Concurrently with the recent development and avail-
ability of collections of dense time series of optical
satellites, other sensors and technologies, such as
RADAR (Radio Detection and Ranging) and LIDAR
Current Opinion in Environmental Science & Health 2021, 21:100251
(Light Detection and Ranging), are being deployed.
Unlike optical sensors, active sensors can retrieve in-
formation below the tree canopies, allowing access to
variables associated with the vertical structure of the
vegetation recovery after fire [20e22]. Although LIDAR
data are largely acquired via aircraft missions, especially
in certain areas, NASA’s Global Ecosystem Dynamics
Investigation (GEDI) programme has delivered signifi-

cant advances. GEDI data are derived from an LIDAR
sensor on board of a satellite platform, providing access
to data on biomass dynamics and diversity of canopy
structure [23,24] with outstanding potential for PVR
monitoring. At the same time, the growing application of
unmanned aerial vehicles (UAVs) for generating RS data
sets provides more flexible access to multitemporal data
and allows for the deployment of sensors with ultra-high
spatial resolution [25e27].

Furthermore, a growing number of investigations

combine optical and active RS data sets, both as com-
plementary data and in an integrated way through fusion
processes. For example, Bolton et al. [22] fused Landsat
time series data and airborne (LIDAR) to assess changes
in forest structure; Meng et al. [28] linked multispectral
satellite imagery, airborne imaging spectroscopy and
LIDAR, with the aim to quantify post-fire forest re-
covery rates by differentiating canopy recovery from
understory recovery. In the same way, Voleger et al. [29]
explored the combination of LIDAR data and multi-
temporal Landsat series (calibrated with field data), to

produce maps of post-fire wildlife habitats.
Indicators, metrics and algorithms
Spectral variables and indicators
From an RS perspective, the vegetation processes that
follow disturbances can be mainly analysed by reflec-

tance values and spectral indices [30]. In relation to
PVR, these indicators generally rely on greenness mea-
surements of redenear-infrared (ReNIR) vegetation
indices [31,32], based on different algebraic combina-
tions between original spectral bands. These indices are
used to determine (1) whether postdisturbance values
correspond to the previously recorded state (i.e. post-
fire resilience) and (2) how long it costs to reach the
previous state [33].

Among the NIR-based spectral indices derived from RS

imagery, the Normalized Difference Vegetation Index
(NDVI), the Enhanced Vegetation Index (EVI) and the
Normalized Burn Ratio (NBR) are the ones used most
frequently to monitor PVR. NDVI and EVI are very
sensitive to seasonal and biophysical variations of vege-
tation changes and are, thus, used where natural vari-
ability is important [34]. Although they tend to saturate
over dense forests and are not effective in measuring
forest structure or species composition, they still pro-
vide a good proxy for vegetative regrowth [35]. NBR is
www.sciencedirect.com
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usually used to evaluate burn severity levels; however, it
also delivers good results in assessing long-term vege-
tation regeneration [36] and is being reconceptualized
as an indicator for the scope of post-fire recovery (e.g.
burn recovery ratio) [33] (Table 1). Other indices used
as variables in PVR are the Soil Adjusted Total Vegeta-
tion Index [31], an effective way to capture temporal
changes in grassland vegetation; the Anthocyanin

Reflectance Index 2 and the Transformed Chlorophyll
Absorption Reflectance Index [37], very resistant to the
changes of Leaf Area Index and solar zenith angle; the
Tasseled Cap Transformationebased indices [38], sen-
sitive for monitoring the canopy moisture and structure;
the Forest Recovery Index 2, that is, the reciprocal of
Integrated Forest Z-score, a threshold-based index
developed as a part of the Vegetation Change Tracker
algorithm [32], or variables derived from texture anal-
ysis, especially useful in areas of heterogeneous vege-
tation because they consider the spatial adjacency

relationships of pixels [37].

