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Abstract 
 

Congenital heart disease (CHD) refers to the collection of diseases involving a problem with the 

structure of the heart present at birth. CHDs are a significant cause of infant morbidity and mortality. The 

causes of CHD are largely unknown. Observational epidemiological studies have reported links between a 

wide range of maternal lifestyle factors during pregnancy and CHD in the offspring. However, the causal 

relevance of these is unclear. This PhD thesis explores relationships between maternal pregnancy 

exposures and offspring CHD by employing a range of epidemiological techniques using multiple 

independent data sources.  

Chapter 1 introduces CHDs, summarises the literature in relation to maternal pregnancy 

exposures and offspring CHD, puts forward the case for using pregnancy metabolomics and outlines 

epidemiological methods that could help improve causal inference. Chapter 2 describes cases of 

congenital anomalies and CHD in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. In 

Chapter 3, I used parental negative exposure control analyses to explore the effects of maternal pre-

pregnancy body mass index (BMI), and pregnancy smoking and alcohol on offspring CHD. I found that 

maternal pregnancy smoking may increase offspring CHD risk via intrauterine mechanisms but did not 

find evidence to suggest maternal overweight or obesity increase risk. Results for alcohol were 

inconclusive. In Chapter 4, I used Mendelian randomisation (MR) to explore the effects of the same 

exposures studied in Chapter 3. I found no robust evidence of an effect for maternal BMI or smoking on 

offspring CHD using MR. Using a genetic risk score of drinks per week, there was some evidence of a 

potential causal effect for maternal alcohol intake on offspring CHD. In Chapter 5, I examined the 

relationship of maternal gestational mass spectrometry-derived metabolites with offspring CHD using 

multivariable regression and MR analyses. I found evidence that amino acid metabolism during 

pregnancy, androgenic steroid metabolites, and levels of succinylcarnitine could be important 

contributing factors to CHD. In Chapter 6, I explored the relationship of maternal gestational nuclear 

magnetic resonance-derived metabolic traits with offspring CHD. I replicated the findings for amino acids 

seen in Chapter 5 and found evidence of potential effects for some fatty acid and very low-density 

lipoprotein traits, albumin, and citrate. Chapter 7 provides an overview of the primary findings for 

analyses included in each chapter along with strengths and limitations. It then considers the public health 

and clinical implications of my findings and provides recommendations for future research. 
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Chapter 1. Introduction 
 

This chapter introduces the topic, provides an overview of the current literature, and places my 

aims and objectives in the context of current gaps in the literature. It provides a justification for the need 

of novel causal epidemiological methods to address my aims and a description of each of the methods I 

have used, including their assumptions. The use of metabolomics in the context of epidemiological studies 

is introduced as a potential tool to uncover biological pathways that may relate to congenital heart disease 

(CHD). In the final section, I summarise the chapter, present my thesis aims and objectives and provide a 

description of the work undertaken and how it is set out within the remaining chapters.  

 

1.1. Congenital anomalies 

 
Congenital anomalies (CAs) occur in utero and can be identified prenatally, at birth or during later 

life. CAs can be defined as structural (e.g., missing limb) or functional (e.g., metabolic disorders). The exact 

cause of most CAs is unknown; however, causes can include single gene defects, chromosomal disorders, 

multifactorial inheritance, environmental teratogens and micronutrient deficiencies during pregnancy 1. 

Consequences vary depending on the type and severity of the anomaly, but many children and their 

families are burdened with lifelong complications. Worldwide, at least 3.3 million children under the age 

of 5 die from CAs each year 2. In Europe and the UK, CAs affect approximately 2-3% of births 3. CAs are a 

major cause of fetal death, infant morbidity, and long-term disability. Undoubtedly, CAs represent a 

significant public health issue.  

CAs can occur in isolation or in combination with other anomalies. Around 76% of cases with a CA 

occur in isolation. The remaining cases have multiple structural anomalies, with around 70% of those cases 

with multiple anomalies being attributed to a chromosomal syndrome or genetic defect 4. Generally, CAs 

are mostly classified by a combination of the organ system affected and whether they occur in isolation, 

affect multiple systems and/or have chromosomal/genetic cause. However, it is important to note that 

this can vary depending on the nature and location of the research. Table 1.1 exhibits the sub-classes of 

CAs by organ type along with their incidence obtained from the European surveillance of congenital 

anomalies (EUROCAT).  
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Table 1.1. Incidence of different types of congenital anomalies in Europe between 1980-2016. 

Congenital anomaly Incidence per 10,000 births 

(95% CI) a 

Live-birth incidence per 10,000 

births (95% CI) b 

Nervous system 25.5 (25.2 – 25.7) 12.7 (12.6 – 12.9) 

Eye 4.9 (4.8 – 5.0) 4.5 (4.4 – 4.6) 

Ear, face, and neck 3.9 (3.8 – 4.0) 3.3 (3.2 – 3.4) 

Congenital heart defects 74.6 (74.1 – 75.0) 67.0 (66.6 – 67.4) 

Respiratory 3.5 (3.4 – 3.6) 2.7 (2.7 – 2.8) 

Oro-facial clefts 15.2 (15.0 – 15.4) 13.7 (13.5 – 13.9) 

Digestive system 19.8 (19.6 – 20.0) 17.0 (16.8 – 17.2) 

Abdominal wall defects 6.0 (5.8 – 6.1) 3.5 (3.4 – 3.6) 

Urinary 33.6 (33.3 – 33.9) 28.4 (28.2 – 28.7) 

Genital 20.4 (20.2 – 20.6) 19.5 (19.3 – 19.8) 

Limb 47.6 (47.3 – 48.0) 42.8 (42.5 – 43.1) 
a Calculated as the number with each congenital anomaly divided by those without the anomaly in the European population 

during the specified years including all known pregnancies irrespective of whether there was a live birth or not. 
b Live birth incident rates are calculated in the same way as above but only include livebirths. 

Data obtained from: http://www.eurocat-network.eu/AccessPrevalenceData/PrevalenceTables 5. 

 

1.2. Congenital heart disease 
 

1.2.1. Background: Prevalence, definition and public health 
 

CHDs are the most prevalent type of CA affecting approximately 6-8 per 1000 live births and 10% 

of still births and remain the leading cause of death from CAs 6. According to Ottaviani and Buja’s 

definition, CHD, “consists of a wide variety of anomalies and malformations involving the heart and great 

vessels that develop in utero, are present at birth, and come to clinical attention in infancy, adolescence, 

or adulthood” 7. Many CHD patients present with sequela from surgical intervention resulting in health 

problems persisting throughout the life course into adulthood. Around 20% of CHDs can be attributed to 

known chromosomal anomalies, gene disorders or teratogens. The cause of the remaining 80% are 

unknown, however, it is suggested that these CHDs are multifactorial in nature caused by a combination 

of genetic and non-genetic modifiable risk factors 8.  

Advancements in paediatric cardiology and surgical techniques have improved short- and long-

term outcomes in CHD patients, which is evident in the 35% decrease in annual deaths attributed to CHDs 

from 1990 to 2017. Despite this, the incidence rates of CHDs have changed little over the same period 9 

suggesting that more work is needed on identifying causes and implementing preventive interventions to 

http://www.eurocat-network.eu/AccessPrevalenceData/PrevalenceTables
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reduce disease burden. Due to the complex nature of CHDs, research from multiple scientific disciplines 

including embryology, basic science, population health sciences and others is warranted.  

Babies born with CHD require highly specialised health care, often including multiple surgical 

procedures. Financial analyses from 2013/2014 estimate the cost of CHD services to National Health 

Service (NHS) England as £175m per annum with this estimated to rise to between £186m-£207m by 2025 

10. The substantial improvements in short- and long-term outcomes in CHD patients has meant that the 

adult congenital heart disease (ACHD) population is growing, with more than 95% of CHD patients 

reaching adult life 11. Studies have shown that CHD patients could be at greater risk of later life health 

outcomes such as cardiovascular disease 12 and cancer 13 in comparison with the general population. CHD 

patients are also more likely to have neurodevelopmental deficits and are less likely to complete higher 

education 14. It is also important to consider the implications that a CHD diagnosis could have on close 

family members. For example, many parents of a child with CHD report significant stress and negative 

impact of the medical condition on the family 15.  In summary, the major burden of CHDs to patients, their 

family, health care provision and hence society in the UK and globally, highlight the need to identify causes 

in order to prevent them. 

 

1.2.2. Cardiac development 

 

Understanding cardiac morphogenesis and exploring important molecular pathways is a key area 

of research in the paediatric cardiology field. The heart is the first organ to form, as it is required to support 

the rapidly developing embryo. The heart begins to beat from 2 weeks gestation and by day 50 (~8 weeks) 

the mature heart has formed 16. There are several prominent steps that occur throughout heart formation. 

These steps are briefly described below, however, for a detailed account of human heart development 

the interested reader is directed to embryology textbooks or reviews on this topic 17.  

Between weeks 3 and 4, the heart develops into a primitive tube (Figure 1.1A). The tubular heart 

continues to elongate, eventually forming the first sign of the heart’s chambers – the truncus arteriosus, 

the bulbus cordis, the primitive ventricle and the primitive atrium (Figure 1.1B) 18. By day 28, the heart 

tube has formed a U-shaped loop resulting in the placement of the atria above and behind the truncus 

arteriosus, bulbus cordis and ventricle (Figure 1.1C & 1.1D). Septation, the separation of the heart into 

the four recognisable chambers occurs between weeks 4 and 6 gestation. Atrial septation begins when a 

ridge of tissue, called the septum primum grows from the base towards the apex. The foramen ovale is 

formed, a valve (which usually closes at birth) that allows blood to pass from the right to the left atrium. 
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Simultaneously, formation of the interventricular septum ensues septation of the ventricles takes place 

resulting in a fetal heart with 4 distinct chambers (Figure 1.1E). At week 5, the aorta and pulmonary artery 

form as a result of the division of the bulbus cordis and truncus arteriosus. In utero, a small vessel called 

the ductus arteriosus connects the pulmonary artery to the aorta to ensure blood is directed to the 

placenta for oxygenation. The ductus arteriosus usually closes soon after birth, triggered by breathing 

whereby blood is then directed to the lungs for oxygenation. One-way valves are formed to connect the 

hearts chambers. The tricuspid and mitral (atrioventricular) valves form to drive blood from the atria to 

the ventricles. Then, the pulmonic and aortic (semilunar) valves form, driving blood out of the heart and 

preventing backflow. More recently, seminal papers published in the early 21st century described the 

phenomena (known as the second heart field) that the heart tube elongates by addition of cells to the 

arterial pole. The heart tube elongates by addition of myocardium from progenitor cells lying outside the 

heart itself 19–21.  

 

 

Figure 1.1. An illustration of normal cardiac looping.  
A. The straight heart tube at approximately 22 days. B. at 23-24 days, the tube loops to the right folding 
into an S-shape. C,D,E. Looping eventually places the atria above and behind the primitive ventricles. 
Abbreviations: TA: Truncus Arteriosus, BC: Bulbus cordis, PV: Primitive ventricle, PA: Primitive atrium, RV: 
Right ventricle, LV: Left ventricle, RA: Right atrium, LA: Left atrium. Figure obtained and adapted with 
permission from the author 16.  
 

1.2.3. Classification  

 

CHDs can occur in isolation, with other structural anomalies or with chromosomal/genetic 

syndromes. CHD can be further categorised into subtypes (Table 1.2). There are multiple classification 

systems that can be used to define CHD subtypes. Arguably the most commonly used and one that is 

preferred by epidemiologists is the World Health Organisation’s (WHO) International Classification of 

Disease (ICD) codes 22. Congenital malformations of the circulatory system correspond to ICD version 10 

(ICD-10) codes Q20-Q28. The ICD-10 subcategories of CHD correspond to anomalies of: the cardiac 
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chambers and connections (Q20), the cardiac septa (Q21), the pulmonary and tricuspid valves (Q22), the 

aortic and mitral valves (Q23), the heart (Q24), the great arteries (Q25) and the great veins (Q26), the 

peripheral vascular system (Q27) and the circulatory system (Q28). In line with the aforementioned 

definition of CHD described by Buja, CAs of the peripheral vascular and circulatory system (ICD-10: Q27-

28) would generally not be classed as CHD. Furthermore, minor CHDs which have little clinical impact (e.g., 

isolated patent ductus arteriosus (PDA) or peripheral pulmonary artery stenosis in pre-term infants) are 

not generally classed as CHD. Indeed, EUROCAT define CHDs using ICD-10 codes Q20-Q26.  

Other coding systems include The International Society for Nomenclature of Paediatric and 

Congenital Heart Disease and the European paediatric cardiac coding. These also adopt a similar method 

in which CHDs are broken down into subtypes. However, they tend to be more geared towards clinicians 

with subtypes being further categorised according to the surgeries used to treat the CHD subtype, the 

exact location of the CHD subtype and the severity of the CHD subtype. 

Classification systems have been proposed for use in epidemiological studies investigating CHD 

aetiology 23. Botto et al acknowledged that CHDs are anatomically, clinically, epidemiologically, and 

developmentally heterogeneous. However, they go on to say that basing classification and analysis on 

phenotype alone can lead to too many groups with too few cases for meaningful risk factor estimation. 

They describe an approach which classifies CHDs into cardiac phenotypes based on a hierarchical system. 

This approach has since been used in many large-scale epidemiological studies that aimed to explore CHD 

aetiology 24,25.  

Table 1.2. Descriptions of CHD subtypes. 

CHD subtype Description ICD 10 codea 

Common arterial trunk The two large arteries that leave the heart, the aorta 
and the pulmonary artery, are combined in one large 
vessel. Usually occurs with VSD 26. 

Q20.0 

Double outlet right 
ventricle (Taussig-bing 
syndrome) 

“Double outlet” refers to the transposition of the aorta 
to the right ventricle. Patients also have subpulmonic 
VSD.  

Q20.1 

Transposition of the great 
arteries (TGA) 

Pulmonary artery and aorta are switched in position.  Q20.3 

Double inlet ventricle Multiple abnormalities including left and right atrium 
drain into one ventricle, the other ventricle is 
abnormally small. Patients also have VSD.  

Q20.4 

Ventricular septal defect 
(VSD) 

A hole in the ventricular septum, which separates the 
hearts lower chambers.  

Q21.0 
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Atrial septal defect A hole in the wall separating the two upper chambers 
of the heart.  

Q21.1 

Atrioventricular septal 
defect (AVSD) 

Holes between the heart’s chambers and an 
impairment of valve function.  

Q21.2 

Tetralogy of Fallot Involves four malformations which present together: 
VSD, pulmonary stenosis, overriding aorta and right 
ventricular hypertrophy.  

Q21.3 

Pulmonary valve atresia Pulmonary valve does not form properly.  Q22.0 

Pulmonary valve stenosis An obstruction of blood flow through the pulmonary 
valve resulting in a restriction of blood to the lungs.  

Q22.1 

Tricuspid atresia Tricuspid valve does not form or does not form 
properly resulting in an underdeveloped ventricle and 
lack of oxygen to the body.  

Q22.4 

Ebstein’s anomaly Insufficiency of the tricuspid valve causing backflow 
and a less efficient heart.  

Q22.5 

Hypoplastic right heart 
(HRH) 

HRH syndrome refers to the underdevelopment of the 
right-side structures of the heart, notably a small or 
non-existent right ventricle.  

Q22.6 

Aortic stenosis Valve disorder that narrows or obstructs the aortic 
valve opening. 

Q23.0 

Mitral stenosis Thickened leaflets of the mitral valve. Q23.2 

Hypoplastic left heart (HLH) HLH syndrome refers to the underdevelopment of the 
left-side structures of the heart, notably a small or 
non-existent left ventricle. 

Q23.4 

Patent ductus arteriosus 
(PDA) 

An unclosed hole in the aorta allowing a portion of 
oxygenated blood flow back to the lungs. 

Q25.0 

Coarctation of the aorta Narrowing of the aorta.  Q25.1 

a International Classification of Disease codes (version 10).  
Abbreviations: CHD, congenital heart disease; VSD, ventricular septal defect; TGA, transposition of the great arteries; AVSD, 
atrioventricular septal defect; HRH, hypoplastic right heart; HLH, hypoplastic left heart; PDA, patent ductus arteriosus.  

 

1.2.3.1. Classification of CHDs in this thesis 

 

In this thesis, I have used any CHD as the main outcome. I defined any CHD using ICD-10 codes 

where available according to EUROCAT guidelines. However, I have also included CHD cases in cohorts 

that did not have ICD-coded data available and have used their own definition. Although it is discussed 

above that CHD subtypes are heterogenous in several ways, I believe there is value for prospective 

parents, clinicians and policy makers in knowing effects on any CHD. Where possible, I have also 

categorised cases into severe CHD (heterotaxia, conotruncal defect, atrioventricular septal defect, 

anomalous pulmonary venous return, left ventricle outflow tract obstruction, right ventricle outflow tract 

obstruction, other complex defects) and the remainder as non-severe CHD (PDA [in full term infants], 

valvular pulmonary stenosis, ventricular septal defect [VSD], atrial septum defects [ASD], unspecified 
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septal defects, isolated valve defects, other specified heart defects, unspecified heart defects). These 

definitions are based on the classification system described above (which has previously been adopted in 

recent large-scale epidemiological studies 24,25) combined with clinical expertise and judgement from a 

clinician. The classification of CHDs used in this thesis where ICD-10 codes are available is summarised 

below in Table 1.3. 

 

Table 1.3. Classification system used to define CHD in this thesis.  

Category  CHDs included ICD-10 codes 

All  Any CHD as defined by EUROCATa 

PDA with gestational age (GA) < 37 weeks not 
considered a CHD case. 
Peripheral pulmonary artery stenosis with GA < 
37weeks not considered as a CHD case
. 

Q20-Q25, Q260, Q262-Q269b 

Severe  Heterotaxia, Conotruncal defect, Atrioventricular 
septal defect, Anomalous pulmonary venous return, 
Left ventricle outflow tract obstruction, Right 
ventricle outflow tract obstruction, Other complex 
defects 

Q240, Q241, Q206, Q200, Q251, 
Q252, Q253, Q254, Q203, Q213, 
Q201, Q214, Q212, Q26, Q262, 
Q264, Q268, Q269, Q234, Q251, 
Q230, Q231, Q221, Q224, Q225, 
Q255, Q204 

Non-severe PDA (in full term infants), valvular pulmonary 
stenosis, VSD, ASD, unspecified septal defects, 
isolated valve defects, other specified heart defects, 
unspecified heart defects 

Non-severe cases that are All=1 

and Severe=0. 

 
a Definitions taken from here: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-
3.3.pdf ; b Q250 and Q256 not a case if isolated and GA<37weeks. 
Abbreviations: CHD, congenital heart disease; ICD-10, international classification of disease codes (version 10); EUROCAT, 
European surveillance of congenital anomalies; GA, gestational age; PDA, patent ductus arteriosus; VSD, ventricular septal 
defect; ASD, atrial septal defect.  

 

1.2.4. Diagnosis and treatment 

 

1.2.4.1. Prenatal diagnosis 

 

The Fetal Anomaly Screening Programme (FASP) was introduced in 2001. A fetal anomaly 

ultrasound scan between 18 to 20 completed weeks of gestation (hereafter ‘weeks’) is offered to all 

pregnant women in the UK. The screening offered will depend on where the pregnant woman lives in the 

UK. The fetal anomaly scan screens for 11 conditions which includes serious cardiac anomalies: 

transposition of the great arteries (TGA), atrioventricular septal defects (AVSD), Tetralogy of Fallot (ToF), 

hypoplastic left heart syndrome (HLHS). Suspected cases of CHD are referred to a fetal cardiology service 

https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-3.3.pdf
https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-3.3.pdf
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where fetal echocardiography is performed to confirm the diagnosis. The pathway for fetal diagnosis of 

CHD is illustrated in Figure 1.2. Pregnancies deemed “high-risk” will be referred to fetal cardiology services 

regardless of the result of the fetal anomaly scan. Pregnancies at increased risk for fetal CHD include a 

range of maternal indications (e.g., maternal CHD or maternal disorders such as diabetes), familial 

indications (e.g., paternal CHD or previous child with CHD) and fetal indications (e.g., fetal arrhythmias). 

The full criteria for pregnancies that are deemed high-risk is described in the British Congenital Cardiac 

Association fetal cardiology standards 27. Obtaining a current and accurate estimate of prenatal diagnosis 

numbers is difficult due to the ever-improving rates as a result of technological and medical advance 28. 

These rates can substantially differ depending on geographic region, technology available, the 

sonographer and the type of CHD. According to the National Institute for Cardiovascular Outcomes 

Research and (then) Public Health England, almost half of CHDs receive a prenatal diagnosis in the UK 

using data from 2016 29,30. The importance of having a prenatal diagnosis of CHD is underlined in a meta-

analysis conducted by Holland et al which showed that prenatal diagnosis of critical CHD significantly 

improved preoperative neonatal survival when comparing cases with similar forms of CHD 31.  
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Figure 1.2. Pathway for fetal diagnosis of congenital heart disease. 
Adapted from the British Congenital Cardiac Association’s fetal cardiology standards: 

http://www.bcs.com/documents/Fetal_Cardiology_Standards_2012_final_version.pdf 27. Abbreviations: 

FASP, fetal anomaly screening programme; CHD, congenital heart disease.   

 

 

http://www.bcs.com/documents/Fetal_Cardiology_Standards_2012_final_version.pdf
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1.2.4.2. Postnatal diagnosis 

 

A new-born and infant physical examination (NIPE) should be conducted within 72 hours of birth 

and then again at 6 to 8 weeks of age 32. Within the NIPE, the examination of the heart is broken down 

into 3 broad categories to give the physician the best chance of identifying presenting abnormalities: 

observation, palpation, and auscultation. Observation covers identifying any obvious signs that indicate 

cardiac stress such as cyanosis (bluish discoloration of the skin), palpation covers femoral and brachial 

pulses as well as other key areas and auscultation involves listening to the heart for quality of sound and 

presence of murmurs. Although most postnatally diagnosed CHD cases are diagnosed immediately or 

soon after birth, some cases can remain undiagnosed all the way through to adulthood as shown by others 

and research I conducted for this thesis (Chapter 2) 33–35. Common subtypes where a delayed diagnosis 

might occur are bicuspid aortic valve, septal defects and coarctation of the aorta 36.  

 

1.2.4.3. Treatment including surgical intervention 

 

Treatment and interventions vary considerably depending on CHD subtype. Those with mild heart 

defects may not require any treatment at all. Although, regular check-ups and careful monitoring will 

likely occur throughout life. More severe CHDs often require surgical intervention or catheterisation of 

the heart. Medications are often prescribed pre- or post-surgery to stabilise the condition to get the best 

possible outcome. Common medications include diuretics, anti-platelet therapies such as warfarin and 

angio-tensin-converting-enzyme inhibitors 37. The following CHD subtypes typically require open heart 

surgery to survive (N.B. this is not an exhaustive list): single ventricle, tricuspid atresia/stenosis, HLHS, 

ToF, transposition of the great vessels, common arterial truncus, atrioventricular septal defect, pulmonary 

valve atresia with ventricular septal defect (VSD) and total anomalous pulmonary venous connections. 

Individuals with aortic valve atresia/stenosis and coarctation of aorta generally require either surgical or 

catheter intervention, with the timing dependent on severity. 

 

 

 

 



 29 

1.3. CHDs: What role does the maternal pregnancy environment play? A literature 

review. 
 

CHDs have been introduced and described in the preceding sections and now, a critical review of 

the scientific literature relating to the aims of this thesis is presented. An ever-expanding body of 

epidemiological literature has explored associations of potential maternal (intrauterine) risk factors 

during pregnancy with CHDs in the offspring 38. Whether these risk factors are causal remains unknown. 

Identifying modifiable causal risk factors for CHDs is necessary to improve aetiological understanding and 

to develop preventive interventions that target the most promising causal and modifiable risk factors. The 

purpose of this review is to summarise the evidence on non-inherited intrauterine risk factors for offspring 

CHDs in the form of an umbrella review (i.e., a review of systematic reviews). This section aims to provide 

the reader with an overview of the current literature base including limitations and potential sources of 

bias.  

 

1.3.1. Methods 
 

To identify all previous systematic reviews of association of any intrauterine exposure with CHDs 

I conducted a systematic search of PubMed using the following terms: ((Systematic review OR meta-

analysis OR meta analysis)) AND (congenital heart OR congenital heart disease OR congenital heart defect 

OR congenital cardiac OR tetralogy of Fallot OR pulmonary stenosis OR pulmonary valvar stenosis OR 

fontan circulation OR cavo-pulmonary connection OR univentricular heart OR conotruncal OR hypoplastic 

left heart OR single ventricle OR septal defect). I specified that these words had to be contained in the title 

or abstract of the articles. I also searched the reference list of articles that were eventually included. The 

search was conducted on 13th April 2021 and identified 585 articles (Figure 1.3). I read all titles to decide 

whether they should be included. After excluding articles that were not a systematic review/meta-analysis 

or those not related to pregnancy characteristics and congenital outcomes, 101 abstracts were screened. 

Of these, 49 were not eligible for inclusion (see reasons in Figure 1.3) and 52 full text articles were 

screened for inclusion. I identified 39 systematic review/meta-analysis articles summarizing maternal 

pregnancy characteristics on CHDs that were eligible. There were multiple systematic reviews for several 

exposures (e.g., 4 meta-analyses published between 2014 and 2018 on maternal body mass index [BMI] 

and offspring CHDs). In these instances, I included the most recent article. However, I also checked each 

individual review for which main studies were included and the concordance of results. There were no 



 30 

instances where the most recent systematic review was deemed to be not the most appropriate to 

include. After removing duplicates, there were 18 articles included. As the focus is specifically on CHDs, I 

restricted the search to systematic reviews of CHDs. However, when screening abstracts, any papers 

where the main focus was on all CAs but where it was likely that associations with CHDs were presented 

separately were kept for review of the full paper and included if CHD results were presented. I extracted 

data from included systematic reviews, including the inclusion criteria, the number of studies, total 

participants, and number of CHD cases, risk of bias assessment, whether results were pooled, the number 

of studies included in the pooled analyses, any sensitivity analyses and the numerical results. I did not 

formally assess the quality of included studies; however, I include comments and potential sources of bias 

to assist in the interpretation of the quality of evidence.  

 

 

 

Figure 1.3. Flow chart of articles included in the synthesis of evidence. 
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1.3.2. Results 

 

Table 1.4 summarises the evidence from 18 systematic reviews corresponding to different 

maternal exposures and CHDs.
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Table 1.4. Summary of findings of associations between maternal risk factors and CHD in the offspring. 

 
Exposure 
(reference) 

N of studies and 
participants 

Main findings Author’s risk of bias/study 
quality assessment 

Comments and potential sources of bias 

Air pollution 
(Hu et al 2020 39) 

26 studies included 
(10 cohort, 16 case-
control). Up to 6,000 
CHD cases depending 
on exposure or 
outcome subtype. 

No results reported for any CHD. 37 separate 
meta-analyses presented for different types of 
air pollution and CHD subtypes. High carbon 
monoxide (CO) exposure associated with ToF 
(OR = 1.21 (1.04-1.41, I2 = 0%), 8 studies, 688 
CHD cases). A small increased risk was found for 
ASDs for each increment increase in particulate 
matter (OR = 1.04 (1.00, 1.09, I2 = 43%). 

Critical Appraisal Skills 
Programme checklist and 
Newcastle-Ottawa scale (NOS). 
Authors deemed the included 
studies to be of sufficient 
quality. Some of the limitations 
identified relate to potential 
risk of misclassification and 
non- representative samples. 

Authors focused on ‘statistically significant’ 
findings. There were many analyses performed for 
different exposures and different CHD outcomes 
with no discussion on multiple testing. 
Confounders varied by study (high risk of residual 
confounding). 8 out of 26 studies adjusted for 
smoking. Exposure assessment also varied by 
study. Air pollution is notoriously difficult to 
measure accurately, therefore measurement 
error could possibly be influencing results 40.  

Alcohol 
(Zhang et al 2020 
41) 

45 studies included 
(3 cohort, 42 case-
control). 34,638 CHD 
cases and 290,425 
controls. The study 
also included 
paternal alcohol as 
an exposure. 55 
studies were 
included in total, but 
45 reported 
associations for 
maternal alcohol and 
CHDs. 

Any alcohol between 3 months before the 
pregnancy and during the first trimester with any 
CHD: OR = 1.16 (1.05, 1.27, I2 = 74%, 45 studies).  
Binge drinking: OR = 1.16 (1.02, 1.32, I2 = 12%, 10 
studies).  

NOS – NOS results displayed in 
Supplementary Material. 44 out 
of 55 included studies had a 
score of at least 7 which is the 
cut-off used to deem a study of 
high methodologic quality. 
Authors do not comment on 
results of NOS.   

31 out of the 45 studies did not adjust for 
confounders. Effect estimates were similar for any 
alcohol and binge drinking. The authors also 
report results for paternal alcohol (OR = 1.44 
(1.19, 1.74, I2 = 90%). The magnitude of the effect 
was stronger than that of maternal alcohol 
suggesting that results could be confounded. 
Carefully conducted parental negative control 
analyses could elaborate on this. The timing of the 
exposure (i.e., 3 months before pregnancy) does 
not solely reflect the critical period for fetal heart 
development.  

Antidepressants 
(De Vries et al 
2020 42) 

20 studies included 
(15 cohort, 5 case-
control). 5,507,872 
pregnancies. 

Any anti-depressant during the first trimester of 
pregnancy and offspring CHD: OR = 1.28 (1.17, 
1.41, I2 = 49%).  
Serotonin norepinephrine reuptake inhibitors 
OR: 1.69 (95% CI 1.37–2.10, I2 = 25%). 
Selective serotonin reuptake inhibitors 1.25 (95% 
CI 1.15–1.37, I2 = 33%)  
tricyclic antidepressants OR: 1.02 (95% CI 0.82–
1.25, I2 = 0%) Analyses of individual SSRIs also 
produced positive associations.  

Modified version of the NOS. 
Strict inclusion criteria: Cohort 
studies were excluded if any of 
the high- or medium- impact 
criteria were poor. If four of the 
high-impact criteria were ideal 
and at least two of the low-
impact criteria were ideal for 
case-control studies, the study 
was included. 

15 out of 20 studies had no data on confounder 
adjustment. Large majority of studies used linked 
electronic health records. Authors performed a 
rigorous bias assessment and excluded studies 
that were high risk of bias. Possibility of residual 
confounding and/or confounding by indication. 
Majority of studies contained live births only.  
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Body mass index 
(Liu et al 2019 43) 

19 studies included 
(6 cohort, 13 case-
control)  
2,416,546 
participants including 
57,172 CHD cases. 

Maternal overweight versus normal weight with 
any CHD: RR = 1.08 (1.03, 1.13, I2 = 54.5%, 18 
studies). 
Maternal obesity versus normal weight: RR = 
1.23 (1.17, 1.29, I2 = 48.3%, 23 studies (23 
studies due to duplicates from obesity severity 
categories)). 

All included studies considered 
as high quality ( 7) based on 
the NOS.  

No results reported for maternal underweight 
(two previous meta analyses published in 2018 
reported null associations for maternal 
underweight 44,45). 10 of the 19 studies did not 
provide information on confounder adjustment. 
There was inter-study heterogeneity, with smaller 
studies having weaker associations.  

Diabetes 
(Chen et al 2019 46) 

52 studies included 
(16 cohort, 32 case-
control). 16,929,835 
participants including 
259,917 CHD cases. 

Any maternal diabetes and any CHD: OR = 2.71 
(2.28, 3.23, I2 = 98%, 52 studies). 
Pre-gestational diabetes and any CHD:  OR = 3.18 
(2.77, 3.65, I2 = 79%, 31 studies). 
Gestational diabetes and any CHD:  OR = 1.98 
(1.66, 2.36, I2 = 90%, 27 studies). 
Positive associations for most subtypes.  

NOS – 46 out of 52 included 
studies (including 99.98% of the 
participants) had a score of at 
least 7.  

Large number of studies and participants 
included. Associations for pre-gestational 
diabetes stronger than gestational diabetes which 
is biologically plausible because fetal heart 
development takes place during early pregnancy 
at which point gestational diabetes is not fully 
manifested. 27 of the 52 studies did not control 
for any confounders. Cannot rule out residual 
confounding. There was significant heterogeneity 
in the results from meta-analyses. 

Fever (Yang et al 
2021 47) 

16 studies included 
(1 cohort, 15 case-
control). 31,922 CHDs 
cases among 183,563 
participants. 

Maternal fever experience during preconception 
and conception periods and any offspring CHD, 
OR: 1.45 (1.21, 1.73, I2 = 80%). There were also 
positive associations for specific CHD 
phenotypes including CTDs, ASDs, TGA and 
RVOTO.  

NOS – 11 out 16 studies 
considered of higher 
methodological quality. 

10 out of the 16 studies were not adjusted for 
confounders. Many studies used different 
definitions to define maternal fever. All but 1 of 
the studies had a case-control design.  

Folic acid 
supplementation 
(Xu et al 2016 48) 

20 studies included 
(20 case-control). 
33,270 participants. 

Folic acid supplementation associated with a 
decreased risk of CHDs: OR = 0.60 (0.49, 0.71, I2 
= 88.8%, 20 studies).  

NOS – 15 out of 20 included 
studies had a score of at least 7. 

Significant heterogeneity reported which was 
partly driven by geographical location. There was 
evidence of publication bias. The authors do not 
discuss confounder adjustment in the included 
studies. Brief manuscript (< 3 pages) with all 
figures and tables in the supplementary material.  

Hypertension 
(Ramakrishnan et 
al 2015 49) 

16 studies included 
(6 cohort, 9 case-
control, 1 cross-
sectional). 
41,172 CHD cases 
included in study 
population. 

Untreated maternal hypertension and any CHD, 
RR = 1.38 (1.15, 1.67, Pheterogeneity = <0.001, 7 
studies). The effect estimate was also positive 
for the association between untreated maternal 
hypertension and each of the seven CHD 
subtypes. Treated maternal hypertension in the 
first trimester of pregnancy and any CHD, RR = 
2.03 (1.54, 2.68, Pheterogeneity = 0.001, 8 studies). 
The effect was positive for the association 
between maternal hypertension treated with 
each of three specific types of hypertension 
medications (angiotensin converting enzyme 
inhibitors, beta-blockers, and calcium channel 
blockers). 

NOS – Authors do not report 
NOS score for each study but 
report the range (range 5–9). 
Authors repeated analyses 
among studies with a total 
score of >6, and results were 
similar to the main results. 

Large sample size with a good number of cohort 
studies included. 4 out of 16 studies did not adjust 
for any confounders. Confounder adjustment in 
the remaining studies varied. 4 out of the 12 
studies that adjusted for at least one confounder 
adjusted for BMI. 3 studies adjusted for smoking 
and alcohol use. No evidence of publication bias. 
Insufficient data to assess the effects of 
pregestational versus chronic hypertension.  
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IVF 
(Giorgione et al 
2018 50) 

8 cohort studies 
included. 313,851 
participants including 
1,952 cases. 

OR of CHDs in IVF pregnancies = 1.45 (1.20, 1.76, 
I2 = 44%, 8 studies).  
Subgroup associations reported (major and 
minor CHD) but results imprecise with CIs 
spanning the null. 
 

NOS – 13 out of 41 included 
studies had a score of at least 7. 

Meta-analysis results based on relatively small 
numbers of exposed and outcome (N with IVF = 
25,856 (of which 337 had CHD), N without IVF = 
287,995 (of which 1,952 had CHD)). 5 out of 8 
studies did not adjust for confounders. Large 
numbers difficult to obtain given that IVF is rare 
(~1-2% of births in developed countries) and CHD 
is a rare outcome. 

Nitrofurantoin 
(Goldberg et al 
2015 51) 

6 studies included (4 
cohort, 2 case-
control). 
1,404,619 
participants including 
23,620 CHD cases. 

Exposure of Nitrofurantoin (an antibiotic 
commonly used to treat urine infections in 
pregnancy) and any CHD, OR = 0.94 (0.69, 1.28, 
I2 = 68%, 6 studies).  

No formal assessment of risk of 
bias or study quality.  

Only 165 events (CHD cases) from 6 studies in the 
exposed group in meta-analyses, therefore it is 
difficult to draw any strong conclusions. 
Confounder adjustment not reported by the 
authors. Associations were also null for any major 
malformation (from cohort studies). 

Parity 
(Feng et al 2014 52) 

17 studies included 
(3 cohort, 14 case-
control). 39,757 CHD 
cases. 

RR of CHD for parous vs nulliparous = 1.01 (0.97, 
1.06, I2 = 54%, 16 studies). RR of CHD for the 
highest versus lowest parity categories = 1.20 
(1.10, 1.31, I2 = 83%, 14 studies). 

NOS – 11 high quality studies 
(scores  7) and 7 low quality 

(scores  7). 

15 out of the 17 studies did not adjust for any 
confounders. Authors performed subgroup 
analyses stratified by maternal age and found 
consistent results. Significant heterogeneity 
between studies in the highest versus lowest 
parity analyses.  

Reproductive 
history 
(Feng et al 2015 53) 

18 studies included 
(17 case-control, 1 
nested case-control). 
10,132 CHD cases. 

Ever pregnant versus nulligravidity and any CHD, 
OR = 1.18 (1.03, 134, I2 = 62%, 10 studies).  Dose-
response analysis:  Each increment in number of 
pregnancies compared with no prior pregnancy, 
OR = 1.13 (1.08, 1.18, I2 = 43%, 7 studies). Prior 
abortion and any CHD, OR = 1.24 (1.11, 1.38, I2 = 
46%, 11 studies).  

NOS – 4 out of 18 included 
studies had a score of at least 7. 

Confounder adjustment in included studies not 
reported by the authors. All but one of the studies 
included were of the same design (case-control) 
and therefore susceptible to common biases such 
as selection bias. 

RTI/influenza 
(Xia et al 2019 54) 

17 studies included 
(17 case-control). 
11,911 cases and 
74,358 controls. 

Random effects meta-analysis for maternal 
RTI/influenza and any CHD: OR = 1.43 (1.24, 
1.63, I2 = 37%, 17 studies). Similar associations 
for simple and complex CHD.  

No formal assessment of risk of 
bias or study quality. 

Authors do not comment on confounder 
adjustment in the included studies. Some 
evidence of publication bias when any CHD was 
used as the outcome. Some studies exposure data 
relied on retrospectively self-reporting which can 
be susceptible to information bias 
due to differential recall between cases and 
controls.  

Smoking 
(Zhao et al 2019 55) 

125 studies included 
(108 case-control, 17 
cohort). 8,770,837 
participants including 
137,574 cases. 

Maternal active smoking and CHD:  RR = 1.25 
(1.16, 1.34, I2 = 89%). 
Maternal passive smoking and CHD:  RR = 2.24 
(1.81, 2.77, I2 = 92%). 
Sub-type associations also reported. 
 

NOS – 76 out of 125 studies 
(60.8%) were considered of 
higher methodologic quality 

(scores  7). 

Large sample size and number of studies included. 
84 out of 125 studies did not control for any 
confounders. Significant heterogeneity reported. 
Associations for maternal passive smoking and 
paternal active smoking were stronger than 
maternal active smoking suggesting results could 
be confounded. There was some evidence of 
publication bias. 
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Socioeconomic 
status 
(Yu et al 2014 56) 

33 studies included 
(2 cohort, 31 case-
control).  
53,358 CHD cases. 

Maternal educational attainment (highest vs 
lowest) and any CHD, RR = 1.11 (1.03, 1.21, I2 = 
61%, 29 studies). Income level (highest vs 
lowest) and any CHD, RR = 1.05 (1.01, 1.09, I2 = 
0%, 6 studies). The study also reported positive 
associations for different levels of occupational 
prestige in comparison to the highest level of 
occupation. 

No formal assessment of risk of 
bias or study quality. 

Results were inconsistent between developed and 
developing countries (29 out of the 33 studies 
included were from high-income countries). 
Classification and definition of the exposures vary 
between studies. All but 2 of the studies included 
were case-control studies. Confounder 
adjustment in included studies not reported by 
the authors. 

SSRIs 
(Gao et al 2018 57) 

Up to 18 studies 
included depending 
on analysis (all 
studies included in 
the meta-analysis 
were cohort studies). 
Participant numbers 
not stated for CHD 
analyses. 

Exposure to any SSRI in the general population 
and any CHD, RR = 1.24 (1.11, 1.37, I2 = 59%, 18 
studies) and in women with a psychiatric 
diagnosis, RR = 1.06 (0.90, 1.26, I2 = 33%, 6 
studies). Citalopram and any CHD, RR = 1.24 
(1.02, 1.51, I2 = 53%, 11 studies).  Fluoxetine and 
any CHD, RR = 1.30 (1.12, 1.53, I2 = 29%, 14 
studies).  Paroxetine and any CHD, RR = 1.18 
(1.05, 1.32, I2 = 0%, 16 studies). Sertraline and 
any CHD, RR = 1.42 (1.12, 1.80, I2 = 64%, 13 
studies). 

NOS – Analysis of the included 
studies indicated that 23 
studies were low risk and 6 
were high risk for bias. 

Attempted to account for confounding by 
indication but authors acknowledge that this 
could still be an important potential source of 
bias. Authors found that RRs for the association 
between use of SSRIs and outcomes were lower in 
the restricted cohorts (it is plausible that smaller 
cohorts might have more complete confounder 
data available). One study with a discordant 
sibling design found no association 58, suggesting 
results from meta-analyses could be confounded.   

Valproic acid (VPA) 
(Tanoshima et al 
2015 59) 

20 studies for any 
VPA exposure (all 
included studies 
were of a prospective 
or retrospective 
cohort design). 
19,284 participants 
including 194 CHD 
cases. 

VPA exposure and CHDs, RR = 2.08 (1.55, 2.79, I2 
= 0%, 20 studies).  

NOS – 24 out of 59 studies were 
considered of higher 

methodologic quality (scores  
7). Results similar when 
including those studies of 
higher quality. 

Low participant numbers (N = 67 exposed cases in 
meta-analyses from 20 studies) meaning it is 
difficult to draw any robust conclusions. Authors 
did not examine confounder adjustment. 
Although fetal valproate syndrome generally 
considered as an established risk factor for CHD.   

Viral infection 
(Ye et al 2019 60) 

17 studies included 
(17 case-control). 
67,233 participants. 

History of viral infection in early pregnancy and 
any CHD: OR = 1.83 (1.58, 2.12, I2 = 78%, 17 
studies). Associations for specific virus’s also 
reported. 

NOS – 15 out of 17 studies were 
considered of higher 
methodologic quality (scores  
7). 

16 out of the 17 studies conducted in China, 
therefore results might not generalise to other 
populations. There was significant heterogeneity, 
although results were consistent in both fixed and 
random effects meta-analyses. Only 6 out of 17 
studies controlled for confounders.   

Confidence intervals are 95% unless stated. Abbreviations: CHD, congenital heart disease; OR, odds ratio; CI, confidence interval; RR, relative risk; NOS, Newcastle-Ottawa scale; CTDs, 
conotruncal defects; ASDs, atrial septal defects; TGA, transposition of the great arteries; RVOTO, right ventricular outflow tract obstruction; FA, folic acid; BMI, body mass index; IVF, in vitro 
fertilisation; SSRI, selective serotonin reuptake inhibitors; VPA, valproic acid. 
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Studies included were predominantly of a case-control design (N = 493 total studies from 18 

systematic reviews, of which 358 (73%) were case-control). The systematic reviews covered a diverse 

range of exposures from BMI, smoking and alcohol through maternal conditions (e.g., hypertension and 

fever) to maternal treatments during or before pregnancy (e.g., IVF, antidepressants, and epilepsy 

treatments). All but 1 of the 18 systematic reviews reported an association between the maternal 

exposure and risk of CHD. The exception was for Nitrofurantoin (an antibiotic commonly used to treat 

urine infections in pregnancy) which included 6 studies (1,404,619 participants and 23,620 CHD cases [of 

which, 165 were exposed to Nitrofurantoin]) with the authors concluding that they found no increased 

risk for CHDs. The results suggested a weak protective effect with wide confidence intervals that included 

potentially clinically meaning full protective or detrimental effects (OR: 0.94 (95%CI: 0.69, 1.28). Of the 17 

other systematic reviews that reported an association, 16 reported positive associations (i.e., increased 

exposure was associated with higher risk of CHD), whereas folic acid supplementation was found to be 

associated with lower CHD risk.  

3 out of 18 systematic reviews did not formally assess the risk of bias or study quality of the 

included studies. The remaining studies all used some form of the Newcastle Ottawa Scale. 7 out of the 

18 systematic reviews did not comment on confounding variables in the included studies. Of the 

remaining 11, confounder adjustment significantly varied. 67%, 53%, 69% and 52% of studies did not 

report confounder adjustment in the alcohol, BMI, diabetes and smoking systematic reviews, respectively 

(4 of the most studied exposures). Heterogeneity between studies was common, with I2 (a measure of the 

proportion of variation across studies that is due to between study heterogeneity rather than chance) 

provided in 17 studies and ranging from 0% to 98% (with 12/17 of the studies having a value >=50%). This 

was particularly the case for some of the larger studies mentioned above (I2 > 70% for alcohol, diabetes 

and smoking meta-analyses), although it is worth noting that larger studies have more power to detect 

heterogeneity. Potential sources of heterogeneity could arise from study samples reflecting different 

populations and associations being different between these populations, or differences in outcome 

definitions (i.e., some studies only including specific CHD subtypes or defining CHD cases differently to 

others), or by the way the exposure is assessed or the quality and differences of the study design. 17 of 

the 18 systematic reviews assessed for evidence of publication bias with 6 of the studies uncovering 

evidence of publication bias.  
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1.3.3. Exposures not identified in the Umbrella Review 

 

The advantage of performing a review of systematic reviews in the form of an umbrella review is 

that it focuses on where there has been a body of work that has been summarised, meta-analysed (where 

possible) and critiqued. The limitation is that it focuses on exposures that have strong hypotheses and 

available data to be explored in several studies, which may miss important risk factors that are not in the 

‘cognitive and political bias set’. Seminal studies that were not a systematic review would not have been 

included. Some exposures that might be pertinent but were not identified by the review above could 

include diet, illegal drug use and a range of biomarkers (e.g. glucose). There were no studies of 

metabolomics, which would reflect a more hypothesis free approach to exploring how the pregnancy 

environment relates to offspring CHDs and I discuss this further in section 1.4. Since writing this section, 

a large umbrella review exploring environmental risk factors and CHDs has been published. The interested 

reader is directed towards this publication for a more in-depth review 61.   

 

1.3.4. Risk of bias for causal inference 

 

73% of studies included in the systematic reviews identified for this umbrella review used a case-

control design. CHDs are relatively rare (~1% incidence) and case-control studies are an efficient study 

design for studying rare outcomes. Furthermore, case-control studies are cost-effective and less time-

consuming than other study designs. However, case-control studies and other observational study designs 

are prone to biases that could influence findings and therefore cast doubt on causality. I discuss these 

biases below and consider the extent to which the biases might have influenced findings from the review.  

 

1.3.4.1. Selection bias 

 

Selection bias can occur when groups of participants differ in ways other than the exposure of 

interest. For example, case-control studies are prone to selection bias as response rates in controls are 

commonly low and some controls are selected from hospitals or clinics which may not be representative 

of the target population. Prospective cohort studies can go some way to addressing this, although, 

selection into and dropout from these studies may bias associations, as previously discussed in the context 

of UK Biobank 62,63, the largest prospective cohort study in the UK. The magnitude and direction of effect 

that selection bias is having on a study is often difficult to determine 64. More recently, studies have made 
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use of large electronic linked datasets often including large proportions of a country’s population which 

provide opportunities to obtain truly representative samples and reduce the chance of selection bias 

influencing findings 65,66. Preventive steps for observational studies include exploring replication across 

different study populations, dealing with missing data appropriately and selection of populations should 

be as broad as possible and openly reported in the recruitment/inclusion criteria. 

 

1.3.4.2. Misclassification/measurement error of exposure or outcome 

 

Case-control studies are susceptible to information bias due to differential recall and reporting of 

the exposure between cases and controls 67. For example, the systematic review exploring respiratory 

tract infections (RTIs) and influenza on CHDs included some studies that retrospectively ascertained self-

reported exposure status once an offspring CHD was already diagnosed 54. It is plausible that women might 

recall the exposure differently after an offspring CHD diagnosis. If pregnancy data is collected 

prospectively for all women in a population before offspring CHD diagnoses are made, this would reduce 

the possibility of differential recall influencing the results.  

The timing of the assessment of putative risk factors is also important to consider. The embryonic 

heart is developed between week 3 to week 8. It is important that exposure measurement closely 

resembles this crucial period of heart development. Retrospective data covering a specific period such as 

this could be difficult to reliably obtain. In the air pollution systematic review, air pollution exposures were 

largely assessed on air pollutant measurements carried out at fixed monitoring stations close to the 

residential address of the mother. This assumes that the measures at a fixed station then reflect air 

pollution exposure in the mother during early pregnancy which could be a difficult assumption to reliably 

assess.  

The classification of CHDs can be somewhat complicated and is not a clear-cut exercise. Some 

studies may only include live births, although, it is well known that CHDs are major cause of still births 

(e.g. the largest study included in the BMI systematic review including >1.2 million singletons and 

accounting for >15% weighting in meta-analyses only included live births 66). Despite this, recent findings 

suggest that livebirth bias is unlikely to affect studies of risk factors for most CAs 68. Outcome 

misclassification (offspring who would be diagnosed with a CHD later in life are treated as not having CHD) 

can also be a problem in CHD research if studies only recruit cases in early life. It is well known that most 

CHDs are identified in utero or at birth, however, many are still diagnosed throughout childhood and even 
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in adulthood 35,69,70. This misclassification (wrongly assigning a participant as a “control” instead of a 

“case”) would bias results towards the null.  

 

1.3.4.3. Confounding 
 

As mentioned above, many of the studies included in the literature review did not adjust for 

confounders (67%, 53%, 69% and 52% of studies did not report confounder adjustment in the alcohol, 

BMI, diabetes and smoking systematic reviews). Studies that do not adjust for any confounders have no 

way of discerning whether an association is being caused by their exposure of interest or other common 

causes (i.e., confounders: illustrated below in Figure 1.4). Results from studies using conventional 

multivariable approaches that have adjusted for confounders may also be explained by residual 

confounding because of incomplete identification or adjustment for confounders or poorly measured 

confounders. The authors of the systematic review looking at selective serotonin reuptake inhibitors 

(SSRI) attempted to account for confounding by indication (underlying psychiatric diagnosis) by comparing 

women using SSRIs vs. those with unmedicated psychiatric illness 57. No other studies attempted to 

explore the impact of possible residual confounding meaning that there is a high risk of confounding 

influencing results from the systematic reviews discussed above. There is a pressing need for research 

involving maternal exposures and offspring CHDs to make use of study designs that can address the issue 

of confounding. I discuss some of these methods in section 1.5 which I subsequently use throughout this 

thesis.    

 

 

Figure 1.4. Causal diagram for the effect of a maternal exposure on offspring CHDs, with both 
measured (controlled) and uncontrolled confounders that cause both the exposure and outcome. The 
dashed line between measured and unmeasured confounders indicates that either may cause the 
other, and they may share common causes. 
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1.3.4.4. Publication bias 
 

A major limitation of reviewing the epidemiological literature for CHD risk factors is that studies 

uncovering null results may be less likely to be published 71. Of the 18 systematic reviews reported in Table 

1.4, 6 found some evidence of publication bias, whereas 1 study did not explore the potential impact of 

publication bias. This can skew the evidence base for a particular topic, affect meta-analyses and 

compromise the credibility of the scientific literature. This issue is not specific to CHD research but is a 

problem for science in general 72. More and more scientists and journals are beginning to adopt ‘pre-

registered’ studies as part of a bid to prevent publication bias and put an emphasis on robust methods 

and scientific analysis as oppose to ‘significant’ results 73. Pre-registering a study requires the authors to 

openly report their background, rationale, and study methods before undertaking any analyses and 

should be adopted more widely in the field of aetiological CHD research. Questionable research practices 

such as only reporting favourable results, ‘P-hacking’ and post hoc theorising can be identified by 

comparing published articles to their pre-registered protocols. Confirmatory studies seeking to replicate 

previous work and studies reporting null results are crucial for improving our scientific understanding of 

CHD aetiology. 

 

1.3.5. Summary 

 

I have provided a summary of evidence on maternal risk factors for offspring CHDs in the form of 

an umbrella review. It highlights a focus on ‘expected’ candidate exposures, including treatments such as 

IVF, antidepressants, sodium valproate, and behaviours such as smoking and alcohol, that have been 

hypothesised to influence fetal development and CAs in general for decades. In conclusion, there are 

many exposures associated with CHD, but studies that use causal methods are lacking. I have discussed 

sources of bias for causal inference which I am interested in and that I aim to address in this thesis.  

 

1.4. Metabolomics in aetiological CHD research 
 

In this section, I will introduce and discuss the emerging role of metabolomics technologies and 

how they could improve our understanding of how the pregnancy environment may relate to offspring 

CHDs. In this context, metabolite(s) are deemed exposures; they might mediate some of the behaviours 

mentioned above or they may be independent risk factors. To date, there are no systematic reviews that 
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have looked at maternal metabolites/metabolomics and offspring CHDs and therefore this topic was not 

discussed in the previous section. The rationale for exploring this is that detailed information on the 

metabolome can provide information on a range of medications, diet and lifestyle factors that are being 

used/adopted by the mother which can be difficult to reliably obtain via self-report.  

Metabolomics falls under the ‘omics’ umbrella term, which includes genomics, transcriptomics, 

proteomics, and epigenomics. It involves the measurement of small molecule compounds (metabolites). 

The metabolic state of an organisms depends on a complex and continuous interaction between its 

genome, transcriptome, proteome, epigenome, microbiome and the external environment 74. Changes in 

metabolite levels are a result of enzymatic reactions and physical, pathological and environmental 

influences at the molecular level 75. Therefore, metabolites are thought to be the ‘omics’ that most closely 

reflect profiles of phenotypes in health (Figure 1.5). Metabolomics can provide us with a detailed 

exploration of an organism’s current physiological state. The metabolome represents the complete set of 

metabolites in an organism. Advances in high-throughput technologies have introduced the use of 

metabolomics into epidemiological studies, providing opportunities to improve our understanding of 

molecular mechanisms that underpin health and disease 76. For example, metabolomics studies have 

uncovered potential new biomarkers for cardiovascular disease and contributed to the metabolic changes 

that underpin the disease 77. The two most common platforms currently being used for metabolomic 

profiling are mass spectrometry (MS) and nuclear magnetic resonance (NMR). MS offers an untargeted 

approach with comprehensive coverage of the metabolome (>1000 metabolites) due to its high 

sensitivity. However, MS only provides relative quantification based on peak area without comparison to 

a metabolite reference standard. NMR offers less coverage of the metabolome, but with absolute 

quantification possible in clinically relevant units (i.e. mmol/l). In this section, I focus on the use of 

metabolomics (during pregnancy) in CHD research.  