Variables derived from traditional classification, spectral
mixture analysis (SMA) techniques, Geographic object-
based image analysis (GEOBIA) and active microwave
RS are also important alternatives. SMA considers that
each type of ground cover is represented by its mean
spectral signature, deriving endmember proportions
using spectral unmixing procedures. In this sense, some
outstanding examples in the generation of indicators are
the shade normalized green vegetation fraction image

obtained by applying Multiple Endmember Spectral
Mixture Analysis [39], or the Normalized Degradation
Fraction Index for monitoring forest degradation [40],
both using Landsat time series. GEOBIA are techniques
that use both spectral response and contextual infor-
mation to assess post-fire vegetation characteristics in
groups of pixels (geographic objects generated by image
segmentation) [25]. Regarding active microwave RS,
advanced applications that stand out include the use of
L-band HV-polarized SAR backscatter in the monitoring
of post-fire changes (e.g. tree survival in eucalyptus
forests of Western Australia [20] or the use of airborne

LIDAR in the Boreal Shield West Ecozone of Canada
[22]).
Metrics and algorithms
Within the field of change detection methods, in which
PVR studies are integrated, two types of temporal ap-
proaches are usually considered: (1) bitemporal change
detection methods, a comparison between states at
different moments (i.e. pre- and post-fire) and (2)
spectral trajectories of land surface change, in which
recovery processes are considered as a continuous pro-

cess [13]. An example of the first approach is the Multi-
Index Integrated Change Analysis, which was applied in
the context of the Fire and Resource Management
Planning Tools programme (LANDFIRE) [41]. This
www.sciencedirect.com
metric integrates different spectral indi-
cesddifferenced Normalized Burn Ratio, differenced
Normalized Difference Vegetation Index, the Change
Vector, and the Relative Change Vector Maximumdto
identify the magnitude of the spectral changes between
pre- and postdisturbance events [42]. Similarly, Torres
et al. [43] proposed the Cumulative Relative Recovery
Index, a long-term recovery indicator using the product

MOD13Q1 (MODIS) (Table 1); and White et al. [44]
readapted the Recovery Indicator of Kennedy et al. [45]
(Table 1). Recently, Du et al. [46] proposed the Tri-
Temporal Logic-verified Change Vector Analysis, an
unsupervised method for improving bitemporal
methods, which introduces an additional image to form a
mutual validation logic.

There is an ongoing shift from bitemporal to continuous
approaches [47], because of the improved access to
continuous RS series and the opportunity they provide

to assess post-fire dynamics in detail [48]. Long satellite
time series can capture the complexity of vegetation
regeneration processes in fire-affected areas, allowing
the analysis of both short duration phenomena and the
smoothing of long-term trends with high consistency
[8]. Thus, the open access to satellite image archives,
especially MODIS or USGS Landsat, has led to the
development of many techniques and applications to
describing vegetation regrowth patterns in fire-affected
forest [8,18]. One of the most widely used tools is the
Landsat-based detection of Trends in Disturbance and

Recovery (LandTrendr) [49], a trajectory segmentation
method that applies a temporal and spatial normaliza-
tion process for extracting spectral trajectories of land
surface change. The technique consists of decomposing
the time series curve into a sequence of straight-line
segments [30]. In the case of burnt areas, three seg-
ments would be obtained: (1) a flat line before the fire
event, (2) a declining line following the disturbance and
(3) a segment line with a positive slope throughout the
recovery. Recently, this method has been used to map
snag hazard for fire responders in disturbed forests [50]
or to record the disturbance and recovery history in pine

forests [30,38,48,51].

Other spectral trajectory methods are based on curves
and trajectory fitting (i.e. methods that assume a linear
relationship between time and spectral bands or indices
[8]). Torres et al. [43] proposed the Half Recovery Time
(HRT), a post-fire recovery indicator, using nonlinear
model fitting of the post-fire NDVI anomalies to iden-
tify the number of days needed to reach a 50% level of
recovery. Looking through a 5-year window, Frazier et al.
[52] used different indicators based on predisturbance

NBR to detect trends in post-fire spectral recovery;
Wang and Zhang [53] calculated LSP trends from
MODIS time series of about 1000 fires that occurred
from 2002 to 2014 in the western USA. Vogelmann et al.
[54] proposed the Image Trends from Regression
Current Opinion in Environmental Science & Health 2021, 21:100251
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Table 1

Examples of spectral variables recently used for monitoring post-fire changes vegetation.