 

Figure 1.5. Hierarchy of biological information leading to biological function or disease outcome. 
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The development of metabolomics has provided opportunities to improve our understanding of 

the physiological changes that occur during pregnancy 78. For example, differences in pregnancy 

metabolomic profiles have been reported in relation to changes in pregnancy characteristics 79–81. 

Metabolomics provides scope to assess whether these molecular changes that affect the mother during 

pregnancy can lead to complications in the offspring through possible intrauterine mechanisms by 

identifying clinically relevant biomarkers. Currently, there are no widely adopted maternal pregnancy 

biomarkers available for the detection of CHDs. As depicted in Table 1.4 above, there is an extensive body 

of research exploring maternal risk factors and CHDs, however, the mechanisms by which putative risk 

factors influence offspring cardiac development are not clearly understood. Laboratory studies are vital 

for mechanistic research of this nature, however, in a real-world population setting, metabolomics could 

provide opportunities to enhance our molecular understanding of CHDs.  

To date, there have been several studies that have used pregnancy metabolomics data to study 

offspring CHDs which I discuss below. Some of the studies have aimed to use metabolomics for early 

diagnosis rather than attempting to establish causal links. For example, one study including 27 CHD cases 

and 59 controls aimed to identify metabolomic markers in maternal serum during pregnancy for the 

detection of CHDs 82. They found more than 100 metabolites that differed between CHD cases and non-

cases concluding that abnormal lipid metabolism was a significant feature of CHD pregnancies. However, 

the sample size was relatively small, and their results have not been externally validated. Other work has 

explored potential biomarkers of maternal urine metabolomics with offspring CHDs (N = 70 CHD cases 

and 70 controls) 83. Their results indicated that short chain fatty acids and aromatic amino acid metabolism 

in a Chinese population may be relevant to CHDs. Recent work using an untargeted metabolomics 

approach using maternal amniotic fluid samples discovered that the metabolites uric acid and proline, 

were significantly elevated in CHD cases 84. Replication of these studies are warranted.  

Some studies have explored more traditional molecular markers (as opposed to a metabolomic 

platform) and found that women with a compromised vitamin D status (defined as 25-hydroxyvitamin D 

< 50 nmol/l in comparison to adequate defined as > 75 nmol/l) 85 and lipid profile 86,87 could be important 

maternal risk factors for CHDs. However, some of these studies measured the biomarkers after pregnancy 

and used the measurements as a proxy for pregnancy levels. Other work explored one-carbon metabolite 

levels during pregnancy (including a variety of analytes: homocysteine, methylmalonic acid, folate, 

vitamin B12, pyridoxal phosphate, pyridoxal, pyridoxic acid, riboflavin, total choline, betaine, methionine, 

cysteine, cystathionine, arginine, asymmetric and symmetric dimethylarginine). The authors concluded 
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that they observed no statistical differences, although there were several associations that had potentially 

clinically meaningful point estimates with the confidence intervals spanning the null 88.   

In summary, there have been some promising studies uncovering potentially important molecular 

pathways associated with offspring CHDs. However, pregnancy metabolomic studies are still relatively 

novel and the evidence presented above is preliminary. Going forward, larger studies that possess 

metabolomic measurements during pregnancy coupled with offspring outcomes will be required to 

further explore associations between maternal metabolomic profiles and CHDs and to replicate previous 

findings. Metabolomics studies are still susceptible to biases discussed above (i.e., selection bias and 

confounding). Future studies should explore associations using a range of metabolomic platforms and 

employ causal methods (as discussed in the next section) where possible to improve confidence in 

findings.  

 

1.5. Causal methods  
 

Over the last 15-20 years novel approaches to improve causal inference in observational 

epidemiology have been proposed and increasingly used. These include the use of genetic variants as 

instrumental variables (IVs) (known as Mendelian Randomisation (MR)), within sibship analyses, negative 

control studies, and cross-context comparisons. These are increasingly developed and applied specifically 

to explore intrauterine effects, for example of maternal pre-/early pregnancy BMI, glucose, lipids, blood 

pressure, vitamin D and smoking on offspring fetal growth, birthweight, later life BMI and cardiometabolic 

risk 89–95. However, their use in identifying modifiable intrauterine effects on risk of CHDs appears limited, 

potentially because of the very large numbers of participants that would be needed for such studies.  

In the field of aetiological CHD research, there is a need for evidence to be integrated from 

multiple epidemiological approaches (such as those mentioned above) with differing and unrelated key 

sources of bias to improve our causal understanding of maternal risk factors and CHDs. This approach is 

referred to as triangulation 96. The use of multiple different study designs to improve our causal 

understanding of maternal risk factors for offspring CHDs is likely to require considerable data sharing and 

multidisciplinary collaboration. The adoption of data sharing and collaboration is particularly pertinent for 

the topic I discuss here due to the rarity of CHDs within the general population. In contrast, for an outcome 

such as birthweight which is ubiquitous in the general population, larger sample sizes are easier to obtain. 

I have tried to improve causal inference in this thesis by triangulating evidence from either two or all three 
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of the following methods: multivariable regression, parental negative control analyses and MR analyses. 

I describe each method below by including a directed acyclic graph (DAG) for each, their assumptions, and 

the key sources of bias in relation to the research presented in this thesis (including the likely direction of 

that bias).  

 

1.5.1. Multivariable regression 

 

Multivariable regression is a statistical model with one outcome (here CHD) and multiple 

exposures that potentially influence the outcome (Figure 1.6). Key assumptions of this method are: (i) all 

confounders are accounted and controlled for (no residual confounding), (ii) participants are not selected 

on in a specific way (no selection bias), (iii) misclassification of exposure or confounders is not related to 

the outcome and vice versa. Sources of bias include: (i) unmeasured or poorly measured confounding 

(residual confounding) distorting the results. Unmeasured confounders would bias estimates away from 

the null, however, measurement error (i.e. poorly measured confounders) leading to residual confounding 

could bias estimates in either direction 97. (ii) Misclassification of exposure, outcome, and confounders. 

The direction of bias as a result of misclassification will depend on what is being misclassified (i.e., 

exposure, confounder or outcome) and the direction of misclassification; I provide further details and 

discussion in relevant subsequent chapters reflecting the specific data available. (iii) Differential missing 

data between exposure or outcome levels. (iv) Selection bias (discussed above).  

 

 

Figure 1.6. Directed Acyclic Graph of use of multivariable regression to assess the effect of maternal 
exposures on offspring congenital heart disease. 
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1.5.2. Parental Negative Exposure Controls 

 

The idea behind negative control studies is that either the exposure or the outcome in the real 

experiment is substituted for a negative control exposure (or outcome) that is not a plausible risk factor 

but would have similar sources of bias or confounding as in the main experiment. Parental negative 

exposure control analyses involve comparing the observed confounder adjusted associations of the 

maternal exposure with CHDs to the same associations of paternal exposures with CHDs (Figure 1.7) as a 

way of exploring potential residual confounding  98,99. The assumptions of this approach are that: (1) 

measured and unmeasured confounders influence the exposures in the same direction and with a similar 

magnitude in mothers and fathers and (2) there is no plausible reason why the exposure in the father 

would affect the offspring outcome (or at a minimum the paternal association would be much weaker 

than in the mother). Under these assumptions, if there is a causal intrauterine effect of a maternal 

pregnancy exposure, one would expect to see a maternal‐specific association, with no (or a much weaker) 

association with the equivalent paternal exposure. Similar associations in mothers and fathers would 

suggest that results are largely driven by residual confounding. Sources of bias include: (i) confounders 

and/or biases differing between the real (mothers’ exposure) and the negative control exposures 

(paternal exposure). (ii) The negative control exposure having a causal effect on the outcome. (iii) The real 

and negative control exposure not being similarly scaled and/or assessed during a similar period. I discuss 

these sources of bias further during Chapter 3 of this thesis.  

 



 46 

 

Figure 1.7. Directed Acyclic Graph illustrating the use of negative controls in assessing the effects of 
maternal intrauterine exposures on offspring congenital heart disease. 
The negative paternal exposure has the same incoming arrows as the maternal exposure of interest but 

has no arrow to the outcome. Therefore, any association observed between the negative control and 

the outcome will be due to confounding in the model. A illustrates the “real” study whereby the 

maternal exposure could plausibly influence the offspring outcome (CHD) via our hypothesised 

mechanism of an intrauterine effect. B illustrates the negative exposure control whereby the exposure 

cannot plausibly influence the outcome via the hypothesised mechanism.  

 

1.5.3. Mendelian Randomisation 

 

MR involves using genetic variants as IVs for an exposure (Figure 1.8) 100,101. The key assumptions 

for MR are: (i) relevance assumption – the genetic instruments are robustly associated with the exposure 

(often defined as below genome-wide p-value threshold and replicates across at least two independent 

studies). (ii) Independence assumption – there is no confounding of the IV-outcome association. (iii) 

Exclusion restriction criteria – The genetic variant is not related to the outcome other than via its 

association with the exposure (pleiotropy). As well as these three core assumptions, additional 
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assumptions are required that include: homogeneity assumptions, no effect modification and 

monotonicity 102.  

Sources of bias for MR studies include: (i) The genetic instruments are not truly associated with 

the exposure in the population being studied. This is particularly pertinent for using MR to determine 

causal effects of maternal pregnancy exposures on offspring outcomes as done in this thesis. This is 

because, genome-wide association studies (GWAS) tend to be performed in non-pregnant populations. 

Therefore, it is important that a robust association of the maternal genetic IV with the exposure assessed 

during pregnancy is demonstrated 89. (ii) Population stratification (population subgroups experiencing 

different disease rates and different allele frequencies) may confound the genetic instrument-outcome 

association which would violate the independence assumption 101. To avoid the issue of population 

stratification, it is recommended to use ethnically homogeneous populations and/or controlling for 

principal components that reflect different population subgroups 100,101,103. (iii) Violation of the exclusion 

restriction criteria (horizontal pleiotropy, where a genetic variant(s) influences multiple traits). The 

exclusion restriction criteria could also be violated by fetal genotype as well as horizontal pleiotropy when 

exploring maternal pregnancy exposures on offspring outcomes 89. Offspring get 50% of their genetic 

variation from their mother (i.e., the mothers genetic instrument will associate with the same genotype 

in fetus) and if those fetal genetic variants relate to the outcome, the exclusion restriction criteria is 

violated. This is generally the case when there is overlap between offspring genetic variants that are 

related to their outcome and the maternal IV genetic variants (such as when the maternal exposure and 

offspring outcome are the same (e.g., exploring the effect of maternal BMI on offspring BMI)). Therefore, 

it is recommended to adjust for offspring genotype in these analyses. 
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Figure 1.8. Directed Acyclic Graph of use of Mendelian randomisation to assess causal effects of 
maternal exposures on offspring congenital heart disease. 
Dashed line reflects a spurious association that could arise from collider bias by conditioning on 

offspring genetic variants. 



 49 

1.6. Summary and overview of thesis aims 
 

CHDs are a significant burden to patients, their families and society. Currently, there are limited 

treatments or interventions to prevent them. Previous research has mainly focused on expected common 

exposures and is likely to be compromised in relation to causality by residual confounding. I aimed to 

address key aspects of gaps or limitations in current research in my PhD by (i) exploring potential effects 

of exposures that have previously been well studied (maternal BMI, smoking and alcohol) with an attempt 

to use methods that improve causal inference and (ii) exploring potential effects of multiple metabolites 

that in themselves have not been previously well studied and that could also proxy other exposures such 

as metabolic health, diet and a range of medications without relying on maternal report. As with the more 

established exposures mentioned above I will also triangulate evidence from different approaches to 

improve causal inference with the metabolite exposures. 

 

1.6.1. Thesis outline 
 

In Chapter 2 I describe the CA and CHD data in the Avon Longitudinal Study of Parents and 

Children (ALSPAC) cohort in the form of a data note. I collated, cleaned and coded the data from multiple 

sources and also made these data available to other researchers that wish to carry out important work on 

CAs and/or CHDs. I use these data in subsequent chapters throughout this thesis. In Chapter 3 I undertook 

a parental negative exposure control study to explore the effects of maternal pre-/early-pregnancy BMI 

and pregnancy smoking and alcohol on CHDs using data from seven European birth cohorts. In Chapter 4 

I conducted MR analyses to triangulate results and explore the effects of the same exposures studied in 

Chapter 3 (BMI, smoking and alcohol). Chapters 5 and 6 involve metabolomics data. In Chapter 5, I used 

metabolomics data from an untargeted MS platform (~1,000 metabolites) to explore associations 

between pregnancy metabolites and offspring CHDs. Where possible, I seeked validation of metabolite 

associations using other data sources and MR. In Chapter 6, I explored associations between pregnancy 

metabolic profiles assessed by an NMR platform and offspring CHDs. As in Chapter 6, I used MR analyses 

to seek validation. In Chapter 7, I summarise findings presented in this thesis including strengths and 

limitations in the context of previous research and consider their potential public health and clinical 

implications. I consider future directions in aetiological CHD research.  
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Chapter 2. Ascertaining and classifying cases of congenital anomalies in 

the ALSPAC birth cohort  
 

2.1. Chapter summary 
 

This chapter has been published: 

Taylor K, Thomas R, Mumme M, Golding J, Boyd A, Northstone K, Caputo M & Lawlor DA. Ascertaining 

and classifying cases of congenital anomalies in the ALSPAC birth cohort. Wellcome Open Research 

(2020). https://doi.org/10.12688/wellcomeopenres.16339.2.  

 

In Chapter 1 I introduced congenital heart disease (CHD) and provided the case for research that 

uses causal methods to investigate maternal risk factors. I discovered that there was no comprehensive 

data source describing cases of congenital anomalies (CAs) in the Avon Longitudinal Study of Parents and 

Children (ALSPAC). ALSPAC is a truly unique cohort that contains data in mothers, fathers, and offspring 

across multiple generations. To make use of ALSPAC in this thesis, I set out to define CHD cases. In this 

Chapter (Chapter 2) I used multiple sources of data to retrospectively define all cases of CAs in ALSPAC 

with a specific focus on CHDs. I demonstrate that combining multiple sources of data including data from 

antenatal, delivery, primary and secondary health records, and parent-reported information can improve 

case ascertainment. The approach identified 590 participants (385 per 10,000 live births) with a CA 

according to the European Surveillance of Congenital Anomalies (EUROCAT) guidelines, 127 of whom had 

a CHD (80 per 10,000 live births). I use these data for analyses in subsequent chapters throughout this 

thesis. I published this work in the form of a data note so that the scientific community can find out more 

and make use of these data.  

 

 

 

 

 

 

 

 

https://doi.org/10.12688/wellcomeopenres.16339.2
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2.2. Introduction 
 

Congenital anomalies (CAs) occur in utero and can be identified prenatally, at birth or during later 

life. CAs can be defined as structural (e.g. limb reduction defects) or functional (metabolic disorders). The 

exact cause of most CAs is unknown; however, causes can include single gene defects, chromosomal 

disorders, multifactorial inheritance, environmental teratogens and micronutrient deficiencies during 

pregnancy 1. Consequences vary depending on the type and severity of the anomaly, but many children 

and their families experience lifelong complications. Worldwide, at least 3.3 million children under the 

age of 5 die from CAs each year 2. In European countries, including the UK, CAs affect approximately 2–

3% of births 3. CAs are a major cause of fetal death, infant morbidity and long-term disability. CAs 

represent a significant public health concern requiring further research around their causes, 

consequences and long-term implications. 

Birth cohorts can be useful for studying the aetiology and longer-term consequences of CAs as 

they aim to include all births in a defined population over a defined period of time and often follow them 

into adulthood. Many have the added advantage of recruiting during pregnancy and recording all birth 

outcomes, whether live or stillborn. This reduces selection bias (in comparison to studies that focus solely 

on those with CAs or those at risk), provides a comparison group of those without CA from the same 

underlying population, and with postnatal follow-up allows for all CAs to be identified 70,104. Follow-up 

supports research into the natural history and impacts of CAs on future health and wellbeing. The latter 

is important as modern treatments, including advancements in surgery, mean higher proportions of those 

with CAs now live through to adulthood 105. On the other hand, as CAs are relatively rare disorders, 

statistical power in any single birth cohort is likely to be low, meaning effects will be imprecisely estimated 

in comparison to case-control studies. Some birth cohorts exclude infants with known CAs from being in 

the study population or collect information at birth but often then exclude those with known CAs from 

specific studies 106. Other birth cohorts, such as the Born in Bradford (BiB) study, seek data on all CAs, and 

demonstrate the importance of continuing to identify cases postnatally, for example through linkage to 

primary and secondary care, in order to identify participants whose clinical diagnoses came later in life 70. 

In this paper, I describe how I have attempted to identify all cases of major CAs in the UK-based 

Avon Longitudinal Study of Parents and Children (ALSPAC), a birth cohort which started following 

participants in the early 1990s. To date, there has been no systematic approach to doing this in ALSPAC. 

Consequently, it has contributed little to research about CAs 107. This is likely because around the time the 
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original women were recruited in pregnancy the routine ultrasound scan screening of all pregnant women 

was not advanced enough to identify many fetal anomalies 108. Additionally, linkage of cohort participants 

to clinical records was limited as centralised national sources were in their infancy 109 and many local 

datasets remained paper based or in the early stages of digitisation. Here, I demonstrate that combining 

multiple sources of data including data from antenatal, delivery and neonatal, primary and secondary care 

health records, as well as parental-reported information can improve case ascertainment. I show that this 

approach captures more cases than relying on any single data source.  

 

2.3. Methods 
 

2.3.1. Aims 

 

To: (1) combine a range of data sources to ascertain cases of major CAs in the ALSPAC birth cohort, 

with a specific focus on congenital heart diseases (CHDs) and (2) code cases of CAs with International 

Classification of Diseases (ICD) codes (version 10) according to the European Surveillance of Congenital 

Anomalies (EUROCAT) guidelines 110.  

 

2.3.2. Cohort 

 

ALSPAC is a prospective birth cohort, which was devised to investigate the environmental and 

genetic factors of health and development. Detailed information about the methods and procedures of 

ALSPAC is available elsewhere 111–113. In brief, pregnant women with an expected delivery date between 

April 1991 and December 1992, residing in and around the city of Bristol, UK were eligible to take part. 

The initial number of pregnancies enrolled is 14,541 (for these at least one questionnaire has been 

returned or a “Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, 

there was a total of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 

year of age. When the oldest children were approximately 7 years of age, an attempt was made to bolster 

the initial sample with eligible participants who had failed to join the study originally (i.e., any child born 

during the same years and in the same geographical area that defined the original cohort). As a result, for 

all ALSPAC variables collected from the age of seven onwards there are data available for more than the 

14,541 pregnancies mentioned above. The total sample size for analyses using any data collected after 
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the age of seven is 15,454 pregnancies, resulting in 15,589 fetuses. Of these, 14,901 were alive at 1 year 

of age 113. 

In 2012 recruitment of the next generation (children of the original children born in the early 

1990s began) and since then researchers have described the generations as ALSPAC-G0 (women recruited 

during pregnancy in the early 1990s and their partners), ALSPAC-G1 (the index children of those women 

who have been followed since birth) and ALSPAC-G2 (the children of ALSPAC-G1 and grandchildren of 

ALSPAC-G0) 114. This data note is about ascertaining and coding CAs in the ALSPAC-G1 cohort. Data on CAs 

in G2 are being, and will continue to be, prospectively collected, but currently there will be very few cases 

amongst the ~1000 G2 participants that have been recruited. All three generations have continued to be 

followed via questionnaires, research clinics and record linkage. The study website contains details of all 

the data that Is available through a fully searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/access/). Ethical approval for the study was obtained from 

the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees 

(http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Consent for the use of data collected via 

questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC 

Ethics and Law Committee at the time. All G0 and G1 participants have been informed about the study’s 

intention to link to and use their routine health records in the study’s research program. Participants are 

free to object to this use of their records, and the records of those objecting have not been used in this 

research. When it becomes practicable, explicit consent for linkage to health records is collected (e.g., at 

study assessment visits). The use of National Health Service (NHS) records in this way has approval from 

a Health Research Authority (HRA) Research Ethics Committee and the HRA Confidentiality Advisory 

Group. 

 

2.3.3. Data sources and methods of obtaining CAs from them 
 

Five data sources were used to identify children with CAs in ALSPAC (Table 2.1). Four of these 

were able to identify any CA, one (data source 2) was specific to CHDs. I included diagnoses made at any 

age. Restricting diagnoses to a specific age bracket could lead to incomplete case ascertainment 70. 

http://www.bristol.ac.uk/alspac/researchers/access/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
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Table 2.1. Data sources used to identify cases of congenital anomalies in ALSPAC. 

# Data source Data collection  
method 

Description and data coverage 

1 NHS Primary Care  
records 

Record linkage to  
Primary Care 

Linkage of ALSPAC participants to primary care records. Last extract was October  
2016. Capability to capture any CA diagnosed on an ALSPAC participant registered with a 
participating GP in England/Wales between 1990 and 2016. Further extracts will continue 
to be made. 

2 Paediatric  
cardiology &  
cardiothoracic  
surgery records 

Record linkage to  
paediatric cardiology  
& cardiothoracic  
surgery records 

The HeartSuite patient management system is designed specifically for paediatric 
cardiology and cardiothoracic surgery. It covers data on diagnoses and procedures 
between 1992 to 1994 and 2002 to 2019 for a regional referral centre. It would include 
ALSPAC participants’ residing in and around Bristol who had cardiac/ cardiothoracic 
surgery or procedures such as catheterisation at the UHBT during the periods covered. 
Data were provided by UHBT, in November 2019. 

3 Data on fetal, infant  
and child deaths 

Birth notification  
system, ONS, post-  
mortem reports. 

Includes data on fetal deaths of gestation 20 weeks or more in England, Scotland  
or Wales, including spontaneous and therapeutic abortions for malformations  
or genetic defects, and deaths of livebirths up to ~104 weeks of age. Data were  
captured from multiple sources including: The birth notification system of deaths  
to livebirths in Avon, the Office for National Statistics (ONS), post-mortem reports and the 
regular clinical discussions of all such deaths in the two major maternity hospitals. This 
provides the ability to capture CAs that resulted in antenatal or early postnatal death, 
which might not be captured in other sources. 

4 Diagnoses from  
Avon Child Health  
Services 

Diagnoses from Avon  
Child Health Services 

CAs from Child Health (formerly known as Avon Child Health Services). These data cover 
the Avon region from December 1990 to February 1993 and would identify children 
diagnosed at any postnatal age during that period.  

5 ALSPAC i. Antenatal, labour  
and neonatal records  
ii. Questionnaire  
completed by  
research nurses  
iii. Participant’s  
mother self-report 

     i.     Abstractions from clinical records – This database comprises detailed  
abstractions from the clinical records covering midwife, obstetrician,  
paediatric and additional (e.g., blood test results and ultrasound scans) entries  
from the antenatal, intrapartum and first two weeks of the postnatal period.  
Abstractions were conducted by ALSPAC employed research nurses on  
different subgroups. These included several clinical subgroups (e.g., preterm  
births and multiple pregnancies) as well as a random sample. In total, detailed  
data has been extracted from 8,369 ALSPAC-G0 pregnancies. In addition,  
extracted text data with descriptions of all abnormalities of the fetus and  
neonate were available for 6,343 ALSPAC-G1 fetuses and infants with known  
birth outcomes and used in this data note.  
     ii.     Neonatal admissions questionnaire – For each neonate (<28 days of age)  
admitted to hospital, a detailed questionnaire was completed by a neonatal  
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nurse. In total, 994 questionnaires were completed. Of these, all but 5 were  
from the two main hospitals in Bristol at the time.  
     iii.     Child-based questionnaires – I undertook a search of the text answers from 
ALSPAC parent (mostly mothers) completed child-focused questionnaires  
between birth and ~14years. These data would only include G1 participants  
whose mothers (or another main carer) filled in and returned at least one  
child-based questionnaire. Questionnaires were searched for key words  
relating to CAs in response to general questions about the child experiencing  
diseases, being admitted to hospital, outpatient investigations or a free text  
space at the end of each questionnaire that carers were invited to use for  
any other information they thought would be valuable to the study. 

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; CA, congenital anomaly; GP, general practice; NHS, National Health Service; UHBT, University Hospital’s Bristol Trust; 
ONS, office for national statistics. 
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2.3.3.1. NHS Primary Care Records 

 

ALSPAC have established a linkage between participants and their information on the NHS Patient 

Demographic System (PDS): the national patient register for England, Wales, and the Isle of Man. This 

linkage provides a participant’s NHS ID number and can also be used to identify which General Practice 

(GP [primary care]) a participant is registered with. The NHS provides free primary and secondary health 

care to all UK residents. Access to secondary care is via referral from primary care and even when someone 

has care from a private provider a discharge note will be sent to their GP. Therefore, NHS record linkage 

will provide health data for the vast majority of the population. It is possible that some participants were 

or are not registered with a GP, although, I would expect this to be a small minority. To date, ALSPAC have 

extracted primary care information in two batches: 

I. In 2013 a pilot exercise was conducted, which aimed to extract the records of 2,806 G1 

participants registered in 523 primary care practices across England and Wales. ALSPAC gained 

approval from 290 of these practices to extract life-course GP coded records. These were 

extracted by EMIS Health Ltd or Apollo Ltd clinical software system providers. This resulted in the 

extract of 2,249 participants records from 180 practices (the high level of achieved participant 

coverage reflects that the 180 practices disproportionately included those with high numbers of 

ALSPAC participants, including those in and around the city of Bristol) 115. 

II. In 2016 an additional extract was conducted to extract the records of 11,955 G1 participants from 

participating practices in the Bristol, North Somerset and South Gloucestershire (BNSSG) clinical 

commissioning group (CCG), which has the same geographical coverage as the ALSPAC catchment 

area. This resulted in the extract of 11,087 participants records 116 This second extract included 

most, but not all of the participants in the 2013 pilot, meaning that the final number of ALSPAC-

G1 participants (i.e. the participants considered in this work) with primary care data is 11,810. 

For the data described in this manuscript, the majority of primary care records which contributed to 

the case definition were those extracted from BNSSG GPs in 2016, when participants were aged ~26 years 

old. There were a small number of additional extracted records from across England and Wales taken in 

2013 when participants were aged ~23. However, not all participants will have complete records up to 

the date of the extract (record loss can have occurred during any of the following: (i) transferring paper-

based to electronic records; (ii) when participants move practice; (iii) if practices change record keeping 

software systems; or (iv) during any amendments made to electronic records made by health 
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professionals). It is also important to note that ALSPAC do not have the governance approvals to extract 

linked health records for participants who died before the age of 18. In total, there were data on 11,810 

participants linked with at least one record, with approximately 3.5 million coded entries in total. I 

compiled a list of GP Read Codes (the health coding system used in primary care in the UK) used to code 

diagnoses (see Appendices, Table S2.1) to narrow down the dataset with the aim of identifying cases of 

CAs. 

 

2.3.3.2. Paediatric cardiology and cardiothoracic surgery records (HeartSuite) 

 

HeartSuite is a fully integrated patient management system designed specifically for paediatric 

cardiology and cardiothoracic surgery. It includes records of paediatric cardiology and cardiothoracic 

surgery undertaken at University Hospital’s Bristol Trust (UHBT, previously only known as Bristol Royal 

Infirmary). The data was sought from the UHBT cardiac team through the UHBristol Congenital Cardiac 

Services Information Analyst and Clinical Data Team. NHS numbers were provided to ensure accurate 

capture of records after the widespread adoption of the modern NHS number in 1996 (i.e., 5 years after 

the birth of the oldest ALSPAC-G1 participant). However, some of the medical records pre-dated the 

advent of NHS numbers and so I used other probable identifiers to link to these. The probable identifiers 

used were: ALSPAC-G0 (parents) and -G1 names, dates of birth and addresses (at recruitment and 

subsequently when participants moved). Many individuals had multiple records in order to capture 

changes in address or even name. The identifiers included not only the child’s details but also, where 

possible, the mother’s details because the antenatal, perinatal and very early post-natal tests were 

performed before the child was given a name. A total of 48,326 records were provided for 12,338 

individuals. Early electronic records from UHBT, the STORK maternal and delivery database, contained the 

individual hospital numbers for each mother and child from 1991–92. These were provided back to UHBT, 

however, the record system had changed at some stage between then and now and so these were 

unfortunately not of any benefit. It was unclear which address was held by the HeartSuite database and 

so this necessitated that all known addresses of each member of the ALSPAC cohort be provided so as to 

maximise the possibility of generating a match between the databases, although the risk of duplication 

needed to be accounted for. All transfers of data were performed using AES-256 (a 256 bit) encryption 

and password protected through a secure data portal. 



 58 

The data was provided by UHBT in November 2019 and included all matches found up to that 

date. There were 377 events, relating to 303 individuals, the majority of which (93%) were a full match 

including NHS number and the remaining 7% were matched using the probable identifiers mentioned 

above (the IDs for the records matches using probable identifiers can be made available to researchers 

using the data if required). There were 11 events between 1st April 1992 and 31st March 1994 with the 

remaining 366 events identified after January 2002 (though it should be noted that no paediatric surgery 

was undertaken in Bristol between these two time periods). UHBT started using Heart Suite in May 2009 

and the Bristol Royal Hospital for Children in December 2004 (some previous diagnoses and procedure 

data from a previous system called Cardiobase were obtained which went back a further ~6 years). Of 

these matched records, 68 had details in the diagnosis section (including conditions such as CHDs, benign 

murmur, chest pain and family history of heart condition). The remainder had no diagnosis provided and 

may have been tested for a suspected cardiac issue, but no problem found. Participants who had CHD but 

who did not have surgery/a procedure or those treated at a different hospital would not be included. 

UHBT is a regional referral centre for paediatric cardiovascular surgery with no other hospital in the South 

West region providing this over the period covered by HeartSuite. It is possible some CHDs may have been 

detected at a very young age but were unable to be successfully treated and therefore not survivable, this 

may have excluded some of the early and more severe CHDs from being matched via the HeartSuite 

database. However, it is plausible that these cases would be identified by the fetal and child deaths data 

source described below. 

 

2.3.3.3. Fetal and child deaths 

 

I wanted the data on CAs in ALSPAC-G1 to be as comprehensive as possible, and as CAs are a cause 

of fetal and early child deaths I obtained data on miscarriages, terminations, fetal deaths and deaths in 

the first years of life. Presence of malformations, chromosome abnormalities or genetic defects were 

recorded whether or not they were thought to be the cause of death or reason for termination. These 

data came from multiple sources: (i) ALSPAC were notified by the Birth Notification System of deaths 

(including still births) within Avon. Whenever a baby had died outside of the Avon Health authority area, 

this system was notified, therefore meaning ALSPAC would have obtained information about any baby 

who had died in the first year of life. (ii) All deaths occurring in England and Wales were notified to the 

study by the Office for National Statistics (ONS). Death certificates were provided with these notifications. 

ALSPAC also had an arrangement to obtain any deaths that might have occurred in Scotland. (iii) 
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Chromosome abnormalities in some of the fetal or early childhood deaths, as well as the survivors were 

identified via the Cytogenetics laboratory at Southmead Hospital, who analysed samples in the South 

West region where a chromosomal abnormality was suspected or in those with a family history. The way 

that these data were collected were by ALSPAC team members visiting the cytogenetics department 

periodically. The records were all classified according to date of birth and details were recorded. Linkage 

was then independently performed for any that may have been enrolled in ALSPAC. 

Professor Jean Golding, who established the ALSPSAC study, was responsible for obtaining details 

from the clinical records, post-mortems and death certificates and summarising these in a single 

document. The deaths were classified according to the system involved (nervous system, chromosomal, 

renal, CHD, syndrome, other, genetic). Information used for the classifications has relied on post-mortem 

and clinical evidence. Classes of perinatal death were based on a scale adapted from the Wigglesworth 

classification 117. The Wigglesworth classification is one that, in addition to major malformations, classifies 

the deaths according to when the death mainly occurred or was initiated (i.e., antenatal; intrapartum 

(including livebirths dying of asphyxia) and features associated with preterm delivery to a livebirth. There 

was a miscellaneous group into which deaths that did not fall into these categories was put. If a baby born 

at 29 weeks died after 6 months having been suffering from immature development throughout, he/she 

would still be classified as a death due to preterm delivery. 

 

2.3.3.4. Diagnosis from Avon Child Health Services 

 

Data from the congenital malformation records of the NHS Avon Child Health Services (‘child 

health’), who provided early years community health care services, such as school-based vaccination 

programmes in the ALSPAC catchment area, were linked to existing ALSAPC-G1 participants data. Only the 

records of children with one or more recorded CA were linked. This data source includes cases diagnosed 

between December 1990 and February 1993 (the date of birth range for the eligible study sample) in those 

living in the original ALSPAC catchment area. Diagnoses were originally reported as categories depending 

on the bodily system affected as well as diagnoses as free text and were given ICD codes as part of the 

derivation of a comprehensive set of CA data for this report (see application of ICD codes below). The 

linked file contained 129 children. 
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2.3.3.5. Sources derived from the ALSPAC cohort 

 

(i) Antenatal, labour and postnatal (first 2 weeks) records  

The database comprises detailed extractions from the clinical records covering midwife, 

obstetrician, paediatric (almost every baby was examined by a paediatrician) and additional (e.g. blood 

test results and ultrasound scans) entries from during the antenatal, labour and first two weeks of the 

postnatal period 118. The data source used in the present data note comprised 6,343 babies or fetuses 

from the overall original ALSPAC cohort with a known birth outcome. The source was derived from all the 

free text in section F: ‘The Liveborn Baby – at Delivery’, from the ‘Delivery Questionnaire’ which is available 

to view on the ALSPAC website (https://www.bristol.ac.uk/alspac/researchers/our-

data/questionnaires/). Free text descriptions of CAs were initially abstracted by a clinical geneticist 

according to ICD classification. 

(ii) Neonatal admissions questionnaire  

For each neonate (<28 days of age) admitted to hospital, whether to a Special Care Baby Unit, the 

Children’s Hospital or elsewhere, a detailed questionnaire was completed by a single neonatal research 

nurse working for ALSPAC. The questionnaire was first developed by the neonatal paediatrician Dr 

Heather White for use in Special Care Baby Units by the Jamaican Perinatal Morbidity and Mortality Survey 

of Jamaica 119,120. In total, there were 994 completed questionnaires. Of these, 989 were from the two 

main hospitals in Bristol at the time (Bristol Maternity Hospital and Southmead). The locations for the 

remaining five were ‘elsewhere’ with the exact location not reported on the questionnaires that were 

examined. In total, 60% of admissions were male and 95% were alive at discharge. I searched through 

each questionnaire separately and retrieved all cases of reported CAs and assigned ICD-10 codes. 

(iii) Child-based questionnaires  

I systematically searched questionnaire data completed by the main caregiver of the ALSPAC-G1 

(for most participants the mother) in relation to the children covering the period April 1991 to December 

2006 (corresponding to ALSPAC-G1 ages 1 month to 166 months). This consisted of searching free text 

responses from questions, mostly in relation to the health of the child. All of the questions used are listed 

in Appendices (Table S2.2) and can be linked back to the ALSPAC questionnaires which are available on 

the website (http://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/). In total, I used 

https://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
https://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
http://www.bristol.ac.uk/alspac/researchers/our-data/questionnaires/
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questions from 21 questionnaires. Response rates varied for each questionnaire, ranging from 88% 

completion for the first one sent at 1 month to 47% completion for the final child-based questionnaire 

that I considered sent at 166 months. Response rates for all 21 questionnaires can be found in the Table 

S2.2 (Appendices). I developed a search strategy of key terms for CAs and applied this to the text fields. I 

then read a small subsample of these fields to see what proportion of cases might be missed by this search 

(e.g., because of incorrect spelling) and updated the search with the additional (misspelt) terms. This 

process was repeated until it was felt all cases had been identified. The search strategy can be found in 

the Appendices (Table S2.3). 

 

2.3.4. Application of ICD-10 codes to identified CA cases 

 

In this section I describe the methods used to assign ICD-10 codes to data from the 5 data sources 

described above. CAs were grouped by system affected. A child could contribute to more than one system 

group when they had been diagnosed with multiple CAs. The ICD-10 codes used to define cases can be 

found in the Appendices (Table S2.4). 

The EMIS and Apollo primary care data assigns any diagnosis a clinical term version-2 (CTV2) 

medical ‘Read Code’ as well as a SNOMED clinical term (CT) code. I mapped SNOMED CT codes to ICD-10 

codes using the NHS digital SNOMED CT browser (SNOMED International 2017 v1.36.4, 

https://termbrowser.nhs.uk/). The cross-mapping of SNOMED to ICD-10 is vulnerable to discrepancies 

due to multiple codes sometimes presenting as a possible match. To account for this, I used best 

judgement with the data I had by matching the text diagnosis to the ICD-10 code text as closely as possible. 

There were no instances where I could not find a probable match. HeartSuite data was partially provided 

with ICD-10 codes. In some instances, there was a text diagnosis without an ICD-10 code. In these cases, 

I assigned an ICD-10 code based on the text diagnosis. The data on fetal, infant and child deaths were 

provided with detailed text on the anomaly present in each death. From this text, I assigned ICD-10 codes 

to CA cases. Diagnoses from child health were originally categorised by subgroup with text of the specific 

diagnoses. I assigned ICD-10 codes based on the subcategories and text. The ALSPAC delivery 

questionnaire data was initially assessed by a clinical geneticist who assigned ICD-10 codes based on free 

text descriptions. For neonatal and child-based (self-report) questionnaires, assigning codes was initially 

done by myself. In the first instance I grouped text diagnoses by organ or system. Any uncertainty was 

checked with MC and DAL. Sub-types were then assigned where possible by myself in discussion with MC 

and DAL. 

https://termbrowser.nhs.uk/
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Once I had ICD codes assigned to all three ALSPAC data sources, I then explored the overlap. Some 

of the reports in the ALSPAC questionnaires may be less reliable than those from other sources, such as 

the primary care linked data. For example, either the caregiver or I may have misattributed an abdominal 

problem that is not a CA to CA status. Therefore I a priori decided that I would only include cases where 

the same case (at an organ or system level) appeared in at least two of the questionnaires (Figure 2.1). Of 

all the participants with at least one ICD-10 system/organ code at the end of the initial assignment (N = 

672), 64 (9.5%) appeared in at least two of the questionnaires. These (including which questionnaires they 

were identified in and the remaining 608 (90.5%) that only appeared in one questionnaire are shown in 

the Appendices (Tables S2.5 & S2.6), including which organ/system they came under. To test the 

assumption that those only found in one questionnaire were more likely to be false positives, I checked 

how many were defined as a case in the primary care dataset. Of those that appeared in one 

questionnaire, 21% were a CA case in the primary care data. Of those that appeared in two questionnaires, 

50% were a CA case in the primary care data. I labelled the 608 that appeared in one questionnaire as 

‘possible CAs’. This variable will be made available to researchers that use the data described in this data 

note. I have not included these 608 participants with possible CAs in the following sections presenting 

results (overlap and description of population). 
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Figure 2.1. Flow diagram illustrating the multiple sources used to formulate the cases of major congenital anomalies in the ALSPAC cohort. 
All 30 CA cases within HeartSuite had a CHD diagnosis. Note that the potential capture population for each source may differ and cannot be 
definitively quantified. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; CA, congenital anomaly; CHD, congenital heart 
disease; NHS, National Health Service.
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2.3.5. Overlap across cases and case definition in ALSPAC 

 

I considered an ALSPAC-G1 participant to have a CA if they were identified in any of the 5 sources 

for the total of ‘any CA’ (Figure 2.1). For specific types of CA, these were also defined as occurring in a 

participant if there was evidence from any of the 5 sources. This is a liberal approach that I hope will 

minimise false negatives (i.e., missed cases). It might mean that I have included some false positives. I 

demonstrate overlap between the sources (using a Venn diagram) and future uses of the data will be able 

to select which sources they use (see Data access statement). 

 

2.4. Description of population 
 

In total, 590 ALSPAC participants were identified as having a CA with a prevalence of 385.5 per 

10,000 live births (calculated using 14,791 as the total number of live births for ALSPAC). Of these 590 

participants, 151 (25.6%) had a CA occurring in the presence of other anomalies. Figure 2.2A is a Venn 

diagram of the number of CA cases from each data source and how they overlap. Primary care data 

provided the largest number of cases with 471 of the 590 being identified via linkage to primary care. Of 

the 471 identified via primary care 82 were also identified in at least one other data source. The HeartSuite 

database contained 30 cases of any CA, all of which had CHD, whilst the mortality data included 61 cases. 

The child health services data source identified 98 cases and the ALSPAC data source (after limiting to the 

cases found in at least two of the sub-data sources) included 64 cases. Figure 2.2B provides the numbers 

for CHDs only. Of the 127 CHD cases, 87 were identified in the primary care data, with 24 of these also 

being identified in at least one other data source. Of the 30 cases of CHD identified by HeartSuite, 16 cases 

were also identified in at least one other data source. The list of deaths contained 8 cases of CHD, child 

health included 24 cases of CHD and the ALSPAC data source contained 15 cases of CHD. For those 8, 24 

and 15, the number of cases found in at least one other data source were 7, 14 and 9, respectively. 
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Figure 2.2. Venn diagrams illustrating the overlap between the 5 data sources for any major 
congenital anomaly (A; total n = 590) and any congenital heart disease (B; total n = 127) as defined by 
the European surveillance of congenital anomalies. 
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Table 2.2 reports the total number of anomalies in each subcategory and compares the 

prevalence in ALSPAC to the EUROCAT recorded prevalence for CAs from full European registries between 

the years 1990–1992 (https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en). 

 

Table 2.2. Total numbers of congenital anomalies, numbers in those live born and prevalence per 
10,000 live born in ALSPAC-G1 participants (total N live born = 14,791 of the 14,869 enrolled and 
linkable). 

Anomaly subtypea Total N (N  

born alive) b 

Prevalence per  

10,000 live births 

EUROCAT prevalence  

per 10,000 live births 5 

Any CA 590 (570) 385.3 205.7 

CHD 127 (119) 80.5 56.0 

Nervous system 18 (15) 10.1 13.5 

Respiratory 5 (5) 3.4 1.9 

Orofacial clefts 16 (16) 10.8 14.2 

Eye 29 (29) 19.6 5.6 

Ear, face, neck * * 5.7 

Digestive system 16 (14) 9.5 20.3 

ABWD * * 2.7 

Urinary 48 (44) 29.7 28.6 

Genital 64 (64) 43.3 10.9 

Limb 197 (196) 132.5 48.4 

Other 60 (57) 38.5 - 

Chromosomal 42 (39) 26.4 15.8 

Teratogenic/genetic syndromes, 

microdeletions and chromosomal 

abnormalities 

67 (63) 42.6 - 

Abbreviations: CA, congenital anomaly; CHD, congenital heart disease; ABWD, abdominal wall defects; * used when there 

were fewer than 5 cases in a given category all of these would have prevalence per 10,000 <3.4.  
a International classification of disease (ICD) codes used to define subtypes can be found in the Appendices.  
b I have included all cases in ALSPAC including whether they resulted in a fetal death. I give the number live born in brackets 

and this is used to estimate live born prevalence for comparison with EUROCAT results.  

Minor anomalies according to EUROCAT are not included. Numbers represent cases of congenital anomalies; if a child had 

multiple anomalies affecting different systems, they would contribute to more than one category. Each child could 

contribute to each category once. 

 

It is possible that EUROCAT underestimates the total prevalence of CAs because the age range for 

data capture is capped at or before age 1 for 61% of the full registries and only for 28% does it go to age 

5 years or beyond. By comparison, the inclusion of primary care linkage in the present sample means I 

have included cases that are diagnosed in participants up to their early-/mid-20s and it is notable that 

https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en
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primary care linkage provides the highest proportion of ALSPAC cases. Using just the primary care linked 

data in ALSPAC shows an increase in new cases of CAs after age 1, with the rate of increase with age 

slowing but continuing up to early 20s (Figure 2.3A), with a similar illustration for CHDs (Figure 2.3B). 

Previous analyses in the BiB cohort also demonstrated a marked increase in numbers of CA cases 

diagnosed after 1 year of age through record linkage to primary care data up to when participants were 

aged 5 years 5 (Figures 3C & 3D). It is possible that the liberal definition that I have used here, defining a 

case as being from any of the five data sources, may mean I have overestimated the prevalence in ALSPAC. 

However, as can be seen from the description of the different data sources above and summarised in 

Table 2.1, the different data sources cover different geographical regions at diagnosis, time periods and 

have different sources of missing data. If I were to exclude a particular data source, I would have missed 

some true cases. It is also possible that other factors that influence the risk of CAs differ between 

pregnancies in the early 1990s in the Southwest of England and EUROCAT data for pregnancies for the 

same time period across the whole of Europe. 
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Figure 2.3. Showing the number of congenital anomaly (CA) ( A) and congenital heart disease (CHD) ( B) cases at 
different ages using linked primary care data in ALSPAC.  
Age cut-offs are diagnoses in first year of life and then up until age 5, 15, 20 and 25. The age-25 column includes all 
diagnoses from the 2016 primary care extraction; therefore, some participants may be slightly older than 25, but 
younger than 26. Numbers are presented at the child level, so if a child had multiple anomaly diagnoses, they would only 
be counted once (at the time of their first diagnosis). For comparison, ( C) and ( D) show corresponding estimates for any 
CA and any CHD respectively from the Born in Bradford cohort primary care extraction up until age 5 (Adapted with 
permission from Bishop et al. (2014) 70. Bars show the number of cases in each age category and points show the 
cumulative number of cases. *Cell values <5 are suppressed for disclosure control purposes (may include 0).
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CHDs are the commonest form of CA and in Table 2.3, I report numbers for CHD subtypes. As 

expected, septal defects make up a large proportion of cases with 82 (65%) CHD cases having a septal 

defect, slightly higher than recent global estimates of around 55% 121. Of the 127 CHD cases, 35 (28%) 

were classed as severe, which is higher than found in the Norwegian National birth cohort, which recruited 

pregnancies between 1999 and 2008 and found that 19% of CHD cases were defined as severe using a 

similar classification system 24. The prevalence of CHDs in ALSPAC is similar to other European birth 

cohorts. In recent work involving 7 European birth cohorts, I have shown that the prevalence of CHD was 

close to 1% in most cohorts, with the lowest with 0.4% and the highest with 1.4% 122. Differences in case 

ascertainment could be one of a number of possible explanations for the slight differences in prevalence 

estimates. 

 

Table 2.3. Congenital heart disease subtypes. 

CHD subtypes N 

Severe CHD a 35 

Non-severe CHD 92 

Any septal defect 82 

Atrial septal defect 20 

Conotruncal b 6 

Isolated CHD c 110 

CHD with other CAs d 17 

CHD associated with syndrome e 13 

Any CHD 127 
Abbreviations: CHD, congenital heart disease; CA, congenital anomaly.  a According to EUROCAT. See Table S2.4 for ICD 
codes.  b Tetralogy of Fallot, transposition of great arteries, truncus arteriosus, double outlet right ventricle.  c Those 
diagnosed with a CHD (or multiple CHDs) and no other congenital anomalies.  d CHDs cooccurring with other congenital 
anomalies.  e CHDs diagnosed with other syndromes (see Table 2.2 above). 

 

2.5. Strengths and limitations of the data 
 

A key strength of this dataset is the combination of multiple sources of data to identify cases. This 

enabled the capture of additional cases that might have otherwise been missed. That said, the present 

results indicate a strong reliance on record linkage to primary care data for case ascertainment. I have not 

restricted diagnoses to a particular age and here, as in other cohorts 70,123, linkage to primary care data 

has been essential for identifying large numbers of cases that were diagnosed after infancy. This is of 

particular importance for CHD diagnoses. Although CHD detection rates have improved in recent years in 

line with screening programs and technological advancements 124, there are still a proportion of cases that 

remain undiagnosed throughout early life and even into adulthood 36. These are likely to be less severe 
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cases than those diagnosed antenatally or in infancy, but are important for unbiased studies of the causes, 

natural history and consequences of CHD. Linkage to primary care data in the UK (as in other countries) 

has been restricted until recently. It is appropriate that any such linkage is carefully controlled, for 

example through the use of a Trusted Research Environment for data storage and access, as I did through 

the use of ALSPAC’s UK Secure eResearch Platform (SeRP). However, this research shows the importance 

of being able to link to these data in just one field (CHDs). I have demonstrated the importance of linking 

original cohort data to external data sources such as primary health records to further strengthen the 

platform. A further advantage is that researchers can now link the CA data that I have identified and coded 

to information collected on the ALSPAC participants from preconception through to adulthood and 

beyond. This includes, but is not limited to parental characteristics, childhood health and wellbeing, social 

and educational background and future outcomes that may differ between those with and without CAs. 

These data will provide unique opportunities to a multitude of researchers involved with CA research. In 

addition to this, the second generation of the ALSPAC cohort (ALSPAC-G2) is now underway 114 providing 

scope for future linkage and unique research opportunities, including exploring secular and birth cohort 

trends in the incidence and prognosis of CAs, as well as intergenerational causes 114. CAs are prospectively 

collected in ALSPAC-G2 through extractions of data in antenatal, labour, neonatal and health visitor 

(children to age 5 years) records, parental questionnaires, linkage to ONS for deaths data and linkage to 

primary care data. 

One limitation of this dataset is that I have not been able to successfully link to NHS Hospital 

Episode Statistics (HES) due to project restrictions that were in place by NHS digital at the time of data 

collation. An overhaul of the data sharing agreement was required, which is still ongoing at the time of 

writing. HES contains the records of all hospital admissions, outpatient appointments and Accident and 

Emergency department attendances at NHS hospitals in England 125. This database might have provided 

additional cases of CAs, though given the primary care linkage I may not have identified many additional 

cases via HES. There are currently (March 2020) 14,819 singletons and twins enrolled in ALSPAC, who 

were alive at 1 year and have not subsequently withdrawn from the study. I have linked 11,810 (80%) of 

these participants and so may have missed some cases. At least some of those who were not eligible to 

be linked because of dying should have been captured by other data sources. Participants who refuse data 

linkage could differ notably from those who do not, but the proportion of these (~3%) is too small to 

notably influence any analyses with these data. Failure to link to some of the eligible (for linkage) 

participants will mostly reflect those who are living outside the BNSSG area and/or registered with a 

practice that does not use the EMIS or Apollo clinical records system. As primary care data ‘follows the 
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patient’, should any of these missing participants register with an eligible practice, then I may be able to 

link to additional records. Data on these participants (and any new CA diagnoses in later adulthood) would 

be obtained with future extractions. Furthermore, there are efforts to coordinate primary care record 

linkage for all cohorts across the UK. Thus, it may be possible for ALSPAC to extend linkages to additional 

participants as the infrastructure for primary care record linkage in the UK matures.  

Another limitation is that ALSPAC-G1 participants were born before the start of transition 

between paper and digital health records, and that fetal anomaly screening using ultrasound scans at 18–

20 weeks was not yet advanced enough to capture most cases of CAs. Therefore, antenatal and early life 

health data that is available now was not available for this cohort. However, I have attempted to address 

this in my multi-source approach to defining cases, which includes data from antenatal, labour and 

postnatal data extractions by ALSPAC employed research midwives. Whilst contemporary cohorts, 

including ALSPAC-G2 are able to benefit from the availability of advances in the governance around linking 

cohorts to health records and the existence of extensive electronic health data, I believe the effort to 

collate and code the CA data in ALSPAC-G1 participants makes a key contribution to that study; given the 

extensive data available on these participants this provides a valuable research resource for ALSPAC-G2. 

Related to this, the enrolment period for ALSPAC-G1 participants (early 1990’s) predates the Southwest 

Congenital Anomaly Register (SWCAR) which began in 2002. The SWCAR was part of the British Isles 

Network of Congenital Anomaly registers and is now a member of Public Health England’s National 

Congenital Anomaly and Rare Diseases Registration Service (NCARDRS). Future data collections (e.g., in 

ALSPAC-G2 participants) should be cross-validated with these registers.   

The descriptions above of each data source highlight their different coverage in terms of 

geography and time (participant age). They also vary between linkage to mortality and coded information 

in health records, detailed scrutiny and extraction of data from health records and a search of text entered 

by parents in questionnaires about their child. I have constructed the ALSPAC-G1 CA dataset by bringing 

all of these data together in an attempt to have not missed any cases whilst being as transparent as 

possible around the methods and data sources used. I feel that combining data in the way that I have 

provides the best estimate of CAs in ALSPAC-G1. However, data are available with codes that clearly 

indicate their source, which enables any researcher who wanted to restrict main analyses to selected data 

sources only and/or undertake sensitivity analyses to explore whether results change if some datasets are 

not included. Researchers can also access and undertake analyses including (or comparing to) the 608 

participants who I have defined as having ‘possible’ CA based on text in just one ALSPAC questionnaire. 
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To conclude, I have identified CAs in ALSPAC-G1 from multiple sources that are described here. 

The CAs have all been coded according to ICD-10 and are available to researchers. The linkage of these 

data to participants who are now in their late 20s and have a wealth of data from when they were in utero 

to the current time, including on their children as they start to become parents, makes this a powerful 

resource for CA research. The effort to obtain these should not be required for most contemporary birth 

cohorts given improved linkage systems and screening for CAs. However, it remains the case that CAs are 

under-researched, and some birth cohorts exclude known CAs at recruitment. This may reflect concerns 

that within any single cohort cases may be too few for meaningful analyses. However, with birth cohorts 

increasingly collaborating and sharing data, for example as in the LifeCycle collaboration 126, the potential 

to generate sufficient numbers for analyses is possible and I would recommend cohorts do not exclude 

such patients and existing (older) cohorts like ALSPAC who have not previously tried to identify all cases 

do so. 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

Chapter 3. The effect of maternal pre-/early-pregnancy BMI and 

pregnancy smoking and alcohol on congenital heart diseases: a parental 

negative control study 
 

3.1. Chapter summary 
 

This chapter has been published: 

Taylor K, Elhakeem A, Thorbjørnsrud Nader JL, Yang TC, Isaevska E, Richiardi L, Vrijkotte T, Pinot de 

Moira A, Murray DM, Finn D, Mason D, Wright J, Oddie S, Roeleveld N, Harris JR, Nybo Andersen A, 

Caputo M & Lawlor DA. Effect of Maternal Prepregnancy/Early‐Pregnancy Body Mass Index and 

Pregnancy Smoking and Alcohol on Congenital Heart Diseases: A Parental Negative Control Study. The 

Journal of the American Heart Association (2021). https://doi.org/10.1161/JAHA.120.020051.  

 

In Chapter 1, I described study designs that can be used to explore causal inference. These 

included negative control and Mendelian randomisation studies and I put forward the case for these to 

be used in aetiological CHD research. In this Chapter (Chapter 3), I used parental negative exposure 

control analyses to explore the intrauterine effects of maternal BMI, smoking and alcohol consumption 

on offspring congenital heart disease (CHD). I used this approach to try and determine whether these 

exposures might cause CHD via intrauterine mechanisms and to explore possible confounding. Seven 

European birth cohorts including 232,390 offspring (2,469 CHD cases [1.1%]) were included. I used logistic 

regression adjusting for confounders and the other parent’s exposure and combined estimates using a 

fixed-effects meta-analysis. Overall, I found evidence of an intrauterine effect for maternal smoking on 

offspring CHDs, which appeared to be driven by non-severe CHD cases. I found similar positive 

associations for maternal and paternal overweight and obesity categories suggesting that maternal results 

may be as a result of confounding. Results for alcohol were less clear as paternal data were limited. 

Emphasising the potential adverse effect of smoking on offspring CHD might help in supporting women 

of reproductive age not to start smoking and women who are smoking at the start of pregnancy to be 

encouraged to quit. Furthermore, understanding the mechanisms through which maternal smoking 

influences congenital heart disease risk could identify novel targets for prevention beyond smoking 

cessation. 

 

https://doi.org/10.1161/JAHA.120.020051
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3.2. Introduction 
 

Congenital heart diseases (CHDs) are the most common congenital anomaly (CA), affecting 6-8 

per 1000 live births and 10% of stillbirths, and are the leading cause of death from CAs 127. Many CHD 

patients present with sequela from surgical intervention and late complications related to the anomaly, 

resulting in health problems that persist into adulthood 128,129. The causes of CHDs are largely unknown, 

but intrauterine mechanisms may play a role in their underlying pathophysiology 130. Identifying 

modifiable risk factors for CHDs is important for improving etiological understanding and developing 

preventive interventions. 

Several modifiable maternal characteristics have been found to be associated with increased risk 

of CHDs, including maternal pre/early pregnancy body mass index (BMI) 43,65,66, smoking 55 and alcohol 41 

consumption in pregnancy. Whether these are causal is unclear. A recent systematic review and meta-

analysis of the association of BMI with CHDs found that risk of CHDs was higher in those whose mothers 

were overweight or obese at the start of pregnancy, compared with those who were normal weight. 

Results for underweight mothers were not reported 43, but a large cohort study consisting of >2,000,000 

singletons found no clear association for maternal underweight status and CHDs 66. These results from 

conventional multivariable approaches may be explained by residual confounding due to incomplete 

identification or adjustment for confounders. Maternal active smoking 55 and maternal exposure to 

alcohol 41 were both associated with offspring CHDs in recent meta-analyses. However, 68% and 69% of 

the studies within the meta-analyses (for maternal smoking and alcohol, respectively) did not adjust for 

confounders. Therefore, those studies showing associations for smoking and alcohol cannot determine 

whether these reflect the magnitude of a causal effect or are biased by confounding.  

Negative control studies are widely used in laboratory science and in recent years have become 

increasingly used to explore causal effects in epidemiology 131.  The idea behind negative control studies 

is that either the exposure or the outcome in the real experiment is substituted for a negative control 

exposure (or outcome) that is not a plausible risk factor but would have similar sources of bias or 

confounding as in the main experiment. In epidemiology this approach has been primarily used for 

determining the extent to which hypothesised intrauterine and early life exposures might be associated 

with outcomes as a result of residual confounding 99,131. Negative parental exposure control studies are 

used for this purpose. This involves comparing the confounder adjusted associations of maternal 

pregnancy exposures with the offspring outcome of interest to similarly adjusted associations of the same 

characteristics (negative controls) in the father. The assumptions of this approach are that: (i) measured 
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and unmeasured confounders influence the exposures in the same direction and with a similar magnitude 

in mothers and fathers and (ii) there is no plausible reason why the exposure in the father would affect 

the offspring outcome (or at a minimum the paternal association would be much weaker than in the 

mother). In the present study I am assuming that paternal BMI, smoking and alcohol cannot causally 

influence offspring CHDs through intrauterine mechanisms. Under these assumptions, if there is a causal 

intrauterine effect of any of the maternal pregnancy exposures, I would expect to see a maternal-specific 

association, with no (or a much weaker) association with the equivalent paternal exposure. Similar 

associations in mothers and fathers would suggest that these are largely driven by residual confounding. 

It is plausible that passive smoking from fathers could Influence offspring outcomes via intrauterine 

exposure, however, I would expect a much weaker association for fathers. As proof-of-concept maternal 

smoking relates strongly to lower birthweight (a known causal intrauterine effect) whereas paternal 

smoking has a much weaker association and when the two are mutually adjusted, the maternal remains 

strong whereas the weak paternal association attenuates to the null 90,131. 

I aimed to explore the causal intrauterine effects of maternal pregnancy BMI, smoking and alcohol 

on CHDs using data from the Horizon 2020 LifeCycle project 126. As well as the negative parental control 

study providing scope to explore residual confounding, the use of a large existing collaboration of birth 

cohorts adds benefit to this study in comparison to previous studies. First, both offspring with and without 

CHDs are from the same underlying populations and have been selected for inclusion and assessed in 

identical ways. Second, most studies of risk factors for CHDs are case control studies and these dominate 

meta-analysis results. These have advantages in that they have large numbers of CHD cases and hence 

greater statistical power than most cohorts, but they are prone to selection bias as response rates in 

controls are commonly low, and in some studies controls are selected from hospitals or clinics and do not 

reflect exposure status in the population from which the cases came 67. Furthermore, case control studies 

are susceptible to information bias due to differential recall and reporting of the exposure between cases 

and controls 67. Third, I have harmonised data on all exposures, confounders and outcomes. Fourth, I have 

large numbers, with 232,390 participants in total and 2,469 CHD cases. Lastly, the ethos of the LifeCycle 

collaboration is that all studies contribute to each research question unless they do not have data on 

either exposure or outcome, meaning publication bias is minimised. 
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3.3. Methods 
 

3.3.1. Inclusion criteria and participating cohorts 
 

This study was part of the Horizon2020 LifeCycle Project. LifeCycle is a collaboration of largely 

European birth cohorts that aims to determine the impact of early-life stressors on risk of developing 

adverse cardio-vascular/-metabolic, respiratory, cognitive and mental health outcomes (http://lifecycle-

project.eu) 126. A LifeCycle cohort was eligible for inclusion if it had information on CHD in the offspring 

ascertained by any method and data on at least one of the following: i) mother’s pre-/early-pregnancy 

BMI, ii) maternal smoking during pregnancy iii) maternal alcohol consumption during pregnancy, iv) the 

same exposures (i-iii) measured in the father at a similar time to their pregnant partners. Eligible LifeCycle 

cohorts could be from any geographical area and with participants from any ethnic background. In total, 

seven cohorts were eligible and all participated: The Amsterdam Born Children and their Development 

Study (ABCD) 132, Avon Longitudinal Study of Parents and Children (ALSPAC) 111,112, Cork SCOPE BASELINE 

Study (BASELINE) 133, Born in Bradford (BiB) 134, Danish National Birth Cohort (DNBC) 135, Norwegian 

Mother, Father and Child Cohort Study (MoBa) 136,137 and Nascita e INFanzia: gli Effetti dell’Ambiente 

(NINFEA) 138,139. Individual cohort descriptions can be found in the Appendices (Text S3.1). I excluded 

multiple births from the study population since they differ from single births for CA outcomes, with the 

exact cause of this being unknown, but placental dysfunction being one hypothesized mechanism 140,141. 

As well as this, removing multiple births improves the external validity of findings since the majority of 

studies performed in aetiologic CHD research are performed in singletons (e.g., the largest study for 

maternal overweight and obesity) 65. Some previous studies have excluded infants with any known 

chromosomal or genetic defects on the assumption that modifiable risk factors are unlikely to contribute 

in the presence of known causes. I have not made these exclusions in my main analyses since it is plausible 

that CHD in children with these complex syndromes are also influenced by the modifiable exposures I 

explore here. Furthermore, from a public health and clinical perspective I believe it is useful to know 

effects for all CHD cases. In additional analyses I explore whether their removal alters my main results. 

 

3.3.2. BMI, smoking and alcohol measurements 

 

I used harmonised LifeCycle data for exposure and confounder data, with the exclusion of paternal 

alcohol consumption which had not been harmonised by LifeCycle when I started this project 142. ABCD 

http://lifecycle-project.eu/
http://lifecycle-project.eu/
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and BASELINE were not part of the core LifeCycle cohorts and therefore not part of phase 1 data 

harmonised data that I used here. I harmonised the data for these cohorts to resemble the harmonised 

LifeCycle variables. Cohort-specific information on methods of data collection can be found in Appendices 

(Table S3.1).  

LifeCycle harmonised maternal BMI used measured or self-reported pre-/early-pregnancy weight 

and height. Pre-pregnancy weight was prioritised and if not available the earliest pregnancy measures 

were used. Paternal BMI was similarly reported (by the father or their pregnant partner) or measured and 

I prioritised the timing to be pre- or as early as possible in their partners pregnancy. BMI was used as a 

continuous variable for the main analyses. In cohorts that had >100 CHD cases, I also categorised BMI as 

underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5 to <25 kg/m2), overweight (BMI 25 to <30 

kg/m2) and obese (BMI ≥30 kg/m2). ALSPAC, BiB, DNBC and MoBa contributed to these analyses.  

I used two LifeCycle smoking variables for maternal and paternal smoking at the time of 

pregnancy: (i) smoking in the first trimester (yes/no) where this was available, otherwise any smoking 

during pregnancy (yes/no) and (ii) categorised into non-smokers, light (< 10 cigarettes smoked per day) 

and heavy (≥ 10 cigarettes per day) throughout the entire pregnancy. Paternal smoking was categorised 

as ‘any smoking (yes/no)’ at the time of their partners pregnancy.  

I used two LifeCycle variables for maternal alcohol consumption: (i) binary (yes/no), which like 

smoking prioritised the first trimester if available but was otherwise any alcohol intake during pregnancy 

and (ii) categorised into non-drinkers (none), light (>0 and <3 units per week) and moderate/heavy (≥3 

units per week) drinkers during pregnancy. Two studies (ALSPAC and MoBa) had data on paternal alcohol 

consumption in pregnancy and thus were able to harmonize variables relating to paternal alcohol for this 

project. I generated one variable, categorised as: non-drinkers, light (>0 and <7units per week) or 

moderate/heavy (≥7 units per week) drinkers (Text S3.2).   

The rationale for prioritizing maternal pregnancy smoking and alcohol during the first trimester is 

because fetal cardiac development starts early in pregnancy and much of the development occurs in the 

first trimester 143. 47% and 96% of mothers had measures specifically in the first trimester for smoking 

and alcohol, respectively.  

 

3.3.3. Congenital heart disease outcomes 

 

Information on CHDs was retrieved from a variety of sources depending on the cohort. ALSPAC, 

BiB, DNBC and NINFEA had International Classification of Diseases v10 (ICD-10) coded data. BASELINE had 
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individual CHD diagnoses assigned by a cardiologist based on echocardiography. For ABCD and MoBa, I 

had a non-specific CHD diagnosis (yes/no). Data in ABCD, BASELINE, DNBC, and NINFEA were restricted to 

liveborn infants, whereas other cohorts included stillbirths.  

In the ABCD cohort, data on CHDs in liveborn children were obtained from three different sources: 

(i) the infant questionnaire, which was filled out by the mother at an average infant age of 12.9 weeks, (ii) 

the questionnaire filled out by the mother at an average child age of 5.1 years, and (iii) clinical data of the 

Youth Health Care Registration. In the ALSPAC cohort, cases were obtained from a range of data sources, 

including health record linkage and questionnaire data up until age 25 years following European 

Surveillance of Congenital Anomalies (EUROCAT) guidelines 35. In BASELINE, at 2 months, mothers were 

asked of any medical problems and/or referrals. If a baby had been referred to a specialist, it was checked 

by a cardiologist to see if they had results from an echocardiogram with exact diagnoses reported. Further 

diagnoses up until age 12 years were identified through records from the echocardiogram. In the BiB 

cohort, there were two separate sources to identify CAs. Both sources were used in this study: (i) CAs up 

to 5 years of age, identified in primary care records by Bishop et al 144 following EUROCAT guidelines. ICD-

10 codes were mapped to clinical term (CT)-V3 codes prior to extraction from primary care records. (ii) 

Data extracted from the Yorkshire and Humber CAs register database. Data were ICD-10 coded. All of 

these were confirmed postnatally. In the DNBC, all diagnoses of congenital anomalies (according to 

EUROCAT guide 1.4 section 3.2 and 3.3) up until the age of 15 years were extracted from the Danish 

National Patient Register (DNPR) which is linked to the cohort data 145,146. Diagnoses were ICD-coded. 

These data were restricted to children born alive. In MoBa, information on whether a child had a CHD or 

not was obtained though linkage to the Medical Birth Registry of Norway (MBRN). All maternity units in 

Norway must notify births to the MBRN. In the NINFEA cohort, CHDs were reported in the second 

questionnaire compiled 6 months after birth. Mothers compiled a checklist that included pre-specified 

anomalies. If the child died or had any surgery performed in the first 6 months, the cause of death and 

type of surgery were also checked to see if any CA was reported. Data were coded using ICD-10 codes by 

an experienced paediatrician and were reassessed by an independent physician. Further details of the 

sources of data for CHDs in each cohort are provided in the Appendices (Text S3.3). 

 In all studies, the main outcome was any CHD. Where data allowed (i.e., when I had full ICD-

codes), any CHD was defined according to EUROCAT, which excludes isolated patent ductus arteriosus 

(PDA) and peripheral pulmonary artery stenosis in preterm births (gestational age <37 weeks) (Table S3.2). 

I also categorised cases into severe CHD (heterotaxia, conotruncal defect, atrioventricular septal defect, 

anomalous pulmonary venous return, left ventricle outflow tract obstruction, right ventricle outflow tract 
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obstruction, other complex defects) and the remainder as non-severe CHD (PDA [in full term infants], 

valvular pulmonary stenosis, ventricular septal defect [VSD], atrial septal defects [ASD], unspecified septal 

defects, isolated valve defects, other specified heart defects, unspecified heart defects) 24,25 (Table S3.2).  

 

3.3.4. Confounders 
 

Analyses were adjusted for a number of confounders based on their known or plausible influence 

on one or more of the maternal pregnancy exposures and on CHD: Maternal age (all exposures), parity 

(all exposures), ethnicity (all exposures), socioeconomic position (SEP; all exposures), smoking (for BMI 

and alcohol analyses), alcohol use (for BMI and smoking analyses). In the paternal negative control 

analyses confounders were similar: fathers’ age (all exposures), number of children (all exposures), 

ethnicity (all exposures), SEP (all exposures) smoking (for BMI and alcohol), alcohol use (for BMI and 

smoking). I also adjusted for offspring sex in all adjusted analyses. I used educational attainment for both 

parents’ measures of SEP.  Full details of my selection and harmonization of confounders is provided in 

the Appendices (Text S3.4). 

 

3.3.5. Statistical analysis 

 

Analyses were conducted in either R (version 3.6.1) or Stata (version 16). An analysis plan was 

written and published in October 2019, with any subsequent changes and their rationale documented in 

the publication 147. All associations between exposures and CHDs were performed within participating 

studies using logistic regression (binary for main analyses and multinomial for CHD severity analyses). In 

the two largest cohorts (DNBC and MoBa), I assessed deviation from linearity in the models in the BMI 

analyses by running the main confounder adjusted model with BMI split into fifths. I ran regression models 

with these fifths as four indicator variables (non-linear) and compared this model with one in which the 

fifths were treated as a continuous (score) variable. I used a likelihood ratio comparison to compare these 

two models. All analyses were run (i) unadjusted, (ii) adjusted for maternal/paternal age, SEP, parity, 

ethnicity, smoking and/or alcohol (depending on exposure) and offspring sex and (iii) adjusted for all 

confounders (as in (ii)) as well as the other parents exposure. In the adjusted models, studies were asked 

to adjust for as many of the confounders as possible. All analyses were performed with maximal numbers 

(i.e. numbers included in each model will vary due to missing data on exposure/outcome or confounders). 

In a sensitivity analysis, I repeated the main analyses using complete-case data to assess whether missing 

data were influencing the results. 
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For the main negative control analyses – i.e., where I directly compared maternal to paternal 

exposure-CHD associations – I used multivariable logistic regression in which both maternal and paternal 

exposures were adjusted for the other parent’s exposure. This produces a maternal association that 

adjusts for maternal confounders as well as the paternal exposure, and similarly a paternal association 

adjusting for paternal confounders and the maternal exposure. The rationale for mutually adjusting for 

the other parent’s exposure is that parental BMI, smoking and alcohol may relate to each other through 

assortative mating and/or convergence of behaviours that occurs over time in couples 148. Causal 

structural graphs together with simulated data show failure to undertake this mutual adjustment will bias 

the negative control analysis results 149. Also, paternal exposures may have some intrauterine impact, for 

example via passive smoking or paternal support for the mother to reduce alcohol and have a normal BMI 

during her pre-conceptual period or in pregnancy 150. Mutual adjustment for maternal and paternal 

confounders was necessary for ensuring both parental results were fully adjusted. Comparisons between 

maternal and paternal associations from this model were assessed by visually comparing the two results. 

In addition, statistical evidence of any differences was obtained by calculating differences in log odds of 

CHD between the fathers’ and mothers’ associations and report the corresponding P-value (Pdiff), under 

the null hypothesis that there is no difference between the maternal and paternal estimate.  

Analyses were conducted separately in each study and then meta-analysed using the meta 

package in R 151. All the data used in the present study originated from European birth cohorts, with 

broadly similar methods and therefore, I assumed that they were each estimating an association from the 

same underlying populations and used a fixed-effects meta-analysis. To explore this assumption, 

differences between studies were assessed using I2 and Cochrane Q P-values for heterogeneity 152.  

 

3.3.6. Additional Analyses 

 

I repeated the main, and subgroup (by CHD severity) analyses after excluding infants with any 

known chromosomal/genetic or maternal drug effects. Methods of data collection and definition of these 

variables can be found in Appendices (Table S3.3). I also repeated analyses in mothers only including those 

with smoking data in the first trimester. Folic acid supplementation has been shown to lower risk of birth 

defects and adverse pregnancy outcomes 48,153. I repeated the adjusted maternal analyses with additional 

adjustment for first trimester folic acid supplementation (yes/no). 
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3.4. Results 
 

3.4.1. Participant characteristics  

 

Figures S3.1-S7 in the Appendices show flowcharts designating the assignment of participants into 

analysis groups for each cohort. In total, 7 cohorts including 232,390 offspring with 2,469 CHD cases (1.1%) 

were included. The prevalence of CHD was close to 1% in most cohorts, with the lowest being in ABCD 

(0.4%) and the highest in DNBC (1.4%) (Table 1). Table 1 shows the distributions of maternal and paternal 

characteristics for each cohort. Mean maternal age across the cohorts was broadly similar (all late 20s to 

early 30s). Mean BMI was also similar across the cohorts but proportions in different categories varied, 

with the lowest prevalence of pre-/early-pregnancy obesity seen in NINFEA (5%) and the highest in BiB 

(21%). There was also variation in maternal smoking and alcohol consumption across the cohorts, with 

notably high levels of both smoking (25% and 26%, respectively) and alcohol (55% and 45%, respectively) 

in ALSPAC and DNBC.  Fathers were generally older than mothers and more likely to smoke and drink 

alcohol, with the overall patterns of between study differences being similar to those for the mothers. 

There were differing levels of missing data in each cohort (summarised in Table S3.4 and also illustrated 

in cohort specific flow charts (Figures S3.1-S3.7). To check whether missing data influenced any of the 

results, I report complete-case analysis results for our main analyses in the Appendices. Overall, complete-

case results from meta-analyses were comparable (Tables S3.5-S3.8). Below, I present the main results 

separated by exposure. I include supplementary results for BMI (Figures S3.8-S3.20 & Tables S3.9-3.10), 

smoking (Figures S3.21-S3.27) and alcohol (Figures S3.28-S3.32 & Table S3.11) analyses in the Appendices. 
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Table 3.1. Characteristics of the participating cohorts. 

 
 

Category  ABCD 
N = 8,131 

ALSPAC 
N = 13,049 

BASELINE 
N = 1,436 

BiB 
N = 12,799 

DNBC 
N = 89,107 

MoBa 
N = 101,975 

NINFEA 
N = 5,893 

Country  Netherlands UK Ireland UK Denmark Norway Italy 

Recruitment 
period 

 2003-2004 1991-1992 2008-2011 2007-2011 1996-2002 1999-2008 2005-2016 

Offspring          

CHD Any 34 (0.4) 103 (0.8) 10 (0.7) 145 (1.1) 1264 (1.4) 879 (0.9) 34 (0.6) 

CHD severity in 
those with CHD 

Non-severe - 73/103 (70.9) - 93/145 (64.1) 896/1264 
(70.9) 

- 27/34 (79.4) 

Severe - 30/103 (29.1) - 52/145 (35.9) 368/1264 
(29.1) 

- 7/34 (20.6) 

Chromo/Genetic 
defects a 

 26 (0.3) 58 (0.4) - 198 (1.5) 698 (0.8) 169 (0.2) 7 (0.1) 

Maternal          

Age, years  30.7 (5.3) 28.9 (4.8) 30.7 (4.4) 26.0 (5.7) 29.9 (4.3) 30.2 (4.6) 33.1 (4.3) 

BMI, kg/m2  23.1 (4.1) 22.6 (4.4) 24.4 (4.1) 26.0 (5.7) 23.6 (4.3) 24.0 (4.3) 22.5 (3.8) 

BMI categories 
Underweight 
(<18.5) 

360 (4.9) 1271 (11.6) 
23 (1.6) 

444 (4.4) 3861 (4.5) 
3077 (3.2) 501 (8.5) 

 
Normal 
(18.5 to <25) 

5270 (71.8) 7426 (67.7) 
914 (63.6) 

4586 (45.4) 57894 (67.8) 
63706 (65.4) 4156 (70.5) 

 
Overweight 
(25 to <30) 

1245 (17.0) 1537 (14.0) 
345 (24.0) 

2952 (29.2) 16578 (19.4) 
21280 (21.8) 826 (14.0) 

 Obese (≥30) 467 (6.4) 736 (6.7) 154 (10.7) 2127 (21.0) 7017 (8.2) 9337 (9.6) 286 (4.9) 

Pregnancy 
smoking 

Yes^ 769 (9.5) 3147 (24.7)^ 
357 (24.9)^ 

1788 (16.4) 22514 (26.0)^ 
9650 (9.6) 472 (8.1)^ 

 Light - 1684 (15.7) - 1362 (12.5) 15777 (17.9) 7856 (7.7) 438 (7.5) 

 Heavy - 1096 (10.2) - 426 (3.9) 7431 (8.5) 1587 (1.6) 30 (0.5) 

Pregnancy 
alcohol 

Yes^ 1686 (20.8) 6894 (54.6)^ 
527 (36.7) 

- 38733 (44.7)^ 
22799 (27.7)^ 1508 (25.8)^ 

 Light - 3044 (46.8) - - 46774 (52.9) 10461 (12.4) 1416 (24.4) 

 Mod/Heavy - 871 (13.4) - - 3717 (4.2) 509 (0.6) 230 (3.9) 

Parity Nulliparous 4500 (55.3) 5645 (45.0) 1436 (100) 4912 (39.8) 42203 (47.4) 46988 (46.9) 4070 (72.4) 

Education Low 4035 (49.6) 2374 (20.0) - 5717 (56.9) 22225 (27.6) 2735 (2.9) 278 (4.8) 

 Medium 2225 (27.4) 7985 (67.1) 208 (14.6) 1563 (15.6) 17756 (22.0) 31430 (33.1) 1892 (32.4) 

 High 1871 (23.0) 1538 (12.9) 1219 (85.4) 2769 (27.6) 40675 (50.4) 60847 (64.0) 3677 (62.9) 
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Folic acid supp Yes 5677 (70.7) 1070 (8.5) - - 56998 (69.0) 74466 (74.3) 4741 (82.5) 

Paternal          

Age, years  35.1 (5.8) 30.9 (5.8) 32.2 (4.8) 30.4 (6.6) 32.2 (5.2) 32.7 (5.4) 36.2 (5.2) 

BMI, kg/m2  25.0 (3.5) 25.2 (3.3) 26.8 (3.6) 26.8 (4.7) 25.2 (3.2) 25.8 (3.3) 24.8 (3.2) 

BMI categories 
Underweight 
(<18.5) 

28 (0.8) 41 (0.5) 
2 (0.2) 

53 (1.9) 271 (0.4) 
242 (0.2) 43 (0.75) 

 
Normal 
(18.5 to <25) 

1966 (54.8) 4308 (53.3) 
345 (30.9) 

953 (35.0) 33502 (53.5) 
42952 (44.4) 3332 (58.4) 

 
Overweight 
(25 to <30) 

1372 (38.2) 3111 (38.5) 
594 (53.3) 

1137 (41.7) 24529 (39.2) 
43888 (45.3) 1977 (34.6) 

 Obese (≥30) 223 (6.2) 616 (7.6) 174 (15.6) 582 (21.4) 4335 (6.9) 9759 (10.1) 355 (6.2) 

Smoking Yes - 3459 (37.9) 277 (24.9) 1021 (32.0) 26242 (30.9) 27803 (27.3) - 

Alcohol None - 449 (5.5) - - - 2963 (4.1) - 

 Light drinking - 4251 (51.8) - - - 59577 (82.3) - 

 
Mod/heavy 
drinking 

- 3505 (42.7) 
- 

- - 
9882 (13.6) - 

Education Low 190 (8.5) 2959 (25.9) - 4299 (52.9) 17069 (21.8) 4245 (4.4) 956 (16.6) 

 Medium 398 (17.9) 6391 (55.9) - 1115 (13.7) 28230 (36.0) 43576 (45.1) 2464 (42.8) 

 High 1670 (73.9) 2079 (18.2) - 2709 (33.3) 33118 (42.2) 48782 (50.5) 2335 (40.6) 
Data are means ± SD or n (%). Study N’s are based on singletons with data on at least one outcome and one exposure. ‘-‘ indicates data were not available. Light smoking, <10 

cigarettes per day; heavy smoking, 10 cigarettes per day; maternal light drinking, >0 and <3 units per week during pregnancy; maternal moderate/heavy drinking, 3 units 

per week during pregnancy; paternal light drinking, >0 and <7 units per week; paternal moderate/heavy drinking, 7 units per week. Abbreviations: ABCD, The Amsterdam 
Born Children and their Development Study; ALSPAC, The Avon Longitudinal Study of Parents and Children; BiB, The Born in Bradford Study; DNBC, The Danish National Birth 
Cohort; MoBa, the Norwegian Mother, Father and Child Cohort Study; NINFEA, (Nascita e INFanzia: gli Effetti dell’Ambiente; Birth and Childhood: Effects of the Environment); 
BMI, body mass index; kg, kilogram; m, meters; mod, moderate; supp, supplementation; CHD, congenital heart disease; CA, congenital anomaly.  
a Chromosomal/genetic/teratogenic anomalies with a cause thought to be already known (see Table S3.2 for classifications).  
^ Denotes that the study had data specifically during the first trimester.  
Numbers in the moderate/heavy columns for smoking and alcohol do not add up to the number of any smoking/alcohol because some studies used trimester-specific data 
for the binary data, whereas the moderate/heavy is an assessment of the exposure throughout pregnancy. E.G. For DNBC “light drinking” has higher numbers than “yes any” 
because the “yes” data are for first trimester only whereas light drinking was any light drinking across the entire pregnancy.  
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3.4.2. BMI and CHDs 

 

In confounder and other parent BMI adjusted analyses, there was no difference in the odds of 

offspring CHD per 1kg/m2 difference in maternal BMI (OR: 1.00, 95%CI: 0.99, 1.02) or paternal mean BMI 

(OR: 1.01, 95%CI: 0.99, 1.03) (Pdiff = 0.43), with both being close to the null (Figure 3.1A). Unadjusted and 

confounder only adjusted results did not differ notably from those presented in Figure 3.1 (Figure S3.8). 

The odds of CHD did not clearly increase linearly in mothers or fathers in DNBC or MoBa (Figures S3.9 and 

S3.10 and accompanying supplementary text). Analyses of continuously measured BMI with CHD cases 

separated into non-severe and severe showed similar null associations for both mothers and fathers 

(Figure S3.11). 

In analyses of BMI categories, there were increased odds of offspring CHD in overweight and 

obese mothers and fathers compared with those of a normal BMI, with similar magnitudes of association 

in both parents (Pdiff overweight = 0.65 & Pdiff obese = 0.83) (Figure 3.1B). Underweight mothers had an 

increased odds of offspring CHD, whereas underweight fathers had a decreased odds of offspring CHD. 

Because of very small numbers of underweight parents, particularly fathers, however, results were 

imprecise with wide confidence intervals and there was no statistical evidence for between parental 

differences for underweight (Pdiff underweight = 0.27). Individual study results for BMI categories are 

shown in Figures S3.15-S3.17). Positive parental associations of overweight and obesity were also 

observed for both non-severe (Figure 3.1C) and severe (Figure 3.1D) CHDs, with similar magnitudes of 

association in mothers and fathers. Individual study results for BMI categories and CHD severity are shown 

in Figures S3.18-S3.20.  
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Figure 3.1. Associations between maternal and paternal pre/early pregnancy body mass index (BMI) and offspring 
congenital heart disease (CHD). 
Figure 3.1A shows odds ratios of CHD for a one-unit (1kg/m2) difference in maternal BMI (top graph) and paternal BMI 
(bottom graph) in each study and pooled across studies. Figure 1B shows the pooled (across ALSPAC, BiB, DNBC, MoBa) 
results for maternal (top) and paternal (bottom) BMI categories. Results are odds ratios of CHD in comparison to normal 
BMI. Figures 3.1C and 3.1D show odds ratios of non-severe CHD and severe CHD respectively for BMI categories in 
comparison to normal BMI (pooled across ALSPAC, BiB, DNBC, MoBa). All results are adjusted for confounders (depending 
on cohort: maternal and paternal age, education, ethnicity, smoking, alcohol, maternal parity and offspring sex) as well as 
the other parents BMI. The study specific results for BMI categories are shown in Appendices Figures S3.15-S3.20. In Fig. 
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3.1D, there were too few cases with paternal BMI data to report results. Abbreviations: BMI, body mass index; kg, 
kilogram; m, meter; ABCD, The Amsterdam Born Children and their Development Study; ALSPAC, Avon Longitudinal Study 
of Parents and Children; BASELINE, Cork SCOPE BASELINE Study; BiB, Born in Bradford; DNBC, Danish National Birth 
Cohort; MoBa, Norwegian Mother, Father and Child Cohort Study; NINFEA, Nascita e INFanzia: gli Effetti dell’Ambiente.
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3.4.3. Smoking and CHDs 

 

In confounder and other parental smoking adjusted analyses maternal smoking in pregnancy was 

associated with increased odds of CHD (OR: 1.11, 95%CI: 0.97, 1.25), whereas paternal smoking at the 

time of their partners pregnancy did not increase odds of offspring CHD (OR: 0.96, 95%CI: 0.85, 1.07) (Pdiff 

= 0.09) (Figure 3.2A). When removing offspring with a chromosomal/genetic defect, there was stronger 

statistical evidence of a difference between maternal and paternal smoking (Pdiff = 0.02) (Figure 3.2B). 

Results for unadjusted analyses were consistent with the confounder and mutual parent smoking adjusted 

result, whereas confounder only analyses were slightly attenuated for maternal smoking (Figure S3.21). 

Maternal smoking results were similar when analyses were restricted to studies with confirmed first 

trimester smoking (Figure S3.22). A positive association between maternal smoking and offspring CHD 

was also seen with non-severe CHDs (OR: 1.22, 95%CI: 1.04, 1.44), though not with severe CHDs (OR: 0.90, 

95%CI: 0.69, 1.17) (Figures 3.2C & 3.2D & Figure S3.23). When I analysed maternal smoking frequency 

categories (i.e. none, light and heavy smoking), the results did not support an effect of heaviness over and 

above what I saw with any smoking (Figure S3.24). The maternal and paternal associations for these 

categories were statistically consistent (Pdiff = 0.25 & 0.38 for light and heavy smoking, respectively). 
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Figure 3.2. Associations in each study and pooled across studies for maternal and paternal pregnancy smoking and 
offspring congenital heart disease (CHD). 
Maternal first trimester smoking was prioritised and used where possible. Figure 3.2A shows odds ratios of any CHD for 
maternal smoking during pregnancy (top graph) and paternal smoking (bottom graph). Figure 3.2B shows odds ratios of 
any CHD after removing those with a chromosomal/genetic defect from the study population. Figures 3.2C and 3.2D show 
odds ratios of non-severe CHD and severe CHD respectively. All results are adjusted for confounders (depending on cohort: 
maternal and paternal age, education, ethnicity, alcohol, maternal parity and offspring sex) as well as the other parents 
smoking. Abbreviations: ABCD, The Amsterdam Born Children and their Development Study; ALSPAC, Avon Longitudinal 
Study of Parents and Children; BASELINE, Cork SCOPE BASELINE Study; BiB, Born in Bradford; DNBC, Danish National Birth 
Cohort; MoBa, Norwegian Mother, Father and Child Cohort Study; NINFEA, Nascita e INFanzia: gli Effetti dell’Ambiente.
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3.4.4. Alcohol and CHDs 

 

Due to lack of relevant paternal data, I was unable to undertake negative control analyses for any 

first trimester alcohol consumption. Maternal only associations for that exposure are presented here 

followed by the negative control analyses for levels of alcohol intake at any time in pregnancy. With 

adjustment for all confounders, any maternal first trimester alcohol consumption was not associated with 

odds of offspring CHD in meta-analyses from 5 cohorts (OR: 1.03, 95%CI: 0.94, 1.13) (Figure S3.28). There 

was a small increase in risk when restricting these analyses to non-severe CHD (OR: 1.07, 95%CI: 0.93, 

1.22) although confidence intervals included the null. Associations for severe CHD were null (OR: 0.91, 

95%CI: 0.73, 1.12) (Figure S3.29).  

In confounder and other parental alcohol adjusted analyses, there was weak evidence of an 

association between maternal light alcohol intake and CHDs (OR: 1.15, 95%CI: 0.90, 1.48), which appeared 

stronger that than seen for paternal alcohol (OR: 1.01, 95%CI: 0.63, 1.62), though with no strong statistical 

support for a difference (Pdiff = 0.63). Associations for moderate/heavy intake were consistent for maternal 

and paternal alcohol (Pdiff = 0.90) with point estimates showing weak positive associations, but with wide 

confidence intervals that included the null (Figure 3.3A and 3.3B). I did not test associations between 

levels of alcohol intake and CHD severity due to small numbers. Due to the small number of cohorts having 

paternal alcohol data, I also show confounder adjusted models (without mutual paternal adjustment) for 

maternal alcohol intake (Figure 3.3C). The point estimate for maternal light drinking was very close to the 

null and that for heavy drinking suggested it resulted in increased risk of offspring CHD. However, both of 

these estimates had wide confidence intervals due to relatively few women reporting drinking 

(particularly heavily) during pregnancy. Results in unadjusted analyses were unchanged (Figure S3.30). 
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Figure 3.3. Associations in each study and pooled across studies for maternal and paternal pregnancy alcohol intake 
and offspring CHDs. 
Figure 3.3A shows confounder and other parent’s alcohol adjusted odds ratios of any CHD for maternal light drinking 
during pregnancy (top graph) and paternal light drinking (bottom graph). Figure 3.3B shows confounder and other parent’s 
alcohol adjusted odds ratios of any CHD for maternal moderate/heavy drinking during pregnancy (top graph) and paternal 
moderate/heavy drinking (bottom graph). Figure 3.3C shows confounder adjusted odds ratios of any CHD for maternal 
light drinking during pregnancy (top graph) and maternal mod/heavy drinking (bottom graph). Confounders (depending 
on cohort): maternal and paternal age, education, ethnicity, smoking, maternal parity, offspring sex (and other parental 
alcohol intake in panels A & B). Definitions for maternal/paternal alcohol intake are described in the methods section. 
Abbreviations: ABCD, The Amsterdam Born Children and their Development Study; ALSPAC, Avon Longitudinal Study of 
Parents and Children; BASELINE, Cork SCOPE BASELINE Study; BiB, Born in Bradford; DNBC, Danish National Birth Cohort; 
MoBa, Norwegian Mother, Father and Child Cohort Study; NINFEA, Nascita e INFanzia: gli Effetti dell’Ambiente. 
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3.4.5. Between study heterogeneity and additional analyses 

 

I have included heterogeneity statistics (I2 and Pheterogenity) in all figures. Analyses of continuously 

measured BMI and severe CHDs in additional analyses (Figure S3.14) and BMI analysed as categories with 

severe CHDs (Figures S3.19-3.20) were the only results where I found any statistical evidence of 

heterogeneity. Across the remaining analyses for all exposures there was no strong evidence of between 

study heterogeneity. Removal of those with any known genetic/chromosomal defects from the study 

population did not notably alter any main or severity subgroup analyses for BMI and alcohol consumption. 

However, for smoking, removal of offspring with a chromosomal/genetic defect increased the magnitude 

of the association for maternal smoking and CHDs (OR: 1.15, 95%CI: 1.01, 1.32), and slightly decreased 

that for paternal smoking (OR: 0.93, 95%CI: 0.83, 1.05) (Pdiff = 0.02) (Figure 3.2B). Further, the positive 

association between maternal smoking and non-severe CHDs was slightly stronger when removing those 

with chromosomal/genetic defects from the study population (OR: 1.25, 95%CI: 1.05, 1.49) (Figure S3.26). 

All maternal results were materially unchanged after additional adjustment for folic acid supplementation 

(Figures S3.12, S3.27 & S3.32). 

 

3.5. Discussion 
 

In this large multi-cohort study, I found evidence that maternal pregnancy smoking may increase 

offspring CHD risk via intrauterine mechanisms and that this may be driven by a specific effect on non-

severe CHDs. I did not find robust evidence to suggest a causal intrauterine effect of higher maternal pre-

/early-pregnancy mean BMI or overweight or obesity on offspring CHD risk. Nor did I find evidence of an 

intrauterine effect of alcohol consumption on offspring CHD risk, although I acknowledge that for alcohol, 

I had less data and limited statistical power. To my knowledge, this is the first study to use a parental 

negative control method to explore whether maternal exposures have a causal intrauterine effect on 

offspring CHDs or whether associations are explained by residual confounding, which would generate a 

similar association for parental exposures.  

I found increased odds of offspring CHD in mothers who were overweight and obese. This is 

consistent with the most recent systematic review and meta-analysis, which included 2,416,546 

participants (57,172 with offspring CHD), from 19 studies and reported increased risk of any offspring  CHD 

in women who were overweight or obese during pregnancy 43. However, adjustment for confounders was 

poor, with 10 of the 19 included studies not providing information on confounder adjustment or not 
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adjusting for any confounders. With more stringent confounder adjustment and the findings from a 

negative control study, my results suggest that the increased risk of offspring CHD in overweight and 

obese mothers is largely the result of residual confounding. I also found that mothers who were 

underweight at the start of pregnancy were at increased risk of having offspring with CHD, whereas 

underweight in fathers appeared to be protective of offspring CHD. There were 9,537 underweight 

mothers (4.4%) but only 680 underweight fathers (0.4%) in the present study population, making the 

paternal analyses imprecise and the negative control analyses lacking in power to reliably identify parental 

differences. The recent systematic review mentioned above did not report on associations of underweight 

with CHDs because too few studies looked at this.  

A large Swedish linkage study of over 2 million singleton live born infants (born between 1992 to 

2012 with 28,628 CHD cases), has explored associations with maternal underweight, as well as overweight 

and three grades of obesity 65. It is difficult to directly compare the results from that study with ours as I 

only present results for any CHD (and CHD stratified by severity), whereas they only present associations 

of maternal BMI with specific subtypes of CHDs. The fact that I lack statistical power in my study to explore 

associations with specific sub-types is a limitation. However, magnitudes of associations of BMI categories 

and non-severe CHDs in the present study appear to be broadly consistent with several non-severe defects 

in the large Swedish study, including ASDs and isolated valve defects. In their study, risks of offspring CHD 

were similar in underweight compared to normal weight women for all types of CHD (analysed 

individually), except for mitral to tricuspid valve defects (14 cases), pulmonary valve defects (24 cases) 

and right ventricular defects (5 cases), where there was some evidence of increased prevalence with 

underweight. However, these estimates were based on small numbers and hence imprecise, with 

confidence intervals including the null. Whilst my findings suggest maternal underweight might increase 

offspring risk of CHDs, I lacked power to rule out residual confounding in the negative control analyses, 

and as noted above the large Swedish study had limited power to determine precise effects in relation to 

maternal underweight for specific types of CHD where point estimates suggested potentially important 

magnitudes of increased risk. Other studies that I am aware of have not explored associations of maternal 

underweight. Thus, any possible effect of maternal underweight on CHD risk remains unclear. As the 

prevalence of CHD in some low- and middle-income countries is high 154, and these countries currently 

experience the double burden of under- and over-nutrition I would argue that further exploration of any 

possible impact of maternal underweight is warranted.  

Consistent with my findings, a recent meta-analysis of >8 million participants (137,575 CHD cases) 

from 125 studies reported positive associations between maternal pregnancy smoking and offspring CHDs 
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55. There was substantial heterogeneity (I2 = 89%) in their pooled results and only 68% of the included 

studies report adjustment for confounders. The authors also report positive associations between 

maternal passive smoking and paternal active smoking with offspring CHDs, both of which (somewhat 

unexpectedly) had stronger magnitudes of association than results from maternal active smoking. My 

results, including the negative control study, add to the previous research findings by providing more 

robust evidence that these associations for maternal smoking are unlikely to be explained by residual 

confounding and are potentially causal. Other research has shown that pregnancy smoking is a risk factor 

for orofacial clefts 155. The prevalence of CHD is around 1% in the general population, as shown in the 

present study, yet in those with orofacial clefts, CHD prevalence rates of up to 20% have been reported 

156. Both the heart and the palate develop during early pregnancy around weeks 5 to 9. Therefore, it is 

plausible that smoking in early pregnancy could disturb common biological pathways in these conditions.  

I found that the associations for maternal smoking were possibly largely driven by an effect in non-severe 

CHDs, with the association strengthening when those with chromosomal or genetic defects were 

removed. Previous research has reported positive associations between maternal smoking and septal 

defects, in particular for ASDs 157–159 which are defined as non-severe according to the classification system 

used in the present study. However, caution is needed in interpreting results by subgroups based on 

severity. First, one of the largest studies (MoBa) did not have information on case severity and so the 

severity subgroup analyses are based on different participants and have lower statistical power than in 

the main analyses. Second, even had all studies been included in the severity analyses, by definition 

subgroup analyses have limited power in comparison to main analyses. Third, and importantly, caution is 

required with any subgroup analyses as it is common for multiple characteristics to differ between 

subgroups in addition to the subgroup defining feature (here CHD severity). 

In confounder adjusted analyses maternal alcohol consumption in the first trimester of pregnancy 

was not associated with offspring CHD. There was some evidence that maternal moderate or heavy 

alcohol consumption any time in pregnancy was associated with increased risk of offspring CHD. Whilst 

associations between mothers and fathers light, moderate and heavy alcohol consumption, compared 

with none, were statistically consistent, only 2 cohorts (80,627 participants, 703 with offspring CHD) had 

alcohol information on fathers around the time of their partners pregnancy. Associations for fathers in 

particular were imprecise with wide confidence intervals. Two recent meta-analyses found consistent 

modest increases in risk of offspring CHD in mothers reporting alcohol consumption in pregnancy (OR: 

1.11 (95%CI: 0.96, 1.29) 160 and 1.16 (1.05, 1.27)) 41. Although the first of these concluded ‘no association’ 

it can be seen that the results for the two are consistent, and the larger sample size of the second has 
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increased precision. Of note, the second of these studies also explored paternal consumption and found 

increased risk of offspring CHD related to fathers’ alcohol consumption (1.44 (1.19, 1.74)) 41. Although the 

odds ratio for fathers’ consumption suggests a stronger effect, the confidence intervals are wide, and the 

result is statistically consistent with that for mothers’ alcohol consumption. As in the present study there 

were fewer studies with data on paternal alcohol consumption around the time of their partners 

pregnancy. Taken together with the findings presented here, these suggest that positive associations of 

maternal alcohol consumption with offspring CHD may be due to residual confounding rather than a 

causal intrauterine effect.  

The key strengths of this study are its large sample size, the use of a negative paternal exposures 

control study and the pooling of results from several cohort studies that are less prone to selection bias 

that can occur in case control studies and are not selected based on publication, but on being part of an 

existing collaboration. The latter reduces the risk of publication bias as studies were included if they had 

data and not on the basis of (published) results. This also allowed me to explore replication across studies 

and the consistency of findings between studies in the main analyses adds confidence to my conclusions. 

The use of harmonised data from LifeCycle is a strength that limits between study heterogeneity. 

However, harmonizing data across several studies, as I have done in LifeCycle, can mean that some 

variables lose detail. Here that is particularly relevant for the exposure and confounding variables. For 

example, I was not able to explore pack weeks of smoking across the entire pregnancy. Simplified 

confounder measurements, such as Western versus non-Western for ethnicity could result in residual 

confounding if more specific ethnic groups have strong influences on exposure and outcome. 

Furthermore, there were other confounders that I considered, including type-1 / pre-existing diabetes 

and physical activity, but had too few numbers (diabetes) across all cohorts or too few studies with data 

(physical activity) to include. However, I aimed to address any form of residual confounding in the paternal 

negative control analyses. Under the assumption that adjusted for but poorly measured (e.g. ethnicity) or 

unadjusted for (e.g. physical activity) confounders influence paternal exposures in the same direction and 

to the same extent as in mothers, observing parental consistency of association implies that the maternal 

association is influenced by residual confounding.  

I was not able to fully harmonize outcome data with the key differences between studies being 

the extent to which they only included cases that were diagnosed antenatally or at birth or whether they 

included cases later in life. MoBa (N = 101,975 participants and N = 879 cases) only had cases diagnosed 

antenatally or around the time of birth, with the remaining cohorts having diagnoses beyond antenatal 

care, ranging from 6 months to 25 years. Many previous studies have only included cases diagnosed at 
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birth or early infancy. They, and the cohorts included here that only have these early life cases, may be 

biased by outcome misclassification (i.e., the offspring who would have been diagnosed later in life are 

treated as not having CHD). This is an important point for consideration because although most CHDs are 

identified in utero or at birth, many are diagnosed after discharge from hospital during childhood or even 

adulthood 69. Therefore, it is reassuring that the main results are largely consistent across studies. In 

confounder and other parent adjusted smoking analyses, the weakest association was found in the MoBa 

cohort. It is likely that I missed some non-severe cases in MoBa which were diagnosed later in life. Given 

that I demonstrate the smoking results were largely driven by non-severe CHDs, this could have biased 

MoBa (and therefore meta-analysis) results towards the null.  

The negative control analyses assume that factors that would confound the maternal exposure-

offspring CHD associations would have a similar magnitude and direction of confounding for the 

equivalent paternal associations, irrespective of whether the confounders are measured or if measured 

how accurately and precisely they are measured. This is likely to be true for paternal negative control 

exposure studies, as used here 99,131. Both maternal and paternal BMI, smoking and alcohol consumption 

could have pre-conceptual effects via influences on gametes, including epigenetic changes. Any such 

effects would plausibly differ between mothers and fathers, and for the mother would be in addition to 

potential intrauterine effects, such that I may still expect stronger maternal associations. Furthermore, 

there is little conclusive evidence of effects of factors, such as smoking, on gametes that do not render 

them infertile but are sufficient to influence embryo development and hence CHDs, as such studies are 

difficult in humans. Heart development occurs in utero (specifically in early pregnancy), and I would expect 

passive paternal smoke inhalation to expose the fetus to a lower level of exposure, than active maternal 

smoking. As proof-of-concept paternal smoking does not associate with offspring birth weight or fetal 

growth parameters (assessed by repeat ultrasound), in contrast to maternal smoking, which has marked 

effects 90. It is possible that potential differences in misreporting smoking and alcohol consumption 

between mothers and fathers could produce spurious parental differences. Pregnant women are likely to 

underreport whether they smoke or drink alcohol and the amount they smoke or drink, because of the 

social stigma of these, particularly in recent decades. As the report of alcohol and smoking in the LifeCycle 

cohorts was collected early in pregnancy it is likely to be random in relation to an offspring CHD as the 

vast majority would not have been diagnosed. Hence, this underreporting would be expected to attenuate 

any true effect of smoking/alcohol on CHD towards the null. This misclassification is less likely in fathers. 

Thus, the specific positive association of maternal smoking on CHDs and its difference to the paternal 

association may be underestimated.  
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Finally, only 47% of mothers with smoking data in the present study had this specifically during 

the first trimester. Paternal smoking was defined as smoking around the time of pregnancy with no 

specific trimester measurements. However, whilst amount smoked may change across pregnancy, it is 

highly likely that any smoking in later trimesters is a strong proxy for smoking in the first trimester. 

Importantly, I have shown that my results using only maternal first trimester smoking are consistent with 

the main results. Similarly, paternal smoking at any time during pregnancy is likely to be a good proxy for 

smoking in early pregnancy. Though I acknowledge it would be useful to have more detailed data on both 

parents across all trimesters to explore whether association magnitudes vary by trimester. 

In summary, I found evidence to support a causal intrauterine effect of maternal smoking on any 

CHD, particularly with non-severe CHDs, but did not find robust evidence for a causal effect of maternal 

BMI or alcohol on offspring CHD risk. Whilst everyone should be encouraged not to smoke, and all clinical 

guidelines advocate not starting smoking, and if women do smoke, to quit before becoming pregnant, 

there are still high rates of smoking in some groups, particularly those from deprived backgrounds. In the 

studies included in this paper, two contemporary cohorts, BASELINE (Ireland), with births occurring 

between 2008 and 2011 and BiB (UK), with births occurring between 2007 and 2011, smoking prevalence 

rates were 25% and 16% respectively. The prevalence in BiB masks the high rate in white British women 

(33%) who are from socioeconomically deprived backgrounds, as over 50% of births in that cohort are to 

Pakistani women who have low rates of smoking (3%) 134. It is possible that emphasizing the potential 

adverse effect on CHDs in specific groups might help in supporting women of reproductive age not to start 

smoking and women who are smoking at the start of pregnancy to be encouraged to quit. Furthermore, 

understanding the specific mechanisms that link maternal smoking to increased offspring CHD risk could 

identify targets for interventions for its prevention.  
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Chapter 4. The effect of maternal BMI, smoking and alcohol on 

congenital heart diseases: a Mendelian randomisation study  
 

4.1. Chapter summary 

 

This Chapter has been published as a pre-print and submitted to a peer-reviewed journal: 

Taylor K, Wootton R, Yang Q, Oddie S, Wright J, Yang TC, Magnus M, Andreassen OA, Borges MC, Caputo 

M & Lawlor DA. The effect of maternal BMI, smoking and alcohol on congenital heart diseases: a 

Mendelian randomization study. medRxiv (2022). https://doi.org/10.1101/2022.01.27.22269962.    

 

In Chapter 3, I used parental negative exposure control analyses to explore the effects of maternal 

pre-pregnancy BMI, and pregnancy smoking and alcohol on offspring congenital heart disease (CHD). 

Negative control analyses attempt to address the issue of residual confounding in observational studies 

but have strong assumptions that are difficult to prove. In this Chapter (Chapter 4), I used Mendelian 

randomisation (MR) to examine the same exposures as in Chapter 3. Exploring the same causal question 

using complimentary study designs that have differing sources of bias can improve causal inference. Three 

birth cohorts, including 38,662 mother/offspring pairs (N = 319 CHD cases) were included. I found no 

robust evidence of a causal effect of higher maternal BMI on offspring CHD which corroborated findings 

from negative control analyses. Using MR, I did not replicate the positive association for smoking seen in 

Chapter 3. However, I did find some evidence of a potential causal effect of maternal alcohol on offspring 

CHD. The effect of maternal alcohol intake on offspring CHDs using MR needs to be replicated in larger 

study populations.  
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4.2. Introduction 

 

Congenital heart diseases (CHDs) are the most common congenital anomaly, affecting 6-8 per 

1000 live births and 10% of stillbirths 127. CHDs are a leading cause of childhood mortality and many CHD 

patients experience health problems that persist into adulthood 128,129. The causes of CHDs are largely 

unknown, but the pregnancy environment (intrauterine factors) may play a role in the underlying 

pathophysiology 130. Identifying modifiable risk factors for CHDs is important for improving aetiological 

understanding and developing preventive interventions to reduce disease burden. 

Several modifiable maternal characteristics have been found to be associated with increased risk 

of CHDs, including maternal pre/early pregnancy body mass index (BMI) 43,65,66, smoking 55 and alcohol 41 

consumption in pregnancy. The causal relevance of the results from meta-analyses is unclear, due to many 

studies not controlling for key confounders and for the risk of residual confounding. Previously, using 

parental negative exposure control analyses, I found that positive associations between maternal 

overweight and obesity with offspring CHDs may be being driven by confounding factors 122. This work 

found some evidence of an intrauterine effect of maternal smoking on offspring CHDs. For alcohol 

consumption, results were inconclusive due to limited data 122. Negative control analyses attempt to 

address the issue of residual confounding in observational studies 122,131, but have strong assumptions that 

are difficult to prove.  

Mendelian randomization (MR) uses genetic variants as instrumental variables (Ivs) to test causal 

effects in observational data 100. The key assumptions for MR are: (i) relevance assumption – the genetic 

instruments are robustly associated with the exposure, (ii) independence assumption – there is no 

confounding of the genetic instrument-outcome association, (iii) exclusion restriction criteria – the genetic 

variant is not related to the outcome other than via its association with the exposure 161. Genetic variants 

are less likely to be confounded by the socioeconomic and environmental factors that might bias causal 

estimates in conventional multivariable regression 162, but may be biased by violation of their assumptions 

due to weak or irrelevant instruments, population stratification (causing confounding of the genetic 

instrument-outcome association) and a path from the genetic instrument to CHD not mediated by the 

exposure, for example via horizontal pleiotropy or fetal genotype 89. Triangulating results from negative 

control and MR analyses, whereby the key sources of bias differ can help improve the causal 

understanding of maternal risk factors on CHDs 96. Consistent results from both would increase confidence 

that the relationship is causal. The recent acquisition of genotype information on a large number of 

maternal-offspring dyads means that I now have relevant data to further test the potential effects of BMI, 
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smoking and alcohol with a complementary method to those used previous. The objective of this study 

was therefore to explore associations between genetically predicted maternal BMI, smoking and alcohol 

on offspring CHD.  