Index Source Applied or Adapted by Expression

NDFI Souza CM, Roberts DA,
Cochrane MA:
Combining spectral and
spatial information
to map canopy damage from
selective logging
and forest fires. Remote Sensing
of Environment 2005,
98:329–343

Bullock et al. (2020) [40]
To detect tropical forest canopy damage and
degradation processes

NDFI =
GVShade � ðNPV+SoilÞ
GVShade+ðNPV+SoilÞ

NPV = nonphotosynthetic vegetation
GV = green vegetation

GVShade =
GV

1� Shade

EVI Huete A, Didan K, Miura T,
Rodriguez EP, Gao X,
Ferreira LG: Overview of the
radiometric and biophysical
performance of the MODIS
vegetation indices. Remote
Sensing of Environment 2002,
83:195–213

Vo & Kinoshita (2020) [35]
To assess the effects of post-fire treatment
(wood and straw mulch) on vegetation

EVI ¼ rNIR � rRed
rNIR + C1 × rRed � C2 × rBlue + 1

NDMI Gao BC: NDWI - A normalized
difference water index for
remote sensing of vegetation
liquid water from space.
Remote Sensing of Environment
1996, 58:257–266

Hamunyela et al. (2020) [55]
To determine vegetation water content on
regeneration monitoring of montane forests
of Eastern Tanzania

NDMI ¼ NIR � SWIR
NIR + SWIR

RI [44] White et al. (2017) [44]
To measure spatial and temporal patterns in
post-disturbance vegetation recovery
(harvest and wildfire) in Canada’s forested
ecosystems)

RI ¼ DNBRregrowth
DNBRdisturbance

DNBRregrowth = NBRpostfire-
NBR year of the disturbance

DNBRdisturbance = NBRprefire-
NBR at the end of disturb.

VRR Lin WT, Chou WC, Lin CY,
Huang PH, Tsai JS:
Vegetation recovery monitoring
and assessment
at landslides caused by
earthquake in Central
Taiwan. Forest Ecology
and Management 2005,
210:55–66

Adagbasa et al. (2020) [36]
To validate vegetation response-ability
models on grassland, integrating environmental
factor and adaptive vegetation strategies

NDVI ¼ rNIR � rRed
rNIR + rRed

VRR ¼ NDVI2 � NDVI1
NDVI0 + NDVI1

NDVI0 ¼ prefire
NDVI1 ¼ disturbance
NDVI2 ¼ postfire

CRRI [43] Torres et al. (2018) [43]
An integrative indicator to measure long-term
recovery and to rank the main drivers in northern
Portugal using high-temporal resolution satellites

CRRI ¼ 1
N

XN
i ¼ 1

|NDVIpost ;i �minNDVIfire |
NDVIpre

HRT [43] Torres et al. (2018) [43]
To measure short-term recovery velocity using
high-temporal resolution satellites

Number of days necessary to reach
the 50% level of recovery from the
minimum NDVI value observed
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during the year of fire to the pre-fire
median.

RTI [43] Torres et al. (2018) [43]
To capture temporal patterns of PVR process
after the first phases of regrowth using
high-temporal resolution satellites

The slope of the trend in the
NDVI data for the post-fire
period using the Theil–Sen
estimator.

SATVI [31] Villarreal et al. (2016) [31]
To characterize long-term recovery trajectories
of desert grassland

SATVI ¼
rSWIR5 � rRed
rSWIR5+ rRed+L

ð1+LÞ�rSWIR7
2

ARI Gitelson AA, Merzlyak MN, Chivkunova OB: Optical
Properties and Nondestructive Estimation of Anthocyanin
Content in Plant Leaves. Photochemistry and
Photobiology 2001, 74:38–45

Fernández-Guisuraga et al. (2019) [37]
To assess quantitative variables of vegetation
recovery (density seedlings and woody
species cover) in fire-prone ecosystems using
fine-grained satellite imagery

ARI ¼ B7
��

1
B3

�
�

�
1
B6

��

TCARI Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ,
Strachan IB: Hyperspectral vegetation indices and
novel algorithms for predicting green LAI of crop canopies:
Modeling and validation in the context of
precision agriculture.
Remote Sensing of Environment 2002, 90:337–352

Fernández-Guisuraga et al. (2019) [37]
To assess variable quantifying vegetation
recovery (density seedlings and woody
species cover) in fire-prone ecosystems
using fine-grained satellite imagery

TCARI ¼ 3
�
ðB6� B5Þ� 0:2ðB6� B3Þ

�
B6
B5

��

B3 = green (510–580 nm)
B5 = red (630–690 nm)
B6 = red edge (705–745 nm)

BRR Lin WT, Lin CY, Chou, WC: Assessment of vegetation recovery
and soil erosion at landslides caused by a catastrophic earthquake:
a case study in Central Taiwan. Ecol. Eng. 2006, 28: 79–89.