 

4.3. Methods 

 

4.3.1. Inclusion criteria and participating cohorts 

 

To be eligible for inclusion in this study, cohorts and participants were required to have genome-

wide data in mothers and CHD data in the offspring. From previous work with large consortia, including 

MR-PREG 163 and LifeCycle 126, I identified three cohorts meeting these criteria: The Avon Longitudinal 

Study of Parents and Children (ALSPAC), Born in Bradford cohort (BiB), and the Norwegian Mother, Father 

and Child Cohort Study (MoBa). ALSPAC is a UK prospective birth cohort study which was devised to 

investigate the environmental and genetic factors of health and development 111–113. Pregnant women 

resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992 were invited to 

take part in the study. The initial number of pregnancies enrolled is 14,541 (for these at least one 

questionnaire has been returned or a “Children in Focus” clinic had been attended by 19/07/99). Of these 

initial pregnancies, there was a total of 14,676 fetuses, resulting in 14,062 live births and 13,988 children 

who were alive at 1 year of age. BiB is a population-based prospective birth cohort including 12,453 

women across 13,776 pregnancies who were recruited at their oral glucose tolerance test at 

approximately 26–28 weeks’ gestation 134. Eligible women had an expected delivery between March 2007 

and December 2010. MoBa is a nationwide, pregnancy cohort comprising family triads (mother-father-

offspring) who are followed longitudinally. All pregnant women in Norway who were able to read 

Norwegian were eligible for participation. The first child was born in October 1999 and the last in July 

2009 136,137. One singleton pregnancy per mother in each cohort were included in analyses. Figure 4.1 

shows the inclusion of participants, after excluding those with missing maternal genotype data and those 

that did not pass genetic quality control (QC). A total of 38,662 mother-offspring pairs contributed to the 

main analyses and 28,485 to the adjusted (for fetal genotype) analyses. 
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Figure 4.1. An overview of included cohorts and selection of study participants. 
Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa, Norwegian Mother, Father and Child Cohort; QC, quality 

control; UKSeRP, the secure research platform containing CHD data for ALSPAC; CHD, congenital heart disease; GWAS, genome-wise association study
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4.3.2. Genetic data 

 

4.3.2.1. Genotyping in each cohort 
 

ALSPAC mothers were genotyped using Illumina human660K quad single nucleotide 

polymorphism (SNP) chip, and ALSPAC children were genotyped using Illumina HumanHap550 quad 

genome-wide SNP genotyping platform. Genotype data for both ALSPAC mothers and children were 

imputed against the Haplotype Reference Consortium v1.1 reference panel, after performing the QC 

procedure (minor allele frequency (MAF) ≥1%, a call rate ≥95%, in Hardy-Weinberg equilibrium (HWE), 

correct sex assignment, no evidence of cryptic relatedness, and of European descent). The samples of the 

BiB cohort (mothers and offspring) were processed on three different type of Illumina chips: 

HumanCoreExome12v1.0, HumanCoreExome12v1.1 and HumanCoreExome24v1.0. Genotype data were 

imputed against UK10K + 1000 Genomes reference panel, after a similar QC procedure (a call rate ≥99.5%, 

correct sex assignment, no evidence of cryptic relatedness, correct ethnicity assignment). In MoBa, blood 

samples were obtained from both parents during pregnancy and from mothers and children (umbilical 

cord) at birth 164. Genotyping has had to rely on several projects – each contributing with resources to 

genotype subsets of MoBa over the last decade. The data used in the present study was derived from a 

cohort of genotypes samples from four MoBa batches. The MoBa genetics QC procedure involved MAF 

≥1%, a call rate ≥95%, in HWE, correct sex assignment, and no evidence of cryptic relatedness. Further 

details of the genotyping methods for each cohort are provided in Appendices (Text S4.1). 

 

4.3.2.2. GWAS data and SNP selection 

 

I selected SNPs from the largest and most relevant GWAS of European ancestry participants for each 

exposure (further information for each GWAS shown in Table S4.1 in Appendices). Selected SNPs were 

those with a p-value below a p-value threshold used to indicate genome-wide significance after 

accounting for multiple testing. Of those reaching this threshold I ensured that I only took forward 

independent SNPs to create the genetic risk scores (GRSs). This was done either by methods used in the 

GWAS or by applying my own criteria if the GWAS did not report independent SNP associations. For BMI, 

there were 941 near-independent SNPs in a combined GWAS of ~700,000 individuals as reported in Yengo 

et al 165 (near-independent SNPs defined as SNPs with a P < 1x10-8 after a conditional and joint multiple 

SNP analysis to take into account linkage disequilibrium (LD) between SNPs at a given locus). For smoking 
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analyses, there were 126 independent SNPs (genome-wide significant (p<5x10-8) SNPs that achieved 

independence at LD r2 = 0.001 and a distance of 10,000 kb). The study was a GWAS of a lifetime smoking 

index (which combined smoking initiation, duration, heaviness and cessation), conducted in a sample of 

462,690 current, former and never smokers in UK Biobank 166. For the alcohol weighted GRS, there were 

99 conditionally independent SNPs (MAF ≥1% and P<5x10-8),  measured as number of alcoholic drinks per 

week 167. This GRS has also previously been shown to be associated with alcohol consumption during 

pregnancy as well as the general population 168. The ALSPAC cohort was included within the original GWAS 

for alcohol by Liu et al, accounting for 8,913 participants out of a total sample size of 941,280 (0.9%). 

Previous work has suggested any bias introduced by this level of overlap would be minimal 169. 

Furthermore, a recent study explored this by excluding ALSPAC from the summary statistics and results 

were unbiased and largely unchanged 168. Therefore, I proceeded using the full summary data for 

generating the alcohol GRS. All GRSs were generated using summary GWAS data that was derived in both 

men and women. I was unable to obtain female-specific summary data for these GWAS data. However, I 

perform checks to ensure the GRSs are robustly associated with the maternal exposure during pregnancy. 

 

4.3.2.3. Genetic risk score generation 

 

Weighted GRSs were calculated for BMI, smoking and alcohol consumption by adding up the 

number of risk factor increasing alleles among the selected SNPs after weighting each SNP by its effect on 

the corresponding risk factor: 

𝐺𝑅𝑆 = 𝑤1 ×  𝑆𝑁𝑃1 + 𝑤2 ×  𝑆𝑁𝑃2 + ⋯ 𝑤𝑛 ×  𝑆𝑁𝑃𝑛 

where w is the weight (i.e., the beta-coefficient for the SNP-exposure association reported from the 

published GWAS) and SNP is the genotype dosage of exposure-increasing alleles at that locus (i.e., 0, 1, or 

2 exposure-increasing alleles). Selected SNPs were extracted from the imputed genotype data in dosage 

format using QCTOOL (v2.0) and VCF tools (v 0.1.12b) in ALSPAC and BiB, respectively. PLINK (v1.9) was 

then used to construct the GRS for each exposure coded so that an increased score associated with 

increased exposure. In MoBa, I constructed the GRSs from the QC’d data in PLINK format. Further 

information on GRS construction for each cohort is shown in Text S4.2 (Appendices). 

 

4.3.3. Phenotype data 
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4.3.3.1. CHD data 

 

In the ALSPAC cohort, cases were obtained from a range of data sources, including health record 

linkage and questionnaire data up until age 25 following European surveillance of congenital anomalies 

(EUROCAT) guidelines 35. In BiB, cases were identified from either the Yorkshire and Humber congenital 

anomaly register database, which will tend to pick up most cases that diagnosed antenatally and in the 

early postnatal period of life, and through linkage to primary care (up until aged 5), which will have picked 

up any additional cases, in particular those that might have been less severe and not identified 

antenatally/in early life 70. All these cases were confirmed postnatally and were assigned international 

classification of disease Version 10 (ICD-10) codes. ICD-10 codes were used to assign CHD cases according 

to EUROCAT guidelines. In MoBa, information on whether a child had a CHD or not (yes/no) was obtained 

through linkage to the Medical Birth Registry of Norway (MBRN). All maternity units in Norway must notify 

births to the MBRN, and information on malformations are reported to the registry up to 12 months 

postpartum 170. Further details on defining CHDs including ICD codes used (in ALSPAC and BiB) are shown 

in Text S4.3 and Table S4.2 (Appendices).  

 

4.3.3.2. Pregnancy phenotype data 
 

As noted above, the SNP selection and weights for the GRS were taken from GWAS in women and 

men 165–167. To determine their relevance in women during pregnancy I examined the associations of the 

GRS with pre/early pregnancy BMI, and pregnancy smoking and alcohol consumption in each cohort. In 

ALSPAC and MoBa, pre-pregnancy weight and height were self-reported during the first pregnancy 

questionnaires. In BiB, weight and height were measured at the recruitment assessment as this was at the 

time of the oral glucose tolerance test (~24-28 weeks). Because of this, maternal weight would be 

influenced by pregnancy fat deposition, amniotic fluid and fetus. Therefore, I used weight extracted from 

the first antenatal clinic (median 12 weeks) in calculating BMI. As the timing of questions and the details 

requested for smoking during pregnancy differed across the three cohorts 90,171,172 I was only able to 

generate a simple binary variable of any smoking in pregnancy versus none. There was insufficient data 

and/or power across the cohorts to be able to generate a measure of smoking heaviness in pregnancy. As 

with smoking, the aim for alcohol was to determine whether the GRS was robustly associated with 

drinking status during pregnancy. I used questionnaire data in each cohort and used binary variables 
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(yes/no) for whether women consumed any alcohol during pregnancy or not. Further details regarding 

these phenotype data, including questionnaire information are described in Text S4.4 (Appendices).  

 

4.3.4. Statistical analysis 
 

This study is reported using the Strengthening the Reporting of Observational studies in 

Epidemiology using Mendelian randomisation (STROBE-MR) guidelines (see Appendices: STROBE-MR 

Checklist) 173,174. Analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, 

Vienna, Austria). I undertook MR in each of the 3 cohorts, including all ALSPAC, BiB and MoBa participants, 

with maternal genetic data and offspring CHD data. Logistic regression was used to estimate the odds 

ratio (OR) of CHD per 1 standard deviation (SD) change in GRS, with adjustment for the first 10 genetic 

principal components (PCs) with additional adjustment for genetic chip, genetic batch, and imputation 

batch in MoBa. Statistical analyses in relation to the verification of MR assumptions are described below. 

The key assumptions of MR are: (i) relevance assumption, (ii) independence assumption and (iii) 

exclusion restriction criteria and are described above in the introduction. Regarding the first assumption, 

to explore the relevance of the GRS to each exposure in pregnancy, I undertook linear (BMI) and logistic 

(smoking and alcohol) regression to derive the difference in mean BMI and OR of pregnancy smoking and 

pregnancy alcohol consumption per 1SD higher GRS in each cohort. Results are presented with 95% 

confidence intervals (CI) in each cohort. For BMI, instrument strength was assessed with F-statistics and 

R2. For smoking and alcohol, instrument strength was assessed using the area under the ROC curve and 

pseudo-R2 by the Nagelkerke method 175. 

To minimise the potential for confounding of the GRS-CHD association due to population 

stratification (second assumption), I adjusted for the first 10 ancestry-informative principal components 

176. I also repeated the MR analyses without the inclusion of BiB, given that BiB has a unique ethnic 

structure of South Asians and White Europeans. GRS-CHD association results were pooled using a random 

effects meta-analysis for all three cohorts and fixed-effect meta-analyses when excluding BiB in sensitivity 

analyses (i.e., ALSPAC and MoBa). Between study heterogeneity was assessed using the Cochrane Q-

statistic and I2 152. 

The third assumption may be violated when the genetic instruments influence other risk factors 

for the outcome independently of the exposure of interest (horizontal pleiotropy) 103. To explore 

horizontal pleiotropy, I checked the association of GRSs with known risk factors for CHD that I had data 

on. I explored the relationship between 1 SD increase in the GRS with risk factors for CHD (education, 
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parity and diabetes) using linear or logistic regression. I describe methods for these variables in each 

cohort in Appendices (Text S4.4). If any of the GRSs were associated with a risk factor, I considered that a 

potential pleiotropic effect. I then performed multivariable MR (MVMR) analyses if GWAS data for the 

potential pleiotropic variable was available 177. Methods for these GRSs and the rationale for selecting 

these risk factors are described in Text S4.5 (Appendices). In this work, I am asking whether BMI, smoking 

and alcohol are risk factors for CHDs. Therefore, I also explored the relationship between the GRS’s for 

the different exposures of interest. I acknowledge that I am unable to tease apart horizontal from vertical 

pleiotropy from these analyses. In sensitivity analyses to explore potential bias via fetal genotype I 

repeated the PC (and batch) adjusted GRS-CHD association in the subsample of participants with fetal 

genome wide data (Figure 4.1) and then compared those results with the same associations additionally 

adjusted for the fetal GRS.  
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4.4. Results 

 

4.4.1. Participant characteristics  

 

MR analyses included 38,662 mother-offspring pairs, of which 319 offspring had CHD (Figure 4.1). 

The distributions of offspring and maternal characteristics for these analyses in ALSPAC, BiB and MoBa 

are displayed in Table 4.1. The prevalence of any CHD, mean maternal age and pre-/early-pregnancy BMI 

were similar in the three cohorts. Women in ALSPAC were more likely to smoke during pregnancy in 

comparison to those in BiB and MoBa although, the overall prevalence in BiB masks marked differences 

between the two largest ancestral groups, with 3.4% of South Asian women reporting smoking during 

pregnancy compared to 34% of White European women. Women in ALSPAC and BiB were more likely to 

consume alcohol to those in MoBa, although, in BiB, there are limited data available on alcohol 

consumption with very few South Asians responding to questions relating to alcohol in questionnaires. 
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Table 4.1. Participant characteristics for the 3 studies included in Mendelian randomisation analyses. 

Characteristic Category ALSPAC (N = 7,360)  BiB (N = 7,433) MoBa (N = 23,869) 

Offspring     

CHD Yes 61 (0.8) 81 (1.1) 177 (0.7) 

 CHD sex stratify 35 Male (57%) / 26 
Female (43%) 

35 Male (43%) / 46 (57%) Female 84 Male (47%) / 93 Female 
(53%) 

Sex Male 3,703 (50.3) 3,818 (51.4) 12,139 (50.9) 

 Female 3,657 (49.7) 3,615 (48.6) 11,704 (49.0) 

Maternal     

Age, years  29.2 (4.6) 27.4 (5.6) 30.1 (4.5) 

Parity Primiparous 3,257 (46.6) 2,963 (40.1) 11,288 (47.3) 

BMI, kg/m2  22.5 (4.2) 26.2 (5.7) 24.1 (4.3) 

Ethnicity White European 7,360 (100.0) a 3,084 (42.6) NA b 

 South Asian - 3,503 (48.4) - 

 Other - 656 (9.1) - 

Any smoking during pregnancy Yes 1,679 (26.1) 1,175 (18.1) 1,814 (8.6) 

Any alcohol during pregnancy Yes 4,866 (79.9) 1,040 (49.3) 6,209 (31.5) 
Data are means ± SD or n (%) unless stated. % are based on data available (data were not complete).  
a All non-white European women with ethnicity data were not included in the analysis.  
b MoBa participants believed to be of primarily European origin. 
Abbreviations: BiB, Born in Bradford; ALSPAC, Avon Longitudinal Study of Parents and Children; MoBa, Norwegian Mother, Father and Child Cohort Study; CHD, congenital 
heart disease; BMI, body mass index; kg, kilograms; m, meters. 
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4.4.2. MR results 

 

There were similar statistically strong positive associations of the BMI GRS with pre-pregnancy 

BMI and the smoking GRS with pregnancy smoking in all three cohorts (Table 4.2). The alcohol GRS also 

associated positively with alcohol consumption during pregnancy in all three cohorts with a somewhat 

weaker association in BiB and MoBa in comparison to ALSPAC. 
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Table 4.2. Relevance and strength of the genetic risk scores with exposures in pregnancy. 

Study N 
participants 

N SNPs in GRS Coefficient (95% CI)a P-Value R2/ pseudo R2 b  F statistic c AUC 

Association of GRS for BMI with pre-/early-pregnancy BMI 

ALSPAC 6,253 941 0.24 (0.21, 0.26) 1 x10-80  5.6% 372 - 

BiB 6,196 939 0.20 (0.18, 0.23) 5 x 10-59 4.1% 268 - 

MoBa 22,533 868 0.25 (0.24, 0.27) < 1 x 10-100 6.5% 1,555 - 

Association of GRS for a lifetime smoking index with any smoking during pregnancy 

ALSPAC 6,428 126 1.27 (1.20, 1.35) 1 x 10-16 1.6% - 0.56 

BiB 6,482 126 1.36 (1.27, 1.45) 2 x 10-20 2.2% - 0.59 

MoBa 20,981 119 1.23 (1.17, 1.29) 7 x 10-17 0.8% - 0.56 

Association of GRS for drinks per week with any alcohol consumption in pregnancy 

ALSPAC 6,087 98 1.14 (1.07, 1.21) 3 x 10-5 0.4% - 0.53 

BiB 2,110 99 1.08 (0.99, 1.18) 0.09 0.2% - 0.52 

MoBa 19,737 73 1.02 (0.99, 1.05) 0.13 0.02% - 0.51 

MoBa sensitivity d 19,737 73 1.06 (1.01, 1.10) 0.01 0.07% - 0.52 
a Effect estimates (coefficient) are difference in mean (BMI) or odds ratio (smoking or drinking yes/no during pregnancy) per SD increase in genetic risk score. 
b for the binary outcomes (smoking and alcohol) pseudo-R2 are presented 
c for BMI F-statistic is presented; for binary outcomes (smoking and alcohol) AUC is presented. 
d in MoBa 7,356/23,784 consumed any alcohol during pregnancy. However, 4,754 of the 7,356 consumed alcohol “less than once per month” based on the questionnaire data. In the sensitivity 
analysis shown above, I re-coded the variable so that those that consumed alcohol less than once per month were classed as non-drinkers (N.B. due to the small numbers in each individual 
category, I were not able to analyse these separately). This was performed as an additional check to ensure the GRS was associated with pregnancy alcohol consumption in MoBa.  
Abbreviations: SNP, single nucleotide polymorphism; GRS, genetic risk score; CI, confidence interval; AUC, area under the curve; ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, 
Born in Bradford; MoBa, Norwegian Mother, Father and Child Cohort.  

 

 

 

 

 



 

 110 

The MR effects in each study and pooled across studies of each exposure and offspring CHDs are 

shown in Figure 4.2. There was no strong evidence that the maternal GRS for BMI influenced offspring 

CHD (OR (95%CI) per 1SD higher GRS: 1.01 (0.90, 1.13), with no statistical evidence of between study 

heterogeneity (Figure 4.2A). When excluding BiB from these analyses, the pooled point estimate showed 

a weak positive effect, although confidence intervals spanned the null (OR: 1.06 (0.93, 1.20); Figure S4.1B 

Appendices). The BMI GRS associated with smoking, education, and diabetes across all three cohorts 

(Table S4.3). Results were unchanged in MVMR models including GRSs for education and smoking (Figures 

S4.1C & S4.1D). When further adjusting for offspring genotype, the pooled result attenuated to below the 

null, although this may be explained by the low number of CHD cases in BiB and should therefore be 

treated with caution. In offspring genotype adjusted analyses excluding BiB, the pooled result was null 

(OR: 0.97 (0.83, 1.14)) (Figures S4.1E-S4.1H). 

The maternal GRS for maternal lifetime smoking index was also not associated with offspring CHD 

(OR (95%CI) per 1SD higher GRS: 0.97 (0.87, 1.08), with no statistical evidence of between study 

heterogeneity (Figure 4.2B). The smoking GRS associated with BMI and education across the cohorts 

(Table S4.4). Results were consistent and unchanged in additional analyses excluding BiB (Figure S4.2B), 

MVMR analyses adjusting for education or BMI (Figures S4.2C & S4.2D) and in offspring genotype adjusted 

analyses (Figures S4.2E-S4.2H).  

There was weak evidence of a positive association between maternal GRS for alcoholic drinks per 

week and offspring CHDs, with the strongest associations seen in MoBa (pooled OR: 1.09 (0.98, 1.22)) 

(Figure 4.2C). In analyses excluding BiB, the pooled estimated was consistent with main analyses (OR: 1.10 

(0.97, 1.25)). Although there was no statistical evidence of heterogeneity between ALSPAC and MoBa, 

results suggest this estimate is largely being driven by MoBa (Figure S4.3B). The alcohol GRS showed 

consistent association with smoking across the cohorts (Table S4.5). The positive association remained in 

MVMR analyses adjusting for a GRS of smoking (Figure S4.3C) and in analyses adjusting for offspring 

genotype (Figures S4.3D-S4.3G). 
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Figure 4.2. Forest plots showing the mendelian randomisation results for genetically predicted maternal body mass 
index (Panel A), smoking (GRS of a lifetime smoking index: Panel B), and alcohol consumption (GRS of drinks per 
week: Panel C) with offspring congenital heart disease. 
Odds ratios (ORs) of CHD for a 1SD difference in maternal GRS in each study and pooled across studies using random 

effects meta-analysis. Adjusted for top 10 genetic principal components in all cohorts with additional adjustment for 

genetic chip, genetic batch, and imputation batch in MoBa. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents 

and Children; BiB, Born in Bradford; MoBa, Norwegian Mother, Father and Child Cohort Study; BMI, body mass index; CI, 

confidence interval; CHD, congenital heart disease; SD, standard deviation; GRS, genetic risk score. 
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4.5. Discussion 
 

In the current study, using MR across three birth cohorts, I found no strong evidence for an effect 

of genetically predicted maternal BMI or smoking on risk of offspring CHD, but did find evidence of a 

potential causal effect of genetically predicted greater alcohol consumption on odds of offspring CHD. 

However, for alcohol there may have been weak instrument bias given that the GRS had somewhat 

weaker associations for pregnancy alcohol consumption, in comparison to GRSs of BMI and smoking. In 

one sample MR, a weak instrument would be expected to bias results toward the confounded 

observational result. To the best of my knowledge this is the first MR of these maternal exposures with 

offspring CHD, and it complements my previous negative paternal control study 122. The findings from MR 

analyses of BMI are consistent to what I saw in the negative control study, with both suggesting that 

higher maternal BMI may not causally influence offspring CHD. I have not replicated my previous result 

for smoking, which suggested an increased risk of offspring CHD in women who smoked in pregnancy, 

whereas here there was no strong evidence for this. Conversely the possible effect of alcohol consumption 

on CHD seen here was not conducted in my previous multivariable adjusted observational analyses as lack 

of paternal data on alcohol consumption meant I was unable to explore paternal negative control analyses 

122. 

Results from this study using a GRS from GWAS of BMI produced comparable null results from 

linear BMI analyses presented in previous work 122. Other work including large record linkage studies and 

pooled results from meta-analyses suggest that increasing maternal obesity severity increases offspring 

CHD risk 43,65. However, parental negative control analyses suggested that these increased risks could be 

a result of confounding 122. Exploring non-linear effects using MR with the data that were available was 

beyond the scope of this paper due to data availability. Nevertheless, recent work has used MR to explore 

non-linear effects 178 and future work of this nature could help further disentangle the causal relationship 

between maternal exposures on offspring CHDs. Overall, with the negative control analyses providing 

evidence that associations of higher maternal BMI are due to confounding, and the lack of an effect in the 

MR analyses presented here, the evidence suggests that previous associations between maternal BMI and 

any offspring CHD are unlikely to be causal.  

The present results from a GRS derived from a lifetime smoking GWAS found no strong evidence 

of an association for genetically predicted maternal smoking and any offspring CHD. Despite this, there is 

still a considerable body of evidence (e.g., a meta‐analysis of >8 million participants (137,575 CHD cases) 

that found maternal smoking increase offspring CHD risk. This, coupled with the evidence from parental 
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negative control analyses provides good evidence that these results may be causal. The MR results from 

this study do not definitively rule out an effect. Larger datasets are needed to increase the precision of 

these findings. One possible reason that could have biased the MR results to the null is using “any CHD” 

grouped as one outcome. In previous work, I showed that effects of maternal smoking on offspring CHD 

could mainly be being driven by non-severe CHDs 122. Sub-categorising CHDs was not possible in the 

present study due to data availability and the numbers required for meaningful analyses. Another reason 

that may explain the null finding could be the use of a lifetime smoking index to instrument smoking. I 

believe that this was the best option for the MR analyses presented here as CHDs are rare meaning I was 

unable to stratify into current smokers or smoking heaviness. However, a GRS of lifetime smoking is 

different to e.g., a GRS of smoking heaviness because it also includes smoking initiation SNPs, which tend 

to capture personality traits related to initiating smoking such as impulsivity 166 and these are unlikely to 

be causal for CHD. Future work exploring the effects of maternal smoking on offspring CHDs should 

include MR analyses in larger datasets to increase the precision of the findings I present here as well as 

exploring the possibility of including two-sample MR analyses which would require publicly available 

GWAS datasets for CHD 179.   

The current results, based on GRS derived from an alcohol GWAS, suggest a possible causal 

relationship between maternal alcohol consumption and offspring CHDs. Recent meta‐analyses found 

consistent modest increases in risk of offspring CHD in mothers reporting alcohol consumption in 

pregnancy, however, many of the included studies did not adjust for confounders 41,160, meaning that it is 

difficult to determine whether the association is as of a result of alcohol or other characteristics that are 

related to alcohol and offspring CHDs. Results from parental negative control analyses had limited data 

and were thus inconclusive 122. Results from this present study found a positive association between a 

maternal GRS derived from a GWAS of drinks per week (which is different from any alcohol consumption) 

and offspring CHDs. Although this is not definitive evidence for a causal relationship between maternal 

alcohol consumption and offspring CHDs, these results contribute to the overall body of evidence. The 

possibility remains that previous observational studies finding an effect of maternal alcohol consumption 

could be due to confounding, given that parental negative control analyses were inconclusive. In the 

present MR study, it is possible that the MR effects for alcohol could have been biased by weak instrument 

which would bias results towards the confounded observational estimate. Genetic instruments explain a 

small proportion of the exposure, despite using GRSs (as opposed to single SNPs) to improve statistical 

power 180.  Therefore, going forward, research should incorporate alcohol data in large numbers in mums 

and fathers (for negative control analyses to robustly explore residual confounding) and include larger MR 
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studies, in particular two-sample MR for which weak instrument bias would bias estimates in the opposite 

direction towards the null.  

 There are several strengths of the results presented in the current study. To date, few studies 

have used an MR approach to investigate the role of the pregnancy environment in the aetiology of 

offspring CHDs. The inclusion of 3 cohorts to maximise numbers and explore heterogeneity improves the 

robustness of the findings. I was able to adjust for offspring genotype in a large subsample of each cohort, 

which is important in attempting to separate the influence of genetic inheritance from a possible 

intrauterine effect 89. A limitation of this study is that despite a relatively large sample size (N = 38,662) 

the effect estimates were often imprecise due to CHD being a rare condition and for alcohol may have 

been biased by the weak instrument. The inclusion of BiB increases the risk of confounding due to 

population stratification in MR. However, I tried to address this by adjusting for ancestry principal 

components and exploring consistency of results without BiB. In relation to this, the cohorts and the 

GWAS data used to construct the GRSs both aimed to test potential causal effects in a largely European 

population. Therefore, the results may not be generalisable to other populations. Next, I have only 

explored the effects of any CHD and therefore could have missed potential effects of these exposures on 

specific CHD subtypes. Related to this, the MoBa cohort only had cases diagnosed antenatally or around 

the time of birth (first year of life) which would increase the chances of outcome misclassification by 

assigning CHD cases which were diagnosed later in life as non-CHD cases. This is particularly pertinent for 

smoking analyses, given that I previously showed stronger potential effects in non-severe cases which 

would be more likely to suffer from misclassification in the case described here.  Lastly, the results could 

have been affected by selection bias 181,182, although, I anticipate that by including multiple different birth 

cohorts and exploring consistency would help mitigate this.  

Identifying causal risk factors is important for developing public health preventive interventions 

and to understand the mechanisms that link maternal lifestyle factors to offspring CHDs. The analysis 

steps taken in this work aimed to explore the presence of a causal effect of maternal BMI, smoking and 

alcohol on offspring CHDs. In summary, I found no robust evidence of an effect for maternal genetically 

determined BMI or smoking on offspring CHD. I did observe a weak relationship between genetically 

predicted maternal alcohol intake on offspring CHDs, but this may be explained by weak instrument bias. 

Many of the results, such as those for smoking, produced imprecise estimates. Future larger studies that 

employ a range of causal methods with information on CHD subtypes are warranted to further interrogate 

maternal gestational risk factors for offspring CHDs.  
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Chapter 5. The relationship of maternal gestational mass spectrometry-

derived metabolites with offspring congenital heart disease: results 

from multivariable and Mendelian randomisation analyses 
 

5.1. Chapter summary  

 

This Chapter has been published as a pre-print and submitted to a peer-reviewed journal: 

Taylor K, McBride N, Zhao J, Oddie S, Azad R, Wright J, Andreassen OA, Stewart ID, Langenberg C, Magnus 

M, Borges MC, Caputo M & Lawlor DA. The relationship of maternal gestational mass spectrometry-

derived metabolites with offspring congenital heart disease: results from multivariable and Mendelian 

randomization analyses. medRxiv (2022). https://doi.org/10.1101/2022.02.04.22270425.  

 

It is plausible that maternal pregnancy metabolism influences risk of offspring of congenital heart 

disease. In this Chapter (Chapter 5) I use the mass spectrometry-derived pregnancy data to explore the 

relationship between maternal gestational metabolites and offspring CHD. I sought to explore this 

through a systematic approach using different methods and data. I found 44 metabolites suggestively 

associated with offspring CHD in BiB including those from the following super pathways: amino acids, 

lipids, co-factors and vitamins, xenobiotics, nucleotides, energy, and several unknown molecules. I then 

took additional steps to explore these further. Firstly, I repeated the analysis within the BiB cohort for any 

metabolite that was measured by nuclear magnetic resonance (NMR) or clinical chemistry in larger 

numbers than the initial analysis. Then, I used genetic risk scores (GRS: weighted genetic risk scores of 

single nucleotide polymorphisms that were genome-wide significantly associated with each metabolite) 

in Mendelian randomisation (MR) analyses. MR analyses were performed in BiB and two additional birth 

cohorts. Of the 44 metabolites suggestively associated with CHD, 2 were available (isoleucine and leucine) 

in larger numbers via the NMR platform, and results for these were validated showing a potential 

protective effect of higher levels of amino acids. MR analyses were possible for 27/44 metabolites and for 

11 there was consistency with multivariable regression results. In summary, I have used complimentary 

data sources and statistical techniques to construct layers of evidence. I found that amino acid metabolism 

during pregnancy, several lipids (more specifically androgenic steroids), and levels of succinylcarnitine 

could be important contributing factors for CHD. 

https://doi.org/10.1101/2022.02.04.22270425
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5.2. Introduction 

 

Congenital heart diseases (CHDs) are the most common congenital anomaly affecting 

approximately 6-8 per 1000 live births and 10% of stillbirths. They are the leading cause of death from 

congenital anomalies 127. Approximately 20% of CHD cases can be attributed to known chromosomal 

anomalies, gene disorders or teratogens 8. The causes of the remaining cases are unknown. Identifying 

causes of CHDs is important for improving aetiological understanding and developing potential targets for 

intervention. 

Metabolomics technologies have enabled the quantification of a large number of metabolites in 

a biological sample. Metabolites are small-molecule intermediates and products of metabolism. The 

metabolome, the complete set of metabolites in biological tissues/fluids, is influenced by both genotype 

and environment, and dynamically responds to environmental influences. Analyses of maternal 

metabolomic profiles could identify causal mechanisms leading to CHDs 205. Because the metabolome 

reflects interactions of genomic, environmental (e.g., air pollution), behavioural (e.g., smoking) and 

pathophysiological states (e.g., body composition), examining associations of it with CHDs could help 

elucidate modifiable upstream risk factors and/or potential molecular targets for intervention to prevent 

CHDs. 

Studies have explored maternal molecular markers and found that offspring of women with a 

compromised vitamin D status (defined as 25-hydroxyvitamin D < 50 nmol/l in comparison to adequate 

defined as > 75 nmol/l) 85 and lipid profile 86,87 have an increased risk of CHDs. Other work has shown that 

poor glucose control and diabetes during pregnancy can increase CHD risk 206–208. However, these studies 

focus on single or few biomarkers. Exploring the wider metabolome could provide opportunities to 

improve our understanding of the molecular mechanisms that underpin CHDs 205.  Previous work has 

explored metabolomics in maternal serum as a predictor of offspring CHDs and uncovered potentially 

relevant biological pathways 209. The study found more than 100 metabolites that differed between CHD 

cases and non-cases concluding that abnormal lipid metabolism was an important feature of CHD 

pregnancies. Other research has explored potential biomarkers of maternal urine metabolomics with 

offspring CHDs (N = 70 CHD cases and 70 controls) 83. Their results indicated that short chain fatty acids 

and aromatic amino acid metabolism may be relevant to CHDs. Replication of these results are warranted. 

A recent retrospective study in a Chinese population performed metabolomic analyses using maternal 

amniotic fluid and found that two metabolites (uric acid and proline) were elevated in CHD affected 

pregnancies 84. In summary, there have been studies uncovering potentially important biological pathways 
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associated with offspring CHDs. However, pregnancy metabolomic studies are still relatively novel with 

scope for future research to provide new insights and seek replication of previous findings. 

The aim of this study was to explore associations of the maternal metabolome quantified by an 

untargeted mass spectrometry (MS) platform and the odds of CHD in the offspring. To address this aim I 

searched for relevant studies within The LifeCycle Project‐EU Child Cohort Network 126 to identify any 

study with detailed untargeted maternal gestational metabolomic data and offspring CHD information. I 

identified only one cohort with relevant data in a subgroup: the Born in Bradford (BiB) cohort (N = 2,605 

participants; 46 CHD cases) 134,210. Recognising that these novel data were potentially underpowered, I 

sought internal validation of metabolites suggestively associated with CHD, by repeating the multivariable 

regression analysis within the BiB cohort for any metabolite that was measured by nuclear magnetic 

resonance (NMR) or clinical chemistry in larger numbers (N = 7,296, 87 CHD cases). I subsequently 

searched the MR-PREG consortia studies 90,163 for cohorts with maternal genome-wide data and offspring 

CHD information that could be used for Mendelian randomization (MR) analyses of associations of genetic 

instruments for maternal metabolites. I performed pooled MR analyses across three cohorts (N = 38,663, 

319 CHD cases) for any metabolites that were: (i) suggestively associated with CHD in BiB (P<0.05 in 

confounder adjusted analyses) and (ii) had summary data in the most recent metabolomic genome-wide 

association study (GWAS). 

 

5.3. Methods 

 

5.3.1. Study design and participants  

 

A schematic overview of the study design is illustrated in Figure 5.1. I excluded children of multiple 

births because they differ from single births for congenital anomaly outcomes 211,212. For multivariable 

metabolomic analyses, I used data from the BiB cohort as this was the only cohort that had measures of 

a substantial number of metabolites reflecting a wide range of metabolic paths assessed during pregnancy 

and CHD outcomes 210. I also explored internal validation of any findings with a p-value < 0.05 within the 

BiB study where equivalent (or near equivalent) measures to any on the MS platform markers are available 

from other sources. BiB is a population-based prospective birth cohort, including 12,453 women across 

13,776 pregnancies who were recruited at their oral glucose tolerance test (OGTT) at approximately 26–

28 weeks’ gestation 134. Eligible women had an expected delivery between March 2007 and December 

2010. The use of a multivariable p-value threshold of <0.05 to take associations forward into further 
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validation analyses is appropriate as an initial screen, for a relatively rare outcome, to avoid missing 

potential causal effects. 

To be included in MR analyses, studies and participants had to have genome-wide data in mothers 

and CHD data in the offspring. Three cohorts contributed to MR analyses: BiB, the Avon Longitudinal Study 

of Parents and Children (ALSPAC) and the Norwegian Mother, Father and Child Cohort Study (MoBa). 

ALSPAC is a UK prospective birth cohort study which was devised to investigate the environmental and 

genetic factors of health and development 111–113. Pregnant women resident in Avon, UK with expected 

dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the study. The initial 

number of pregnancies enrolled is 14,541 (for these at least one questionnaire has been returned or a 

“Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, there was a total 

of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. MoBa 

is a population-based pregnancy cohort study conducted by the Norwegian Institute of Public Health 

136,137. Participants were recruited from all over Norway from 1999-2008. The women consented to 

participation in 41% of the pregnancies. The cohort includes approximately 114,500 children, 95,200 

mothers and 75,200 fathers. The current study is based on 12 of the quality-assured data files released 

for research in 2019. The establishment of MoBa and initial data collection was based on a license from 

the Norwegian Data Protection Agency and approval from The Regional Committees for Medical and 

Health Research Ethics. The MoBa cohort is currently regulated by the Norwegian Health Registry Act. The 

current study was approved by The Regional Committees for Medical and Health Research Ethics 

(2018/1256). 
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Figure 5.1. An overview of the study design.  
BiB has pregnancy mass spectrometry derived metabolomics in two separate datasets. Dataset 1 was completed in December 2017 and included 1,000 maternal 
pregnancy samples. Dataset 2 was completed in December 2018 and consisted of 2,000 maternal pregnancy samples within a case cohort design. The selection 
of participants into the two MS metabolomic datasets are shown in flowcharts in Figure S5.1. Abbreviations: CHD, congenital heart disease; BiB, Born in 
Bradford; NMR, Nuclear Magnetic Resonance; MR, Mendelian Randomization; GWAS, genome-wise association study; ALSPAC, Avon Longitudinal Study of 
Parents and Children; MoBa, Norwegian Mother, Father and Child Cohort.  
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5.3.2. Sample collection and metabolomic profiling in BiB 

 

Of the 13,776 pregnancies in the BiB cohort, 11,480 had a fasting blood sample taken during the 

OGTT (n = 10,574 [92%] between 26–28 weeks’ gestation, with the remaining women being within 11–39 

weeks’ gestation). Samples were taken by trained phlebotomists working in the antenatal clinic of the 

Bradford Royal Infirmary and sent immediately to the hospital laboratory. The metabolomics data in the 

BiB cohort has previously been described in detail 210. In brief, metabolomics analysis was performed on 

ethylenediamine tetraacetic acid (EDTA) plasma samples around 26-28 weeks’ gestation. The untargeted 

MS metabolomics analysis of over 1,000 metabolites was performed at Metabolon, Inc. (Durham, North 

Carolina, USA). Quality control of the metabolite data was conducted by Metabolon. The classes of 

metabolites include amino acids, carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, 

partially characterised molecules, peptides, and xenobiotics. These super-pathways, as defined by 

Metabolon, are also further subdivided into ~80 sub-pathways. Metabolite concentrations were 

quantified using area under the curve of primary MS ions and were expressed as the multiple of the 

median (MoM) value for all batches processed on the given day. The MoM more closely reflects the 

biological variation rather than technical variation between samples or analysis platform 185. Due to the 

timing of funding acquisition, samples were sent to Metabolon in two separate batches. Dataset 1 was 

completed in December 2017 and included 1,000 maternal pregnancy samples. Dataset 2 was completed 

in December 2018 and consisted of 2,000 maternal pregnancy samples within a case cohort design. Over-

sampled cases were removed to obtain a representative sample. The selection of participants into the 

two MS metabolomic datasets are shown in flowcharts in Figure S5.1 (Appendices) and have been 

described in detail previously 210.  

 

5.3.3. Confounders  

 

In multivariable regression analyses in BiB, I adjusted for the following maternal characteristics 

based on their known or plausible influence on maternal metabolites and on CHD: age, ethnicity, parity, 

residential neighbourhood Index of Multiple Deprivation (IMD), body mass index (BMI), smoking, and 

alcohol consumption. Details of the methods for how confounders were assessed are provided in 

Appendices (Text S5.1).  
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5.3.4. Congenital heart disease outcomes  

 

In BiB, cases were identified from either the Yorkshire and Humber congenital anomaly register 

database, which will tend to pick up most cases that were diagnosed antenatally and in the early postnatal 

period of life, or through linkage to primary care (up until aged 5), which will have picked up any additional 

cases, in particular those that might have been less severe and not identified antenatally/in early life 70. 

All BiB cases were confirmed postnatally and were assigned ICD-10 codes. I used ICD-10 codes to assign 

CHD cases according to the European surveillance of congenital anomalies (EUROCAT) guidelines. In the 

ALSPAC cohort, cases were obtained from a range of data sources, including health record linkage and 

questionnaire data up until age 25 following European EUROCAT guidelines 35. In MoBa, information on 

whether a child had a CHD or not (yes/no) was obtained through linkage to the Medical Birth Registry of 

Norway (MBRN). All maternity units in Norway must notify births to the MBRN, and information on 

malformations are reported to the registry up to 12 months postpartum 170. Further details on defining 

CHDs are shown in Text S5.2 and Table S5.1 (Appendices).  

 

5.3.5. Genetic data  

 

The rationale for performing MR analyses was to explore replication using a different method 

with two additional independent studies and to explore causation. Metabolites are affected by multiple 

disease processes as well as numerous environmental exposures; therefore, understanding the metabolic 

pathways implicated in CHD is nontrivial. MR can help discriminate causal from non-causal metabolites 

because genetic variants are less likely to be confounded by the socioeconomic and environmental factors 

that might bias causal estimates in conventional multivariable regression 162, but may be biased by a path 

from the metabolomic genetic score to CHD, for example via horizontal pleiotropy or fetal genotype 89. 

Consistent results from both increase confidence that the result is causal. 

 

5.3.5.1. Genotyping in each cohort 

 

ALSPAC mothers were genotyped using Illumina human660K quad single nucleotide 

polymorphism (SNP) chip, and ALSPAC children were genotyped using Illumina HumanHap550 quad 

genome-wide SNP genotyping platform. Genotype data for both ALSPAC mothers and children were 

imputed against the Haplotype Reference Consortium v1.1 reference panel, after performing the QC 
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procedure (minor allele frequency (MAF) ≥1%, a call rate ≥95%, in Hardy-Weinberg equilibrium (HWE), 

correct sex assignment, no evidence of cryptic relatedness, and of European descent). The samples of the 

BiB cohort (mothers and offspring) were processed on three different type of Illumina chips: 

HumanCoreExome12v1.0, HumanCoreExome12v1.1 and HumanCoreExome24v1.0. Genotype data were 

imputed against UK10K + 1000 Genomes reference panel, after a similar QC procedure (a call rate ≥99.5%, 

correct sex assignment, no evidence of cryptic relatedness, correct ethnicity assignment). In MoBa, blood 

samples were obtained from both parents during pregnancy and from mothers and children (umbilical 

cord) at birth 164. Genotyping has had to rely on several projects - each contributing with resources to 

genotype subsets of MoBa over the last decade. The data used in the present study was derived from a 

cohort of genotypes samples from four MoBa batches. The MoBa genetics QC procedure involved MAF 

≥1%, a call rate ≥95%, in HWE, correct sex assignment, and no evidence of cryptic relatedness. Further 

details of the genotyping methods for each cohort are provided in Appendices (Text S5.3) including flow 

charts showing selection of participants (Figure S5.2). 

 

5.3.5.2. GWAS data and SNP selection 

 

I aimed to construct weighted GRSs for metabolites that had a p-value <0.05 (referred to 

throughout as “suggestively associated” with CHDs) in the multivariable regression analyses using BiB 

data. To do this, I cross-referenced suggestive associations with large relevant GWAS. I used summary 

data from two GWAS. In the first, the authors explored the genetic effects of 174 metabolites (compared 

with the 923 included in our study) 203. To ensure associations were independent, SNPs used from the first 

GWAS were selected at p < 5 × 10−8 and were clumped to ensure independence at linkage disequilibrium 

(LD) r2 = 0.001 and a distance of 10,000 kb using the TwoSampleMR package 213. In the second 

(unpublished), the authors performed a GWAS of metabolon metabolite levels using samples from the 

EPIC-Norfolk 214 and INTERVAL studies 215. 14,296 participants were included in a discovery set (5,841 from 

EPIC-Norfolk; 8,455 from INTERVAL) and 5,698 from EPIC-Norfolk in a validation set. The authors 

performed exact conditional analyses to identify independent associations. A total of 913 metabolites 

were taken forward for their GWAS analysis.  

 

5.3.5.3. Genetic risk score generation 
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GRSs were calculated using SNPs previously associated in largescale GWAS with metabolites 

(described above) by adding up the number of metabolite increasing alleles among the selected SNPs after 

weighting each SNP by its effect on the corresponding metabolite: 

𝐺𝑅𝑆 = 𝑤1 ×  𝑆𝑁𝑃1 + 𝑤2 ×  𝑆𝑁𝑃2 + ⋯ 𝑤𝑛 ×  𝑆𝑁𝑃𝑛 

where w is the weight (i.e., the beta-coefficient of association of the SNP with the exposure from the 

published GWAS) and SNP is the genotype dosage of exposure-increasing alleles at that locus (i.e., 0, 1, or 

2 exposure-raising alleles). After matching metabolites suggestively associated with CHDs at P<0.05 from 

multivariable regression analyses and removing indels, selected SNPs were extracted from the imputed 

genotype data in dosage format using QCTOOL (v2.0) and VCF tools (v 0.1.12b) in ALSPAC and BiB, 

respectively. PLINK (v1.9) was then used to construct the GRS for each exposure coded so that an 

increased score associated with increased levels of metabolite. In MoBa, I constructed the GRSs from the 

QC’d data in PLINK format. If a SNP was missing, a proxy SNP was used where available based on r2 > 0.8 

using the European reference panel in the LDLink R package 216. 

 

5.3.6. Statistical analysis 

 

Analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, Vienna, 

Austria). An analysis plan was written and uploaded to the Open Science Framework before analyses 

commenced, where any subsequent changes to analyses were documented along with the rationale  217. 

I used scaled imputed data (in which missing data have been imputed and the multiple of median values 

transformed to standard deviation (SD)- scores) which was log transformed. Any metabolite (in either 

dataset) where there was too little variation for meaningful analyses (defined as < 440 unique values) was 

excluded 218. Transformed metabolite values were converted to standard deviation SD units. There were 

1,100 and 1,150 quantified metabolites included in dataset 1 and 2, respectively, with 923 of these present 

in both datasets. 

 

5.3.6.1. Multivariable regression (metabolomic) analyses 

 

I used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of any 

CHD per SD higher metabolite, with and without adjustment for confounders. As I am interested in 

potential causal effects, I present confounder adjusted results throughout. Analyses were done separately 
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in the two BiB datasets and results pooled using fixed-effects meta-analyses. Given that CHD is rare and 

binary, I accepted an uncorrected P<0.05 (from meta-analyses) for the metabolite being suggestively 

associated with CHD in the offspring (but requiring further validation). I took these metabolites forward 

to MR analyses.  

The MS-platform used in BiB includes measures of xenobiotics which are synthetic chemicals that 

are not synthesised by humans. Their presence in the circulation usually reflects endogenous exposures, 

such as medications and supplements. Given that these metabolites would not be present in all 

participants (and therefore have high missingness), many were removed (86/154 (56%)) from the dataset 

given the metabolite inclusion criteria of 440 unique observations mentioned above. Therefore, I 

performed an exploratory additional analysis using xenobiotics (N = 154) as binary variables (1 = yes; 

metabolite is detected in the sample, 0 = no; metabolite is not detected in the sample). I present adjusted 

ORs of these binary variables (any presence vs none) with CHDs.  

I sought to internally validate any of the metabolites suggestively associated with CHDs that were 

also measured in BiB in larger numbers using different methods. After matching suggestive associations, 

I used data from the NMR platform (N = 2 metabolites) and did not use any data from the clinical chemistry 

measurements. More information on the BiB NMR data including methods, QC and participant 

information has been described in detail previously (Appendices) 210. 

 

5.3.6.2. Mendelian randomisation analyses 

 

I undertook MR in each of the 3 cohorts, including all BiB, ALSPAC, and MoBa participants with 

maternal genetic data and offspring CHD data. Logistic regression was used to estimate the OR of CHD per 

SD change in GRS, with adjustment for the first 10 genetic principal components (PCs) with additional 

adjustment for genetic chip, genetic batch, and imputation batch in MoBa. 

The key assumptions for MR are: (i) relevance assumption - the genetic instruments are robustly 

associated with the exposure and relevant to the population being studied (i.e., here pregnant women). I 

tested the association of the GRS of each metabolite with metabolite levels during pregnancy in BiB 

dataset 2. (ii) Independence assumption - The IV outcome association is not confounded. Such 

confounding could occur as a result of population stratification. To minimise this, I adjusted GRS-CHDs 

associations for the first 10 genetic PCs. I also repeated the MR analyses without the inclusion of BiB, given 

that BiB has a unique ethnic structure of South Asians and White Europeans. (iii) Exclusion restriction 

criteria - The genetic variant is not related to the outcome other than via its association with the exposure. 
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I assessed pleiotropy by estimating the variance explained in all metabolites by each of the GRSs by 

undertaking the linear regression of every metabolite measured in BiB on each GRS. If the variance 

explained in other metabolites was similar or greater than to that explained in the candidate risk 

metabolite, this would suggest that there is low metabolite-specificity for the GRS and potential horizontal 

pleiotropic bias via the other metabolite(s). Importantly, however, this approach of testing GRS specificity 

does not distinguish between vertical pleiotropy (e.g., the GRS influences the candidate metabolite which 

is the precursor of another metabolite that affects CHD) and horizontal pleiotropy (e.g., the GRS influences 

two metabolites that affect CHD independently). I also check consistency of MR results when additionally 

adjusting for fetal genotype 89. I performed MR analyses separately in BiB, ALSPAC and MoBa and report 

pooled results from random-effect meta-analyses for all three cohorts and fixed-effect meta-analyses for 

MR analyses excluding BiB (i.e., ALSPAC and MoBa).  

 

5.4. Results 

 

5.4.1. Main BiB multivariable regression analyses 

 

Table 5.1 shows the distributions of characteristics for the women in both BiB datasets. In total, 

there were 2,605 mother-offspring pairs with 46 CHD cases included in the BiB multivariable regression 

metabolomic analyses. N.B. for consistency and clarity, I refer to metabolites here by their super-

pathways (as defined by Metabolon). A metabolite might have a different super-pathway and chemical 

group. For example, N-Acetylcarnosine is a metabolite that is part of the amino acid super-pathway, but 

it is not an amino acid itself. The super-pathways that included the largest proportions of the 923 

metabolites were lipids (38%), unknown (22%), amino acids (18%) and Xenobiotics (8%), with other super-

paths having ≤ 3% of the total (Table 5.2).  

Of the 923 metabolites quantified in both BiB datasets, 44 (4.8%) were associated with any CHD, 

at P < 0.05, in confounder adjusted pooled analyses (Figure 5.2). I observed suggestive effects (i.e., 

confounder adjusted associations reaching the p-value threshold <0.05) with several amino acids, lipids 

and co-factors and vitamins. There were also suggestive effects for two xenobiotics, one nucleotide, one 

energy metabolite and some partially characterised and unknown metabolites (Figure 5.2). None of the 

22 peptide or 19 carbohydrate-related metabolites associated with CHD at this p-value threshold. Of the 

18 lipid-related metabolites associated with CHD, 13 were positively associated (i.e., increased odds) (e.g., 

Glycolithocholate Sulfate: adjusted odds ratio (aOR) per SD increase in metabolite: 1.73 95% CI (1.21, 
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2.48)) and 5 were negatively associated (decreased odds) (e.g., Phosphocholine: aOR 0.65 (0.47, 0.90)). 

All but one (N−Acetylcarnosine) of the 10 amino acid-related metabolites were negatively associated with 

CHDs (e.g., isoleucine: aOR: 0.67 (0.49, 0.92)). 3 of the 4 co-factors and vitamins were negatively 

associated, whereas 1 (biliverdin) was positively associated (aOR 1.41 (1.07, 1.86)). The one nucleotide 

was negatively associated (inosine 5'−Monophosphate (Imp): aOR 0.59 (0.36, 0.99)) and the one energy 

related metabolite positively associated (succinylcarnitine (C4): aOR 1.42 (1.02, 1.97)). Benzoate and 

Saccharin were the two xenobiotics associated with CHDs in main analyses both showing positive 

associations. Results for associations of all metabolites (irrespective of p-value) in unadjusted and 

confounder adjusted analyses from the pooled datasets, and each dataset separately are provided in 

Appendices (Tables S5.5-S5.7).  

In the analysis treating xenobiotics as binary variables, after removal of metabolites with no 

exposed cases, there were 6 xenobiotic metabolites suggestively associated with offspring CHDs 

(Appendices: Table S5.2). 2 out of the 6 showed positive associations: saccharin, which was also associated 

in main analyses (adjusted odds ratio (aOR) for the presence of metabolite vs not: 2.16 95% CI (1.02, 5.13)) 

– an artificial sweetener) and salicyluric glucuronide (aOR: 2.27 (1.16, 4.29)) – a metabolite involved in 

aspirin metabolism). The remaining 4 showing negative associations are all part of the food 

component/plant metabolite sub pathway (Table S5.2). 

 

5.4.2. Internal validation using NMR or clinical chemistry measures of suggestive associations 

from main multivariable regression analyses 

 

It was possible to explore 2 of the 44 metabolites suggestively associated with CHDs in the larger 

BiB sample. In comparable confounder adjusted analyses, NMR measured amino acids isoleucine and 

leucine were available on 7,296 mothers, with 87 having an offspring with CHD. Results for these two 

amino acids were highly consistent between the two samples/assay methods (aOR per SD increase in MS 

isoleucine 0.67 (0.49, 0.92) vs 0.65 (0.50, 0.84) for NMR isoleucine and aOR per SD increase in MS leucine 

0.69 (0.51, 0.94) vs 0.67 (0.53, 0.85) for NMR leucine). 
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Table 5.1. Participant characteristics for the Born in Bradford metabolomic analyses. 

Characteristic Category BiB dataset 1 (N = 998) BiB dataset 2 (N = 1,607) 

Offspring    

CHD Yes 15 (1.6) 31 (1.9) 

Sex Male 510 (51.1) 844 (52.5) 

 Female 488 (48.9) 763 (47.5) 

Maternal    

Age, years  27.5 (5.7) 27.3 (5.6) 

Parity Nulliparous 358 (37.0) 616 (36.8) 

 Multiparous 610 (63.0) 991 (63.2) 

BMI, kg/m2  26.7 (6.0) 26.5 (5.8) 

Ethnicity White British 500 (50.0) 733 (45.6) 

 Pakistani 498 (50.0) 874 (54.4) 

Neighbourhood deprivation (IMD) Quintile 1 (most deprived) 654 (65.5) 1084 (67.5) 

 Quintile 2 175 (17.5) 281 (17.5) 

 Quintile 3 112 (11.2) 175 (10.9) 

 Quintile 4 38 (3.8) 40 (2.5) 

 Quintile 5 (least deprived) 19 (1.9) 27 (2.7) 

Smoking Yes 176 (17.7) 311 (19.2) 

Alcohol Yes 338 (33.9) 496 (30.8) 

Gest age at blood sampling, weeks  26.2 (2.0) 26.2 (2.0) 
Data are means ± SD or n (%) unless stated. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; BMI, body mass index; kg, kilogram; m, meter; IMD, Index of 
Multiple Deprivation (taken from 2010 national quintiles); gest, gestational. 
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Table 5.2. Showing the breakdown of metabolites in the dataset (N = 923) into the 10 super-pathways as defined by Metabolon. 

Super pathway N (%) for all metabolites (N = 923) N (%) for metabolites suggestively associated 
with CHDs (N = 44) 

Amino Acid 170 (18.4%) 10 (22.7%) 

Lipid 354 (38.4%) 18 (40.9%) 

Cofactors and Vitamins 27 (2.9%) 4 (9.0%) 

Partially Characterised Molecules 3 (0.3%) 1 (2.3%) 

Unknown 201 (21.8%) 7 (15.9%) 

Xenobiotics 86 (9.3%) 2 (4.5%) 

Nucleotide 33 (3.6%) 1 (2.3%) 

Energy 8 (0.9%) 1 (2.3%) 

Carbohydrate 19 (2.1%) 0 

Peptide 22 (2.4%) 0 
Abbreviations: CHD, congenital heart disease.  
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Figure 5.2. Pooled confounder adjusted associations of maternal pregnancy metabolites with offspring congenital heart disease in the Born in Bradford 
cohort (N = 2,391 & N CHD cases = 42).  
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The associations show confounder adjusted odds ratios of CHD per standard deviation change in log-transformed metabolite levels for the 44 (out of 923) 
metabolites that associated with CHD at p-value <0.05 separated by super pathways as defined by Metabolon. Metabolites were measured at ~26-28 weeks’ 
gestation. Heterogeneity statistics and separate associations for datasets 1 and 2 are reported in Supplementary Tables S5.5-S5.7. Associations were adjusted for 
maternal age, ethnicity, parity, Index of Multiple Deprivation, body mass index, smoking and alcohol intake. Abbreviations: PCMs, partially characterised 
molecules; OR, odds ratio; CHD, congenital heart disease; SD, standard deviation.
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5.4.3. Validating findings with Mendelian randomisation  

 

The distributions of offspring and maternal characteristics for MR analyses in BiB, ALSPAC and 

MoBa are displayed in Table S5.3 (Appendices). It was possible to explore MR replication for 27 of the 44 

metabolites that associated with CHD in multivariable analyses (the other 17 were either not available in 

the GWAS or had genetic variants not available in the cohorts (see flowchart in Figure S5.3)). All but 3 of 

the GRSs (24/27 (89%)) were associated with the corresponding metabolite during pregnancy in BiB (with 

R2 values ranging from 0.3% to 34%, for the remaining 3 the associations were wide with confidence 

intervals that included the null (Table S5.4). Of the 27 GRSs, 3 were specific for the metabolite they were 

instrumenting (i.e., had the strongest association with it and little evidence of associations with other 

metabolites; N-acetylcarnosine, phosphocholine and succinylcarnitine). 18 GRSs were associated with the 

metabolite they were instrumenting and several others that were correlated with that metabolite (e.g., 

the biliverdin GRS was associated with it and also similarly with other hepatic-related metabolites). 6 GRSs 

were more strongly associated with other (uncorrelated) metabolites than the one they were 

instrumenting (scatter plots for all 27 GRSs are shown in Figure S5.4). The 6 non-specific GRS were for 

indolelactate, glycolithocholate sulfate, isoleucine, leucine, myo-inositol and taurolithocholate 3-sulfate 

(MR results for these should be treated with caution and are denoted in Figure 5.3B by white-filled points).  

MR analyses replicated and provided causal evidence for a potential protective effect of higher 

levels of the amino acids leucine, indolelactate and isoleucine on CHD, but for the other amino acids MR 

results were either very close to the null or in the opposite direction (Figure 5.3). Seven of the lipid-related 

metabolites that were positively associated in multivariable regression were also replicated in MR 

analyses (6 of which were highly correlated androgenic steroid metabolites), as was the energy related 

metabolite succinylcarnitine (Figure 5.3). For the 11 metabolites where I consider the MR GRS analyses 

providing some evidence of replication and a potential causal effect, 7 of the GRSs were specific for the 

metabolite alone and/or also for its correlates. Individual study results and P-values for heterogeneity are 

included in shown Table S5.8. MR results were largely unchanged when excluding BiB from analyses (Table 

S5.8) and when adjusting for offspring genotype (Table S5.9). 
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Figure 5.3. Showing results comparing the main confounder adjusted associations of maternal metabolites with offspring CHDs (Panel A: N = 2,391 & N CHD 
cases = 42) to the Mendelian randomisation analyses of maternal genetic risk scores and offspring CHDs (Panel B: N = 38,662 & N CHD cases = 319). 
N.B. results from each analysis are presented on different scales; I am not attempting to quantify estimates in the MR analyses, the aim is to compare the 
direction of effect. The confounder adjusted associations are as above in Figure 5.2. The MR analyses are adjusted for the top 10 genetic principal components 
and genetic batches in MoBa. In Panel B, the metabolite genetic risk scores filled with white appeared to be non-specific for the metabolite I was trying to 
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instrument. The metabolites filled in black were either metabolite-specific or specific to the metabolite and other correlated metabolites (see scatter plots in 
Figure S5.4). The results were pooled using random effects meta-analyses; individual study results and P-values for heterogeneity are shown in Supplementary 
Table S5.7. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; GRS, genetic risk score; MR, Mendelian randomisation; OR, odds ratio; CI, 
confidence interval.  



 

 134 

5.5. Discussion 

 

Maternal metabolism is important for healthy fetal growth and development. To my knowledge no 

previous study has examined the association of detailed maternal metabolites with risk of CHD within a 

causal framework and BiB is the only cohort that I was aware of with relevant data. In this novel study I 

found 44 metabolites (of 923) suggestively associated with CHD. These included metabolites related to 

amino acids, lipids, co-factors and vitamins, unknown molecules, xenobiotics, nucleotides and energy. In 

separate xenobiotics analyses, there was some evidence that metabolites related to aspirin and 

saccharine may increase odds of CHD, whereas metabolites related to plant food components may reduce 

odds. Two of the amino acids were validated in BiB in larger numbers using an alternative metabolomics 

platform. In MR analyses, there was directional consistency for 11/27 metabolites. I found that amino acid 

metabolism during pregnancy, several lipids (more specifically androgenic steroids), and levels of 

succinylcarnitine could be important contributing factors.  

9 out of the 10 amino acids suggestively associated with CHD were negatively associated suggesting 

that deficiencies in certain amino acids during pregnancy could contribute to CHD. Previous research 

found that amino acid concentrations measured in amniotic fluid were lower in patients with CHD 219, a 

similar pattern to what I found here. I was able to validate findings for isoleucine and leucine in larger 

numbers in BiB which improves the confidence in the findings. The MR analyses also provided evidence 

to support the direction of association for these metabolites. However, the GRSs for isoleucine and leucine 

were non-specific and so these results should be treated with caution.  

18 of the 44 maternal metabolites associated with CHD were part of the lipid super pathway, which 

is the most common super pathway measured by the Metabolon platform. Previous work reported that 

an abnormal lipid profile (defined as elevated cholesterol and apolipoprotein B) 86, abnormal lipid 

metabolism (defined as a disturbance in phosphatidyl-choline and various sphingolipids and choline 

metabolism) 13  and high maternal blood lipids 87 are a feature of CHD pregnancies. I was able to take 

forward 15 (out of 18) of the lipid metabolites and replicated the direction of effect for 7. All except 1 of 

these 7 replicated metabolites were androgenic steroids and so were highly correlated. Steroids are 

important for numerous functions during gestation, particularly for normal placental function 220. Here I 

present evidence of a potential causal effect (associated in metabolomic analyses with consistent 

direction of effect in MR analyses) of positive associations between maternal gestational androgenic 

steroid metabolites and offspring CHD.  
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Levels of bilirubin and biliverdin were positively associated with CHD, two compounds involved in 

heme catabolism which should be investigated further. MR findings for biliverdin were inconclusive with 

wide confidence intervals. Levels of succinylcarnitine were also positively associated with CHDs and I 

found good replications in MR analyses with consistent directions of effect and a GRS that appeared highly 

specific for succinylcarnitine. Succinylcarnitine is an acylcarnitine which are a group of metabolites 

responsible for beta oxidation of fatty acids and mitochondrial function 221. It is well documented that 

fatty acids play an important role in embryonic and fetal development 222,223. I included analyses of 

partially characterised and unknown metabolites in results as with increasing evidence from genomic 

studies, previously unknown metabolites are having their function identified. With future studies 

identifying the function of some of these unknown/partially characterised metabolites, my results could 

shed light on the aetiology of CHDs.  

A key strength of this study is the unique data that I had in BiB to support novel analyses of 

associations of a wide range of maternal metabolic paths with offspring CHD risk. I was not able to identify 

any other study with such data. However, I realised, even before analyses, that I would have limited 

statistical power with just 46 CHD cases. This motivated me to think about ways of trying to replicate any 

findings in larger samples either through finding measures of the same metabolites available from other 

assays in larger samples or using GRSs as instruments for the metabolites. In the initial multivariable 

regression analyses I adjusted for potential confounders. I defined suggestive associations based on a p-

value threshold < 0.05, i.e., not taking account of multiple testing, and when I apply a Bonferroni corrected 

threshold (P < 0.0001) none of the associations pass this. However, I felt this was appropriate for 

determining which associations to take forward to replication. As with any ‘screening’ for further analyses 

I wanted to ensure that I would not miss potential causal effects. I recognise that selecting results based 

on a p-value threshold is problematic as some associations with higher p-values might have associations 

of a magnitude that could be clinically important, but there would also be potential for several false 

positives. Also, I limited MR analyses only to those metabolites that associated with p < 0.05 rather than 

undertaking these analyses on all of the 923 metabolites. The reason for this was that having searched for 

all studies with maternal genome wide data and offspring CHD outcomes I identified only three cohorts 

and recognised that for MR analyses pooled results from these might also have limited power. The limited 

power in both multivariable and MR analyses also meant that I could only examine associations with any 

CHD and not subtypes.  

MR analyses are sensitive to their assumptions that the GRS is statistically strongly associated with 

the metabolite in pregnancy. I examined associations of these with pregnancy metabolite levels and I am 
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careful in my interpretation of results in relation to this. Methods that are available for exploring potential 

bias due to horizontal pleiotropy in two-sample MR were not possible here. I know that many of the 923 

metabolites will be biologically related to each other and with the sample size in the present study it 

would be difficult to robustly distinguish effects of correlated metabolites. I explored this by examining 

the strength of association (proportion of variation explained) of each of the 27 GRSs with all other 

metabolites available in BiB dataset 2 (Figure S5.4). Stronger or similar associations with other metabolites 

would suggest that the GRS is not a specific instrument for the metabolite that I am using it for. In this 

case this could be because of known biological relations. For example, many of the lipid metabolites are 

related to each other biologically, and I saw this with similar proportions of variation explained by the GRS 

of the androgenic steroid lipid metabolites with other androgenic steroid lipid metabolites. As such I 

would interpret results for these metabolites as supporting an effect of maternal androgenic steroid 

metabolites on CHD, but I cannot be specific about which ones are driving this. Similar or stronger 

variation of a GRS for other metabolites could be related to vertical pleiotropy, i.e., the metabolite for 

which the GRS is instrumenting strongly influences other metabolites that are related to CHD with the 

other metabolites partly mediating the effect of the focused metabolite. This would not bias the result. 

However, this could also occur with horizontal pleiotropy where the GRS, independently of the metabolite 

of interest, influences other metabolites that are risk factors for CHD. With the current data I was not able 

to distinguish between these two.  

A further limitation of this study is that maternal plasma/serum metabolomics data were derived at 

a single timepoint around 26-28 weeks’ gestation. Fetal cardiac development starts early in pregnancy 

and much of the development occurs in the first trimester 143. Here, I am assuming that metabolite levels 

around 26-28 weeks’ gestation are good proxies for levels in early pregnancy - when the offspring heart 

is forming. Previous work has shown that between person differences throughout pregnancy remain 

largely consistent (i.e., those with a high level of a metabolite in early pregnancy tend to have a similarly 

high level of a metabolite in later pregnancy) 81. Similarly, and worth mentioning, the effects obtained 

from MR studies are often interpreted as the lifetime effect of the exposure (metabolites) in question 224.  

In summary, I have used metabolomics data obtained during pregnancy to explore how the maternal 

metabolome may contribute to offspring CHDs. I found evidence that amino acid metabolism during 

pregnancy, several lipids (more specifically androgenic steroids), and levels of succinylcarnitine could be 

important contributing factors. My analysis pipeline, which involved seeking replication of metabolite 

associations by harnessing large-scale GWAS data, provides scope to improve the reliability of findings 

and should prove to be more useful as these datasets continue to grow. Metabolomics could prove to be 
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an important tool for identifying biological pathways that may lead to identification of prevention targets 

to decrease the disease burden of CHDs. To do this, future research will require international collaboration 

of more and larger studies with detailed metabolomics data in pregnancy, ideally with some of these 

having repeat measures across pregnancy and offspring CHD data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 138 

Chapter 6. Associations between maternal gestational NMR-derived 

metabolic profiles and congenital heart disease in the offspring: results 

from multivariable and Mendelian randomisation analyses 
 

6.1. Chapter summary  

 

This Chapter has not yet been published. I am waiting for data from the Norwegian Mother, Father 

and Child Cohort (MoBa) which was delayed due to COVID-19 to perform external replication analyses 

before submitting for publication.  

Chapter 5 examined the relationship of maternal gestational mass spectrometry (MS)-derived 

metabolites with offspring congenital heart disease (CHD) using multivariable regression and Mendelian 

randomisation (MR) analyses. In this Chapter (Chapter 6), I undertook a similar approach to Chapter 5 by 

employing multivariable regression and MR analyses.  The work in this chapter examined the relationship 

of maternal gestational nuclear magnetic resonance (NMR)-derived metabolic traits with offspring CHD. 

This work complements the work in Chapter 5 by having metabolomic data in larger numbers (~11,000 

versus ~3,000) and by constructing genetic instruments for more traits using data from a larger and more 

powered GWAS. I found evidence that amino acid metabolism during pregnancy could be an important 

contributing factor which is consistent to results presented in Chapter 5. There was also evidence of 

potential effects for some fatty acid and very low-density lipoprotein (VLDL) traits, albumin, and citrate.  
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6.2. Introduction 

 

Congenital heart diseases (CHDs) are the commonest form of congenital anomaly and remain one 

of the leading causes of childhood mortality 225. Causes of CHDs include chromosomal abnormalities, gene 

disorders and a small number of known teratogens 8. The causes of most cases remain largely unknown, 

although, the pregnancy environment (intrauterine factors) appears to be important. Identifying 

modifiable risk factors for CHDs is important for improving aetiological understanding and developing 

preventative interventions. 

Associations between modifiable environmental exposures during pregnancy and offspring CHDs 

have been studied extensively 61. Despite this, there are few well established causal risk factors for CHDs, 

partly due to the conventional epidemiological study designs that are commonly used and the 

heterogeneity in presentation/prevalence of the disorder. More recently, studies have started to explore 

associations between potential biomarkers during pregnancy and offspring CHDs. One study found that a 

compromised vitamin D status (defined as 25-hydroxyvitamin D < 50 nmol/l in comparison to adequate 

vitamin D status, defined as > 75 nmol/l) was associated with increased risk of offspring CHDs 85. Fatty 

acids are known to play an important role in embryonic and fetal development 222,223 and there is some 

evidence suggesting that high maternal blood lipids are associated with increased risk of offspring CHDs 

86,87. Other work has shown that poor glucose control and diabetes during pregnancy can increase CHD 

risk 206–208. 

These studies focus on single or few biomarkers. Exploring the wider metabolome could provide 

opportunities to improve our understanding of the molecular mechanisms that underpin CHDs 205. 

Metabolomics is the quantification of metabolites. The metabolome is influenced by both genotype and 

environment, and dynamically responds to environmental influences. Information on the metabolome 

during pregnancy can provide information on a range of diet and lifestyle factors that are being 

used/adopted by the mother which can be difficult to reliably obtain via self-report. Previous work has 

shown how changes in pregnancy characteristics such as body mass index (BMI), gestational diabetes, 

hypertensive disorders of pregnancy and others are associated with changes in metabolic profiles 

assessed by nuclear magnetic resonance (NMR) metabolomics 197. It is plausible that these changes in the 

metabolome that are caused by these exposures could influence offspring outcomes.  

To date, there have been several studies that have used pregnancy metabolomics data to research 

offspring CHDs. Some of the studies have aimed to use metabolomics for early diagnosis rather than 

attempting to establish causal mechanisms. For example, one study including 27 CHD cases and 59 
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controls aimed to identify metabolomic markers in maternal serum during pregnancy for the detection of 

CHDs 82. They found more than 100 metabolites that differed between CHD cases and non-cases 

concluding that abnormal lipid metabolism was a significant feature of CHD pregnancies. However, the 

sample size was small, and their results have not been externally validated. Other work has explored 

potential biomarkers of maternal urine metabolomics with offspring CHDs (N = 70 CHD cases and 70 

controls) 83. Their results indicated that short chain fatty acids and aromatic amino acid metabolism in a 

Chinese population may be relevant to CHDs. Recent work using an untargeted metabolomics approach 

using maternal amniotic fluid samples discovered that uric acid and proline were significantly elevated in 

CHD cases 84. In summary, there have been promising studies uncovering potentially important biological 

pathways associated with offspring CHDs. However, the evidence is preliminary and there is a need for 

further larger prospective studies to further interrogate this research area and attempt to replicate 

previous findings.  

The aim of this study was to explore associations of pregnancy metabolic profiles quantified by 

NMR (N = 148 metabolomic traits) and the odds of CHD in the offspring. I used data from the Born in 

Bradford (BiB) cohort (N = 11,195 participants; 127 CHD cases (1.1%)), a UK birth cohort with 

approximately half White European women and half South Asian women 134. I subsequently perform 

Mendelian randomisation (MR) 100 analyses using genetic instruments of NMR metabolomic traits to 

explore replication. The rationale for MR analyses was twofold: firstly, using alternative methods that 

have differing sources of bias to explore the same causal question can improve confidence in findings 96. 

Secondly, I was able to identify two additional cohorts to include in these analyses (total N in pooled 

analyses = 38,664 participants; 319 CHD cases (%)) that had maternal genotype data and offspring CHD 

data (but did not have NMR metabolomics data to contribute to the initial analyses).  

 

6.3. Methods 

 

6.3.1. Study design and participants  

 

An overview of the study design is illustrated in Figure 6.1. I excluded children of multiple births 

because they differ from single births for congenital anomaly outcomes 211,212. For multivariable 

metabolomic analyses, I used data from the BiB cohort. BiB is a population-based prospective birth cohort 

including 12,453 women across 13,776 pregnancies who were recruited at their oral glucose tolerance 

test (OGTT) at approximately 26–28 weeks’ gestation 134. To be included in MR analyses, studies and 
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participants had to have genome-wide data in mothers and CHD data in the offspring. Three cohorts 

contributed to MR analyses: BiB, The Norwegian Mother, Father and Child Cohort Study (MoBa) and The 

Avon Longitudinal Study of Parents and Children (ALSPAC). ALSPAC is a UK prospective birth cohort study 

which was devised to investigate the environmental and genetic factors of health and development 111–

113. 14,541 pregnant women with an expected delivery date of April 1991 and December 1992, residing in 

the former region of Avon, UK, were eligible to take part. MoBa is a nationwide, pregnancy cohort 

comprising family triads (mother-father-offspring) who are followed longitudinally. All pregnant women 

in Norway who were able to read Norwegian were eligible for participation. The first child was born in 

October 1999 and the last in July 2009 136,137. MR analyses included 38,664 mother-offspring pairs, within 

which 319 offspring had CHD (Figure 6.1).  

 

 

Figure 6.1. An overview of the study design. 

Abbreviations: BiB, Born in Bradford; NMR, nuclear magnetic resonance; CHD, congenital heart disease; 

ALSPAC, Avon Longitudinal Study of Parents and Children; MoBa, Norwegian Mother, Father and Child 

Cohort Study. 

 

6.3.2. Sample collection and metabolomic profiling 

 

Of the 13,776 pregnancies in the BiB cohort, 11,480 had a fasting blood sample taken during the 

OGTT (n = 10,574 [92%] between 26–28 weeks’ gestation, with the remaining women being within 11–39 

weeks’ gestation). The selection of participants into the BiB NMR analysis dataset is shown in a flowchart 
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in Appendices (Figure S6.1). Samples were taken by trained phlebotomists working in the antenatal clinic 

of the Bradford Royal Infirmary and sent immediately to the hospital laboratory. The metabolomics data 

in the BiB cohort have been described in detail previously including methods, participant selection, 

validation, known issues and a summary of published research (Appendices) 226. In brief, profiling of 

circulating lipids, fatty acids, and metabolites was done by a high-throughput targeted NMR platform 

(Nightingale Health© (Helsinki, Finland)) at the University of Bristol, providing quantitative information 

on 227 metabolomic traits (including ratios and other traits derived from the quantified NMR spectra) 76. 

After removing ratios and derived traits, I included 148 metabolomic traits for analysis in this study. 

Samples that were flagged from quality control for either having low glucose, high lactate, high pyruvate 

or low protein content were removed from analyses.  

 

6.3.3. Confounders 

 

In multivariable regression analyses in BiB, I adjusted for the following maternal characteristics 

based on their known or plausible influence on maternal metabolites and on CHD: age, ethnicity, parity, 

residential neighbourhood Index of Multiple Deprivation (IMD), BMI and smoking status. Methods for 

confounders are described in the appendices (Text S6.1).  

 

6.3.4. Congenital heart disease outcomes 

 

In BiB, cases were identified from two sources. Firstly, the Yorkshire and Humber congenital 

anomaly register database. This database will tend to pick up most cases that diagnosed antenatally and 

in the early postnatal period of life. Secondly, through linkage to primary care (up until aged 5), which will 

have picked up any additional cases, in particular those that might have been less severe and not identified 

antenatally/in early life 70. All these cases were confirmed postnatally and were assigned ICD-10 codes. 

CHD cases were defined according to the European surveillance of congenital anomalies (EUROCAT) 

guidelines. In the ALSPAC cohort, cases were obtained from a range of data sources, including health 

record linkage and questionnaire data up until age 25 following European EUROCAT guidelines 35. In MoBa, 

information on whether a child had a CHD or not (yes/no) was obtained through linkage to the Medical 

Birth Registry of Norway (MBRN). All maternity units in Norway must notify births to the MBRN. Further 

details on defining CHDs including ICD codes are shown in the Appendices (Text S6.2).  
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6.3.5. Genetic data 

 

6.3.5.1. GWAS data and SNP selection 
 

Genetic instruments for NMR metabolomic traits were selected using GWAS that were conducted 

in UKBiobank (UKBB) participants of European ancestry (N = up to 115,082). The details on genotyping 

quality control, phasing, and imputation in the UKBB have been described previously 227. GWAS were 

performed using BOLT-LMM. GWAS analyses were adjusted for sex, array, and fasting time. A full 

description of the pipeline can be found online 

(https://data.bris.ac.uk/data/dataset/pnoat8cxo0u52p6ynfaekeigi). The GWAS summary data for each 

NMR metabolomic trait has been made publicly available via the OpenGWAS database under the batch 

name ‘met-d’ (https://gwas.mrcieu.ac.uk/datasets/). GWAS were conducted as a whole cohort and 

stratified by sex. I used the TwoSampleMR R package 213 to select genome-wide independent SNPs for 

each metabolomic trait from the full cohort analyses (associated at P < 5 x 10-8, r2 = 0.001 and a distance 

of 10,000 kb) and used weights from the female-specific GWAS to construct genetic risk scores (GRS) 213. 

 

6.3.5.2. Genotyping in each cohort 
 

ALSPAC mothers were genotyped using Illumina human660K quad single nucleotide 

polymorphism (SNP) chip, and ALSPAC children were genotyped using Illumina HumanHap550 quad 

genome-wide SNP genotyping platform. Genotype data for both ALSPAC mothers and children were 

imputed against the Haplotype Reference Consortium v1.1 reference panel, after performing the QC 

procedure (minor allele frequency (MAF) ≥1%, a call rate ≥95%, in Hardy-Weinberg equilibrium (HWE), 

correct sex assignment, no evidence of cryptic relatedness, and of European descent). The samples of the 

BiB cohort (mothers and offspring) were processed on three different type of Illumina chips: 

HumanCoreExome12v1.0, HumanCoreExome12v1.1 and HumanCoreExome24v1.0. The pre-processing of 

samples was done separately for the three chips. Genotype data were imputed against UK10K + 1000 

Genomes reference panel, after a similar QC procedure (a call rate ≥99.5%, correct sex assignment, no 

evidence of cryptic relatedness, correct ethnicity assignment). In MoBa, blood samples were obtained 

from both parents during pregnancy and from mothers and children (umbilical cord) at birth. The data 

used in the present study was derived from a cohort of genotypes samples from four MoBa batches (N 

samples = 98,110). Phasing and imputation was performed using the publicly available Haplotype 

https://data.bris.ac.uk/data/dataset/pnoat8cxo0u52p6ynfaekeigi
https://gwas.mrcieu.ac.uk/datasets/
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Reference Consortium data. The MoBa genetics QC procedure involved MAF ≥1%, a call rate ≥95%, in 

HWE, correct sex assignment, and no evidence of cryptic relatedness. Further details of the genotyping 

methods for each cohort are provided in Appendices (Text S6.3). 

 

6.3.5.3. Genetic risk score generation  

 

GRSs were calculated using SNPs previously associated in large-scale GWAS with metabolites 

(described above) using the dose of the effect (exposure-increasing) allele at each SNP, which was first 

weighted by the effect size of the variant in GWAS and then summed: 

𝐺𝑅𝑆 = 𝑤1 ×  𝑆𝑁𝑃1 + 𝑤2 ×  𝑆𝑁𝑃2 + ⋯ 𝑤𝑛 ×  𝑆𝑁𝑃𝑛 

where w is the weight (i.e., the beta-coefficient of association of the SNP with the exposure from the 

published GWAS. N.B. I used females-specific beta-coefficients) and SNP is the dosage of exposure-raising 

alleles at that locus (i.e., 0, 1, or 2 exposure-raising alleles). Selected SNPs from the GWAS summary data 

were extracted from the imputed genotype data in dosage format using VCF tools (v 0.1.12b) and QCTOOL 

(v2.0) in BiB and ALSPAC, respectively. In MoBa, I constructed the GRS’s from the QC’d data in PLINK 

format. PLINK (v1.9) was used to construct the GRS for each exposure coded so that an increased score 

associated with increased metabolic trait. 

 

6.3.6. Statistical analysis 

 

Analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, Vienna, 

Austria). A pre-specified analysis plan was written alongside discussions with all authors and uploaded to 

the Open Science Framework prior to analyses 228. Any subsequent changes to analyses were documented 

along with the rationale.  

 

6.3.6.1. Multivariable regression (metabolomic) analyses 

 

Prior to analyses, all metabolomic traits (N = 148) were converted to standard deviation (SD) units. 

I used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of any CHD per 

SD change in metabolomic trait, with no adjustment and adjustment for cofounders. As I am interested in 

potential causal effects, I present confounder adjusted results throughout. I checked if missing data were 
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influencing results by exploring consistency between unadjusted and confounder adjusted estimates in 

the sub-population with full confounder data. I included an interaction term for ethnicity (White European 

vs South Asian women) and also visually explored ethnic-stratified results to check for ethnic-specific 

associations. Given that CHD is rare and binary, and to avoid missing potential causal effects, I did not 

apply a statistical threshold for a trait being potentially associated with CHDs. Rather, I focused on the 

point estimates and precision (measured by 95% CIs) and whether the association could be replicated in 

MR analyses to draw inference.  

 

6.3.6.2. Mendelian randomisation analyses 

 

I undertook MR in each of the 3 cohorts, including BiB, ALSPAC and MoBa participants with 

maternal genetic and offspring CHD data (N = 38,663, 319 CHD cases: flowchart shown in Figure S6.2). 

One singleton pregnancy per mother was included. I aimed to perform MR for: (i) all traits that were 

included in multivariable regression analyses and (ii) were included in the GWAS and had valid genetic 

instruments. In total I included 145 (of 148) metabolomic traits in MR analyses. Logistic regression was 

used to estimate the OR of CHD per 1 SD change in GRS, with adjustment for the first 10 genetic principal 

components (PCs) with additional adjustment for genetic chip, genetic batch, and imputation batch in 

MoBa. Using this method (i.e., regressing an outcome on a genetic instrument) allows to test for the 

presence of a causal effect, whereas it does not quantify the causal estimate which would require a two-

step instrumental variable approach with genetic, exposure (NMR data) and outcome data in all 

participants.  

The key assumptions for MR are: (i) relevance assumption - the genetic instruments are robustly 

associated with the exposure and relevant to the population being studied (pregnant women). I tested 

the association of the GRS of each metabolomic trait with levels measured during pregnancy in all women 

with genome-wide and NMR data in BiB. (ii) Independence assumption - the IV outcome association is not 

confounded. Such confounding could occur as a result of population stratification. To minimise this, I 

adjusted GRS-CHD associations for the first 10 genetic PCs. I also repeated the MR analyses without the 

inclusion of BiB, given that BiB has a unique ethnic structure of South Asian and White European women. 

(iii) Exclusion restriction criteria - the genetic variant is not related to the outcome other than via its 

association with the exposure – the potential for pleiotropy. I assessed pleiotropy by estimating the 

variance explained in all metabolomic traits by each of the GRS by running linear regression of every 

metabolomic trait on each GRS. If the variance explained in other metabolites was similar or greater than 
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to that explained in the candidate risk metabolite, this would suggest that there is low metabolite-

specificity for the GRS and potential horizontal pleiotropic bias via the other metabolite(s). Importantly, 

however, this approach of testing GRS specificity does not distinguish between vertical pleiotropy and 

horizontal pleiotropy. I would also expect some GRS to correlate with others. I use Pearson correlations 

and heatmaps to illustrate the correlation structure of the NMR and GRS datasets in BiB. I also check 

consistency of MR results when additionally adjusting for fetal genotype 89. I performed MR analyses 

separately in BiB, ALSPAC and MoBa and report pooled results from random-effect meta-analyses for all 

three cohorts and fixed-effect meta-analyses for MR analyses excluding BiB (i.e., ALSPAC and MoBa).  

 

6.4. Results 

 

6.4.1. BiB NMR multivariable regression analyses 

 

Table 6.1 shows the distributions of characteristics for the women included in BiB multivariable 

regression NMR analyses. In total, there were 11,195 mother-offspring pairs with 127 CHD cases included. 

Confounder adjusted associations of metabolomic traits measured during pregnancy with offspring CHDs 

are shown in Figure 6.2 separated by the trait class. In Figure 6.2, I show a truncated version of the results 

(N = 63 key metabolomic traits, mostly lipoprotein subclasses removed) for clarity and include results for 

all traits within Appendices (Figure S6.3). For amino acids (Figure 6.2A), I observed negative associations 

for alanine, isoleucine, leucine and valine and a positive association for glutamine with the remainder 

having estimates around the null. There were no clear differences in odds of CHD for changes in the fatty 

acids docosahexaenoic acid (DHA), omega-3, omega-6, linoleic acid or polyunsaturated fatty acids (Figure 

6.2B), whereas monounsaturated, saturated, and total fatty acids were negatively associated. Estimated 

degree of unsaturation was positively associated with CHD. Levels of remnant cholesterol and total 

cholesterol in very low-density lipoproteins (VLDL) were negatively associated with offspring CHD, with 

the remainder of estimates for cholesterol-related traits being around the null (Figure 6.2C). All glyceride 

and phospholipid metabolomic traits were negatively associated, with somewhat stronger negative 

associations seen for triglycerides (Figure 6.2D). There were no differences in odds of CHD for many of 

the lipoproteins, with exception of VLDL-related lipoproteins which were negatively associated (Figure 

6.2E). Levels of glucose were positively associated with offspring CHD (Figure 6.2F). Apolipoprotein B 

(ApoB), citrate, glycerol, lactate, pyruvate, albumin, glycoprotein acetyls (GlycA; a cumulative marker of 

inflammation) and 3-hydroxybutryare all had point estimates below the null (negative associations). There 
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were no notable differences in unadjusted results, apart from glucose having a stronger magnitude of 

association in comparison to the confounder-adjusted estimate (OR and 95% CI of CHD per SD change in 

metabolomic trait: 1.14 (0.95, 1.38) in confounder adjusted versus 1.23 (1.08, 1.41) unadjusted) (Figure 

S6.4, Appendices). Results were unchanged when repeating unadjusted and adjusted analyses in the 

population with full confounder data (N = 8,551 versus N = 11,195 in crude analyses) suggesting that any 

missing data did not influence findings.  

There was no strong statistical evidence for ethnic-specific associations (Pinteraction > 0.05) for 

associations of metabolomic traits and CHD. However, when visually examining forest plots of the 

associations of metabolomic traits and CHD stratified by ethnicity, there were some notable differences 

for creatinine, glucose and several fatty acids (Figure S6.5). Creatinine was negatively associated with CHD 

in South Asian women (OR and 95% CI of CHD per SD change in metabolomic trait: 0.80 (0.62, 1.05)), but 

positively associated with CHDs in White European women (1.12 (0.90, 1.41)). Results for the combined 

ethnicity cohort (including adjustment for ethnicity) were null. For glucose, there is evidence that the 

positive association seen in the combined ethnicity cohort was being driven by White European women 

(1.36 (1.00, 1.84)), with results in South Asian women being null (1.00 (0.81, 1.25)) (Figure S6.5). 
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Table 6.1. Participant characteristics for the Born in Bradford NMR metabolomic analyses. 

Characteristic Category BiB (N = 11,195)  

Offspring   

CHD Yes 127 (1.1) 

Sex Male 5750 (51.4) 

 Female 5444 (48.6) 

Maternal   

Age, years  27.3 (5.6) 

Parity Nulliparous 4238 (40.1) 

 Multiparous 6325 (59.9) 

BMI, kg/m2  26.1 (5.7) 

Ethnicity White European 4325 (40.9) 

 South Asian  5329 (50.5) 

 Other 911 (8.6) 

Neighbourhood deprivation (IMD) Quintile 1 (most deprived) 6490 (66.0) 

 Quintile 2 1778 (18.1) 

 Quintile 3 1093 (11.1) 

 Quintile 4 299 (3.0) 

 Quintile 5 (least deprived) 170 (1.7) 

Smoking Yes 1672 (17.0) 

Gestational age at blood sampling, weeks  26.3 (2.0) 
Data are means ± SD or n (%) unless stated. Not all data are complete. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; BMI, body mass index; kg, kilogram; m, meter; 
IMD, Index of Multiple Deprivation (taken from 2010 national quintiles); gest, gestational. 
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Figure 6.2. Confounder adjusted associations of maternal pregnancy metabolomic traits with offspring congenital heart disease in the Born in Bradford 
cohort (N = 8,551 and N CHD cases = 96). 
The associations show confounder adjusted odds ratios of CHD per standard deviation change metabolomic trait levels for 63 (out of 148) key traits separated by 

the trait class. Metabolomic traits were measured at ~26-28 weeks’ gestation. Associations were adjusted for maternal age, ethnicity, parity, Index of Multiple 

Deprivation, body mass index, and smoking. Unadjusted associations are shown in appendices (Figure S6.4). Abbreviations: OR, odds ratio; CHD, congenital heart 

disease; SD, standard deviation; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein. 
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6.4.2. Validating findings with Mendelian randomisation 

 

The distributions of offspring and maternal characteristics for MR analyses in BiB, ALSPAC and 

MoBa are displayed in Table 6.2. It was possible to explore MR replication for 145 of the 148 metabolomic 

traits included in multivariable analyses. 138/145 (95%) of the GRS associated with the corresponding 

metabolomic trait during pregnancy in the BiB cohort (P < 0.05) with R2 values ranging from 0.1% to 10.4% 

and F-statistics ranging from 8 to 825 (Table S6.1). The seven traits that were not associated at P < 0.05 

were acetate and six lipoprotein traits related to chylomicrons. The phenotypic and genetic correlation 

structure of the traits are shown in Figure S6.6 (Appendices) which illustrate that many of the traits are 

correlated. This is also evident in scatter plots of GRSs with all metabolomic traits with the large majority 

of GRSs being non-specific (i.e., were associated with many different traits, which was unsurprising given 

what is known about the correlation structures and how the traits relate to each other). The GRSs that 

were specific for the trait they were instrumenting (i.e., had the strongest association with it and little 

evidence of associations with other traits) were: alanine, creatinine, glucose, glutamine, glycine, pyruvate, 

and tyrosine (Figure S6.7, Appendices).  

MR analyses replicated and showed consistent negative associations (i.e., potential protective 

effect of higher levels) of amino acids alanine, isoleucine, leucine and valine (Figure 6.3). The GRS for 

alanine was strongly associated with alanine levels in the BiB cohort, whereas the GRS for isoleucine, 

leucine and valine were less specific (associated with different metabolomic traits than the one I was 

trying to instrument) (Figure S6.7, Appendices). Overall, these results provide evidence of protective 

effect for higher maternal amino acid on offspring CHD. MR results for estimated degree of saturation 

replicated the multivariable regression result showing positive associations with CHD (Figure 6.3), coupled 

with a robust association between the GRS and metabolomic trait in BiB (Figure S6.7, Appendices). There 

was also a consistent direction of association in MR analyses for potential protective effects for albumin 

and citrate. Several VLDL traits that had negative (protective) associations also had consistent directions 

of effect in MR analyses. Results for glucose were not replicated in MR analyses. Forest plots comparing 

multivariable regression and MR results for all metabolomic traits (N = 145) are shown in Figure S6.8 

(Appendices). There was no statistical evidence of heterogeneity between cohorts for any metabolomic 

traits in pooled MR analyses (Pheterogeneity for all > 0.05). MR results were broadly consistent when excluding 

BiB from analyses (Figure S6.9, Appendices) and when adjusting for offspring genotype (Figure S6.10, 

Appendices). 
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Table 6.2. Participant characteristics for the 3 studies included in Mendelian randomisation analyses. 

Characteristic Category BiB (N = 7,433) ALSPAC (N = 7,360)  MoBa (N = 23,869) 

Offspring     

CHD Yes 81 (1.1) 61 (0.8) 177 (0.7) 

Sex Male 3,818 (51.4) 3,703 (50.3) 12,139 (50.9) 

 Female 3,615 (48.6) 3,657 (49.7) 11,704 (49.0) 

Maternal     

Age, years  27.4 (5.6) 29.2 (4.6) 30.1 (4.5) 

Parity Nulliparous 2,963 (40.1) 3,257 (46.6) 11,288 (47.3) 

BMI, kg/m2  26.2 (5.7) 22.5 (4.2) 24.1 (4.3) 

Ethnicity White European 3,084 (42.6) 7,360 (100.0) a NA b 

 South Asian 3,503 (48.4) - - 

 Other 656 (9.1) - - 

Any smoking during 
pregnancy 

Yes 1,175 (18.1) 1,679 (26.1) 1,814 (8.6) 

Any alcohol during pregnancy Yes 1,040 (49.3) 4,866 (79.9) 6,209 (31.5) 
Data are means ± SD or n (%) unless stated. % are based on data available (data were not complete).  
a All non-white European women with ethnicity data were not included in the analysis.  
b MoBa primarily of white European origin.  
Abbreviations: BiB, Born in Bradford; ALSPAC, Avon Longitudinal Study of Parents and Children; MoBa, Norwegian Mother, Father and Child Cohort Study; CHD, 
congenital heart disease; BMI, body mass index; kg, kilograms; m, meters. 
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Exploring directional consistency between phenotype (conventional multivariable regression) and genotype (Mendelian randomization) associations with metabolic traits
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Figure 6.3. Showing results comparing the main confounder adjusted associations of maternal metabolomic traits with offspring CHDs (Panel A: N = 8,551 & N 
CHD cases = 96) to the Mendelian randomisation analyses of maternal genetic risk scores and offspring CHDs (Panel B: N = 38,662 & N CHD cases = 319). 
N.B. results from each analysis are presented on different scales; I am not attempting to quantify estimates in the MR analyses, the aim is to compare the 
direction of effect. The confounder adjusted associations are as above in Figure 2. The MR analyses are adjusted for the top 10 genetic principal components and 
genetic batches in MoBa. The results were pooled using random effects meta-analyses. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; GRS, 
genetic risk score; MR, Mendelian randomisation; OR, odds ratio; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very 
low-density lipoprotein.
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6.5. Discussion 

 

Maternal metabolism dynamically responds to different exposures and disease states. During 

pregnancy, there are widespread metabolic changes which are required to meet the demands of the 

developing fetus. Here, I have performed a study to explore the association of pregnancy metabolomic 

traits with odds of CHD within a causal framework. Using multivariable regression, I found that high levels 

of serum amino acids, VLDL traits, albumin, and citrate during pregnancy could decrease odds of CHD, 

with results replicating in MR analyses. There was also good evidence from multivariable regression and 

MR analyses of a positive association for maternal estimated degree of unsaturation and offspring CHD. I 

replicated findings from previous research showing that higher glucose was positively associated with 

offspring CHD and showed that this was only seen in White European women and not South Asian. 

Glucose results were not replicated in MR analyses.  

The results presented in this work complement those presented in Chapter 5. Here, there were 

less traits (N = 148 versus 923 in Chapter 5) but more participants with metabolomics data (N = 11,195 

versus 2,605). Furthermore, I used summary data from a GWAS that was performed in greater numbers 

for MR replication analyses (N = ~115,000 versus ~15,000 in Chapter 5). In this Chapter, I found similar 

negative associations for several amino acids providing further evidence that low levels of amino acids 

during pregnancy could contribute to CHDs. I found consistent directions of effect for alanine, isoleucine, 

leucine and valine in MR analyses. However, the GRS s for isoleucine, leucine and valine were not specific 

to the intended amino acids, whereas the GRS of alanine was strongly associated with alanine levels in 

BiB - satisfying the MR relevance assumption. The GRS was also specific for alanine suggesting less risk of 

potential pleiotropic effects. Overall, the results presented here, combined with those presented in 

Chapter 6, and previous research finding that amino acid concentrations were lower in offspring with 

CHDs 219 provide evidence of a potential causal effect of amino acid concentrations and offspring CHD.  

There was evidence from multivariable regression and MR analyses of a positive association of 

estimated degree of unsaturation (a measure of the number of double bonds found in fatty acids). There 

were also some potential negative associations for other fatty acid traits, although none provided robust 

evidence with consistent directions of effect in multivariable and MR analyses, with confidence intervals 

crossing the null. There was some evidence of differences of associations for fatty acids and CHD between 

South Asian and White European women, although it was not possible to explore this further as stratifying 

reduced power to detect effects. However this is complemented by previous work of mine which has 
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reported ethnic differences in fatty acid concentrations during pregnancy (e.g., higher levels of mono-

unsaturated fatty acids in White European compared to South Asian women) 197.  

The results presented here do not replicate previous findings that have found positive 

associations of conventional (clinical chemistry) maternal blood lipids and offspring CHD 86,87. Smedt et al 

86 found positive associations for ApoB, LDL cholesterol and total cholesterol, whereas the results 

presented in the current study were null for related cholesterol traits and in the opposite direction 

(negatively associated) for ApoB, but with confidence intervals including the null. One key difference 

between the study performed by Smedt et al and the present study is that they measured blood lipids 16 

months after pregnancy in mothers that gave birth to a child with CHD 86. Given that it is known that the 

metabolome and lipidome dynamically respond to pregnancy, and then returns to a pre-pregnancy state 

post-partum 78, it is difficult to directly compare their results to those presented here. In contrast, Cao et 

al 87 assessed lipid levels using blood samples taking during the first trimester of pregnancy in a Chinese 

population. They also found positive associations for maternal ApoB as well as triglycerides. The study did 

not have the depth of confounder data that was used in the present study. One other study reported 

associations of maternal triglycerides and offspring CHD and reported a non-linear association (increased 

CHD risk for low and high triglycerides) 229. I found negative associations for several triglyceride traits, 

partially replicating these previous findings, but was not able to explore non-linearity. MR analyses of 

these traits did not replicate and were less clear due to the imprecision in estimates.   

There is a large body of evidence suggesting that poor maternal glycaemic control and diabetes 

are strong risk factors for offspring CHD 207,230–232. In this study, I found positive associations of maternal 

glucose during pregnancy and offspring CHD, corroborating these previous findings. When stratifying by 

ethnicity, there was evidence that this may be specific to White European women. MR analyses did not 

replicate findings for glucose. Further well-powered MR studies are warranted to explore this further. 

There was some evidence in multivariable regression and MR analyses of negative associations for 

albumin and citrate. Lower levels of albumin (hypoalbuminemia) are a significant predictor of various 

adverse pregnancy outcomes such as hypertensive disorders of pregnancy (HDP) as proteinuria results in 

urinary albumin loss 233. Given that maternal HDP have previously been associated with offspring CHD 

49,234, it is plausible that the negative association for albumin seen here could be related. For citrate, a 

recent review has summarised previous findings and potential uses of measuring serum citrate 

concentrations for clinical purposes 235. Citrate is involved in many metabolic processes including 

regulating energy production and fatty acid synthesis. The findings presented in the current study suggest 

deficiencies in maternal citrate concentrations could be involved with the pathophysiology of CHDs with 
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MR providing evidence of replication. External replication of these results is warranted which could pave 

way to future mechanistic studies and therapeutic targets.  

This study has several strengths. Firstly, >11,000 women (> 100 CHD cases) were included and not 

pre-selected based on having CHD. BiB has a rich resource of data which allowed for control of potentially 

relevant confounders. Multivariable regression associations from a single cohort without replication does 

not provide the most robust findings, so I attempted to seek replication in other ways. This was done by 

firstly attempting to use NMR data in the MoBa cohort, but due to delays caused by the COVID-19 

pandemic, these data were not available. The next step was to use the novel NMR GWAS data from UKBB 

to generate genetic instruments of metabolomic traits for MR analyses. Exploring consistency of effects 

in MR analyses using data from 3 cohorts provides greater confidence in the findings where there was 

directional consistency between the two methods. Lastly, to my knowledge, no previous study that has 

used pregnancy metabolomics in relation to CHD has explored potential ethnic-specific effects. The 

unique structure of the BiB cohort provided an opportunity to do this. However, the ethnic-stratified 

results were underpowered. Despite this, it demonstrates the importance of acknowledging that results 

performed in homogenous ethnic populations may not be generalisable to other populations, given what 

we know about ethnic differences during pregnancy 197 and the results presented here. As I was able to 

perform MR analyses for nearly all metabolomic traits (145/148) included in multivariable regression 

analyses, I did not use P-value cut-offs to determine whether a trait was associated with CHD. Rather, I 

focused on magnitudes and directions of effects and whether results were directionally consistent in MR 

analyses.  

A key limitation of this study is not having the ability to replicate the multivariable regression 

results in an independent cohort. Secondly, the NMR data was measured in maternal serum taken at a 

single timepoint during pregnancy around 26-28 weeks’ gestation. Fetal cardiac development occurs 

during the first trimester 143. The assumption in the work presented here is that metabolite levels around 

26-28 weeks’ gestation are good proxies for levels in early pregnancy - when the offspring heart is forming. 

Whilst this is an assumption which can’t be directly tested here, previous work has shown that between 

person differences throughout pregnancy remain largely consistent (i.e., those with a high level of a 

metabolite in early pregnancy tend to have a similarly high level of a metabolite in later pregnancy) 81.  

There are several points to consider in relation to the MR analyses presented in this study. MR 

analyses are sensitive to their assumptions that the GRS is statistically strongly associated with the 

metabolite in pregnancy. I assessed this by examining the association of each GRS with the metabolomic 

trait that I was trying to proxy. Most of the GRSs were robustly associated with the trait, but also other 
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traits, which was not unsurprising given the correlation structure. Therefore, in most instances it is difficult 

to draw robust conclusions for single traits, but more appropriate to conclude effects for the group of 

correlated traits as I have done with amino acids above. Methods that are available for exploring potential 

bias due to horizontal pleiotropy in two sample MR were not possible here. Similar or stronger variation 

of a GRS for other metabolomic traits could be related to vertical (i.e., influencing CHD via the trait of 

interest and other traits through mediating pathways) or horizontal (i.e., influencing CHD independently 

of the trait of interest) pleiotropy. I was not able to distinguish between these two.  

This study provides insight into how maternal metabolism during pregnancy may influence 

offspring CHD. I found evidence that amino acid metabolism during pregnancy could be important to the 

aetiology of CHD. There was also evidence of potential effects for some fatty acid and VLDL traits, albumin, 

and citrate. My analysis pipeline which included exploring replication of findings using MR should prove 

to be more valuable as metabolomic and GWAS datasets continue to grow. Ultimately, metabolomics 

studies in relation to CHD are still novel and further larger studies are needed. Metabolomic studies 

provide scope to identify important biological pathways involved in CHD which could lead to therapeutic 

targets. Recommendations for future studies include having large numbers with data on multiple 

metabolomics platforms during pregnancy and CHD subtypes where possible, having the ability to 

perform external replication analyses, and to focus on using methods that can improve causal inference.  
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Chapter 7. Discussion 
 

The aim of this thesis was to explore pregnancy risk factors for congenital heart disease (CHD). To do 

this, I explored the effects of maternal body mass index (BMI), smoking and alcohol using parental 

negative control analyses and Mendelian randomisation (MR). I then went on to explore potential effects 

of maternal metabolites on CHDs to further interrogate how the pregnancy environment might contribute 

to CHD pathophysiology. In this discussion chapter, I provide an overview of the primary findings for 

analyses included in each chapter along with strengths and limitations. I then consider the public health 

and clinical implications of my findings and provide recommendations for future research.  

 

7.1. Summary of findings 

 

Chapter 2 described the CHD data in the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort which was used for analyses in subsequent chapters. I demonstrated that combining multiple 

sources of data including data from antenatal, delivery, primary and secondary health records, and 

parent-reported information can improve case ascertainment. Importantly, using linked primary care 

data, I showed that not all CHD cases are identified during early life which was also seen in the Born in 

Bradford (BiB) cohort 70.  Not only were the data described in this chapter integral to the work presented 

in this thesis, but I hope they will also prove to be useful to the wider research community. Limitations of 

this work include not all participants being able to be linked to electronic health records and not having 

access to hospital episode statistics (HES) data. However, these limitations were partly mitigated by the 

approach of combining multiple sources of data to identify cases, which is the key strength of this work.  

In Chapter 3, I used parental negative exposure control analyses to explore the effects of maternal 

pre-pregnancy BMI, and pregnancy smoking and alcohol on offspring CHD. To my knowledge, this study 

was the first to use this method to explore the effects of potential residual confounding of maternal 

exposures on CHDs. With the formation of the Horizon 2020 LifeCycle cohort collaboration, I was able to 

include seven different European birth cohorts which maximised numbers and provided opportunities to 

explore heterogeneity between populations. From this work, I found no evidence of a linear effect of 

maternal BMI but did find positive associations between maternal overweight and obesity categories with 

offspring CHD, which was consistent with previous findings 43,65,66. However, paternal negative control 

analyses suggested that these positive associations could be due to confounding factors. I found evidence 

of an intrauterine effect for maternal smoking on offspring CHD, which appeared to be driven by non-



 

 160 

severe CHD cases. In this work, results for alcohol were inconclusive due to a lack of paternal alcohol data 

around the time of the mother’s pregnancy. The key strengths of this work are the large sample size, the 

use of a negative paternal exposures control analyses, and the pooling of results from several cohort 

studies that are less prone to selection bias that can occur in case‐control studies. Limitations include The 

Norwegian Mother, Father and Child Cohort (MoBa, the largest cohort included in the study) only having 

CHDs diagnosed around birth and not throughout childhood which meant that some CHD cases diagnosed 

later in life could have been misclassified as non-CHD cases. Second, the negative control analyses assume 

that factors that would confound the maternal exposure‐offspring CHD associations would have a similar 

magnitude and direction of confounding for the equivalent paternal associations. Although previous work 

has showed proof-of-concept 90,131, I was not able to test this assumption. There is also the possibility that 

maternal smoking and alcohol were underreported, which could have biased results towards the null.  

Chapter 4 examined the same exposures as in Chapter 3 using MR. I found no evidence of a causal 

effect of higher maternal BMI on offspring CHD which corroborated findings from negative control 

analyses. Using MR, I did not replicate the positive association for smoking found in Chapter 3. However, 

I did find some evidence of a potential causal effect of maternal alcohol on offspring CHD. Very few studies 

have used MR to explore maternal risk factors for CHD. Early work used meta-analyses to combine data 

and improve statistical power to explore effects of folate deficiency and the methylene tetrahydrofolate 

reductase C677T genetic variant 236, but to my knowledge the work presented in this chapter is the first 

to use MR to explore effects of BMI, smoking and alcohol on CHD. Strengths of this work are the inclusion 

of 3 cohorts to maximise numbers and explore heterogeneity and having the ability to adjust for offspring 

genotype. The limitations of this work are the relatively small number of CHD cases included as CHD is a 

rare outcome, meaning that estimates were often imprecise and there was potential for weak instrument 

bias in alcohol analyses. 

Chapter 5 examined the relationship of maternal gestational mass spectrometry (MS)-derived 

metabolites with offspring CHD using multivariable regression and MR analyses. I found evidence that 

amino acid metabolism during pregnancy, several lipids (more specifically androgenic steroids), and levels 

of succinylcarnitine could be important contributing factors to CHD. There were two key strengths of this 

study. First, the unique data in BiB could support novel analyses of associations of a wide range of 

maternal metabolic paths with offspring CHD risk. Second, the use of complimentary data sources and 

statistical techniques to build layers of evidence improved the robustness of the findings. Limitations 

include only having 46 CHD cases in the initial multivariable regression metabolomic analyses, having 
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metabolomics at a single timepoint during mid-pregnancy and not being able to reliably assess vertical 

and horizontal pleiotropy in MR analyses.  