Chompuchan and Lin (2017) [33]
To evaluate the forest recovery considering the
concept of resilience and the magnitude of fire
damage

BRR ¼ NBRta � NBRtd

NBRto + NBRtd

to = prefire event
td = time when delay
mortality existed
ta = time of assessment

TCT-TCAPowell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB,
Ohmann JL: Quantification of live aboveground forest biomass dynamics
with Landsat time-series and field inventory data: A comparison of empirical
modeling approaches. Remote Sensing of Environment 2010, 114:1053–1068

Viana-soto et al. (2020) [38]
To characterize postfire
trajectories in
Mediterranean pine forests

TCA ¼ tan�1TCG
TCB

TCB = Tasseled Cap: Brightness

TCG = Tasseled Cap: Greenness
FRI2 Huang, C.; Goward, S$N.; Masek, J.G.; Thomas, N.; Zhu, Z.;

Vogelmann, J.E. An automated approach for reconstructing recent
forest disturbance history using dense Landsat time series stacks.
Remote Sens. Environ. 2010, 114, 183–198

Morresi et al. (2019) [32]
To track long-term forest regeneration and to
monitor the development of tree canopy cover

IFZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NB

XN
i ¼ 1

ðbi + bi Þ
SDi

vuut
FRI2 ¼ 1

ðIFZ + 1Þ
bi = spectral value of the pixel in
bandi,bi and SDi= mean and
standard deviation obtained from
forest samples
NB = number of spectral bands

ARI, Anthocyanin Reflectance Index; BRR, Burn Recovery Ratio; CRRI, Cumulative Relative Recovery Index; EVI, Enhanced Vegetation Index; FRI2, Forest Recovery Index 2; HRT, Half Recovery Time index;
NDFI, Normalized Difference Fraction Index; NDMI, Normalized difference moisture (water) index; RI, Recovery Indicator at short-term; RTI, Recovery Trend Index; SATVI, Soil Adjusted Total Vegetation Index;
TCARI, Transformed Chlorophyll Absorption Reflectance Index; TCT-TCA, Tasseled Cap Transformations–Tasseled Cap Angle; VRR, Vegetation Recovery Rate.
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Analysis (ITRA), which is based on NDVI and SWIR/
NIR index, to assess gradual changes; Chompuchan and
Lin [33] identified time of recovery using a curve-fitting
of forest recovery trajectories to the exponential decay
function. Hamunyela et al. [55] used the STEF algo-
rithm (Space-Time Extremes and Features) based on
space-time featuresdsuch as magnitude of change,
temporal linear trend in spatial variability (using NDWI

as indicator)dto track forest disturbances and detected
forest gains (i.e. regeneration) in Tanzania. Cunha et al.
[56] applied the Time Series Segmentation and RE-
Sidual TREND method [57], implemented in the
Breaks For Additive Seasonal and Trend method [58], to
differentiate structural change (breakpoint) and trends
happening over a longer period in seasonally tropical dry
forests. Furthermore, nonparametric tests such as
ManneKendall and the TheileSen slope estimator have
also been widely used. For example, Morresi et al. [32]
assessed the significance of the SVIs trends and calcu-

lated the rate of change and the direction of NDVI
trends. Torres et al. [43] proposed the Recovery Trend
Index, computed as the slope of the trend in the NDVI
data for the post-fire period using the TheileSen
estimator.