In Chapter 6, I undertook a similar approach to Chapter 5 by employing multivariable regression and 

MR analyses. The work in this chapter examined the relationship of maternal gestational nuclear magnetic 

resonance (NMR)-derived metabolic traits with offspring CHD. There was evidence that amino acid 

metabolism during pregnancy could be an important contributing factor which is consistent to results 

presented in Chapter 5. There was also evidence of potential effects for some fatty acid and very low-

density lipoprotein (VLDL) traits, albumin, and citrate. This work complements the work in Chapter 5 by 

having metabolomic data in larger numbers (~11,000 women versus ~3,000 women) and by constructing 

genetic instruments for more traits using data from a larger and more powered genome-wide association 

study (GWAS). Strengths of this work include being able to assess associations of ~150 metabolic traits in 

both multivariable regression and MR analyses to explore replication and being able to explore potential 

ethnicity-specific associations. I have plans in place to perform external replication analyses for this work 

in MoBa soon which will further strengthen the study. Limitations of this work are similar to those 

presented above for Chapter 5. These include only being able to assess associations of metabolic traits in 

a single cohort (BiB), having metabolomics at a single timepoint and not being able to reliable assess 

vertical and horizontal pleiotropy in MR analyses. 

Bringing this together, in this thesis I have explored how the pregnancy environment may contribute 

to offspring CHD. Firstly, I examined associations of conventional pregnancy exposures (BMI, smoking, 

alcohol) using multiple datasets and study designs. I found evidence of a possible intrauterine effect for 

maternal pregnancy smoking on offspring CHD and found that higher maternal alcohol intake may be 

causally related to offspring CHD. It should be noted that the results for smoking analyses were not 

concordant between the two methods used to approach the research question (negative control and MR 

analyses). As discussed, the MR work is relatively underpowered and does not definitively rule out an 

effect (confidence intervals spanning the null). On the other hand, the negative control study was well 

powered, included more cohorts and included sub-categories of CHD. Therefore, in this thesis, more 

weight is given to the negative control study when drawing conclusions. As an extension to the work 

exploring conventional exposures and recognising for the potential to elucidate modifiable upstream risk 

factors, I then explored associations of the pregnancy metabolome with offspring CHD. To my knowledge, 

the metabolomic studies presented within this thesis are the first to attempt to explore the relationship 

between pregnancy metabolites and offspring CHD within a causal framework. The results from this work 

have uncovered some promising avenues for future research.  
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7.2. Strengths and limitations 

 

Here, I briefly discuss some of the overall strengths and limitations of the work presented in this thesis. 

A key strength of the work is that I have included multiple studies to explore replication and triangulated 

findings using different approaches. This is important, as if results are consistent between different 

populations and study designs, this provides greater confidence in findings. Next, because I used data 

from birth cohorts which follow participants throughout the life course, in some instances I was able to 

obtain CHD cases from stillbirths, miscarriages and cases diagnosed later in life which often has not been 

possible in previous studies. I have used pre-defined analysis plans for all of my studies and have openly 

documented these online via the Open Science Framework. Thinking back to the Introduction where 

several systematic reviews found evidence of publication bias, this is one way to help mitigate this and to 

promote honest, robust science. Throughout my PhD, I have convinced colleagues to adopt this practice 

(pre-specifying analyses and registering them online) and I hope this approach continues to grow and 

becomes the norm.  

An overall limitation of this thesis is not being able to explore results for CHD subtypes. In negative 

control analyses, I was able to explore findings for CHD severity and showed that the effect I saw for 

smoking could be driven by non-severe cases. However, I was not able to explore further what specific 

subtypes of non-severe CHDs might have been driving this association due to the numbers required for 

meaningful analyses. For most analyses, I only explored effects of any CHD, which, as stated in the 

Introduction is important to know for policy makers and prospective parents, but I acknowledge that 

future work should explore subtypes where possible provided the work is powered to do so. For example, 

previous work has shown that maternal overweight and obesity status (aortic arch defects and ASDs) 65, 

smoking (ASDs)55, and alcohol consumption (ToF) 41 have been associated with CHD subtypes. Although, 

these previous studies did not use causal methods (as was done in this thesis), a natural progression of 

these studies and the work presented throughout this thesis would be to perform causal analyses 

(negative control and MR) with CHD subtypes. However, finding datasets large enough to do this may 

prove to be difficult. In relation to this, it would also be useful to categorise CHD into isolated (CHD 

occurring without other anomalies) and CHD occurring with other CAs as well as taking into account 

previous history of CHD in the mother (familial recurrence), however, the datasets that were used did not 

provide an opportunity to do this. Another limitation is that the metabolomics work was heavily reliant 

on BiB data which has a unique ethnic structure. As noted in the COVID-19 statement, I had planned to 

perform external replication analyses in MoBa for Chapter 6, but COVID-19 disruption prevented this. The 
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MR analyses did include data from other cohorts and the results in which MR shows replication add 

another layer of evidence to provide robustness to the findings. Levels of missing data differed depending 

on the analyses and cohort used. Where possible, I assessed whether missing data was influencing my 

results by performing complete case analyses and didn’t find any evidence to suggest that missing data 

were influencing my findings. It is possible that findings could have been influenced by selection bias via 

selection into a cohort study or by attrition over time 181,182. Given that I mostly used pregnancy data (i.e., 

around the time or soon after recruitment), the latter is unlikely to be an issue.  

 

7.3. Public health and clinical implications of findings 

 

Findings from negative control and MR analyses suggest that lowering maternal pre-/early-pregnancy 

BMI is unlikely to be an effective prevention target for CHD. However, an effect of maternal underweight 

status and offspring CHD cannot be ruled out and should be explored in future studies. Given that 

maternal underweight status during pregnancy is associated with multiple adverse outcomes, such as low 

birthweight and preterm birth 237, it is plausible that maternal underweight status could impair fetal 

cardiac development. This could have important implications for public health policy such as additional 

screening for underweight pregnant women or underweight women of child-bearing age. As noted above, 

I was unable to explore effects for CHD subtypes. A large Swedish registry study found associations for 

maternal overweight and obesity status for several CHD subtypes 65. They also reported associations for 

maternal underweight status and CHD subtypes, but results were imprecise due to the few numbers of 

underweight women. Due to the observational study design, the causal nature of associations with CHD 

subtypes is unclear. Therefore, it remains uncertain as to whether any maternal BMI-related prevention 

strategies could reduce CHD incidence. 

There was evidence of a causal intrauterine effect of maternal pregnancy smoking on offspring CHD 

using parental negative exposure control analyses. These findings suggest that reducing smoking during 

pregnancy could help prevent some CHD cases. Given that all clinical guidelines advocate not starting 

smoking, and if women do smoke, to quit before becoming pregnant, more research is needed to 

understand how best to reduce smoking during pregnancy. Smoking prevalence worldwide continues to 

fall, but the absolute numbers of smoking have increased, particularly in developing countries 238. Robust 

evidence-based policies are required to reduce these numbers, which in turn could help decrease global 

CHD incidence and disease burden. Furthermore, understanding the specific mechanisms that link 

maternal smoking to increased offspring CHD risk could identify targets for interventions for its 
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prevention. Findings from MR analyses did not support those from negative control analyses for smoking. 

However, this was the first MR study of its kind and was performed in small numbers and so cannot 

definitively rule out the absence of a causal effect. Of note, in presence/absence adjusted analyses in 

Chapter 5, the presence of any level of cotinine was positively associated with CHDs (OR: 1.95 (0.95, 3.85)) 

although confidence intervals included the null which is why it is not presented in the results within the 

main text. This demonstrates how metabolomics studies have the potential to compliment studies that 

measure a pregnancy exposure.  

In this thesis, there was some evidence of a positive association of alcohol consumption and offspring 

CHD in observational and MR analyses. It is possible that policies that aim to reduce alcohol consumption 

during pregnancy could decrease CHD disease burden. Larger sample sizes and stronger instruments (for 

MR) in future analyses may help to clarify this further. 

Metabolomics is still a relatively novel technology in the field of pregnancy and offspring outcomes. 

It would be overambitious to expect immediate clinical translation from metabolomics studies in relation 

to CHD. Potential clinical and public health impacts from metabolomics could arise from two broad areas: 

(i) identifying novel causal pathways/biomarkers for CHD and (ii) improving prediction for CHD. In this 

thesis, I have focused on identifying causal maternal gestational metabolites/traits for offspring CHD. The 

idea behind this is to enhance our understanding of how the pregnancy environment may relate to 

offspring CHD in a real-world population health setting. The work in this thesis has shown that levels of 

amino acids, androgenic steroid metabolites, succinylcarnitine, fatty acids, VLDL traits, albumin and citrate 

during pregnancy may contribute to CHD. All of these had at least some evidence of replication in MR 

analyses. However, I acknowledge that external replication is necessary for drawing robust conclusions. 

Although, these results do contribute to our overall understanding of CHDs and will hopefully encourage 

others to invest in similar types of data. If we can identify robust causal associations for certain metabolic 

pathways, this could help identify preventive therapeutic interventions.  

Overall, this thesis has provided evidence that maternal exposures can contribute to offspring CHD 

status. Policy makers will want to know which exposures would be best to target as the money for 

preventive interventions is limited. The work in this thesis contributes to the body of evidence for key 

exposures (BMI, smoking and alcohol) and serves as a strong starting point for the use of metabolomics 

during pregnancy to disentangle potentially important biological pathways. Clinicians will also be 

interested in these results. Although the first antenatal clinic (~12 weeks’ gestation) is already too late for 

prevention given that CHDs manifest earlier in pregnancy, clinicians will still be interested in these results 

as many of the women they see will go onto have subsequent pregnancies. Therefore, clinicians will be 
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able to communicate the risks of certain exposures of fetal cardiac development which in turn could elicit 

behaviour change for future pregnancies and thus help reduce CHD burden.   

 

7.4. Future work  

 

In this thesis, I have attempted to use methods that improve causal inference in the context of 

identifying maternal gestational risk factors for offspring CHD. A natural extension to this work would be 

to use similar/additional methods to interrogate maternal exposures for offspring CHD subtypes. This 

would require considerable sample sizes for meaningful analyses. Electronic medical records data are now 

becoming more accessible for scientific research but may not have the depth of data that birth cohorts 

possess. For example, paternal exposures (for negative control analyses) around the time of pregnancy 

may not be routinely collected. Other methods that could be used in aetiological CHD research as part of 

a triangulation framework to improve causal inference include: (i) natural experiments; e.g., explore policy 

changes that affect smoking and alcohol in relation to CHDs (done previously for smoking and pregnancy 

complications using Scottish national administrative data) 239. (ii) Within sibling comparisons; assesses 

associations within sibships (comparing outcomes between siblings who are discordant for the exposure). 

This would require maternal and offspring CHD data across two pregnancies meaning statistical power 

may be difficult to obtain. (iii) Cross-context comparisons; compares results between two or more 

populations in different contexts that result in confounding structures being different. E.g., a recent study 

confirmed the strong association between maternal smoking and birth weight by using 2 birth cohorts 

born 40 years apart 240. However, finding relevant datasets for CHD could be difficult. These three methods 

along with multivariable regression, negative control analyses and MR analyses should be used where 

possible and triangulated to improve causal inference 96.  

To date, MR has been underutilised in aetiological CHD research. A key reason for this is that not 

many studies have genome-wide data in mothers and offspring as well as offspring CHD data, which would 

be required for one-sample MR as demonstrated throughout this thesis. However, there are now methods 

that can explore whether maternal exposures are causally related to offspring outcomes using two-

sample MR 241,242. This requires largescale GWAS data on CHD. To the best of my knowledge, there are 

currently no publicly available GWAS summary statistics for CHD. To date, the largest GWAS for CHD in a 

European population included ~4,000 cases and found one genetic risk factor that was significantly 

associated with all CHD phenotypes, as well as uncovering associations for specific subtypes 243. As these 
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GWAS continue to grow, significant data sharing and collaboration will be required, which could then pave 

way for large-scale two-sample MR studies to explore maternal risk factors for CHDs.  

As mentioned previously, there are still relatively few studies that have used metabolomics 

measurements during pregnancy in relation to offspring CHD. Firstly, I propose for confirmatory studies 

to seek replications of previous findings to target promising future avenues of investigation. Replication 

studies and reporting of null results is crucial for improving our scientific understanding of CHD aetiology. 

Next, if the cost of metabolomics decreases, larger studies with repeat measurements will be required to 

uncover potential effects and where possible methods that improve causal inference (described above) 

should be used. Although not used within this thesis, other omics’ technologies should also be considered 

and combined to provide a deeper understanding of CHD aetiology 244. 

Finally, there is a pressing need for CHD-related research in developing nations. Throughout this 

thesis, I have largely used data from European birth cohorts, meaning that results are not necessarily 

generalisable to other populations. There is also a significant amount of CHD-related research in Chinese 

populations which was evident in the umbrella review presented in Chapter 1. However, research in 

places such as Africa is extremely limited. For example, highest rates of CHD have been observed in 

western, central, and eastern sub-Saharan Africa, central and southeast Asia, with lowest rates in Europe 

and the Americas 9. More research is needed to understand why this is happening, what the causes are 

and how to prevent it.   

7.5. Concluding remarks  
 

The findings presented in this thesis have contributed to further our understanding of modifiable 

factors that influence CHD risk. They have shown that using different and complimentary statistical 

methods and data sources can augment epidemiological understanding of exposure-disease relationships. 

This thesis provides evidence using a causal framework that maternal lifestyle factors during pregnancy 

can increase CHD risk as well as providing novel insights into maternal metabolism and its relevance to 

CHD. Key next steps will be to continue integrating findings within a triangulation framework to explore 

effects of CHD and CHD subtypes as well as expanding research into developing nations where CHDs are 

a considerable burden.  
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Appendices 
 

Please note that for some chapters, the methodological details are identical. For example, the 

definitions of CHD and the genetic data across different cohorts have been used in multiple chapters 

throughout this thesis. To avoid duplication, I have inserted this supplementary information in Appendices 

where it is first used. I first use the genetic data in Chapter 4 and so have included the supplementary 

information in relation to that under the Chapter 4 section. I then use these data again in Chapters 5 and 

6 and use hyperlinks to link back to the supplementary information in Chapter 4.  
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Chapter 2 

 

Table S2.1. GP Read codes used to extract primary care data.  

GP read code Name Description (Domain) 

P.... Congenital anomalies 
All congenital anomalies code beginning 
with "P" 

Q.... Perinatal conditions 
All perinatal conditions code beginning 
with "Q" 

A90.. Congenital syphilis Infectious/parasitic diseases 

J0002 Congenital anodontia Digestive system diseases 

F4K51 Congenital nystagmus Nervous system/sense organ dis 

C3710 Congenital porphyria Endo/nutr/metab/immun.diseas 

B7J1. Congenital lymphangioma Neoplasms  

14H.. H/O: congenital anomaly History/Symptoms  

C03.. Congenital hypothyroidism Endo/nutr/metab/immun.diseas 

D4010 Congenital dysphagocytosis Blood/blood forming organs dis 

BBG8. [M]Congenital fibrosarcoma Neoplasms  

J6900 Congenital coeliac disease Digestive system diseases 

D4170 Congenital methaemoglobinaemia Blood/blood forming organs dis 

D2003 Congenital red cell hypoplasia Blood/blood forming organs dis 

D2000 Congenital hypoplastic anaemia Blood/blood forming organs dis 

F145. Congenital nonprogressive ataxia Nervous system/sense organ dis 

G8610 Primary (congenital) lymphoedema Circulatory system diseases 

F5914 Congenital sensorineural deafness Nervous system/sense organ dis 

C1520 Congenital adrenogenital syndrome Endo/nutr/metab/immun.diseas 

C3905 Congenital hypogammaglobulinaemia Endo/nutr/metab/immun.diseas 

Eu802 [X]Congenital auditory imperception Mental disorders 

C0A.. Congenital iodine deficiency syndrome Endo/nutr/metab/immun.diseas 

66g.. Congenital heart condition monitoring Prentive procedures 

F383. 
Congenital and developmental 
myasthenia Nervous system/sense organ dis 

ZV136 
[V]Personal history of congenital 
malformations Unspecified conditions 

F591A 
Bilateral congenital sensorineural 
hearing loss Nervous system/sense organ dis 

D303z 
Congenital deficiency of other clotting 
factor NOS Blood/blood forming organs dis 

L185. 

Congenital cardiovascular disorders 
during pregnancy, childbirth and the 
puerperium Pregnancy/childbirth/puerperium 

L240. 

Congenital abnormality of uterus in 
pregnancy, childbirth and the 
puerperium Pregnancy/childbirth/puerperium 

79... Heart procedure Operations, procedures, sites 
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7L0G. 
Correction of congenital deformity of 
hip Operations, procedures, sites 

7L0H. 
Correction of congenital deformity of 
leg Operations, procedures, sites 

7L0F. 
Correction of congenital deformity of 
hand Operations, procedures, sites 

7L0E. 
Correction of congenital deformity of 
forearm Operations, procedures, sites 

7L0L. 
Correction of minor congenital 
deformity of foot Operations, procedures, sites 

7L0K. 
Other correction of congenital 
deformity of foot Operations, procedures, sites 

7L0J. 
Primary correction of congenital 
deformity of foot Operations, procedures, sites 

7G03L 
Excision of congenital pigmented 
naevus of head or neck Operations, procedures, sites 

7L0K4 
Triple arthrodesis for correction of 
congenital deformity Operations, procedures, sites 

7L0D. 
Correction of congenital deformity of 
shoulder or upper arm Operations, procedures, sites 

x01O4 Warfarin Drug 

b31.. Frusemide Drug 

x01Qk Oral digoxin Drug 

b43.. Spironolactone Drug 

x005J Heparin Drug 

x01Qe Enalapril Drug 

bi... 
Angiotensin-converting enzyme 
inhibitor Drug 

x000Z Antiarrhythmic drug Drug 

x01Nx Anticoagulant Drug 

bu... Antiplatelet drug Drug 

x01Ch 
Selective beta-1 adrenoceptor 
stimulants Drug 

bkA.. Bosentan Drug 

b9... Diuretics with potassium Drug 

gh5.. Sildenafil Drug 

be... Vasodilator antihypertensive drugs Drug 
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Table S2.2. ALSPAC questionnaires and questions used for the child-based questionnaire category. All 

questionnaires can be downloaded from: http://www.bristol.ac.uk/alspac/researchers/access/  

File (questionnaire) Timepoint Question number Questionnaire response rate 
(based on total live births) 

D3A  KE  

KA 4 weeks A4A 88% 

KA 4 weeks F2B.2 88% 

KA 4 weeks A5B 88% 

KA 4 weeks F2A.2 88% 

KA 4 weeks A5F 88% 

KA 4 weeks F2B 88% 

KB 6 months G6D 81.3% 

KB 6 months G6C 81.3% 

KB 6 months G5C 81.3% 

KB 6 months G6E 81.3% 

KB 6 months G5E 81.3% 

KB 6 months A8C 81.3% 

KB 6 months A7C 81.3% 

KC 1y 3m B6C 78% 

KC 1y 3m B5F 78% 

KC 1y 3m B4E 78% 

KC 1y 3m C1C 78% 

KC 1y 3m B5C 78% 

KC 1y 3m B3A 78% 

KD 1y 6m A19K.6 76% 

KD 1y 6m F5 76% 

KE 2y 0m D3A 74% 

KE 2y 0m D3C 74% 

KE 2y 0m D3D 74% 

KF 2y 6m A7D 74% 

KF 2y 6m A6C 74% 

KF 2y 6m A18B 74% 

KF 2y 6m A7C 74% 

KG 3y 2m A6C 71.7% 

KG 3y 2m A5C 71.7% 

KG 3y 2m A5F 71.7% 

KG 3y 2m I11F 71.7% 

KJ 3y 6m A4D 71.3% 

KK 4y 6m B5B  

KK 4y 6m B10C  

KK 4y 6m B10F  

KK 4y 6m B5E  

KK 4y 6m B9J  

KL 4y 9m A6H 68% 

KL 4y 9m A5C 68% 

http://www.bristol.ac.uk/alspac/researchers/access/
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KL 4y 9m E13 68% 

KL  4y 9m A6H 68% 

KM 5y 5m B10F 64% 

KM 5y 5m B10C 64% 

KM 5y 5m B5A 64% 

KM 5y 5m B10G 64% 

KM 5y 5m B4D 64% 

KN 5y 9m A5H 62% 

KN 5y 9m E13 62% 

KP 6y 5m C9D 61% 

KP 6y 5m C12C 61% 

KP 6y 5m C12F 61% 

KP 6y 5m C6B 61% 

KR 7y 7m N2B(V) 58.8% 

KS 8y 7m A4P 56.8% 

KS 8y 7m A6H 56.8% 

KS 8y 7m D8G 56.8% 

KS 8y 7m D4E 56.8% 

KS 8y 7m D5D 56.8% 

KV 10y 8m O2A 53% 

KV 10y 8m A10B 53% 

KW 11y 8m B5D 51% 

KW 11y 8m B8C 51% 

KW 11y 8m B8F 51% 

KW 11y 8m H8F 51% 

TA 13y 1m A4C 49% 

TB 13y 10m A4W 48% 
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Table S2.3. Search strategy for child-based questionnaires.  

Search Term(s) 

“congenital” 

“heart” 

“cardiac” 

“hart” 

“conjenital” 

“defect” 

“ventric” 

“fallot” 

“septal” 

“VSD” 

“abnormal” 

“testes” 

“testic” 

“testis” 

“renal” 

“kidney” 

“lung” 

“respir” 

“web” 

“malform” 

“chrom” 

“genet” 

“gene” 

“anencephaly” 

“neural” 

“hypoplastic” 

“bladder” 

“born with” 

“hydrocephalus” 

“spina” 

“bif” 

“syndrom” 

“ephaly” 

“phalus” 

“spad” 

“feet” 

“talipes” 

“spine” 

“hip” 

“deform” 

“toe” 

“finger” 

“ulna” 
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“radius” 

“operat” 

“surgery” 

“anomal” 

“procedure” 

“hernia” 

“splint” 

“tongue” 

“cleft” 

“palat” 

“palet” 

“pylo” 

“stenosis” 

“club” 
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Table S2.4. Subcategories of congenital anomalies defined using EUROCAT guide: https://eu-rd-

platform.jrc.ec.europa.eu/sites/default/files/Section%203.3-%2027_Oct2016.pdf  

Category ICD-10 Codes Minor anomalies excluded according to 
EUROCAT 

All congenital 
anomalies  

Q00-Q07, Q10-Q15, Q16-Q18, 
Q20-Q25, Q260, Q262-Q269*, 
Q300, Q32- Q34, Q35-Q37, Q38-
Q45, Q790, Q792, Q793, Q795, 
Q60-Q64, Q794, Q50-Q52, Q54-
Q56, Q65-Q74, Q750, Q77, Q782-
Q788, Q80-Q81, Q820- Q824, 
Q826-Q829, Q860, Q890, Q893-
Q894, Q90-Q92, Q93 , Q96- Q99.  

Q0461, Q0782, Q101-Q103, Q105, Q135, 
Q170-Q175, Q179, Q180- Q182, Q184- 
Q187, Q1880, Q189, Q320, Q331, Q381, 
Q382, Q3850, Q400, Q401, Q4021, Q430, 
Q4320, Q4381, Q4382, Q610, Q627, 
Q633, Q523, Q525, Q527, Q5520, Q5521, 
Q653-Q656, Q662-Q669, Q670-Q678, 
Q680, Q6810, Q6821, Q683- Q685, 
Q7400, Q936. 

CHD Q20-Q25, Q260, Q262-Q269* Q2111, Q2111, Q250 if GA <37 weeks, 
Q2541, Q256 if GA<37 weeks, Q261.  

Nervous system Q00, Q01, Q02, Q03, Q04, Q05, 
Q06, Q07. 

Q0461, Q0782. 

Respiratory Q300, Q32- Q34  Q314, Q315, Q320, Q331, Q3310, Q336, 
Q315, Q320 

Orofacial clefts Q35-Q37 -  

Eye Q10-Q15 Q101, Q102, Q103, Q105, Q135. 

Ear, face, neck Q16, Q17, Q18 Q189, Q1880, Q170, Q173, Q175, Q174, 
Q171, Q172, Q181, Q179, Q186, Q184, 
Q187, Q185, Q182, Q180 

Digestive system Q38-Q45, Q790 Q381, Q382, Q3850, Q400, Q401, Q4021, 
Q430, Q4320, Q4381, Q4382 

ABWD Q792, Q793, Q795  - 

Urinary Q60-Q64, Q794  Q633, Q610, Q627 

Genital Q50-Q52, Q54-Q56  Q523, Q525, Q527, Q5520, Q5521, Q53 

Limb Q65-Q74  Q653, Q654, Q655, Q656, Q662, Q663, 
Q664, Q665, Q666, Q667, Q668, Q669, 
Q662, Q663, Q664, Q665, Q666, Q667, 
Q668, Q669, Q670, Q671, Q672, Q673, 
Q674, Q675, Q676, Q677, Q678, Q680, 
Q6810, Q6821, Q683, Q684, Q685, 
Q7400. 

Other Q750, Q77, Q782, Q783, Q784, 
Q785, Q786, Q787, Q788, Q80, 
Q81, Q820, Q821, Q822, Q823, 
Q824, Q826, Q827, Q828, Q829, 
Q860, Q890, Q893, Q894 

Q845, Q8280, Q833, Q8252, Q8250, 
Q825, Q8251, Q899 

Chromosomal Q90-Q92, Q93 , Q96- Q99  Q936 

https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/Section%203.3-%2027_Oct2016.pdf
https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/Section%203.3-%2027_Oct2016.pdf
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Teratogenic/genetic 
syndromes, 
microdeletions and 
chromosomal 
abnormalities. 

D821, P350-P352, P371, Q619, 
Q751, Q754, Q771-Q772, Q780, 
Q796, Q85, Q861-Q869, Q87, 
Q90-Q92, Q930-Q939, Q95-Q99 

-  

**Q250 and Q256 not a case if isolated and GA<37weeks 
Minor anomalies excluded according to the minor anomalies for exclusion EUROCAT guide: https://eu-rd-
platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-3.2.pdf  
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Table S2.5. ALSPAC cases included in 2 or more sources.  

Anomaly subtype1 Total N Neonatal & 

Delivery (%) 

Neonatal & 

Child-based 

(%) 

Child-based & 

Delivery (%) 

All 3 sources 

(%) 

Any CA 64 8 (12.5) 8 (12.5) 39 (60.9) 9 (14.0) 

CHD 15 5 (33.3) 3 (20) 5 (33.3) 1 (6.7) 

Nervous system 0 - - - - 

Respiratory 0 - - - - 

Orofacial clefts 6 2 (33.3) 1 (16.7) 3 (50.0) 0 

Eye 0 - - - - 

Ear, face, neck 0 - - - - 

Digestive system 3 2 (66.6) 1 (33.3) 0 0 

ABWD 1 1 (100) 0 0 0 

Urinary 5 1 (20.0) 1 (20.0) 3 (60.0) 0 

Genital 10 1 0 9 0 

Limb 25 3 3 19 0 

Other 0 - - - - 

Chromosomal 2 1 1 0 0 

Probable cause2  6 1 2 3 0 

Abbreviations: CA, congenital anomaly; CHD, congenital heart disease; ABWD, abdominal wall defects; 
1 ICD codes used to define subtypes can be found in the extended data. 

* used when there were less than 5 cases in a given category.  
2 Teratogenic/genetic syndromes, microdeletions and chromosomal abnormalities. 
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Table S2.6. Remaining ALSPAC cases only included in 1 source. These are not included as a case in the final 

dataset (unless identified by a separate source such as record linkage). These are deemed ‘possible CAs’ 

and will be made available to researchers.   

Anomaly subtype1 Total N Neonatal Delivery Child-based 

Any CA* 608 57 261 324 

CHD 119 18 23 78 

Nervous system 19 0 11 8 

Respiratory 6 0 3 3 

Orofacial clefts 18 3 0 15 

Eye 11 0 4 7 

Ear, face, neck 8 0 2 6 

Digestive system 26 4 14 8 

ABWD 6 1 3 2 

Urinary 53 3 20 30 

Genital 89 5 55 29 

Limb 207 22 57 128 

Other 78 0 74 4 

Chromosomal 24 4 7 13 

Probable cause2  40 6 17 19 

Abbreviations: CA, congenital anomaly; CHD, congenital heart disease; ABWD, abdominal wall defects; 
1 ICD codes used to define subtypes can be found in the extended data. 

* The reason because this row does not add up is because CA_any is based on being a case for the other sub grouped 

variables.  For example, if the neonatal source had a CHD for one person and the delivery source has a ABWD for the same 

person, that person would be a CA_any in both sources, however, when defining the cases based on 2 or more sources, 

this was done on subgroups so this person used as an example would still effectively class as a case included in one 

ALSPAC source.  
2 Teratogenic/genetic syndromes, microdeletions and chromosomal abnormalities. 
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Chapter 3 
 

Text S3.1. Cohort descriptions. 

The Amsterdam Born Children and their Development Study (ABCD) 

The following text was adapted from the ABCD cohort profile where full study details are 

described (https://doi.org/10.1093/ije/dyq128)  15:  

Between January 2003 and March 2004, all pregnant women living in Amsterdam were asked to 

participate in the ABCD study during their first prenatal visit to an obstetric care provider (general 

practitioner, midwife or gynaecologist). Altogether, 12 373 women were approached—by estimate, ≥99% 

of the target population. According to Dutch law, all pregnant women, including illegal immigrants and 

asylum-seekers, are entitled to receive prenatal care, which is free of charge if costs are a problem. For 

all of the women approached, the care provider completed a registration form which included personal 

data such as name, address and date of birth. Based on this information, a questionnaire covering socio-

demographic characteristics, obstetric history, lifestyles and psychosocial conditions was sent to the 

pregnant women within 2 weeks, to be filled out at home and returned to the Public Health Service by 

prepaid mail. A reminder was sent 2 weeks later. The questionnaire included an informed consent sheet 

the women could use to grant permission for follow-up of their infants at the age of 3 months and every 

5 years thereafter, and for the perusal of their medical files. Approval for the ABCD study was obtained 

from the Central Committee on Research involving Human Subjects in the Netherlands, the Medical 

Ethical Committees of the participating hospitals, and from the Registration Committee of the 

Municipality of Amsterdam. Written informed consent was obtained from all participating mothers. 

 Of the 12 373 women approached, 8266 women filled out the pregnancy questionnaire (response 

rate: 67%). Of this group, 7050 women granted permission for follow-up (85%) and 7043 women granted 

permission for perusal of her and her child’s medical files (85%). To enhance participation among foreign-

born women, two supportive measures were taken: (i) a Turkish, Arabic or English translation was 

provided to women born in Turkey, Morocco or other non-Dutch-speaking countries and (ii) the possibility 

of completing the questionnaire orally was offered to women who were illiterate or had reading 

difficulties. 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

ALSPAC is a prospective birth cohort study which was devised to investigate the environmental 

and genetic factors of health and development. Detailed information about the methods and procedures 

of ALSPAC is available elsewhere 16,17,51. 14,541 pregnant women with an expected delivery date of April 

1991 and December 1992, residing in the former region of Avon, UK were eligible to take part. Additional 

enrolment provided a baseline sample of 14,901 participants 51. The study website contains details of all 

the data that is available through a fully searchable data dictionary. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees 

(http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Informed consent for the use of data 

collected via questionnaires and clinics was obtained from participants following the recommendations 

of the ALSPAC Ethics and Law Committee at the time.  

https://doi.org/10.1093/ije/dyq128
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
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The Cork SCOPE BASELINE Birth Cohort Study (BASELINE) 

The following text was adapted from the BASELINE cohort profile where full study details are 

described: https://doi.org/10.1093/ije/dyu157 18. 

The study is based in Cork, Ireland. The SCOPE Ireland pregnancy cohort formed the basis of 

recruitment of infants to BASELINE (n = 1537). In 2007, the amalgamation of all three Cork maternity units 

into one centre, Cork University Maternity Hospital (CUMH), provided a unique opportunity to conduct 

research in pregnancy in Cork. CUMH, which is co-located with the Cork University Hospital, is the third 

largest maternity hospital in Ireland, with 8563 deliveries in 2012. As recruitment was regionally based, 

the generalizability of the data may be limited. In 2008, all primiparous women in Cork were invited to 

take part in the Screening for Pregnancy Endpoints (SCOPE) pregnancy cohort. The SCOPE cohort is an 

international collaboration of research groups interested in the study of major adverse outcomes in late 

pregnancy, particularly but not exclusively, pre-eclampsia, fetal growth restriction and spontaneous 

preterm birth8 and as a consequence strict exclusion criteria were applied.9 Detailed maternal, fetal and 

paternal information was obtained antenatally, as well as blood samples at 15 and 20 weeks' gestation, 

see Table 1. All women who participated in the SCOPE study were informed about the birth cohort, and if 

consent was obtained infants were registered to the Cork BASELINE birth cohort. 

The Born in Bradford Cohort (BiB) 

The Born in Bradford study is a population-based prospective birth cohort including 12,453 

women who experienced 13,776 pregnancies between 2007 and 2011. The study is unique in that it has 

almost an equal split between White European and South Asian women, all residing in Bradford, UK. 

Bradford is a city in the North of England with high levels of socioeconomic deprivation, and the cohort 

was started due to a high prevalence of poor child health in the city 52. Full details of the study 

methodology were reported previously 19. The study website provides more information, including 

protocols, questionnaires and information on how researchers can access data and a full list of all available 

data (https://borninbradford.nhs.uk/research/documents-data/). Mothers, and their partners, recruited 

into the study provided detailed interview questionnaire data, measurements, and biological samples. 

They also consented to the linkage of theirs and their child’s data. 

The Danish National Birth Cohort (DNBC) 

The DNBC is a nationwide cohort of pregnant women, recruited from 1996 through 2002 

consisting of 100,415 pregnancies 20. Informed consent was obtained from participants upon enrolment, 

and the study was approved by the Danish Data Protection Agency through the joint notification of the 

Faculty of Health and Medical Sciences at the University of Copenhagen (Sund-2017-09), according to 

Danish regulations. Information on lifestyle and environmental factors potentially associated with 

offspring health was collected through 4 prenatal and postnatal telephone interviews at target ages 

gestational weeks 12 and 30 and child ages 6 and 18 months. The parent-child dyads were then invited 

for follow-up at 7, 11, and 18 years.  

The Norwegian Mother, Father and Child Cohort Study (MoBa) 

MoBa is a nationwide, pregnancy cohort comprising family triads (mother-father-offspring) who 

are followed longitudinally. All pregnant women in Norway who were able to read Norwegian were 

https://doi.org/10.1093/ije/dyu157
https://borninbradford.nhs.uk/research/documents-data/
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eligible for participation. The first child was born in October 1999 and the last in July 2009.  Invitations 

were sent to women in 277 702 pregnancies, the participation rate was 41%. The cohort includes more 

than 114 000 children, 95 000 mothers and 75 000 fathers 21,22. Extensive longitudinal data were collected 

using nine questionnaires: three during pregnancy, and then follow-up questionnaires when the children 

were 6 months, 18 months, 36 months, 5 years, 7 years and 8 years of age. In addition, a single 

questionnaire was administered to fathers during gestational weeks 15-18. Data collected include general 

background and health information, including diet and lifestyle, a semi-quantitative food frequency 

questionnaire, information on birth and pregnancy outcomes, and on several aspects of child nutrition 

and development, as well as the physical and mental health of both mother and child. MoBa is linked to 

the Medical Birth Registry of Norway, which provides standardised information about the health of the 

mother during pregnancy, other essential medical information related to the pregnancy and birth, and 

standard post-natal measures of the child. The establishment of MoBa and initial data collection was 

based on a license from the Norwegian Data Protection Agency and approval from The Regional 

Committees for Medical and Health Research Ethics. The MoBa cohort is now based on regulations related 

to the Norwegian Health Registry Act. 

NINFEA study 

 The NINFEA study is internet-based birth cohort established in 2005 in Italy 

(http://www.progettoninfea.it) 23,24,53. The cohort consists of children born to mothers who have access 

to the internet and enough knowledge of Italian to complete online questionnaires. The recruitment was 

conducted actively, through obstetrics clinics, and passively, via internet and the media. A baseline 

questionnaire on general health and exposures before and during pregnancy is completed by mothers at 

enrolment, which may occur at any time during pregnancy. During the period 2005-2016 around 7500 

mothers were recruited. Further follow-up information was obtained with repeated questionnaires 

completed 6 and 18 months after delivery and when children turn 4, 7, 10 and 13 years. The response 

rates for each questionnaire are available at https://www.progettoninfea.it/attachments/70. The study 

was approved by the ethical committee of the San Giovanni Battista Hospital and CTO/CRF/Maria Adelaide 

Hospital (Turin, Italy) (approval N.0048362 and following amendments).

http://www.progettoninfea.it/
https://www.progettoninfea.it/attachments/70
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Table S3.1. Study-specific methods for data collection. 

Measurement Study-specific details 

BMI data 

Maternal BMI  ABCD: Women filled out a questionnaire containing questions on sociodemographic characteristics, medical history, 
lifestyle and dietary habits (16 weeks of gestation; IQR 12–20 weeks). BMI was based on pre-pregnancy height and 
weight as reported in the pregnancy questionnaire. 
ALSPAC: In the 2nd pregnancy questionnaire (12 weeks’ gestation) women were asked to report their pre-pregnancy 
weight and height. No definition of pre-pregnancy was provided in the question. Subsequently for the majority of 
women all weight measurements from any time of pregnancy have been extracted from obstetric records (height 
was not routinely measured antenatally in the UK when these women were pregnant). First antenatal clinic 
measurements of weight correlated strongly with the women’s self-report (Pearson correlation = 0.93). 
Baseline: At 15 weeks’ gestation sociodemographic and anthropometric measurements, including objectively 
measured weight and height, were collected. 
BiB: Weight and height (unshod and in light clothing and following a standard protocol) were measured at the 
recruitment assessment. As women were recruited at the oral glucose tolerance test (26-28 weeks of gestation for 
the majority) this would not provide an accurate measure of pre-/early-pregnancy weight and would include fetal 
and amniotic weight and pregnancy related weight gain. All measurements of weight from all antenatal clinics were 
extracted from the obstetric records and pre-/early-pregnancy BMI was calculated using weight from the first 
antenatal clinic (median 12 weeks’ gestation) and height at recruitment (26-28 weeks’ gestation). 
DNBC: Self-reported information on pre-pregnancy weight and height from the first pregnancy interview at around 
16 weeks’ gestation.  
MoBa: Pre-pregnancy weight and height were self-reported during the first interview at week 17 in pregnancy. 
NINFEA: Pre-pregnancy weight and height were self-reported in the baseline questionnaire (completed at any time 
during pregnancy). 

Paternal BMI ABCD: Paternal weight was maternally reported in questionnaire when child was aged 5-6 years (the closest 
timepoint available to pregnancy). Paternal height was maternally reported in the pregnancy questionnaire at 
around 16 weeks’ gestation. 
ALSPAC: Paternal weight and height were self-reported from the first partner questionnaire completed around 18 
weeks’ gestation.  
Baseline: Paternal weight and height were measured around the time of pregnancy.   
BiB: Paternal weight and height were self-reported from the first partner questionnaire mostly completed at 
recruitment (26–28 weeks’ gestation).  
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DNBC: Paternal weight and height were reported by the mother during the first pregnancy interview conducted at 
around 16 weeks’ gestation.  
MoBa: Paternal weight and height were maternally reported by questionnaire at around 18 weeks’ gestation.  
NINFEA:  Paternal weight and height were maternally reported in the baseline questionnaire (completed at any time 
during pregnancy). 

Smoking data 

Maternal smoking ABCD: Asked number of cigarettes per day during pregnancy in first questionnaire (16 weeks of gestation; IQR 12–20 
weeks). Binary variable used any smoking during pregnancy.  
ALSPAC: Asked number of cigarettes per day during pregnancy in questionnaire at around 18 weeks’ gestation. 
Binary variable used any smoking during the first trimester. 
Baseline: Reported in early pregnancy questionnaire around 14 weeks gestation. Binary variable used any smoking 
during the first trimester. Baseline smoking data only used to adjust for BMI analyses. 
BiB: Asked number of cigarettes per day during pregnancy in first questionnaire (26-28 weeks’ gestation). Binary 
variable used any smoking during pregnancy. 
DNBC: Maternal smoking in the first trimester was ascertained from a computer-assisted telephone interview 
conducted at approximately 16 weeks’ gestation. Binary variable used any smoking during the first trimester. 
Smoking heaviness was based on the average number of cigarettes smoked per day reported in interviews 1 and 2. 
MoBa: Smoking habits were assessed from questionnaires sent by mail at 13‐17 and 30 weeks. Binary variable used 
any smoking during pregnancy. 
NINFEA: Smoking habits in the first two trimesters were assessed in the baseline questionnaire (completed any time 
during pregnancy). Binary variable used any smoking during the first trimester. 

Paternal smoking  ABCD: NA  
ALSPAC: Asked about smoking habits within the partner questionnaire during pregnancy at around 18 weeks’ 
gestation. 
Baseline: Maternally reported in pregnancy questionnaire around 14 weeks’ gestation.  
BiB: Asked about smoking habits within partner questionnaire during pregnancy (26-28 weeks’ gestation).  
DNBC: Maternally reported at 16 weeks’ gestation.  
MoBa: Self-reported within first partner questionnaire around 15 weeks’ gestation. 
NINFEA: NA  

Alcohol data 

Maternal alcohol ABCD: Mothers asked how many glasses of alcohol they drunk during first period of pregnancy (16 weeks of 
gestation; IQR 12–20 weeks). Binary variable used any alcohol intake during pregnancy. 
ALSPAC: Self-reported from pregnancy questionnaire at around 18 weeks’ gestation. Binary variable used any alcohol 
intake during the first trimester. 
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Baseline: Reported in early pregnancy questionnaire around 14 weeks gestation. Binary variable used any alcohol 
intake during the first trimester. Baseline alcohol data only used to adjust for BMI analyses. 
BiB: NA 
DNBC: Self-reported at 16 weeks’ gestation. Binary variable used alcohol intake during the first trimester. Drinking 
heaviness was based on the average number of units drank per week reported in interviews 1 and 2. 
MoBa: Assessed via questionnaire around 17 weeks’ gestation. Binary variable used any alcohol intake during the 
first trimester. 
NINFEA: Drinking habits in the first trimester were assessed in the baseline questionnaire (completed at any time 
during pregnancy). Binary variable used any alcohol intake during the first trimester. 

Paternal alcohol ALSPAC: Self-reported within first partner questionnaire at around 18 weeks’ gestation.  
MoBa: Self-reported within first partner questionnaire at around 15 weeks’ gestation. 
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Text S3.2. Paternal alcohol consumption methods.  

ALSPAC 

We used data from the partners questionnaire which was filled in by partners at around 18 

weeks’ gestation. I used data from questions B18 and B19 from the PB questionnaire 

(http://www.bristol.ac.uk/alspac/researchers/our-data/).  

B18b. How often have you drunk alcoholic drinks during the last 3 months: 1) Never, 2) less than 
once a week, 3) at least once a week, 4) 1-2 glasses every day, 5) 3-9 glasses every day, 6) at least 10 
glasses every day. 

B19b. How many days in the past month did you drink the equivalent of 2 pints of beer, 4 glasses 

of wine or 4 pub measures of spirit? 1) Every day, 2) more than 10 days, 3) 5-10 days, 4) 3-4 days, 5) 1-2 

days, 6) none. 

We coded paternal alcohol consumption as follows: non-drinkers = If answered 1 to B18b; light 
drinkers = answered 5 to B19b; mod/heavy drinkers = answered 1,2,3 or 4 to B19b.   

MoBa 

Question FF244. How often do you drink alcohol now that your partner is pregnant? Response 
options: 1) Approximately 6-7 times per week, 2) Approximately 4-5 times per week, 3) Approximately 2-
3 times per week, 4) Approximately once per week, 5) Approximately 1-3 times per month, 6) Less than 
once per month, 7) Never. 

Using data from FF244, I coded paternal alcohol consumption as follows:  non-drinkers = 
Answered number 7; light drinkers = Answered 4, 5 or 6; mod/heavy drinkers = Answered 1, 2 or 3  

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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Text S3.3. Definition of congenital heart disease (CHD) and other congenital anomalies (CAs).  

Here I describe ascertainment of CA cases for each cohort. International Classification of Diseases 

(ICD; version 10) codes were used to define CA cases when possible (see Table S3.2 above for 

classifications). However, in some cohorts these data were not available. The following cohorts were used 

to define CA cases with ICD codes: ALSPAC, BiB, DNBC, NINFEA.  

ABCD 

The ABCD cohort has previously published research involving CAs 54. The same methods for data 

extraction were used for the present study. Data on CAs were obtained from three different sources: the 

infant questionnaire, which was filled out by the mother at an average infant age of 12.9 weeks (IQR 12.4–

13.4 weeks); the questionnaire filled out by the mother at an average infant age of 5.07 years (IQR 5.04– 

5.13 years), and clinical data of the Youth Health Care Registration (health and development registration 

of all children in the Netherlands, which is mandatory under the law on medical treatment agreement). 

The questionnaires were screened by a researcher, and in the case of missing or unclear answers the 

mothers were contacted. Subsequently, the questionnaires were scanned and transferred to a database 

by a certified company (Scan serv, Nootdorp, the Netherlands). Missing data in the questionnaires could 

be supplemented by data from the Youth Health Care Registration, and in the case of any discrepancy the 

data from the Youth Health Care Registration prevailed. CA data in ABCD was restricted to live-born 

children. 

CAs were categorised as follows: 0 = no defect 1 = congenital malformations of the nervous system 

2 = congenital malformations of eye, ear, face, throat 3 = congenital malformations of the cardiovascular 

system 4 = congenital malformations of the respiratory tract 5 = split lip and/or palate 6 = congenital 

malformations of the digestive tract 7 = congenital malformations of the kidneys, urinary tract, genitalia 

8 = congenital malformations of the musculoskeletal system 9 =neoplasms 10 = other congenital 

malformations 11 = chromosomal defect 12 = monogenic defect 13 = microdeletions and uniparental 

disomy 14 = other syndromes 15 = complex cardiovascular defects 16 = multiple defects of the extremities 

17 = other multiple defects within an organ system 18 = multiple defects (in multiple organ systems) 21 = 

minor defect 22 = unclear/uncertain diagnosis 23 = "don't know which defect" 24 = "not applicable" 25 = 

missing information.  

We coded CHD cases if they were “Yes” for category 3. I coded chromosomal/genetic aberrations 

if “Yes” for any of the following categories: 11, 12, 13, 14.  

ALSPAC 

Case ascertainment of CAs in the ALSPAC cohort has been described in detail in a recently 

published data note 29. Data were combined from multiple sources: NHS records (primary care, paediatric 

cardiology database, data on fetal deaths and local child health services), midwifery and birth records and 

maternal self-report via child-based questionnaires. Each source was coded using ICD-10 codes. By 

combining sources, there would be a greater possibility of capturing all of possible cases within the cohort. 

The majority of cases of CAs were identified by primary care records (79% for any CA and 68% for any 

CHD). I included diagnoses made at any age (from birth up until age 25/26). There were no restrictions in 

cases of CAs in ALSPAC, I included all cases whether live-born or not. However, it is possible that some 
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cases that were terminated earlier in pregnancy were missed due to them never having an NHS number 

and thus not being identified through record linkage. 

BASELINE 

 At 2 months, mothers were asked of any medical problems and/or referrals. If a baby had been 

referred to a specialist, it was checked to see if they had results from an echocardiogram. 

Echocardiograms were checked by a cardiologist. Exact CHD diagnoses were reported based on the echo. 

At 6 months, there was one additional baby that had cardiac surgery and added as a case. If a baby had 

been diagnosed after 6 months, they would have been identified through records on the Echo. Therefore, 

in BASELINE I obtained all CHDs up until ~age 12.  

BiB 

In the BiB cohort, there were two separate sources to identify CAs. Both sources were used in this 

study: (i) CAs up to 5 years of age, identified in GP records by Bishop et al 30 following EUROCAT guidelines. 

ICD-10 codes were mapped to clinical term (CT)-V3 codes prior to extraction from GP records. (ii) Data 

extracted from the Yorkshire and Humber CAs register database. Data were ICD-10 coded. All of these 

were confirmed postnatally. BiB includes data on the birth outcome of each child (live birth, miscarriage, 

still birth). Therefore, diagnoses were not necessarily restricted to live born children. However, there is 

the possibility that some women would have terminated the pregnancy after the 12- or 20-week scans 

which would lead to an under-representation of congenital anomaly cases. 

DNBC 

In the DNBC, all diagnoses of congenital anomalies (according to EUROCAT guide 1.4 section 3.2 

and 3.3) up until the age of 15 years were extracted from the Danish National Patient Register (DNPR) 

which is linked to the cohort data 31,32. Diagnoses were ICD-coded. These data were restricted to children 

born alive.  

MoBa 

Information on whether a child had a CHD or not was obtained though linkage to the Medical 

Birth Registry of Norway (MBRN). All maternity units in Norway must notify births to the MBRN. The 

notification form includes the name and personal identity number of the child and parents, as well as 

information about maternal health before and during pregnancy, and any complications during pregnancy 

or at birth, including the presence of any heart defects. The MBRN contains information on all births and 

pregnancies ended after the 12th week of gestation, including stillbirths and abortions after the 12th 

week, including on heart defects. Heart defects are registered in the MBRN through notifications from 

clinical staff identifying these defects at delivery or any hospital in patient treatments occurring 

immediately after birth until the child is discharged. The medical notification is made at discharge, which 

can be several months after birth. Details of the notified heart defects, such as specific diagnosis or 

treatment are not provided. Whilst most of the heart defects would have been diagnosed at birth it is 

possible that some children were admitted to hospital after delivery for non-specific reasons of for 

diagnoses that at the time were not considered to be related to a heart defect. Therefore, MOBA 

contribute only to analyses of any CHD and I considered diagnosis to have been made between birth and 

6 months (few would remain in hospital after this length). 
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NINFEA  

Congenital anomalies in the NINFEA cohort were reported in the second questionnaire compiled 

6 months after birth. Mothers compiled a checklist that included pre-specified anomalies (namely 

cryptorchidism (also assessed 18 months after birth), congenital hip dysplasia, cleft palate, spina bifida 

and pyloric stenosis) and anomalies divided by major systems (namely cardiovascular, gastrointestinal, 

genitourinary, musculoskeletal, respiratory and nervous system, and genetic/chromosomal or 

metabolic/endocrine disease). If the mother reported an anomaly from a specific system, the exact name 

of the anomaly was asked. If the child died or had any surgery performed in the first 6 months, the cause 

of death and type of surgery were also checked to see if any congenital anomaly was reported. All 

congenital anomalies were coded using ICD-10 codes by an experienced pediatrician and were reassessed 

by an independent physician. NINFEA included live-born infants only.  

Studies with ICD coded data 

Table S3.2 shows how cases of CHD were defined in the studies with ICD codes (ALSPAC, BiB, DNBC, 

NINFEA).  

Table S3.2. Subcategories of CHD.  

Category  CHDs included/excl ICD codes 

All  Any CHD as defined by EUROCAT* 
Patent ductus arteriosus (PDA) with gestational age (GA) 
< 37 weeks not considered a CHD case. 
Peripheral pulmonary artery stenosis with GA < 37weeks 
not considered as a CHD case
. 

Q20-Q25, Q260, Q262-
Q269** 

Severe  Heterotaxia, Conotruncal defect, Atrioventricular septal 
defect, Anomalous pulmonary venous return, Left 
ventricle outflow tract obstruction, Right ventricle 
outflow tract obstruction, Other complex defects 

Q240, Q241, Q206, Q200, 
Q251, Q252, Q253, Q254, 
Q203, Q213, Q201, Q214, 
Q212, Q26, Q262, Q264, 
Q268, Q269, Q234, Q251, 
Q230, Q231, Q221, Q224, 
Q225, Q255, Q204 

Non-severe PDA (in full term infants), valvular pulmonary stenosis, 
ventricular septal defect (VSD), atrial septum defects 
(ASD), unspecified septal defects, isolated valve defects, 
other specified heart defects, unspecified heart defects 

Non-severe cases that are 

All=1 and Severe=0. 

 

* Definitions taken from here: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-
3.3.pdf  
**Q250 and Q256 not a case if isolated and GA<37weeks 

 

 

 

 

 

https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-3.3.pdf
https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-3.3.pdf
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Additional analysis - excluding infants with any known chromosomal/genetic/teratogenic defects 

ABCD, ALSPAC, BiB, DNBC, MoBa and NINFEA were able to contribute to this additional analysis. In 

ALSPAC, BiB, DNBC and NINFEA, I used the ICD codes in Table S3.3 to exclude cases. In ABCD, there were 

specific categories (described above) which corresponded to chromosomal and genetic anomalies (11 = 

chromosomal defect 12 = monogenic defect 13 = microdeletions and uniparental disomy 14 = other 

syndromes). In MoBa, I used questionnaire data which was maternally reported at 6 months after birth: 

“Is your child suspected of having a syndrome?” and “Is your child suspected of having a chromosomal 

defect?”. 

Table S3.3. Subcategories of congenital anomalies with a ‘known cause’ used in additional analyses.  

Category ICD-10 Codes 

Teratogenic/genetic syndromes, 
microdeletions and chromosomal 
abnormalities (additional analysis). 

D821, P350-P352, P371, Q619, Q751, Q754, Q771-Q772, 
Q780, Q796, Q85, Q861-Q869, Q87, Q90-Q92, Q930-Q939, 
Q95-Q99 
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Text S3.4. Confounder data. 

By definition a confounder has to cause (or be a plausible cause) of exposure and outcome. The maximum 

number of confounders used in fully adjusted models are listed below. Confounder and other parent 

exposure adjusted models are the same as fully adjusted but with additional adjustment for the other 

parent’s exposure and additional adjustment for maternal parity in paternal models.  

Exposure = BMI: age, education, parity (maternal), ethnicity, smoking, alcohol, offspring sex.  

Exposure = Smoking: age, education, parity (maternal), ethnicity, alcohol, offspring sex. 

Exposure = Alcohol: age, education, parity (maternal), ethnicity, smoking, offspring sex. 

There is evidence that smoking and alcohol influence BMI 55-58. I therefore treated those as 

confounders for the association of maternal/paternal BMI with CHD. Smoking and alcohol are associated 

with each other in most populations but whether one causes the other is unclear. It is possible that most 

of their association is due to socioeconomic and cultural factors. Despite being unclear about whether 

they could be confounders of each other’s effect on CHD (e.g. alcohol a confounder for smoking and vice 

versa) in the final confounder adjusted model I included alcohol as a confounder for smoking and vice 

versa.  

I used maternal/paternal age at birth in complete years. I used educational attainment for both 

parents’ measures of socioeconomic position (SEP). In the harmonised LifeCycle data education has been 

defined according to the international classification (High: Short cycle tertiary, Bachelor, Masters, 

Doctoral or equivalent (ISCED-2011: 5-8, ISCED-97: 5-6) Medium: Upper secondary, Post-secondary non-

tertiary (ISCED-2011: 3-4, ISCED-97: 3-4) Low: No education; early childhood; pre-primary; primary; lower 

secondary or second stage of basic education). Mothers’ parity was based on previous born children 

(previous stillbirths included, abortions excluded) (coded as 0, 1, 2, 3,  4). For ethnicity I used the best 

estimate of the mother’s/father’s ethnic background based on the cohort’s discretion (Western, Non-

western, Mixed). Offspring sex was a binary variable (male/female). In additional analyses, I adjusted for 

folic acid supplementation in fully adjusted maternal models. This was a yes/no variable defined as intake 

of folic acids (folate, vitamin B9) during the period from conception to early pregnancy (12 weeks).  

In NINFEA, due to the smaller sample size, maternal parity and maternal/paternal education were 

categorised as binary variables (parity: nulliparous and multiparous, education: low and medium 

combined together).  

In ALSPAC, BASELINE, DNBC, MoBa and NINFEA I did not adjust for ethnicity in any analyses. 98% 

of women were of Western origin in ALSPAC. >98.5% of women in BASELINE were of Western origin. 

Ethnicity in the DNBC is said to be of >99% White European origin with a recent paper reporting their 

DNBC population to be 100% of White origin 59. There were no data available on ethnicity in MoBa, 

however, it is believed that 99-100% are of Western origin. Ethnicity data were not available in NINFEA, 

although, the large majority of mothers (>98%) were born in Europe. Data on paternal country of birth 

was available for approximately half of the cohort and >98% of them were born in Europe.    
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In BiB only ~28% of mothers had harmonised data on alcohol intake during pregnancy, therefore 

this was not included in any models within BiB analyses as an exposure and also as a confounder in BMI 

and smoking models.  

ABCD and BASELINE did not have harmonised LifeCycle data available. I describe methods for data 

harmonization here: 

We used available ABCD data and tried to harmonize it as best as possible to match the LifeCycle 

data. BMI, sex, age, parity and folic acid supplementation were identical variables to the harmonised 

LifeCycle ones. Paternal height was self-reported by the mother and paternal weight was from 11 months 

after pregnancy (the closest timepoint available). I used any pregnancy smoking or drinking (yes/no) for 

the smoking and alcohol variables as there was no trimester specific exposure data. ABCD did not 

contribute to paternal alcohol or smoking analyses as there were no data for these exposures around the 

time of pregnancy. Maternal education was defined as: high (Short cycle tertiary, Bachelor, Masters, 

Doctoral or equivalent (9 or more years)), medium (Upper secondary, Post-secondary non-tertiary (6-9 

years)) or low (No education; early childhood; pre-primary; primary; lower secondary or second stage of 

basic education (<6 years)). Paternal education was from the 11-year questionnaire and split into 3 groups 

as this was the only data available. For ethnicity, I defined Western and non-western as appropriate from 

physiological ethnicity of grandmother’s birth country for maternal ethnicity. Paternal ethnicity was 

reported by the mother and recoded to Western/Non-Western/Mixed. 

 All women were experiencing their first pregnancy in BASELINE; therefore I did not adjust for 

parity in any analyses. BMI, sex, age and smoking were coded the same as the harmonised LifeCycle data. 

Education in BASELINE was binary defined as medium or high. This was left unchanged and used as a 

measure of SEP as in other analyses.  

In the analysis plan, I originally stated that I would treat type-1 diabetes (T1D) as a confounder. 

The rationale for this was that diabetes is a known teratogen for CHDs and could also influence pregnancy 

lifestyle factors through changes in behaviours. However, after exploring the data, the prevalence of T1D 

was low in those cohorts with data (0.2% in ALSPAC, 0.1% in BiB and 0.2% in DNBC for maternal T1D) and 

the other cohorts did not have data on specific diabetes diagnoses. For cohorts with T1D data, the number 

of CHD cases in those with a diagnosis was either zero or less than 10, making adjustment not meaningful 

or impossible through complete separation in the logistic model.  
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Figure S3.1. Study flow chart illustrating participant selection in the ABCD cohort. 
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Figure S3.2. Study flow chart illustrating participant selection in the ALSPAC cohort. 
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Figure S3.3. Study flow chart illustrating participant selection in the BASELINE cohort. I included 1436 

participants in this study (Stream 1). Adapted from: https://doi.org/10.1093/ije/dyu157 

 

 

https://doi.org/10.1093/ije/dyu157
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Figure S3.4. Study flow chart illustrating participant selection in the BiB cohort. 
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Figure S3.5. Study flow chart illustrating participant selection in the DNBC cohort. 
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Figure S3.6. Study flow chart illustrating participant selection in the MoBa cohort. MBR = Medical birth 

registry. 
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Figure S3.7. Study flow chart illustrating participant selection in the NINFEA cohort
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Table S3.4. Summary of missing data in each cohort. 

 
ABCD 

N = 8,131 
ALSPAC 

N = 13,049 
BASELINE 
N = 1,436 

BiB 
N = 12,799 

DNBC 
N = 89,107 

MoBa 
N = 101,975 

NINFEA 
N = 5,893 

Country Netherlands UK RoI UK Denmark Norway Italy 

Recruitment period 2003-2004 1991-1992 2008-2011 2007-2011 1996-2002 1999-2008 2005-2016 

Maternal (n missing (%))        

Age, years 0 2062 (15.8) 0 0 0 181 (0.2) 1 (0.0) 

BMI, kg/m2 789 (9.7) 2079 (15.9) 0 2690 (21.0) 3757 (4.2) 4575 (4.5) 124 (2.1) 

Preg smoking yes/no 14 (0.2) 333 (2.6) 0 1912 (14.9) 2367 (2.7) 933 (0.9) 92 (1.6) 
Preg smoking heaviness - 2350 (18.0) - 1912 (14.9) 1184 (1.3) 390 (0.4) 72 (1.2) 

Preg alcohol yes/no 6 (0.1) 427 (3.3) 43 (3.0) - 2399 (2.7) 19617 (19.2) 50 (0.9) 
Preg alcohol heaviness - 6548 (50.2) - - 758 (0.9) 17539 (17.2) 79 (1.3) 

Parity 0 502 (3.8) 0 470 (3.7) 0 1805 (1.8) 272 (4.6) 

Education 83 (1.0) 1152 (8.8) 9 (0.6) 2750 (21.5) 8451 (9.5) 6963 (6.8) 46 (0.8) 

Ethnicity 14 (0.2) - 0 1906 (14.9) - - - 

Folic acid supp 98 (1.2) 424 (3.2) - - 6510 (7.3) 1805 (1.8) 148 (2.5) 

Paternal (n missing (%))        

Age, years 4378 (53.8) 5488 (42.1) 321 (22.4) 9439 (73.7) 1371 (1.5) 521 (0.5) 2506 (42.5) 

BMI, kg/m2 4542 (55.9) 4973 (38.1) 321 (22.4) 10074 (78.7) 26470 (29.7) 5134 (5.0) 186 (3.2) 

Smoking - 3915 (30.0) 323 (22.5) 9612 (75.1) 4181 (4.7) 171 (0.2) - 

Alcohol - 4844 (37.1) - - - 29553 (28.9) - 

Education 5873 (72.2) 1620 (12.4) 0 4676 (36.5) 10690 (12.0) 5372 (5.3) 138 (2.3) 

Ethnicity  197 (2.4) - 321 (22.4) 9625 (75.2) - - - 

Offspring sex  203 (2.5) 0 0 0 0 196 (0.2) 1 (0.0) 
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Table S3.5. Comparison between maximal numbers from main analyses presented in the manuscript (black, top rows) and complete case models (red, bottom 

rows). Results are odds ratios (95% CIs) of any offspring CHD per unit difference in BMI. 

Model ABCD ALSPAC BASELINE BiB DNBC MoBa NINFEA Meta-analysis results 

Maternal BMI 
unadjusted 

1.02 (0.94, 1.09) 
N = 7,342 

1.05 (1.00, 1.09) 
N = 10,970 

1.07 (0.92, 1.20) 
N = 1,436 

1.01 (0.97, 1.04) 
N = 10,109 

1.02 (1.01, 1.03) 
N = 85,350 

0.99 (0.98, 1.01) 
N = 97,400 

0.93 (0.83, 1.03) 
N = 5,769 

1.01 (1.00, 1.02) 
N = 218,376 

1.07 (0.95, 1.16) 
N = 3,415 

1.01 (0.93, 1.08) 
N = 6,452 

1.06 (0.87, 1.23) 
N = 1,078 

0.99 (0.89, 1.10) 
N = 1,753 

1.02 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.93 (0.83, 1.04) 
N = 5,393 

1.01 (0.99, 1.02) 
N = 147,292 

Maternal BMI 
confounder 

adjusted 

1.04 (0.95, 1.11) 
N = 7,103 

1.05 (0.99, 1.10) 
N = 9,179 

1.08 (0.93, 1.21) 
N = 1,386 

1.02 (0.98, 1.05) 
N = 7,279 

1.02 (1.00, 1.03) 
N = 78,180 

0.99 (0.97, 1.01) 
N = 75,448 

0.94 (0.84, 1.05) 
N = 5,476 

1.01 (1.00, 1.02) 
N = 184,051 

1.05 (0.93, 1.15) 
N = 3,415 

1.01 (0.94, 1.08) 
N = 6,452 

1.06 (0.87, 1.23) 
N = 1,078 

0.98 (0.87, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.95 (0.85, 1.06) 
N = 5,393 

1.01 (0.99, 1.02) 
N = 147,292 

Maternal BMI 
confounder and 

other parent 
BMI adjusted 

1.05 (0.93, 1.15) 
N = 3,415 

1.02 (0.94, 1.10) 
N = 6,452 

1.05 (0.85, 1.23) 
N = 1,078 

0.99 (0.88, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.94 (0.84, 1.06) 
N = 5,393 

1.00 (0.99, 1.02) 
N = 147,292 

1.05 (0.93, 1.15) 
N = 3,415 

1.02 (0.94, 1.10) 
N = 6,452 

1.05 (0.85, 1.23) 
N = 1,078 

0.99 (0.88, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.94 (0.84, 1.06) 
N = 5,393 

1.00 (0.99, 1.02) 
N = 147,292 

Paternal BMI 
unadjusted 

0.99 (0.84, 1.08) 
N = 3,589 

0.99 (0.91, 1.06) 
N = 8,076 

1.07 (0.86, 1.21) 
N = 1,115 

1.03 (0.94, 1.12) 
N = 2,706 

1.02 (1.00, 1.04) 
N = 62,637 

0.99 (0.97, 1.01) 
N = 96,841 

1.02 (0.92, 1.13) 
N = 5,707 

1.01 (0.99, 1.02) 
N = 180,690 

 1.04 (0.88, 1.11) 
N = 1,732 

0.97 (0.86, 1.07) 
N = 5,044 

1.07 (0.86, 1.21) 
N = 1,113 

1.01 (0.89, 1.13) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

0.99 (0.96, 1.01) 
N = 67,071 

0.96 (0.81, 1.13) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

Paternal BMI 
confounder 

adjusted 

1.03 (0.84, 1.10) 
N = 1,800 

0.96 (0.86, 1.06) 
N = 5,550 

1.06 (0.86, 1.21) 
N = 1,113 

1.04 (0.93, 1.14) 
N = 2,085 

1.02 (1.00, 1.05) 
N = 54,710 

1.00 (0.97, 1.02) 
N = 68,623 

1.03 (0.89, 1.19) 
N = 3,294 

1.01 (1.00, 1.03) 
N = 137,175 

1.03 (0.84, 1.10) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.06 (0.86, 1.21) 
N = 1,113 

1.04 (0.92, 1.16) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

0.96 (0.81, 1.14) 
N = 3,166 

1.01 (1.00, 1.03) 
N = 133,620 

Paternal BMI 
confounder and 

other parent 
BMI adjusted 

1.03 (0.85, 1.10) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.05 (0.84, 1.21) 
N = 1,113 

1.04 (0.92, 1.15) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

0.99 (0.83, 1.18) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

1.03 (0.85, 1.11) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.05 (0.84, 1.21) 
N = 1,113 

1.04 (0.92, 1.15) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

(0.99, 0.83, 1.18) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s BMI and parity in paternal models);  
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking, alcohol. Paternal: offspring sex, age, education, ethnicity. 
ALSPAC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
BASELINE: Maternal: offspring sex, age, education, smoking, alcohol. Paternal: offspring sex, age, smoking. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity, smoking. Paternal: offspring sex, age, education, ethnicity, smoking.  
DNBC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking.  
MoBa: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol.  
NINFEA: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education.  

 

Table S3.6. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for a BMI category in comparison to normal BMI. Categories: underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5 to <25 kg/m2), overweight 

(BMI 25 to <30 kg/m2) and obese (BMI ≥30 kg/m2). 

Exposure ALSPAC BiB DNBC MoBa Meta-analysis results 

Maternal underweight 
unadjusted 

0.69 (0.26, 1.48) 
N = 10,970 

0.67 (0.17, 0.89) 
N = 10,109 

1.36 (1.05, 1.73) 
N = 85,350 

1.03 (0.70, 1.52) 
N = 97,400 

1.19 (0.97, 1.46) 
N = 203,829 
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0.63 (0.15, 1.78) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.06 (0.66, 1.71) 
N = 73,637 

1.21 (0.92, 1.57) 
N = 135,653 

Maternal underweight 
confounder adjusted 

0.63 (0.19, 1.57) 
N = 9,179 

0.64 (0.10, 2.11) 
N = 7,360 

1.33 (1.01, 1.71) 
N = 79,288 

1.06 (0.66, 1.71) 
N = 75,448 

1.20 (0.96, 1.50) 
N = 171,275 

0.68 (0.16, 1.93) 
N = 6,452 

NA 1.34 (0.94, 1.84) 
N = 55,564 

1.08 (0.67, 1.74) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

Maternal underweight 
confounder and other 
parent BMI adjusted 

0.65 (0.15, 1.84) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.07 (0.67, 1.73) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

0.65 (0.15, 1.84) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.07 (0.67, 1.73) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

Maternal overweight 
unadjusted 

1.23 (0.64, 2.20) 
N = 10,970 

1.35 (0.87, 2.08) 
N = 10,109 

1.24 (1.07, 1.42) 
N = 85,350 

1.01 (0.85, 1.20) 
1.02 N = 97,400 

1.15 (1.04, 1.28) 
N = 203,829 

0.71 (0.21, 1.82) 
N = 6,452 

1.46 (0.41, 5.29) 
N = 1,753 

1.28 (1.07, 1.53) 
N = 55,564 

1.04 (0.86, 1.27) 
N = 73,637 

1.16 (1.02, 1.32) 
N = 137,406 

Maternal overweight 
confounder adjusted 

0.85 (0.35, 1.80) 
N = 9,179 

1.34 (0.80, 2.22) 
N = 7,360 

1.23 (1.06, 1.42) 
N = 79,288 

1.06 (0.87, 1.29) 
N = 75,448 

1.17 (1.04, 1.31) 
N = 171,275 

0.72 (0.21, 1.87) 
N = 6,452 

1.45 (0.39, 5.37) 
N = 1,753 

1.26 (1.05, 1.51) 
N = 55,564 

1.04 (0.85, 1.27) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

Maternal overweight 
confounder and other 
parent BMI adjusted 

0.77 (0.23, 1.99) 
N = 6,452 

1.46 (0.39, 5.42) 
N = 1,753 

1.24 (1.04, 1.49) 
N = 55,564 

1.05 (0.86, 1.29) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

0.77 (0.23, 1.99) 
N = 6,452 

1.46 (0.39, 5.42) 
N = 1,753 

1.24 (1.04, 1.49) 
N = 55,564 

1.05 (0.86, 1.29) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

Maternal obesity 
unadjusted 

1.99 (0.95, 3.78) 
N = 10,970 

1.05 (0.62, 1.74) 
N = 10,109 

1.30 (1.06, 1.57) 
N = 85,350 

1.07 (0.85, 1.35) 
N = 97,400 

1.21 (1.05, 1.39) 
N = 203,829 

1.56 (0.46, 4.00) 
N = 6,452 

0.84 (0.12, 3.93) 
N = 1,753 

1.16 (0.88, 1.51) 
N = 55,564 

1.10 (0.83, 1.44) 
N = 73,637 

1.14 (0.94, 1.37) 
N = 137,406 

Maternal obesity 
confounder adjusted 

2.16 (0.93, 4.43) 
N = 9,179 

1.20 (0.66, 2.11) 
N = 7,360 

1.21 (0.97, 1.49) 
N = 79,288 

1.09 (0.83, 1.43) 
N = 75,448 

1.19 (1.02, 1.40) 
N = 171,275 

1.72 (0.50, 4.49) 
N = 6,452 

0.67 (0.10, 3.33) 
N = 1,753 

1.14 (0.86, 1.48) 
N = 55,564 

1.09 (0.83, 1.44) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

Maternal obesity 
confounder and other 
parent BMI adjusted 

1.88 (0.55, 4.93) 
N = 6,452 

0.70 (0.09, 3.44) 
N = 1,753 

1.10 (0.83, 1.43) 
N = 55,564 

1.12 (0.85, 1.49) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

1.88 (0.55, 4.93) 
N = 6,452 

0.70 (0.09, 3.44) 
N = 1,753 

1.10 (0.83, 1.43) 
N = 55,564 

1.12 (0.85, 1.49) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

Paternal underweight 
unadjusted 

NA NA 0.59 (0.10, 1.84) 
N = 62,637 

1.97 (0.73, 5.31) 
N = 96,841 

1.31 (0.58, 2.95) 
N = 159,478 

NA NA 0.38 (0.02, 1.71) 
N = 53,922 

0.81 (0.11, 5.80) 
N = 67,071 

0.56 (0.14, 2.24) 
N = 120,993 

Paternal underweight 
confounder adjusted 

NA NA 0.36 (0.02, 1.63) 
N = 54,710  

0.82 (0.11, 5.87) 
N = 68,623 

0.54 (0.13, 2.19) 
N = 123,333 

NA NA 0.37 (0.02, 1.67) 
N = 53,922 

0.85 (0.12, 6.09) 
N = 67,071 

0.56 (0.14, 2.26) 
N = 120,993 

Paternal underweight 
confounder and other 
parent BMI adjusted 

NA NA 0.36 (0.02, 1.65) 
N = 53,922 

0.85 (0.12, 6.08) 
N = 67,071 

0.55 (0.14, 2.24) 
N = 120,993 

NA NA 0.36 (0.02, 1.64) 0.85 (0.12, 6.08) 0.55 (0.14, 2.24) 
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N = 53,922 N = 67,071 N = 120,993 

Paternal overweight 
unadjusted 

0.90 (0.53, 1.49) 
N – 8,076 

0.60 (0.18, 1.88) 
N = 2,725 

1.10 (0.95, 1.27) 
N = 62,637 

1.02 (0.88, 1.18) 
N = 96,841 

1.05 (0.95, 1.16) 
N = 159,478 

0.73 (0.32, 1.54) 
N = 5,044 

0.53 (0.11, 2.17) 
N = 1,572 

1.18 (1.01, 1.38) 
N = 53,922 

1.03 (0.86, 1.23) 
N = 67,071 

1.10 (0.98, 1.23) 
N = 127,609 

Paternal overweight 
confounder adjusted 

1.07 (0.37, 3.20) 
N = 5,550 

0.67 (0.17, 2.39) 
N = 2,085 

1.20 (0.95, 1.53) 
N = 54,710 

1.08 (0.90, 1.28) 
N = 68,623 

1.11 (0.97, 1.28) 
N = 130,968 

1.11 (0.33, 3.78) 
N = 5,044 

0.66 (0.13, 2.76) 
N = 1,572 

1.22 (0.97, 1.56) 
N = 53,922 

1.05 (0.88, 1.25) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

Paternal overweight 
confounder and other 
parent BMI adjusted 

1.10 (0.33, 3.73)  
N = 5,044 

0.67 (0.13, 2.82) 
N = 1,572 

1.22 (0.96, 1.56) 
N = 53,922 

1.05 (0.88, 1.26) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

1.10 (0.33, 3.73) 
N = 5,044 

0.67 (0.13, 2.82) 
N = 1,572 

1.22 (0.96, 1.56) 
N = 53,922 

1.05 (0.88, 1.26) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

Paternal obesity 
unadjusted 

1.33 (0.54, 2.81) 
N – 8,076 

1.65 (0.56, 4.83) 
N = 2,725 

1.31 (1.00, 1.67) 
N = 62,637 

1.00 (0.79, 1.37) 
N = 96,841 

1.15 (0.97, 1.37) 
N = 159,478 

1.12 (0.26, 3.31) 
N = 5,044 

1.40 (0.34, 5.31) 
N = 1,572 

1.35 (1.01, 1.76) 
N = 53,922 

0.95 (0.71, 1.25) 
N = 67,071 

1.15 (0.95, 1.40) 
N = 127,609 

Paternal obesity 
confounder adjusted 

2.03 (0.19, 18.64) 
N = 5,550 

1.79 (0.50, 6.16) 
N = 2,085 

1.48 (0.89, 2.48) 
N = 54,710 

1.02 (0.76, 1.37) 
N = 68,623 

1.15 (0.90, 1.47) 
N = 130,968 

2.96 (0.24, 33.50) 
N = 5,044 

1.93 (0.46, 7.70) 
N = 1,572 

1.47 (0.88, 2.49) 
N = 53,922 

1.02 (0.76, 1.37) 
N = 67,071 

1.15 (0.89, 1.48) 
N = 127,609 

Paternal obesity 
confounder and other 
parent BMI adjusted 

2.99 (0.25, 33.86) 
N = 5,044 

1.96 (0.47, 7.78) 
N = 1,572 

1.46 (0.87, 2.46) 
N = 53,922 

1.03 (0.76, 1.39) 
N = 67,071 

1.16 (0.90, 1.50) 
N = 127,609 

2.99 (0.25, 33.86) 
N = 5,044 

1.96 (0.47, 7.78) 
N = 1,572 

1.46 (0.87, 2.46) 
N = 53,922 

1.03 (0.76, 1.39) 
N = 67,071 

1.16 (0.90, 1.50) 
N = 127,609 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s BMI and parity in paternal models); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking, alcohol. Paternal: offspring sex, age, education, ethnicity. 
ALSPAC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
BASELINE: Maternal: offspring sex, age, education, smoking, alcohol. Paternal: offspring sex, age, smoking. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity, smoking. Paternal: offspring sex, age, education, ethnicity, smoking. 
DNBC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking.  
MoBa: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
NINFEA: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education.  

 

Table S3.7. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for smoking during pregnancy. 

Model ABCD ALSPAC BiB DNBC MoBa NINFEA Meta-analysis results 

Maternal smoking 
unadjusted 

2.06 (0.77, 4.65) 
N = 8,117 

1.23 (0.78, 1.87) 
N = 12,716 

0.89 (0.53, 1.42) 
N = 10,887 

1.11 (0.98, 1.26) 
N = 86,740 

1.07 (0.86, 1.34) 
N = 101,042 

0.77 (0.18, 3.21) 
N = 5,801 

1.11 (1.00, 1.23) 
N = 225,303 

2.04 (0.76, 4.62) 
N = 7,824 

1.40 (0.71, 2.56) 
N = 7,626 

1.62 (0.52, 4.20) 
N = 2,624 

1.10 (0.96, 1.26) 
N = 78,229 

1.03 (0.78, 1.37) 
N = 77,266 

0.79 (0.19, 3.29) 
N = 5,527 

1.11 (0.99, 1.25) 
N = 179,096 

Maternal smoking 
confounder adjusted 

2.02 (0.73, (4.77) 
N = 7,824 

1.22 (0.69, 2.06) 
N = 10,217 

0.93 (0.50, 1.60) 
N = 9,646 

1.05 (0.91, 1.20) 
N = 80,571 

1.02 (0.77, 1.36) 
N = 77,311 

0.92 (0.22, 3.96) 
N = 5,527 

1.06 (0.94, 1.18) 
N = 191,096 

2.02 (0.73, (4.77) 1.31 (0.65, 2.46) 2.09 (0.64, 5.84) 1.07 (0.93, 1.23) 1.02 (0.77, 1.37) 0.92 (0.22, 3.96) 1.09 (0.97, 1.23) 
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N = 7,824 N = 7,626 N = 2,624 N = 78,229 N = 77,266 N = 5,527 N = 179,096 

Maternal smoking 
confounder and other 

parent smoking adjusted 

- 1.27 (0.61, 2.50) 
N = 7,626 

1.77 (0.51, 5.36) 
N = 2,624 

1.11 (0.96, 1.28) 
N = 79,000 

1.05 (0.78, 1.41) 
N = 77,266 

- 1.11 (0.97, 1.25) 
N = 166,516 

- 1.27 (0.61, 2.50) 
N = 7,626 

1.77 (0.51, 5.36) 
N = 2,624 

1.13 (0.98, 1.30) 
N = 78,229 

1.05 (0.78, 1.41) 
N = 77,266 

- 1.12 (0.99, 1.28) 
N = 165,745 

Paternal smoking 
unadjusted 

- 1.29 (0.79, 2.10) 
N = 9,134 

1.20 (0.50, 2.66) 
N = 3,187 

0.95 (0.84, 1.08) 
N = 84,926 

0.96 (0.82, 1.11) 
N = 101,804 

- 0.97 (0.88, 1.06) 
N = 198,421 

- 1.28 (0.68, 2.35) 
N = 6,182 

1.46 (0.54, 3.73) 
N = 2,373 

0.96 (0.84, 1.10) 
N = 77,477 

1.00 (0.83, 1.20) 
N = 70,018 

- 0.99 (0.89, 1.10) 
N = 156,050 

Paternal smoking 
confounder adjusted 

- 1.17 (0.61, 2.19) 
N = 6,308 

1.43 (0.51, 3.76) 
N = 2,424 

0.95 (0.83, 1.08) 
N = 77,526 

1.05 (0.87, 1.26) 
N = 70,766 

- 0.99 (0.89, 1.10) 
N = 157,024 

- 1.23 (0.64, 2.30) 
N = 6,182 

1.51 (0.53, 4.06) 
N = 2,373 

0.95 (0.83, 1.08) 
N = 77,477 

1.05 (0.87, 1.27) 
N = 70,018 

- 0.99 (0.89, 1.10) 
N = 156,050 

Paternal smoking 
confounder and other 
parent BMI adjusted 

- 1.14 (0.56, 2.23) 
N = 6,182 

1.18 (0.38, 3.41) 
N = 2,373 

0.90 (0.79, 1.04) 
N = 77,499 

1.04 (0.85, 1.26) 
N = 70,018 

- 0.96 (0.85, 1.07) 
N = 156,072 

- 1.14 (0.64, 2.30) 
N = 6,182 

1.18 (0.38, 3.41) 
N = 2,373 

0.91 (0.79, 1.04) 
N = 77,477 

1.04 (0.85, 1.26) 
N = 70,018 

- 0.96 (0.86, 1.07) 
N = 156,050 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s smoking); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, alcohol.  
ALSPAC: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education, alcohol. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity. Paternal: offspring sex, age, education, ethnicity.  
DNBC: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education. 
MoBa: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education, alcohol.  
NINFEA: Maternal: offspring sex, age, education, parity, alcohol. 

 

Table S3.8. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for alcohol intake during pregnancy in comparison to non-drinkers. 

Model ABCD ALSPAC DNBC MoBa NINFEA Meta-analysis results 

Maternal alcohol (yes/no) 
unadjusted 

1.38 (0.61, 2.85) 
N = 8,125 

1.20 (0.81, 1.80) 
N = 12,622 

1.00 (0.89, 1.12) 
N = 86,708 

1.04 (0.88, 1.23) 
N = 82,358 

1.20 (0.57, 2.51) 
N = 5,843 

1.03 (0.94, 1.12) 
N = 195,656 

1.36 (0.60, 2.81) 
N = 7,824 

1.18 (0.56, 2.55) 
N = 4,585 

1.00 (0.89, 1.13) 
N = 79,648 

1.06 (0.86, 1.31) 
N = 51,006 

1.19 (0.57, 2.49) 
N = 5,527 

1.03 (0.93, 1.14) 
N = 148,590 

Maternal alcohol (yes/no) 
confounder adjusted 

1.17 (0.50, 2.56) 
N = 7,824 

1.24 (0.78, 2.01) 
N = 10,217 

1.01 (0.90, 1.14) 
N = 80,571 

1.03 (0.86, 1.23) 
N = 77,311 

1.18 (0.56, 2.49) 
N = 5,527 

1.03 (0.94, 1.13) 
N = 181,450 

1.17 (0.50, 2.56) 
N = 7,824 

1.20 (0.56, 2.63) 
N = 4,585 

1.01 (0.89, 1.14) 
N = 79,648 

1.06 (0.85, 1.31) 
N = 51,066 

1.18 (0.56, 2.49) 
N = 5,527 

1.03 (0.93, 1.14) 
N = 148,590 

Maternal light drinking 
unadjusted 

- 0.93 (0.52, 1.67) 
N = 6,501 

0.92 (0.82, 1.03) 
N = 88,349 

1.10 (0.88, 1.36) 
N = 84,436 

- 0.96 (0.87, 1.06) 
N = 179,286 

- 1.27 (0.58, 2.93) 
N = 4,585 

0.93 (0.82, 1.05) 
N = 79,648 

1.24 (0.94, 1.63) 
N = 51,006 

- 0.98 (0.88, 1.09) 
N = 135,239 

Maternal light drinking 
confounder adjusted 

- 0.92 (0.48, 1.78) 
N = 5,797 

0.95 (0.85, 1.08) 
N = 80,214 

1.13 (0.90, 1.41) 
N = 79,695 

- 0.99 (0.89, 1.10) 
N = 165,706 

- 1.35 (0.61, 3.14) 
N = 4,585 

0.94 (0.83, 1.06) 
N = 79,648 

1.22 (0.92, 1.61) 
N = 51,006 

- 0.99 (0.88, 1.10) 
N = 135,239 
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Maternal light drinking 
confounder and other 

parent alcohol adjusted 

- 1.40 (0.62, 3.27) 
N = 4,585 

- 1.13 (0.87, 1.47) 
N = 59,571 

- 1.15 (0.90, 1.48) 
N = 64,156 

- 1.40 (0.62, 3.27) 
N = 4,585 

- 1.19 (0.90, 1.57) 
N = 51,006 

- 1.21 (0.93, 1.57) 
N = 55,591 

Maternal mod/heavy 
drinking unadjusted 

- 0.67 (0.22, 1.65) 
N = 6,501 

1.14 (0.87, 1.48) 
N = 88,349 

1.85 (0.92, 3.73) 
N = 84,436 

- 1.17 (0.92, 1.49) 
N = 179,286 

- 0.92 (0.21, 3.01) 
N = 4,585 

1.19 (0.89, 1.56) 
N = 79,648 

1.77 (0.66, 4.78) 
N = 51,006 

- 1.21 (0.93, 1.58) 
N = 135,239 

Maternal mod/heavy 
drinking confounder 

adjusted 

- 0.64 (0.18, 1.75) 
N = 5,797 

1.21 (0.90, 1.58) 
N = 80,214 

1.47 (0.65, 3.32) 
N = 79,695 

- 1.19 (0.92, 1.54) 
N = 165,706 

- 0.89 (0.20, 2.98) 
N = 4,585 

1.19 (0.89, 1.57) 
N = 79,648 

1.73 (0.64, 4.69) 
N = 51,006 

- 1.21 (0.93, 1.58) 
N = 135,239 

Maternal mod/heavy 
drinking confounder and 

other parent alcohol 
adjusted 

- 0.94 (2.06, 3.19) 
N = 4,585 

- 1.31 (0.48, 3.56) 
N = 59,571 

- 1.16 (0.52, 2.58) 
N = 64,156 

- 0.94 (2.06, 3.19) 
N = 4,585 

- 1.57 (0.58, 4.27) 
N = 51,006 

- 1.30 (0.59, 2.89) 
N = 55,591 

Paternal light drinking 
unadjusted 

- 0.90 (0.36, 3.02) 
N = 8,205 

- 0.90 (0.61, 1.32) 
N = 72,422 

- 0.90 (0.63, 1.29) 
N = 80,627 

- 1.90 (0.39, 34.09) 
N = 5,228 

- 1.01 (0.62, 1.65) 
N = 58,847 

- 1.05 (0.65, 1.68) 
N = 64,075 

Paternal light drinking 
confounder adjusted 

- 2.11 (0.44, 37.99) 
N = 5,346 

- 0.86 (0.58, 1.28) 
N = 70,766  

- 0.89 (0.60, 1.31) 
N = 76,112 

- 2.04 (0.42, 36.80) 
N = 5,228 

- 0.97 (0.60, 1.58) 
N = 58,847 

- 1.01 (0.63, 1.63) 
N = 64,075 

Paternal light drinking 
confounder and other 

parent alcohol adjusted 

 1.77 (0.36, 32.20) 
N = 5,316 

- 0.97 (0.63, 1.62) 
N = 58,847 

 1.01 (0.63, 1.62) 
N = 64,163 

- 1.74 (0.35, 31.60) 
N = 5,228 

- 0.97 (0.60, 1.59) 
N = 58,847 

- 1.01 (0.62, 1.62) 
N = 64,075 

Paternal mod/heavy 
drinking unadjusted 

- 0.86 (0.34, 2.93) 
N = 8,205 

- 1.11 (0.73, 1.70) 
N = 72,422 

- 1.08 (0.73, 1.59) 
N = 80,627 

- 1.83 (0.37, 33.05) 
N = 5,228 

- 1.28 (0.76, 2,17) 
N = 58,847 

- 1.31 (0.79, 2.18) 
N = 64,075 

Paternal mod/heavy 
drinking confounder 

adjusted 

- 2.00 (0.40, 36.05) 
N = 5,346 

- 1.07 (0.69, 1.66) 
N = 70,766 

- 1.10 (0.72, 1.69) 
N = 76,112 

- 1.94 (0.39, 35.05) 
N = 5,228 

- 1.20 (0.71, 2.04) 
N = 58,847 

- 1.24 (0.74, 2.07) 
N = 64,075 

Paternal mod/heavy 
drinking confounder and 

other parent alcohol 
adjusted 

- 1.72 (0.34, 31.20) 
N = 5,316 

- 1.21 (0.71, 2.05) 
N = 58,847 

- 1.23 (0.74, 2.06) 
N = 64,163 

- 1.70 (0.34, 30.83) 
N = 5,228 

- 1.21 (0.71, 2.05) 
N = 58,847 

- 1.23 (0.74, 2.06) 
N = 64,075 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s alcohol intake); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking.  
ALSPAC: Maternal: offspring sex, age, education, parity, smoking. Paternal: offspring sex, age, education, smoking.  
DNBC: Maternal: offspring sex, age, education, parity, smoking.  
MoBa: Maternal: offspring sex, age, education, parity, smoking. Paternal: offspring sex, age, education, smoking. 
NINFEA: Maternal: offspring sex, age, education, parity, ethnicity, smoking. 
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Table S3.9. Meta-analysis results from 4 cohorts (ALSPAC, BiB, DNBC, MoBa) for associations between BMI categories and CHDs with and without removing 

chromosomal/genetic defects from the study population. Results reported as odds ratios for CHD for parental underweight, overweight or obesity in comparison 

to parental normal weight.  

Model Main analysis 
Outcome = CHD 

Additional analysis 
Outcome = CHD with chromo/gen defects removed from study population 

Confounder adjusted 

M-Underweight: 1.20 (0.96, 1.50) 
P-Underweight: 0.54 (0.13, 2.19) 

M- Underweight: 1.16 (0.90, 1.48) 
P-Underweight: 0.67 (0.16, 2.70) 

M-Overweight: 1.17 (1.04, 1.31) 
P-Overweight: 1.11 (0.97, 1.28) 

M-Overweight: 1.20 (1.06, 1.35) 
P-Overweight: 1.09 (0.94, 1.27) 

M-Obesity: 1.19 (1.02, 1.40) 
P-Obesity: 1.15 (0.90, 1.47) 

M-Obesity: 1.21 (1.02, 1.44) 
P-Obesity: 1.19 (0.91, 1.58) 

Confounder and other parent BMI 
adjusted 

M-Underweight: 1.21 (0.93, 1.58) 
P-Underweight: 0.55 (0.14, 2.24) 

M-Underweight: 1.22 (0.90, 1.63) 
P-Underweight: 0.67 (0.17, 2.72) 

M-Overweight: 1.15 (1.01, 1.31) 
P-Overweight: 1.10 (0.96, 1.27) 

M-Overweight: 1.20 (1.04, 1.38) 
P-Overweight: 1.08 (0.93, 1.27) 

M-Obesity: 1.12 (0.93, 1.36) 
P-Obesity: 1.16 (0.90, 1.50) 

M-Obesity: 1.15 (0.93, 1.42) 
P-Obesity: 1.20 (0.90, 1.59) 

M = maternal 
P = paternal 
^ICD codes used to remove these cases from the population can be found in Table S3.3. 

 

Table S3.10. Meta-analysis results from 3 cohorts (ALSPAC, BiB and DNBC) for associations between BMI categories and CHD severity with and without removing 

chromosomal/genetic defects from the study population. Results reported as odds ratios for CHD for parental underweight, overweight or obesity in comparison 

to parental normal weight. 

Model Outcome = Non-severe CHD Outcome = Non-severe CHD 
(excluding chromo/gen defects)^ 

Outcome = Severe CHD Outcome = Severe CHD 
(excluding chromo/gen defects)^ 

Confounder 
adjusted 

M-Underweight: 1.24 (0.91, 1.68) 
P-Underweight: 0.49 (0.07, 3.56) 

M- Underweight: 1.32 (0.95, 1.83) 
P-Underweight: 0.55 (0.07, 4.10) 

M-Underweight: 1.25 (0.79, 1.97) 
P-Underweight: * 

M- Underweight: 1.27 (0.75, 2.16) 
P-Underweight: * 

M-Overweight: 1.24 (1.05, 1.47) 
P-Overweight: 1.16 (0.89, 1.51) 

M-Overweight: 1.27 (1.06, 1.52) 
P-Overweight: 1.09 (0.82, 1.45) 

M-Overweight: 1.19 (0.93, 1.53) 
P-Overweight: 1.19 (0.77, 1.84) 

M-Overweight: 1.29 (0.98, 1.70) 
P-Overweight: 1.09 (0.66, 1.79) 

M-Obesity: 1.36 (1.08, 1.71) 
P-Obesity: 1.49 (0.86, 2.59) 

M-Obesity: 1.36 (1.06, 1.74) 
P-Obesity: 1.51 (0.83, 2.74) 

M-Obesity: 1.07 (0.73, 1.56) 
P-Obesity: 1.65 (0.71, 3.87) 

M-Obesity: 1.12 (0.74, 1.71) 
P-Obesity: 1.58 (0.60, 4.19) 

Confounder 
and other 

parent BMI 
adjusted 

M-Underweight: 1.34 (0.92, 1.93) 
P-Underweight: 0.48 (0.07, 3.54) 

M-Underweight: 1.41 (0.95, 2.09) 
P-Underweight: 0.56 (0.08, 4.10) 

M-Underweight: 1.16 (0.61, 2.22) 
P-Underweight: * 

M-Underweight: 1.42 (0.69, 2.94) 
P-Underweight: * 

M-Overweight: 1.29 (1.05, 1.58) 
P-Overweight: 1.22 (0.93, 1.59) 

M-Overweight: 1.33 (1.07, 1.66) 
P-Overweight: 1.13 (0.84, 1.51) 

M-Overweight: 1.11 (0.78, 1.57) 
P-Overweight: 1.13 (0.72, 1.77) 

M-Overweight: 1.39 (0.95, 2.02) 
P-Overweight: 0.97 (0.58, 1.62) 

M-Obesity: 1.14 (0.84, 1.55) 
P-Obesity: 1.61 (0.91, 2.84) 

M-Obesity: 1.19 (0.85, 1.66) 
P-Obesity: 1.57 (0.84, 2.91) 

M-Obesity: 1.17 (0.71, 1.93) 
P-Obesity: 1.36 (0.56, 3.32) 

M-Obesity: 1.31 (0.74, 2.32) 
P-Obesity: 1.17 (0.42, 3.28) 

M = maternal 
P = paternal 
^ICD codes used to remove these cases from the population can be found in Table S3.3. 
* = not enough data to compute results. 
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Table S3.11. Meta-analysis results for associations between alcohol intake and CHDs after removing chromosomal/genetic defects from the study population. 

Results reported as odds ratios and 95% confidence intervals for CHD in comparison to non-drinkers.   

Model Main analysis 
Outcome = CHD 

Additional analysis 
Outcome = CHD with chromo/gen removed from study population 

Confounder adjusted 

M – y/n: 1.03 (0.93, 1.13) M – y/n: 1.04 (0.94, 1.15) 

M – light: 0.99 (0.89, 1.10) 
P – light: 0.89 (0.60, 1.31) 

M – light: 0.95 (0.85, 1.07) 
P – light: 1.13 (0.69, 1.87) 

M – mod/heavy: 1.19 (0.92, 1.54) 
P – mod/heavy: 1.10 (0.72, 1.69) 

M – mod/heavy: 1.24 (0.94, 1.63) 
P – mod/heavy: 1.36 (0.79, 2.34) 

Confounder and other parent 
BMI adjusted 

M – light: 1.15 (0.90, 1.48) 
P – light: 1.01 (0.63, 1.62) 

M – 1.17 (0.88, 1.55) 
P – light: 1.21 (0.68, 2.16) 

M – mod/heavy: 1.16 (0.52, 2.58) 
P – mod/heavy: 1.23 (0.74, 2.06) 

M – mod/heavy: 1.20 (0.52, 3.17) 
P – mod/heavy: 1.52 (0.82, 2.80) 

M = maternal 
P = paternal 
y/n = alcohol as a binary variable, yes or no.  
Estimates from yes/no analyses derived from 5 cohorts (ABCD, ALSPAC, DNBC, MoBa, NINFEA). 
Estimates from maternal light and mod/heavy drinking analyses derived from ALSPAC, DNBC and MoBa in fully adjusted results, but only ALSPAC and MoBa in paternal and mutually adjusted 
results. 
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Figure S3.8. Main analysis associations between parental BMI as a continuous measurement in kg/m2 (maternal top, paternal bottom) and offspring congenital 

heart disease. Panel A results are unadjusted, panel B results are fully adjusted for all confounders and panel C results are adjusted for all confounders as well as 

other parent’s BMI. Confounders: ABCD: parental age, education, parity, ethnicity, smoking, alcohol, offspring sex; ALSPAC: parental age, education, parity, 

smoking, alcohol, offspring sex; BASELINE: parental age, education, smoking, alcohol, offspring sex BiB: parental age, education, parity, ethnicity, smoking, offspring 

sex; DNBC:, parental age, education, parity, smoking, alcohol, offspring sex; MoBa: parental age, education, parity, smoking, alcohol, offspring sex; NINFEA: 

parental age, education, parity, smoking, alcohol, offspring sex. 
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Figures S3.9 and S3.10 show the odds ratios of CHD by fifths of the BMI distribution for mothers and fathers respectively 

in DNBC and MoBa. Whilst there was statistical evidence for a linear trend in DNBC mothers (p-value for per fifth increase 

= 0.05) the graph shows this was driven by increased risk only in the highest fifth, with the 2nd, 3rd and 4th fifth (compared 

to the first) consistent with the null. In MoBa mothers there was no clear pattern with some evidence that the 4th 

compared to the 1st fifth was associated with lower risk with the 3 other categories being consistent with the null (p-value 

for linear trend in MoBa = 0.22). Whilst the p-values for the likelihood ratio comparing the linear model with the category 

model (0.03 and 0.09, for DNBC and MoBa mothers, respectfully) provide statistical support for the category model in 

each, this is based on just one of the fifths. Results for the fathers are broadly consistent with those for the mothers, and 

overall, these results are consistent with no association of maternal or paternal mean BMI with offspring CHD risk. 

 

Figure S3.9. Confounder adjusted associations between maternal BMI split into fifths and offspring CHDs in the DNBC (A) 

and MoBa (B). Results are odds ratios and 95% CIs for maternal BMI quintile and offspring CHD in comparison to BMI 

quintile 1.  
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Figure S3.10. Confounder adjusted associations between paternal BMI split into fifths and offspring CHDs in the DNBC 

(A) and MoBa (B). Results are odds ratios and 95% CIs for paternal BMI quintile and offspring CHD in comparison to BMI 

quintile 1.  
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Figure S3.11. Linear associations (top (A&B): confounder adjusted, bottom (C&D): confounder and other parent BMI 

adjusted) between parental BMI and offspring non-severe congenital heart disease (left) and severe congenital heart 

disease (right). Definitions for CHD subtypes can be found in Table S3.2.  
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Figure S3.12. Linear associations between maternal BMI and offspring congenital heart disease. Results are fully 

adjusted for all confounders (top) and all confounders plus additional adjustment for folic acid supplementation during 

weeks 0-12 of pregnancy (bottom). 
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Figure S3.13. Additional analysis: linear associations between parental BMI and offspring congenital heart disease with 

chromosomal/genetic defects removed from the study population. A is adjusted for all confounders, and B is adjusted for 

all confounders and the other parent’s BMI. The rationale here is to see if estimates differ when I remove offspring from 

the population with an anomaly associated with a pre-specified cause such as a genetic, chromosomal or teratogenic 

aberration. ICD codes used to remove these cases from the population can be found in Table S3.3. For comparison the 

pooled associations from main analyses (without removal of genetic/chromo disorders) were: 1.01 (1.00, 1.02) & 1.01 

(0.99, 1.02) for maternal (top graphs, left and right respectively) and 1.01 (1.00, 1.03) & 1.01 (0.99, 1.03) for paternal 

(bottom graphs left and right respectively).  
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Figure S3.14. Linear associations (top (A&B): confounder adjusted, bottom (C&D): confounder and other parent BMI 

adjusted) between parental BMI and offspring non-severe congenital heart disease (left) and severe congenital heart 

disease (right) with cases of chromosomal/genetic defects removed from the study population. Definitions for CHD 

subtypes can be found in Table S3.2.  
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Figure S3.15. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with normal 

BMI as the reference. Outcome = any CHD in the offspring. 
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Figure S3.16. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-offs 

with normal BMI as the reference. Outcome = any CHD in the offspring. 
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Figure S3.17. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World Health 

Organization cut-offs with normal BMI as the reference.  Outcome = any CHD in the offspring.
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Figure S3.18. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with normal 

BMI as the reference. Outcome = non-severe CHDs (left) and severe CHDs (right). Ns represent total numbers included in 

the non-severe/severe analyses presented.
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Figure S3.19. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-offs 

with normal BMI as the reference. Outcome = non-severe CHDs (left) and severe CHDs (right). Ns represent total 

numbers included in the non-severe/severe analyses presented. 
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Figure S3.20. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World Health 

Organization cut-offs with normal BMI as the reference.  Outcome = non-severe CHDs (left) and severe CHDs (right). Ns 

represent total numbers included in the non-severe/severe analyses presented. 
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Figure S3.21. Main analysis associations between parental smoking (maternal top, paternal bottom) and offspring congenital heart disease. Panel A results are 

unadjusted, B results are fully adjusted for all confounders and C results are adjusted for all confounders as well as other parent’s smoking. Confounders: ABCD: 

parental age, education, parity, ethnicity, alcohol, offspring sex; ALSPAC: parental age, education, parity, alcohol, offspring sex; BiB: parental age, education, 

parity, ethnicity, offspring sex; DNBC:, parental age, education, parity, alcohol, offspring sex; MoBa: parental age, education, parity, alcohol, offspring sex; 

NINFEA: parental age, education, parity, alcohol, offspring sex.
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Figure S3.22. Showing the smoking results in those cohorts that had confirmed data on maternal first trimester smoking. Panel A results are unadjusted, B 

results are fully adjusted for all confounders and C results are adjusted for all confounders as well as other parent’s smoking. Confounders: ALSPAC: parental age, 

education, parity, alcohol, offspring sex; DNBC:, parental age, education, parity, alcohol, offspring sex; NINFEA: parental age, education, parity, alcohol, offspring 

sex. 
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Figure S3.23. Unadjusted (A & B) and confounder adjusted (C &D) results for the smoking and CHD severity analyses presented in the main manuscript Figure 2. 
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Figure S3.24. Associations between parental smoking heaviness (top (A, B & C): maternal, bottom (D, E & F): paternal) and offspring congenital heart disease. 

Results are unadjusted (left), adjusted for all confounders (middle) as well as all confounders and other parents smoking (right). Smoking categorised as none 

(non-smoker), light (< 10 cigarettes smoked per day during pregnancy) and heavy (≥ 10 cigarettes per day). Results presented as odds ratios and 95% confidence 

intervals for offspring CHD in comparison to non-smokers.  
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Figure S3.25. Additional analysis: Associations between parental smoking and offspring congenital heart disease with chromosomal/genetic defects removed 

from the study population. The plots on the top half (A &B) are for smoking yes/no analyses and the plots on the bottom half (C & D) are for smoking heaviness 

analyses.  The rationale here is to see if estimates differ when I remove offspring from the population with an anomaly associated with a pre-specified cause 

such as a genetic, chromosomal or teratogenic aberration. ICD codes used to remove these cases from the population can be found in Table S3.3.  
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Figure S3.26. Smoking and CHD severity results with chromosomal/genetic defects removed from the study population.  
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Figure S3.27. Associations between maternal smoking and offspring congenital heart disease. Results are fully adjusted for all confounders and all confounders 

plus additional adjustment for folic acid supplementation during weeks 0-12 of pregnancy. Panel A shows the results for the yes/no smoking analyses and panels 

B and C show results for the smoking heaviness analyses.  
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Figure S3.28. Associations between maternal alcohol consumption in the first trimester and offspring 
congenital heart disease. *ABCD did not have trimester-specific data, therefore analyses presented for 
ABCD are any alcohol consumption during pregnancy. Results are adjusted for all confounders. 
Confounders: ABCD: parental age, education, parity, ethnicity, smoking, offspring sex; ALSPAC: parental 
age, education, parity, smoking, offspring sex; DNBC: parental age, education, parity, smoking, offspring 
sex; MoBa: parental age, education, parity, smoking, offspring sex; NINFEA: parental age, education, 
parity, smoking, offspring sex. 
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Figure S3.29. Confounder adjusted associations between maternal alcohol consumption during the first 

trimester and offspring non-severe congenital heart disease (A) and severe congenital heart disease (B). 

Definitions for CHD subtypes can be found in Table S3.2. 
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Figure S3.30. Associations (top (A, B & C): maternal, bottom (D, E & F): paternal) between parental alcohol intake and offspring congenital heart disease. Results 

are unadjusted (left), adjusted for all confounders (middle) as well as all confounders and other parents smoking (right). Maternal alcohol intake categorised as 

none (non-drinker), light (< 3 units per week during pregnancy) and moderate/heavy (≥ 3 units per week during pregnancy). Paternal alcohol intake categorised 

as none (non-drinker), light (< 7 units per week during pregnancy) and moderate/heavy (≥ 7 units per week during pregnancy). Results presented as odds ratios 

and 95% confidence intervals for offspring CHD in comparison to non-drinkers.
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Figure S3.31. Confounder adjusted associations between maternal alcohol consumption during the first 

trimester and offspring non-severe congenital heart disease (A) and severe congenital heart disease (B) 

with chromosomal/genetic defects removed from the study population. Definitions for CHD subtypes 

can be found in Table S3.2.
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Figure S3.32. Associations between maternal drinking during the first trimester and offspring congenital 

heart disease. Results are adjusted for all confounders (top) and all confounders plus additional 

adjustment for folic acid supplementation during weeks 0-12 of pregnancy (bottom). Results are for first 

trimester drinking or any drinking during pregnancy where trimester data were not available (denoted by 

*).
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Chapter 4 

 

Text S4.1. Genetic data methods. 

 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

Mothers were genotyped on Illumina HumanHap660W quad-chip platform by Centre National de 

Génotypage (Évry, FR). Offspring were genotyped on Illumina HumanHap550 quad-chip platforms by the 

Wellcome Trust Sanger Institute (Cambridge, UK) and by the Laboratory Corporation of America 

(Burlington, USA) using support from 23andMe. Standard quality control was applied to SNPs and 

individuals. Individuals were excluded based on genotype rate (<5%), sex mismatch, high heterozygosity 

and cryptic relatedness [defined as identity-by-descent (IBD) >0.125]. In order to remove individuals of 

non-European descent, principal components (PCs) were derived from linkage disequilibrium-pruned 

SNPs with MAF >0.01 using plink. Individuals laying 5 standard deviations beyond the 1000 Genomes 

European population PCs 1 and 2 centroid were excluded. SNPs with a minor allele frequency (MAF) <1%, 

genotyping rate <5% or with a deviation from Hardy–Weinberg disequilibrium (⁠pP << 1×10−6) were 

removed from the analysis. Using this QC’d dataset, a list of unrelated mothers was created using an IBD 

cut-off of 0.05. For imputation, genotypes of ALSPAC mothers and children were combined. Haplotypes 

were estimated using ShapeIT (v2. r644), which utilises relatedness during phasing. A phased version of 

the 1000 genomes reference panel (Phase 1, Version 3) was obtained from the Impute2 reference data 

repository. Imputation was performed using Impute V2.2.2 against the reference panel (all polymorphic 

SNPs excluding singletons), using all 2186 reference haplotypes (including non-Europeans). 

Born in Bradford (BiB) 

The samples of the BiB cohort (mothers and offspring) were processed on three different type of 

Illumina chips: HumanCoreExome12v1.0, HumanCoreExome12v1.1 and HumanCoreExome24v1.0. The 

pre-processing of samples was done separately for the three chips. Problematic samples which had a Call 

Rate < 0.95 were removed. Poorly performing SNPs determined by a set of quality matrices were zeroed.  

BiB Illumina HumanCoreExome: PLINK and filtering 

GenomeStudio output files were converted to PLINK format and subsequently filtered. SNPs 

where >=20% of individuals were missing genotype were removed. Individuals with >=10% missing 

genotypes were removed. A further pass over genotype rate was performed, removing SNPs where over 
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20% are missing genotype. Following inspection of plink --missing output, individuals with > 1% missing 

genotypes were removed. The final pass over genotype rate, removed SNPs where over 0.5% were missing 

genotype. The final pass over missingness per individual, removed individuals with over 0.5% missing 

genotypes. 