Alternatively, metrics based on digital classification
processes applied to time series data have also been
used. For example, Cardille and Fortin (2016) used
Bayesian Updating of Land Cover, an algorithm
designed to allow continuous updating of classifications

using image collections, applied for tracking a fast-
growing forest fire from Landsat-8 images [59,60];
Savage et al. [61] used Landsat imagery to predict
species composition of vegetation growing from a
disturbance ecology point of view, using the zero-
inflated regression to map percent canopy cover by
species and subcanopy species. However, despite the
large number of algorithms and changes detection
techniques, Heiley et al. [62] demonstrated that an
ensemble of change detection algorithms could be more
effective and accurate than maps from any single auto-
mated algorithm. In this sense, examples of other more

complex algorithms from the literature on detecting and
monitoring land disturbance using Landsat time series
include COntinuous monitoring of Land
Disturbance providing large-scale detection of land
disturbance [63]; Vegetation Regeneration and Distur-
bance Estimates Through Time, a segmentation algo-
rithm to track forest changes (patch-based approach)
[64]; or Ecosystem Disturbance and Recovery Tracker, a
highly automated system to detect disturbances such us
wildfire burn, tree mortality or forest treatments,
processing Landsat images time series [65].
lo
h
to
si
Final remarks
A deep understanding of PVR is critical for elucidating
ecosystem processes and for the elaboration of effective
Current Opinion in Environmental Science & Health 2021, 21:100251
management strategies, especially in the context of
global climate change. The most practical way to
monitor changes over large areas and periods is through
image-processing techniques based on change detection
or classification techniques [40]. These approaches are
especially fitting because wildfires, and the following
vegetation recovery processes, substantially alter the
land surface’s spectral signature. Metrics and tech-

niques to track vegetation changes and trends following
fire using satellite time series provide information at
different spatiotemporal and spectral resolutions. The
last years have seen a proliferation of research efforts,
published in various specialized journals; however,
several key gaps concerning the use of RS for the anal-
ysis of PVR remain. From the literature review presen-
ted in this paper, the following key considerations have
emerged:
ccording to Pickell et al. [2], along with the

umerous studies in which post-fire recovery trends
re analysed, it is necessary to highlight the impor-
ance of properly interpreting the use of spectral
ndicators with the recovery in ecological terms,
aking into account data on the structure, composi-
ion and ecological functions of the colonizing plant
ommunities. In this context, Bartels et al. [11] point
ut that there is a lack of clarity in the definition of
he term ‘recovery’ and that a connection should be
et up between spectral indicators and ecological
nderstanding of forest recovery. For example, the

lassification of plant associations, combined with
easures such as canopy cover, tree height or stand
asal area, are fundamental for understanding the
ffects of fire on vegetation recovery and elaborating
tting conservation strategies [66]. In this sense,
ccording to Szpakowski & Jensen [14], owing to the
pecific nature of the vegetation’s spectral response
nd the different components of forest recovery,
sing a single method may not be the best option,
equiring multiple methods to be deployed in each
cosystem. Moreover, ground-based validations are
ecessary, to determine how a recovery component is

eing displayed by the metrics.
he effects of temporal mismatch issues should be
inimized; it is essential to secure adequate imaging
ata sets in relation to the fire occurrence date.
age date discrepancies may introduce more noise
an algorithms or metrics [62], thereby hindering
e establishment of consistent connections between
cological meaning and RS information. Each type of
cosystem has specific post-fire vegetation cover re-
onses, requiring an adequate time scale approach
at can strike a compromise between immediate and

ng-term fire effects. Moreover, several factors can
inder post-fire RS monitoring, such as phenology,
pography, vegetation characteristics and the con-
stency of spectral responses. All these issues still
www.sciencedirect.com
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www.
eed to be carefully considered and addressed to
enerate a consistent PVR monitoring.
he use of RS to analyse vegetation recovery is ex-
ected to grow even further in application and
rominence as new sensors become available (i.e.
AVs and new satellites) and bring enhanced spatial,
ectral and temporal resolutions to the observations.
this sense, the great challenge lies in the devel-

pment of methodologies that combine the potential
f different sensors, with particular emphasis on
udies that integrate data from active and passive

nsors (e.g. integrating LIDAR with UAS imagery
4] or GEDI data with time-series optical imagery to
nable historic analysis of forest height [67]). The
ailability of open high-capacity analysis software
as enhanced the potential to access and analyse
ombined data sets (e.g. via Google Earth Engine, a
loud-based storage and processing platform [68]).
oreover, the growing expansion of sensors has to go
and-in-hand with the development of algorithms
at can monitor changes through time irrespective
f the characteristics of each platform [69].
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