Quality control and imputation 

From each of the 3 genotyping sets any individual or SNP missing >3% of their data was dropped 

and the datasets combined. Genetic duplicates were removed. Reported first degree relatives (mother-

child, father-child, child-child siblings) were checked to see if they looked genetically like first degree 

relatives. If there was no such evidence of this, they were removed. Mother-child discrepancies between 

phenotype and genotype were removed. People who looked genetically to be clearly South Asian or White 

British from the principal component analysis (PCA) but had a different ethnicity phenotype were 

removed. Based on a combination of PCA and reported ethnicity there were two subsets of individuals – 

white European and south Asian. As a sensitivity analysis, all of the genetic analyses in BiB are repeated 

after stratifying by these two ethnic groups. SNPs with a minor allele frequency (MAF) <1%, genotyping 

rate <5% or with a deviation from Hardy–Weinberg disequilibrium ( ⁠pP << 1×10−6) were removed from 

the analysis. Imputation was performed for Europeans and South Asians separately, both using the HRC 

r1.1 as the reference panel. The genotype data was uploaded to the Michigan Imputation Server to 

perform genotype imputation using Minimac4. Phasing was performed using Eagle v2.4. After imputation, 

the VCF files were downloaded from the server and BCFtools was used to remove SNPs that were not 

accurately imputed. Mimimac4 generates a metric (imputation accuracy R-squared) for each variant, and 

variants with estimated imputation accuracy R2 <0.3 were removed.  

The Norwegian Mother, Father and Child Cohort (MoBa) 

Compared to other large biobanks like the UK Biobank, where considerable funding was secured 

upfront allowing for genotyping their entire cohort in a single effort, genotyping in MoBa have had to rely 

on several projects - each contributing with resources to genotype subsets of MoBa over the last decade. 

Consequently, genotyping was performed years apart at different labs using different arrays. I used data 

from MoBaGenetics 1.0. There is an openly available comprehensive GitHub page that documents all 

quality control for all releases of genetic data in the MoBa cohort 

(https://github.com/folkehelseinstituttet/mobagen). In this study I used data from the following batches: 

NORMENT, ROTTERDAM, TED and HARVEST (initial N = ~98,000). 33,047 individuals were genotyped in 

the NORMENT sample at deCODE genetics, Reykjavik Iceland (Illumina HumanOmniExpress-24v1.0, 

https://github.com/folkehelseinstituttet/mobagen
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Illumina InfiniumOmniExpress-24v1.2, & Illumina Global Screening Array MD v.1.0 + 50k custom 

OmniExpress overlap content array), 26,680 were genotyped in the ROTTERDAM sample at ERASMUS MC, 

Rotterdam, Netherlands (Illumina Global Screening Array MD v.1.0 array), 5215 were sampled in the TED 

samples at deCODE genetics (Illumina InfiniumOmniExpress-24v1.2), and 32,886 were sampled in the 

HARVEST sample at Genomics Core Facility, Trondheim, Norway (llumina HumanCoreExome12v1.1 & 

Illumina HumanCoreExome24v1.0). Below, I describe the methods and QC for the merged dataset used in 

the present study.  

Quality control (QC) and imputation was performed to align with current best-practice QC 

protocols in human genetics and the family-based pipeline Picopili. The primary software used for the QC 

was PLINK 1.9 and KING 2.2.5. To identify core subpopulations filtering of was performed for minor allele 

frequency of 1%, SNP and individual call rate of 95%, and Hardy-Weinberg Equilibrium (HWE) p-value of 

0.001. Principle component (PC) analysis with 1000 Genomes phase 1 data was used to identify the 

European, Asian, and African core subpopulations. 

Pre-imputation QC was performed for each of the core subpopulations on the SNP and individual 

level. QC on a SNP level involved filtering for 0.5% MAF, 95% call rate, HWE p-value 0.000001, discordant 

in duplicate pairs, association with genotype plate and genotype batch at p-value 0.001. Individual level 

QC was performed by filtering for heterozygosity outliers Fhet ± 0.2, erroneous sex assignment, known 

relatedness, cryptic relatedness, identity-by-decent (PI_HAT threshold of 0.15), and PC outliers both with 

and without 1000 Genomes. Mendel errors were assessed for families with a minimum of one PO duo. 

Families with more than 5% Mendel errors and SNPs with more than 1% of Mendel errors were removed, 

while other minor Mendel errors were zeroed out. Batches that were genotyped using the same array 

were merged (keeping only SNPs present in all batches) and the pre-imputation QC was performed on the 

merged batches. 

Phasing and imputation was performed using the publicly available Haplotype Reference 

Consortium data. Phasing was performed using SHAPEIT2 with the duoHMM algorithm to incorporate the 

pedigree information into the haplotype estimates. IMPUTE 4 was then used to perform imputation. 

Dosage data was then converted to best-guess, hard call genotype data with an imputation quality score 

(INFO) of 0.8 and default PLINK certainty of 0.9. Post-imputation QC was then performed following the 

steps outlined in the pre-imputation QC. To ensure the across batch relatedness (both known, such as PO 

and FS relationships, and unknown, such as sibships within the parent generation) was accounted for in 

all analyses the three imputation batches were merged, and post-imputation QC was performed on the 

overall merged dataset. I removed related individuals (cryptic relatedness: IBD >0.05). 
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Table S4.1. Further information on the genome-wide association studies used to generate genetic risk scores.  

Primary outcome Data Publicatio
n year 

N  Ancestry Imputation 
reference 
panel 

Control for 
population 
structure 

Model Covariables Units PMID Data 
access 

Body mass index UKBB 
and 
GIANT 

2018 ~700,000 European HRC 
imputation 
reference 
panel 

10 PCs Linear mixed 
model - 
BOLT-LMM 
v2.3 

Age, sex, 
recruitment 
centre, 
genotyping 
batches and 
10 PCs 

Kg/m2 30124842 

 

Open 
access. 

Lifetime smoking 
– heaviness, 
duration, 
initiation 

UKBB 2019 462,690 European UK 10K 
reference 
panel 

10 PCs Linear mixed 
model - 
BOLT-LMM 

Genotype 
chip, sex, 
10PCs 

Lifetime 
smoking 
score 
(mean = 
0.36). 

31689377 Open 
access. 

Alcoholic drinks 
per week 

Large 
consortiu
m – see 
paper for 
all 
studies. 

2019 941,280 Mostly 
European 
or US. 

Most studies 
used HRC 
imputation 
reference 
panel.  

10 PCs. Linear mixed 
model with 
a genetic 
kinship 
matrix. 

PCs, age, sex, 
age x sex 
interaction. 

Alcoholic 
drinks per 
week 

30643251 Open 
access. 

PMID, PubMed ID number; UKBB, UKBioBank; HRC, haplotype reference consortium; PC, principal component. 
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Text S4.2. Genetic risk score generation.  

 

ALSPAC 

 Selected SNPs were extracted from the imputed genotype data in dosage format using QCTOOL 

(v2.0). PLINK (v1.9) was then used to construct the GRS for each exposure coded so that an increased 

score associated with increased exposure.  

 

BiB 

 Selected SNPs were extracted from the imputed genotype data in dosage format using VCF tools 

(v 0.1.12b). PLINK (v1.9) was then used to construct the GRS for each exposure coded so that an increased 

score associated with increased exposure.  

 

MoBa 

In MoBa, I constructed the GRSs from the QC’d data in PLINK format. In MoBa, there were a large 

proportion of missing SNPs. I subset SNPs included in full GWAS results to SNPs also available in the QC’d 

MoBa data. From SNPs available in both, independent genome-wide significant associations were 

identified by clumping in MRBase, specifying r=0.01 and p<5.0x10-8 213. Subsetting to SNPs available in 

MoBa and then clumping within these avoids the need for an additional step identifying proxy SNPs. These 

steps produced a similar number of SNPs for the BMI and smoking GRS in comparison to the GRSs 

generated in ALSPAC and BiB (941 and 939 in ALSPAC and BiB, respectively vs 868 in MoBa for BMI and 

126 in ALSPAC and BiB vs 119 in MoBa for smoking). However, for alcohol, there was significantly less 

SNPs (98 and 99 in ALSPAC and BiB, respectively vs 37 in MoBa) most likely due to the approach the 

original GWAS used which was not possible to replicate. Therefore, as an alternative, I used the same 

summary data as ALSPAC and BiB and used a proxy SNP where available based on r2 > 0.8 using the 

European reference panel in the LDLink R package 216, which left a total of 73 SNPs.  
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Text S4.3. Defining congenital heart disease. 

 

ALSPAC 

Case ascertainment of CAs in the ALSPAC cohort has been described in detail in a recently 

published data note 29. Data were combined from multiple sources: NHS records (primary care, paediatric 

cardiology database, data on fetal deaths and local child health services), midwifery and birth records and 

maternal self-report via child-based questionnaires. Each source was coded using ICD-10 codes. By 

combining sources, there would be a greater possibility of capturing all of possible cases within the cohort. 

The majority of cases of CAs were identified by primary care records (79% for any CA and 68% for any 

CHD). I included diagnoses made at any age (from birth up until age 25/26). There were no restrictions in 

cases of CAs in ALSPAC, I included all cases whether live-born or not. However, it is possible that some 

cases that were terminated earlier in pregnancy were missed due to them never having an NHS number 

and thus not being identified through record linkage. 

BiB 

In the BiB cohort, there were two separate sources to identify CAs. Both sources were used in this 

study: (i) CAs up to 5 years of age, identified in GP records by Bishop et al 30 following EUROCAT guidelines. 

ICD-10 codes were mapped to clinical term (CT)-V3 codes prior to extraction from GP records. (ii) Data 

extracted from the Yorkshire and Humber CAs register database. Data were ICD-10 coded. All of these 

were confirmed postnatally. BiB includes data on the birth outcome of each child (live birth, miscarriage, 

still birth). Therefore, diagnoses were not necessarily restricted to live born children. However, there is 

the possibility that some women would have terminated the pregnancy after the 12- or 20-week scans 

which would lead to an under-representation of congenital anomaly cases. 

MoBa 

Information on whether a child had a CHD or not was obtained though linkage to the Medical 

Birth Registry of Norway (MBRN). All maternity units in Norway must notify births to the MBRN. Further 

information can be found in the publication by Leirgul et al (https://doi.org/10.1016/j.ahj.2014.07.030). 

The notification form includes the name and personal identity number of the child and parents, as well as 

information about maternal health before and during pregnancy, and any complications during pregnancy 

or at birth, including the presence of any heart defects. The MBRN contains information on all births and 

pregnancies ended after the 12th week of gestation, including stillbirths and abortions after the 12th 

week, including on heart defects. Heart defects are registered in the MBRN through notifications from 

https://doi.org/10.1016/j.ahj.2014.07.030
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clinical staff identifying these defects at delivery or any hospital in patient treatments occurring 

immediately after birth until the child is discharged. The medical notification is made at discharge, which 

can be several months after birth. Details of the notified heart defects, such as specific diagnosis or 

treatment are not provided. Whilst most of the heart defects would have been diagnosed at birth it is 

possible that some children were admitted to hospital after delivery for non-specific reasons of for 

diagnoses that at the time were not considered to be related to a heart defect. Therefore, I considered 

MoBa diagnoses to have been made between birth and 6 months (few would remain in hospital after this 

length). 

 

Table S4.2. Subcategories of CHD.  

Category  CHDs included/excl ICD codes 

All CHDs Any CHD as defined by EUROCAT* 
Patent ductus arteriosus (PDA) with gestational age (GA) 
< 37 weeks not considered a CHD case. 
Peripheral pulmonary artery stenosis with GA < 37weeks 
not considered as a CHD case
. 

Q20-Q25, Q260, Q262-
Q269** 

* Definitions taken from here: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-
3.3.pdf  
**Q250 and Q256 not a case if isolated and GA<37weeks 
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Text S4.4. Describing the pregnancy phenotype data: maternal BMI, smoking, alcohol, education, parity, 

diabetes separated by each cohort.  

 

ALSPAC 

For ALSPAC, in the 2nd pregnancy questionnaire (12 weeks’ gestation) women were asked to 

report their pre-pregnancy weight and height and these were used to calculate BMI. No definition of 

pre-pregnancy was provided in the question. Extracted first antenatal clinic measurements of weight 

correlated strongly with the women’s self-report (Pearson correlation = 0.93). 

For smoking, women were asked the number of cigarettes per day during pregnancy in 

questionnaires at around 18 weeks’ and 32 weeks’ gestation. Binary variable used any smoking during 

pregnancy. 

For alcohol, women were asked whether they had consumed alcohol during months 1-3 of the 

pregnancy in a questionnaire administered at around 18 weeks’ and 32 weeks’ gestation. Women were 

also asked about how many units they consumed in a questionnaire at 32 weeks’ gestation. Binary 

variable used any alcohol consumption during pregnancy. 

Women were asked about their highest educational qualification in a questionnaire 

administered around 32 weeks’ gestation. Education was defined according to the international 

classification (High: Short cycle tertiary, Bachelor, Masters, Doctoral or equivalent (ISCED-2011: 5-8, 

ISCED-97: 5-6) Medium: Upper secondary, Post-secondary non- tertiary (ISCED-2011: 3-4, ISCED-97: 3-4) 

Low: No education; early childhood; pre-primary; primary; lower secondary or second stage of basic 

education). A binary variable was used (yes = medium or high education, no = low education).  

For parity previous stillbirths were included and abortions excluded. Women were asked about 

previous children in a questionnaire administered around 32 weeks’ gestation. A binary variable was 

used signifying multiparous and nulliparous women.  

For diabetes, women were asked about existing diabetes and pregnancy diabetes using 

pregnancy questionnaires. Binary variable used any diabetes yes/no.  

BiB 

For BiB, weight and height (unshod and in light clothing and following a standard protocol) were 

measured at the recruitment assessment. As women were recruited at the oral glucose tolerance test (26-
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28 weeks of gestation for the majority) this would not provide an accurate measure of pre-/early-

pregnancy weight, as it would include fetal and amniotic weight and pregnancy related weight gain. All 

measurements of weight from all antenatal clinics were extracted from the obstetric records and pre-

/early-pregnancy BMI was calculated using weight from the first antenatal clinic (median 12 weeks’ 

gestation) and height at recruitment (26-28 weeks’ gestation). 

Women were asked number of cigarettes per day during pregnancy in the first questionnaire (26-

28 weeks’ gestation). Binary variable used any smoking during pregnancy. 

Women were asked whether they consumed alcohol during the first 3 months of pregnancy.  

Women were asked about their highest educational qualification in the recruitment 

questionnaire. Education was defined according to the international classification (High: Short cycle 

tertiary, Bachelor, Masters, Doctoral or equivalent (ISCED-2011: 5-8, ISCED-97: 5-6) Medium: Upper 

secondary, Post-secondary non- tertiary (ISCED-2011: 3-4, ISCED-97: 3-4) Low: No education; early 

childhood; pre-primary; primary; lower secondary or second stage of basic education). A binary variable 

was used (yes = medium or high education, no = low education).  

For parity previous stillbirths were included and abortions excluded. Women were asked about 

previous children in a questionnaire administered at recruitment. A binary variable was used signifying 

multiparous and nulliparous women.  

For diabetes, women were diagnosed with gestational diabetes based on results from the oral 

glucose tolerance test at recruitment. This was defined according to modified World Health 

Organization (WHO) definition used in clinical practice at the time: fasting glucose ≥ 6.1 mmol/L or 2 h 

post-load glucose ≥ 7.8 mmol/L. I then used questionnaire data that asked about existing diabetes 

administered at recruitment and defined an “any diabetes” variable. 

MoBa 

For MoBa, pre-pregnancy weight and height were self-reported during the first questionnaire at 

around 15 weeks’ gestation.  

During questionnaires administered around 15- and 32-weeks’ gestation, women were asked if 

they smoked now after becoming pregnant. A binary variable was used to signify any smoking during 

pregnancy. 

During the questionnaire administered around 32 weeks’ gestation, women were asked about 

their drinking habits at different time points in the pregnancy. The options were: never, less than once a 
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month, roughly 1-3 times a week, roughly once a week, roughly 2-3 times a week, roughly 4-5 times a 

week and roughly 6-7 times a week. A binary variable was used to define any drinking during pregnancy 

(no = those that answered “never”, yes = those that answered anything else). In a sensitivity analysis to 

check the robustness of the GRS, I defined drinking during pregnancy as: no = those that answered “never” 

or “less than once a month” and yes = those that answered anything else.  

Women were asked about their education in the questionnaire administered around 15 weeks’ 

gestation. The options were: 1) 9-year secondary school, 2) 1-2 year high school, 3) Vocational high school, 

4) 3-year high school general studies, junior college, 5) Regional technical college, 4-year university degree 

(Bachelor’s degree, nurse, teacher, engineer), 6) University, technical college, more than 4 years (Master’s 

degree, medical doctor, PhD). I created a binary variable for high education: yes = 5 or 6, no = 1,2,3 or 4. 

For parity, women were asked about the number of “previous deliveries” in a questionnaire. A 

binary variable was used signifying multiparous and nulliparous women.  

For diabetes, women were asked about existing diabetes and pregnancy diabetes using 

pregnancy questionnaires. Binary variable used any diabetes yes/no.  
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Text S4.5. Genetic risk scores for multivariable Mendelian randomisation (MVMR).   

 

The BMI GRS associated with smoking, education and diabetes across all three cohorts (Table S2). 

The effect of BMI on diabetes is well established, including from previous MR studies 92,245,246. MR evidence 

suggests that higher education is causally related to lower BMI 247 whereas previous MR analyses show a 

potential causal effect of higher BMI on initiating smoking and other smoking traits 248,249 as well as 

smoking causing a reduction in BMI 250. These findings would suggest that diabetes is a mediating path 

from BMI to CHD rather than a cause of horizontal pleiotropy, whereas education might be a source of 

horizontal pleiotropy and smoking, potentially with a bidirectional relationship could be both a horizontal 

pleiotropic and/or mediating path. Thus, I undertook MVMR adjusting the effects of the BMI GRS by a GRS 

predicting education (details below), and separately a smoking GRS, in additional analyses of the potential 

effect of BMI on CHDs, with caution in interpreting any change with adjustment for the smoking GRS.  

The smoking GRS associated with BMI and education across the cohorts (Table S3). As discussed 

above the bidirectional relationship between BMI and smoking make it difficult to decide whether BMI is 

a potential biasing path, here, between the smoking GRS and CHD or mediates an effect of smoking. I 

undertook MVMR adjusting for a GRS predicting education (details below), and separately the BMI GRS, 

in additional analyses of the potential effect of smoking on CHDs.  

The alcohol GRS showed consistent association with smoking across the cohorts (Table S4), and I 

used MVMR to adjust for the smoking GRS, to explore evidence that this might bias any effects of alcohol 

on CHD. There was evidence of the alcohol GRS relating to smoking and parity in BiB but given the weak 

statistical evidence and presence only in one of the cohorts I did not explore this further. 

 

Education GRS 

 

We used a recent large-scale GWAS on educational attainment 251 (~1.1 million participants, N = 

481 independent SNPs in ALSPAC and BiB and 410 independent SNPs in MoBa (r=0.01 and p<5.0x10-8)). I 

generated the GRS for education using the same methods as described above (Text S2) and then included 

the GRS in the MR regression models.  
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Exploring associations between the GRSs (BMI, lifetime smoking index, drinks per week) and risk factors for CHDs. 

Table S4.3. Exploring associations between the BMI GRS and risk factors for CHDs. I also include the association of the BMI GRS with BMI (also shown in main table 

within the chapter) for comparison.  

Risk factor N Coefficient (95% CI) a P-value R2 / Pseudo R2 b F statistic c AUC 

ALSPAC  

BMI 6,253 0.24 (0.21, 0.26) 1 x10-80  5.6% 372 - 

Education 6,806 0.87 (0.81, 0.93) 2 x 10-5 0.45% - 0.54 

Parity  6,982 1.03 (0.98, 1.08) 0.25 0.03% - 0.51 

Diabetes 6,786 1.15 (0.83, 1.60) 0.17 0.16% - 0.54 

Smoking 6,428 1.14 (1.08, 1.21) 4 x 10-6 0.49% - 0.54 

Alcohol 6,087 0.96 (0.91, 1.03) 0.27 0.03% - 0.51 

BiB  

BMI 6,196 0.20 (0.18, 0.23) 5 x 10-59 4.1% 268 - 

Education 6,483 0.92 (0.88, 0.97) 0.002 0.2% - 0.52 

Parity 7,259 1.04 (0.99, 1.09) 0.15 0.03% - 0.51 

Diabetes 7,133 1.10 (1.01, 1.18) 0.04 0.1% - 0.52 

Smoking 6,482 1.09 (1.02, 1.16) 0.01 0.2% - 0.52 

Alcohol 2,110 1.07 (0.98, 1.16) 0.15 0.1% - 0.52 

MoBa  

BMI 22,533 0.25 (0.24, 0.27) < 1 x 10-100 6.5% 1,555 - 

Education 21,921 0.90 (0.87, 0.92) 3 x 1014 0.4% - 0.53 

Parity 23,869 1.00 (0.97, 1.02) 0.80 0.0004% - 0.50 

Diabetes 23,869 1.24 (1.12, 1.39) 8 x 10-5 0.5% - 0.56 

Smoking 20,981 1.18 (1.12, 1.24) 2 x 10-11 0.5% - 0.55 

Alcohol 19,737 0.97 (0.94, 1.00) 0.03 0.03% - 0.51 
a Effect estimates (coefficient) are difference in mean (BMI SD units) or odds ratio per SD increase in genetic risk score; b for the binary outcomes pseudo-R2 are presented; c for BMI F-statistic is 
presented; for binary outcomes AUC is presented. Education = high education vs low education around the time of pregnancy; Parity = multiparous vs nulliparous; Diabetes = Any diabetes vs none; 
Smoking = Any smoking during pregnancy yes vs no; Alcohol = Any alcohol consumption during pregnancy yes vs no. Abbreviations: BMI, body mass index; GRS, genetic risk score; CI, confidence 
interval; ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa. Norwegian Mother, Father and Child Cohort Study. 
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Table S4.4. Exploring associations between the smoking GRS (lifetime smoking index) and risk factors for CHDs. I also include the association of the smoking GRS 

with smoking (also shown in main table within the chapter) for comparison.  

Risk factor N Coefficient (95% CI)a P-value R2 / Pseudo R2 b F statistic c AUC 

ALSPAC  

Smoking 6,428 1.27 (1.20, 1.35) 1 x 10-16 1.6% - 0.56 

Education 6,806 0.84 (0.79, 0.90) 3 x 10-7 0.68% - 0.55 

Parity  6,982 1.01 (0.96, 1.05) 0.81 0.001% - 0.50 

Diabetes 6,786 0.92 (0.66, 1.28) 0.61 0.06% - 0.54 

Alcohol 6,087 1.00 (0.94, 1.06) 0.92 0.0002% - 0.50 

BMI 6,253 0.06 (0.03, 0.08) 3 x 10-6 0.35% 22 - 

BiB  

Smoking 6,482 1.36 (1.27, 1.45) 2 x 10-20 2.2% - 0.59 

Education 6,483 0.95 (0.90, 1.00) 0.04 0.09% - 0.52 

Parity 7,259 0.96 (0.91, 1.00) 0.06 0.06% - 0.51 

Diabetes 7,133 0.93 (0.86, 1.01) 0.10 0.08% - 0.52 

Alcohol 2,110 0.98 (0.90, 1.07) 0.67 0.01% - 0.50 

BMI 6,196 0.03 (0.001, 0.05) 0.04 0.07% 4 - 

MoBa  

Smoking 20,981 1.23 (1.17, 1.29) 7 x 10-17 0.8% - 0.56 

Education 21,921 0.87 (0.85, 0.90) 9 x 10-22 0.6% - 0.54 

Parity 23,869 1.01 (0.98, 1.04) 0.48 0.003% - 0.50 

Diabetes 23,869 1.02 (0.91, 1.13) 0.75 0.003% - 0.51 

Alcohol 19,737 0.99 (0.96, 1.02) 0.48 0.004% - 0.50 

BMI 22,533 0.04 (0.03, 0.06) 1 x 10-10 0.2% 42 - 
a Effect estimates (coefficient) are difference in mean (BMI SD units) or odds ratio per SD increase in genetic risk score; b for the binary outcomes pseudo-R2 are presented; c for BMI F-statistic is 
presented; for binary outcomes AUC is presented. Education = high education vs low education around the time of pregnancy; Parity = multiparous vs nulliparous; Diabetes = Any diabetes vs 
none; Smoking = Any smoking during pregnancy yes vs no; Alcohol = Any alcohol consumption during pregnancy yes vs no. Abbreviations: BMI, body mass index; GRS, genetic risk score; CI, 
confidence interval; ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa. Norwegian Mother, Father and Child Cohort Study. 
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Table S4.5. Exploring associations between the alcohol GRS (drinks per week) and risk factors for CHDs. I also include the association of the alcohol GRS with 

alcohol (also shown in main table within the chapter) for comparison.  

Risk factor N Coefficient (95% CI)a P-value R2 / Pseudo R2 b F statistic c AUC 

ALSPAC  

Alcohol 6,087 1.14 (1.07, 1.21) 3 x 10-5 0.4% - 0.53 

Education 6,806 1.05 (0.98, 1.12) 0.19 0.05% - 0.51 

Parity  6,982 1.02 (0.98, 1.07) 0.32 0.02% - 0.51 

Diabetes 6,786 1.22 (0.86, 1.73) 0.26 0.31% - 0.57 

Smoking 6,428 1.08 (1.02, 1.14) 0.01 0.15% - 0.52 

BMI 6,253 0.001 (-0.02, 0.03) 0.92 0.0002% 0.01 - 

BiB  

Alcohol 2,110 1.08 (0.99, 1.18) 0.09 0.2% - 0.52 

Education 6,483 0.98 (0.93, 1.03) 0.34 0.02% - 0.51 

Parity 7,259 1.05 (1.00, 1.10) 0.03 0.09% - 0.52 

Diabetes 7,133 1.07 (0.99, 1.17) 0.09 0.09% - 0.52 

Smoking 6,482 0.84 (0.79, 0.89) 4 x 10-8 0.8% - 0.55 

BMI 6,196 -0.02 (-0.05, 0.01) 0.16 0.03% 2 - 

MoBa  

Alcohol 19,737 1.02 (0.99, 1.05) 0.13 0.02% - 0.51 

Alcohol sensitivity d 19,737 1.06 (1.01, 1.10) 0.01 0.07% - 0.52 

Education 21,921 1.00 (0.96, 1.02) 0.58 0.002% - 0.50 

Parity 23,869 1.00 (0.98, 1.03) 0.93 <0.0001% - 0.50 

Diabetes 23,869 1.00 (0.89, 1.10) 0.88 0.0007% - 0.50 

Smoking 20,981 1.02 (0.97, 1.07) 0.37 0.009% - 0.51 

BMI 22,533 -0.007 (-0.019, 0.006) 0.32 0.004% 1 - 
a Effect estimates (coefficient) are difference in mean (BMI SD units) or odds ratio per SD increase in genetic risk score; b for the binary outcomes pseudo-R2 are presented; c for BMI F-statistic is 
presented; for binary outcomes AUC is presented. Education = high education vs low education around the time of pregnancy; Parity = multiparous vs nulliparous; Diabetes = Any diabetes vs 
none; Smoking = Any smoking during pregnancy yes vs no; Alcohol = Any alcohol consumption during pregnancy yes vs no. Abbreviations: BMI, body mass index; GRS, genetic risk score; CI, 
confidence interval; ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa. Norwegian Mother, Father and Child Cohort Study. 
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Figure S4.1. Showing the main results and results from additional analyses for the MR analyses of genetically predicted maternal BMI and offspring CHDs. Odds 

ratios (ORs) of CHD for a 1SD difference in maternal GRS in each study and pooled across studies using random effects meta-analysis or fixed-effects analyses 

when excluding BiB (panels B, G, H). Adjusted for top 10 genetic principal components in all cohorts with additional adjustment for genetic chip, genetic batch, 

and imputation batch in MoBa. Panel A: Main analyses as shown in the main manuscript. Panel B: Main analyses excluding BiB. Panel C: Main analyses with 

additional adjustment for genetically predicted educational attainment (Multivariable Mendelian randomisation analyses). Panel D: Main analyses with 

additional adjustment for genetically predicted smoking (Multivariable Mendelian randomisation analyses). Panel E: Main analysis results in the sub-population 

with fetal genotype. Panel F: As Panel E, but with additional adjustment for fetal genotype. Panel G: As panel E but excluding BiB. Panel H: As panel F but 

excluding BiB. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa, Norwegian Mother, Father and Child 

Cohort Study; BMI, body mass index; CI, confidence interval; CHD, congenital heart disease; SD, standard deviation; GRS, genetic risk score; MVMR, multivariable 

Mendelian randomisation.  
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Figure S4.2. Showing the main results and results from additional analyses for the MR analyses of genetically predicted maternal smoking (using a genetic risk 

score of a lifetime smoking index) and offspring CHDs. Odds ratios (ORs) of CHD for a 1SD difference in maternal GRS in each study and pooled across studies 

using random effects meta-analysis or fixed-effects analyses when excluding BiB (panels B, G, H). Adjusted for top 10 genetic principal components in all cohorts 

with additional adjustment for genetic chip, genetic batch, and imputation batch in MoBa. Panel A: Main analyses as shown in the main manuscript. Panel B: 

Main analyses excluding BiB. Panel C: Main analyses with additional adjustment for genetically predicted educational attainment (Multivariable Mendelian 

randomisation analyses). Panel D: Main analyses with additional adjustment for genetically predicted body mass index (Multivariable Mendelian randomisation 

analyses). Panel E: Main analysis results in the sub-population with fetal genotype. Panel F: As Panel E, but with additional adjustment for fetal genotype. Panel 

G: As panel E but excluding BiB. Panel H: As panel F but excluding BiB. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in 

Bradford; MoBa, Norwegian Mother, Father and Child Cohort Study; BMI, body mass index; CI, confidence interval; CHD, congenital heart disease; SD, standard 

deviation; GRS, genetic risk score; MVMR, multivariable Mendelian randomisation.  

 

 



 

 276 

 

Study

Pooled random effect association

Heterogeneity: I
2
 = 0%, p = 0.52

ALSPAC

BiB

MoBa

N (cases)

7360 (61)

7433 (81)

23869 (177)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.09

0.97

1.07

1.15

95%−CI

[0.98; 1.22]

[0.76; 1.25]

[0.86; 1.34]

[0.99; 1.33]

Weight

100.0%

19.6%

24.3%

56.1%

A: Main analyses

Study

Pooled fixed effect association

Heterogeneity: I
2
 = 22%, p  = 0.26

ALSPAC

MoBa

N (cases)

7360 (61)

23869 (177)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.10

0.97

1.15

95%−CI

[0.97; 1.25]

[0.76; 1.25]

[0.99; 1.33]

Weight

100.0%

25.9%

74.1%

B: Main analyses excluding BiB

Study

Pooled random effect association

Heterogeneity: I
2
 = 0%, p = 0.48

ALSPAC

BiB

MoBa

N (cases)

7360 (61)

7433 (81)

23869 (177)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.10

0.97

1.07

1.16

95%−CI

[0.98; 1.23]

[0.75; 1.25]

[0.85; 1.34]

[1.00; 1.34]

Weight

100.0%

19.6%

24.3%

56.1%

C: MVMR − Smoking GRS

Study

Pooled random effect association

Heterogeneity: I
2
 = 18%, p = 0.30

ALSPAC

BiB

MoBa

N (cases)

7360 (61)

7433 (81)

19120 (128)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.11

0.97

1.07

1.23

95%−CI

[0.97; 1.28]

[0.76; 1.25]

[0.86; 1.34]

[1.03; 1.46]

Weight

100.0%

25.4%

30.2%

44.4%

D: Main analyses in fetal genotype sub−population

Study

Pooled random effect association

Heterogeneity: I
2
 = 11%, p = 0.33

ALSPAC

BiB

MoBa

N (cases)

4836 (31)

4529 (39)

19120 (128)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.08

0.88

0.99

1.20

95%−CI

[0.89; 1.30]

[0.60; 1.30]

[0.69; 1.43]

[0.98; 1.46]

Weight

100.0%

20.9%

23.3%

55.8%

E: Main analyses with adjustment for fetal genotype

Study

Pooled fixed effect association

Heterogeneity: I
2
 = 56%, p  = 0.13

ALSPAC

MoBa

N (cases)

7360 (61)

19120 (128)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.14

0.97

1.23

95%−CI

[0.99; 1.31]

[0.76; 1.25]

[1.03; 1.46]

Weight

100.0%

32.6%

67.4%

F: Main analyses in fetal genotype sub−population excluding BiB

Study

Pooled fixed effect association

Heterogeneity: I
2
 = 47%, p  = 0.17

ALSPAC

MoBa

N (cases)

4836 (31)

19120 (128)

0.5 1 2

Alcohol GRS

Odds ratio of CHD per 1SD change in GRS

OR

1.12

0.88

1.20

95%−CI

[0.94; 1.34]

[0.60; 1.30]

[0.98; 1.46]

Weight

100.0%

21.1%

78.9%

G: Main analyses with adjustment for fetal genotype excluding BiB



 

 277 

Figure S4.3. Showing the main results and results from additional analyses for the MR analyses of genetically predicted maternal alcohol consumption (using a 

genetic risk score of drinks per week) and offspring CHDs. Odds ratios (ORs) of CHD for a 1SD difference in maternal GRS in each study and pooled across studies 

using random effects meta-analysis or fixed-effects analyses when excluding BiB (panels B, G, H). Adjusted for top 10 genetic principal components in all cohorts 

with additional adjustment for genetic chip, genetic batch, and imputation batch in MoBa. Panel A: Main analyses as shown in the main manuscript. Panel B: 

Main analyses excluding BiB. Panel C: Main analyses with additional adjustment for genetically predicted smoking (Multivariable Mendelian randomisation 

analyses). Panel D: Main analysis results in the sub-population with fetal genotype. Panel E: As Panel D, but with additional adjustment for fetal genotype. Panel 

F: As panel D but excluding BiB. Panel G: As panel E but excluding BiB. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in 

Bradford; MoBa, Norwegian Mother, Father and Child Cohort Study; BMI, body mass index; CI, confidence interval; CHD, congenital heart disease; SD, standard 

deviation; GRS, genetic risk score; MVMR, multivariable Mendelian randomisation. 
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Metabolomics data in the Born in Bradford Cohort 

 

This work has been published: 

Taylor K, McBride N, Goulding N, Burrows K, Mason D, Pembrey L, Yang TC, Azad R, Wright J & Lawlor DA. 

Metabolomics datasets in the Born in Bradford cohort. Wellcome Open Research (2021). 

https://doi.org/10.12688/wellcomeopenres.16341.2.  

This paper has been included in appendices for the interested reader. It includes extensive detail 

on the methods and quality control of the Born in Bradford Metabolomics data. 

I am joint first author with another (then) PhD student, Nancy McBride. We contributed equally 

to this publication. I was fortunate enough to be one of the first researchers to use the Born in Bradford 

(BiB) metabolomics data and these data are an important aspect of this thesis. As more people began to 

use the data, it became clear that there would be value in describing the metabolomics data available in 

the BiB cohort for our theses and the wider research community. Nancy and I conceptualised the idea 

together, undertook data curation, wrote the first draft and subsequent drafts in response to co-authors 

and reviewers’ comments.  
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Introduction 

Metabolomics is the quantification of small molecules resulting from metabolic processes. The 

metabolome is influenced by both genotype and environment, and dynamically responds to 

environmental influences. Developments in high-throughput technologies have allowed the efficient and 

accurate quantification of metabolites. This has revolutionised our ability to understand the causes and 

consequences of variation in human metabolism, and the contribution that multiple metabolites can 

make to risk prediction, using large-scale epidemiological studies 76,183–185. Lipids and lipoproteins, which 

are measured in most high-throughput platforms used in epidemiology, are larger than the threshold used 

to define metabolites (<1.5k Daltons) and are therefore metabolomic traits. For simplicity in this paper, I 

refer to these as metabolites. 

Birth cohorts can be useful for exploring prenatal influences on birth and later life outcomes. 

Recently, studies have shown metabolomic profiling can aid us in our understanding of maternal health 

during pregnancy 78,184,185 and of the influence of in utero exposures on subsequent offspring health 186,187. 

The Born in Bradford (BiB) study is a UK longitudinal birth cohort 134. Nuclear magnetic resonance (NMR) 

and mass spectrometry (MS) data are available in BiB including measurements during pregnancy, cord 

blood and early life in the offspring. MS offers a truly untargeted approach with comprehensive coverage 

of the metabolome (>1,000 metabolites) due to its high sensitivity. However, MS only provides relative 

quantification based on peak area in these approaches without comparison to a metabolite reference 

standard. NMR offers less coverage of the metabolome, but with absolute quantification possible in 

clinically meaningful units (e.g., mmol/L). 

The range of metabolomics data in BiB, coupled with the substantial data obtained through 

questionnaires, research clinic assessments, linkage to medical records, educational and social records, 

genome-wide (mothers, offspring and a subgroup of fathers) and epigenome-wide (mother and offspring) 

profiling makes BiB a valuable resource for metabolomics research. This data note describes the 

metabolomics data currently available in BiB – how these were obtained, quantified, utilised, as well as 

potential future uses, strengths and limitations. Figure 1 provides an illustrative summary of which type 

of metabolomic data have been collected on which cohort participants and when, up to 2020. Planned 

further metabolomic data collection is also described (see Using the BiB metabolomic data). 
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Figure 1. Summary illustration of the Born in Bradford metabolomics data.  

Abbreviations: NMR, nuclear magnetic resonance; MS, mass spectrometry; EDTA, 

ethylenediaminetetraacetic acid. 
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Methods 

 

Ethical approval and consent 

 

Ethical approval for the study was granted by the Bradford National Health Service Research Ethics 

Committee (ref 06/Q1202/48), and all participants gave written informed consent. The ALL IN sub-study 

had ethical approval from the London School of Hygiene & Tropical Medicine ethics committee (ref: 5320) 

and the Bradford Research Ethics committee (ref: 08/H1302/21). Parents (usually the mother) gave 

informed, written consent to take part in the study. 

 

Cohort 

 

The BiB study is a population-based prospective birth cohort. In total, 12,453 women who 

experienced 13,776 pregnancies were recruited at their oral glucose tolerance test (OGTT) at 

approximately 26–28 weeks’ gestation, which was offered to all women booked for delivery at Bradford 

Royal Infirmary (BRI) (with the exception of those with pre-existing diabetes (N = 70 – 0.5% of BiB 

pregnancies)). Eligible women had an expected delivery between March 2007 and December 2010. The 

study is unique because it includes high proportions of White European and South Asian families, all 

residing in Bradford, UK. Bradford is a city in the North of England with high levels of socioeconomic 

deprivation, and the cohort was started due to a high prevalence of poor child health in the city 134. Full 

details of the study methodology were reported previously 134. The study website provides more 

information, including protocols, questionnaires and information on how researchers can access data and 

a full list of all available data. Mothers and their partners, who were recruited into the study, provided 

detailed interview questionnaire data, measurements, and biological samples. They also consented to the 

linkage of their and their child’s data to routine (primary and secondary care) health and education data. 

 

Blood sampling 

 

Maternal overnight-fasted blood was taken during the OGTT and processed and stored at -80°C 

for further research and analyses. Infant cord blood samples were taken whenever possible (i.e. so long 

as staff were available, and collection of an umbilical vein sample did not interfere with care of the mother 

https://borninbradford.nhs.uk/research/
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or infant) and immediately processed and stored at -80°C. Samples were taken in a subgroup of offspring 

in early childhood for a specific project on childhood viral infection 188. I describe the processes of taking, 

processing, and storing samples at each time point before moving on to describe the NMR and MS 

metabolomic profiling. 

 

Pregnancy blood samples 

 

Of the 13,776 pregnancies in the BiB cohort, 11,480 had a fasting blood sample taken during the OGTT 

(n = 10,574 [92%] between 26–28 weeks’ gestation, with the remaining women being within 11–39 weeks’ 

gestation). Samples were taken by trained phlebotomists working in the antenatal clinic of the BRI and 

sent immediately to the hospital laboratory. 

Venous blood was collected in GEL tubes to obtain serum and plasma. The following processing steps 

were undertaken prior to storage at -80°C. 

1) Storage racks were prepared. 

2) Participant details were checked, making sure that both the BiB study ID and hospital number on 

the specimen bottles matched those on the participant tracking forms. 

3) Tubes were centrifuged at 3500 rpm for 10 minutes at room temperature. 

4) A 1 ml automatic pipette was used to aliquot samples into 1.5 ml aliquots (1-4 aliquots dependent 

on sample volume). 

5) Vials were labelled with appropriate BiB study labels and the duplicate barcode label was placed 

in the corresponding space marked on BiB tracking form. 

6) Aliquots were then placed in racks in a -80°C freezer. 

All samples were processed within 2.5 hours and then placed in -80°C freezers. There were no freeze-

thaw events of the samples prior to their use for the pregnancy metabolomic profiling. Serum samples 

were used for NMR metabolomic profiling, except for five (0.04%) samples which were plasma. For MS 

pregnancy metabolomics, ethylenediaminetetraacetic acid (EDTA) (a sample tube anticoagulant) plasma 

samples were used. Previous work has shown that reproducibility in both serum and plasma is good. As 

long as the same blood sample procedures are used (as in BiB), either matrix should yield similar results 

189. 
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Cord blood samples 

 

Venous cord blood samples were all obtained at delivery by the attending midwife at the BRI, 

following research protocols. Cord blood sampling was not attempted for women delivering outside of 

the BRI, if the attending midwife was too busy, or if attempting to collect a research cord blood sample 

would interfere with postnatal care. Samples were refrigerated at 4°C in EDTA tubes until collected by BRI 

laboratory staff within 12 hours. Samples were then spun, frozen and stored at -80°C. In total, the BiB 

study collected 9,604 cord blood EDTA plasma samples. There were no freeze-thaw events of the cord 

blood samples. 

 

Infant blood samples 

 

Infant metabolomics were performed on blood samples that were collected on a subsample of 

the BiB cohort; those enrolled into the Allergy and Infection Study (ALL IN) 188 Children enrolled in the BiB 

cohort, and born on or after 1 March 2008 with a maternal baseline questionnaire were eligible to take 

part in ALL IN. Mothers were invited to participate in ALL IN one month before their child’s first birthday. 

A questionnaire was completed by those who consented, and a 5ml venous blood sample was taken from 

the child, centrifuged, and stored at -80°C. This was repeated one year later to provide questionnaire data 

and serum from a ~12-month visit (mean age of 14 months, ranging from 9–18 months) and a ~24-month 

visit (mean age of 26 months, ranging from 23–33 months). Trained community research administrators 

(CRAs) recruited participants, obtained consent, and collected data, including blood samples, at each visit. 

They received training in phlebotomy and were assessed by the senior paediatric phlebotomist at the BRI. 

Ametop cream or Cryogesic spray were used to anaesthetise the venepuncture site. Only two attempts at 

venepuncture were permitted for each child. There was a fridge in the clinic for storing bloods before 

transfer to the lab. The blood samples taken on home visits were kept in a cool bag with an ice pack and 

then taken straight to the laboratory at BRI within 1–2 hours. The times of each step (blood taken, arrived 

at lab, centrifuged, aliquoted, frozen) were recorded on the blood form and were entered onto a database 

(so that researchers can check distribution of times if needed). For home or clinic visits outside normal 

working hours, the CRA who took the blood sample would centrifuge the blood at the lab and leave it in 

the lab fridge for processing the next day. All infant metabolomics were performed on serum samples. 

There was a maximum of two freeze-thaw events prior to metabolomics analyses of the infant samples. 
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Metabolomics datasets in BiB 

 

There are six metabolomics datasets including different populations and timepoints available in 

BiB. These are described below and summarised in Table 1 and Figure 1. I have divided the methods 

between the two main platforms (NMR and MS). I describe the methods used to generate each dataset 

and use flow charts to illustrate how selection was performed. 

 

Table 1. Metabolomics datasets in the BiB cohort separated by platform. 

# Data source Brief description  

Nuclear magnetic resonance 

1 Pregnancy NMR – 
Dataset 1 

N = 11,480 pregnancies. Single timepoint using maternal serum taken 
from a fasted blood sample around 26–28 weeks’ gestation. Of the 
11,480, 37% are White British (40% White European) mothers and 44% 
Pakistani (49% South Asian). 

2 Cord blood NMR – 
Dataset 2 

N = 7,980 children. Single timepoint using cord blood, EDTA plasma. 

3 Infants NMR (aged 
12 or 24 months) – 
Dataset 3 

N = 2,108 at either 12- or 24-months using serum samples.  
N = 1,690 at 12 months.  
N = 1,536 at 24 months.  
N = 1,118 at both timepoints. 

Mass spectrometry 

4 Pregnancy MS – 
Dataset 1a 

N = 1,000 pregnancies. Single timepoint using EDTA plasma taken from a 
fasted blood sample between 26–28 weeks’ gestation. Of the 1,000, 50% 
are White British and the other 50% are Pakistani ethnicity. 

5 Cord blood MS – 
Dataset 1b 

N = 1,000 children (paired with women from Dataset 1a). Single timepoint 
using cord blood, EDTA plasma. 

6 Pregnancy MS – 
Dataset 2 

N = 2,000 pregnancies within a case-cohort design. EDTA plasma sample 
taken between 26–28 weeks’ gestation. Of the 2,000 women, 47% are 
White British and 53% are Pakistani. 

Abbreviations: NMR, nuclear magnetic resonance; MS, mass spectrometry; EDTA, ethylenediaminetetraacetic acid. 

 

NMR metabolomics 

 

NMR methods 

 

I describe the NMR methods which apply to all the NMR datasets described in Table 1. Profiling 

of circulating lipids, fatty acids, and metabolites was done by a high-throughput targeted NMR platform 
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(Nightingale Health© (Helsinki, Finland)) at the University of Bristol, providing quantitative information 

on 227 metabolic traits (including ratios and other traits derived from the quantified NMR spectra) 76.   

The Nightingale NMR metabolite quantification was achieved through measurements of three 

molecular windows from each serum/plasma sample. Two of the spectra (LIPO and LMWM windows) are 

acquired from native serum/plasma and one spectrum from serum lipid/plasma extracts (LIPID window). 

The NMR spectra are measured using Bruker AVANCE III spectrometer operating at 600 MHz. 

Measurements of native serum/plasma samples and serum/plasma lipid extracts are conducted at 37°C 

and 22°C, respectively. 

The NMR spectra were analysed for metabolite quantification (molar concentrations) in an 

automated fashion. For each metabolite, a ridge regression model was applied for quantification to 

overcome the problems of heavily overlapping spectral data. In the case of the lipid data, quantification 

models were calibrated using high-performance liquid chromatography methods, and individually cross-

validated against NMR-independent lipid data. Low-molecular-weight metabolites, as well as lipid extract 

measures, were quantified as mmol/L based on regression modelling calibrated against a set of manually 

fitted metabolite measures. The calibration data were quantified based on iterative line-shape fitting 

analysis using PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). Quantification could not be 

directly established for the lipid extract measures due to experimental variation in the lipid extraction 

protocol. Therefore, serum/plasma lipid extract were scaled to total a standard serum cholesterol sample 

from the LIPO spectrum. 

 

Validation of the NMR platform 

 

Quality control (QC) of the data were undertaken by Nightingale Health© prior to returning 

metabolite concentrations to BiB. Their QC procedures check various issues related to the sample integrity 

and the biomarker quantification.  

I also undertook validation of some of the NMR measures by comparing concentrations of fasting 

glucose, total cholesterol, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol 

(LDLc), and triglycerides from the NMR platform to the same measures from the same samples assessed 

by clinical chemistry measurements (Figure 2). Clinical chemistry measurements were completed at the 

BRI laboratory (fasting glucose) or Glasgow Royal Infirmary (lipids). Glucose was measured using a glucose 

oxidase method that does not cross-react with insulin. Total cholesterol, HDLc and triglycerides were 
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measured following the standard Lipid Research Clinics Protocol using enzymatic reagents. LDLc was 

estimated from total cholesterol, HDLc and triglycerides (LDLc = [Total cholesterol in mmol/l] – [HDLc in 

mmol/l] – [Triglycerides in mmol/l ÷ 2.2]). The correlation between fasting glucose measured by clinical 

chemistry and by NMR was 0.73 and for all four lipids was between 0.85 and 0.93, with the intercepts of 

the regression line close to zero for HDLc, LDLc, and triglycerides, but higher for glucose (1.85) and total 

cholesterol (1.21). This suggests that the NMR platform systematically underestimates glucose and total 

cholesterol levels. However, the high levels of correlation, particularly for the lipid measures, is reassuring 

and suggests association analyses would have validity. It is evident from Figure 2 that there are outliers 

for some of the measures, notably for glucose, total cholesterol and triglycerides (Figures 2A, 2B, 2E, 

respectively). I would recommend for researchers using the data to consider these potential outliers 

before commencing analyses. Determining how to deal with outliers will depend on the research question 

and the personal preference of the research group undertaking analyses. To further test the validity of 

the NMR measures, I compared associations of maternal early pregnancy body mass index (BMI), treated 

as an exposure, with fasting glucose, and the four lipid measures from clinical chemistry and NMR as the 

outcome. I also compared associations between the five metabolic measures (from clinical chemistry and 

NMR) as exposures, with hypertensive disorder of pregnancy (HDP; either gestational hypertension or 

pre-eclampsia, defined based on international criteria applied to all measures of blood pressure and 

proteinuria extracted from clinical records) 190 as the outcome. Associations of BMI with the five outcomes 

were directionally consistent between clinical chemistry and NMR measurements. However, the NMR 

associations were weaker (closer to the null) and there were clear differences in magnitudes of association 

between the two methods for the associations of BMI with glucose and HDLc (Figure 3A). By contrast, 

results were concordant between the two methods for the associations of metabolites with odds ratios 

of HDP (Figure 3B). Given the relatively modest correlation of glucose from the Metabolon MS analyses 

with the clinical chemistry levels on the same samples, I explored this further comparing results from two 

regression analyses – one of the difference in mean glucose per 1SD higher BMI (glucose as outcome) and 

one of the odds ratio for HDP per 1SD higher glucose (glucose as exposure). 
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Figure 2. Comparison of glucose (2A), total cholesterol (2B), high-density lipoprotein cholesterol (2C), low-density 
lipoprotein cholesterol (2D) and triglycerides (2E) concentrations between Nightingale Health© nuclear magnetic 
resonance (NMR) (x-axis) and routine clinical chemistry assays (y-axis) (N= 11,036 to 11,337). R = Pearson correlation 
coefficient.
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Figure 3. Comparisons of the associations of early pregnancy body mass index (BMI) with fasting glucose 
and lipids measured by routine clinical chemistry assays, Nightingale Health© nuclear magnetic 
resonance (NMR) and mass spectrometry (MS, glucose only) (3A), fasting glucose and lipids measured 
by routine clinical chemistry assays, Nightingale Health© NMR and MS (glucose only) with hypertensive 
disorder of pregnancy (HDP) (3B).  
Associations in 3A are from unadjusted linear regression and data points show standard deviation (SD) 
differences in mean metabolite per one standard deviation (1SD) higher BMI. Associations in 3B are from 
unadjusted logistic regression and data points show unadjusted odds ratios for HDP per 1SD higher in 
metabolic trait. Error bars = 95% confidence intervals. 
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Participant selection and characteristics of those with NMR data 

 

In this subsection, I present flow charts to illustrate selection and inclusion into the NMR 

participant groups (Figure 4) and describe participant characteristics for the BiB NMR datasets (Table 2). 

All three of the samples of BiB participants with NMR data (maternal pregnancy N = 11,480, offspring cord 

blood N = 7,980, and offspring 12–24 months N = 2,108) had very similar distributions of maternal age, 

parity, early pregnancy BMI, residential area deprivation, offspring sex and birth weight to those seen in 

the whole cohort of 13,776 participants (Table 2). 
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Figure 4. Illustrating the flow of participants into the NMR datasets in the Born in Bradford cohort.  
Figure 4A shows the maternal pregnancy (Dataset 1: NMR metabolomics at 26–28 weeks’ gestation) and 

offspring cord blood samples (Dataset 2: NMR metabolomics taken from the umbilical vein shortly after 

delivery). Figure 4B shows the offspring 12–24 months NMR metabolomic sample (Dataset 3). 

Abbreviations: NMR, nuclear magnetic resonance; BiB, Born in Bradford; ALL IN, Allergy and Infection 

study. 
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Table 2. Participant characteristics for NMR datasets in the BiB cohort. 

  Maternal  
pregnancy NMR  
dataset (n=11,480) 

Offspring cord  
blood NMR dataset  
(n=7,890) 

Offspring 12- or 24-  
months NMR dataset  
(n = 2,108) 

BiB cohort  
(n=13,776) 

Characteristics  Unit / Category       

Maternal Age  Years  
Missing  

27.3 (5.6)  
410 (3.6) 

27.5 (5.6)  
627 (7.9) 

28.3 (5.7)  
60 (2.9) 

27.3 (5.6)  
1445 (10.5) 

Maternal Parity  Nulliparous  
Multiparous  
Missing  

4310 (37.5)  
6428 (55.9)  
742 (6.5) 

2765 (36.6)  
5125 (65.0)  
344 (4.4) 

819(39.9)  
1,233(58.4)  
56 (2.7) 

5101 (37.0)  
7773 (56.4)  
902 (6.5) 

Maternal BMI  kg/m 2  
Missing  

26.1 (5.7)  
2160 (18.8) 

26.2 (5.7)  
1464 (18.5) 

26.2(5.5)  
106 (5.0) 

26.0 (5.7)  
3281 (23.8) 

Maternal ethnicity  White British  
Pakistani  
Other  
Missing  

4268 (37.2)  
4995 (43.5)  
1887(16.4)  
330 (2.4) 

2902 (37.7)  
3596 (46.7)  
1206 (15.7)  
186 (2.4) 

769 (49.7)  
1048 (49.7)  
291 (13.8)  
0 

5055 (37.8)  
6088 (45.5)  
2223 (16.6)  
410 (3.0) 

Index of multiple  
deprivation  

Quintile 1 (most deprived)  
Quintile 2  
Quintile 3  
Quintile 4  
Quintile 5 (least deprived)  
Missing  

6646 (65.9)  
1830 (18.2)  
1124 (11.2)  
306 (3.0)  
173 (1.7)  
1401 (12.2) 

4439 (65.8)  
1220 (18.1)  
778 (11.5)  
187 (2.8)  
118 (1.8)  
1148 (14.6) 

1400(66.4)  
355 (16.8)  
248 (11.8)  
70 (3.3)  
34(1.6)  
1 (0.0) 

7566 (66.4)  
2052 (18.0)  
1250 (11.0)  
334 (2.9)  
190 (1.7)  
2384 (17.3) 

Offspring sex  Male  
Female  
Missing  

5705 (49.7)  
5420 (48.7)  
355 (3.1) 

4095 (51.9)  
3795 (48.1)  
3 (0.0) 

1065(50.2)  
1029(48.1)  
14 (0.7) 

6891 (50.0)  
6470 (48.4)  
415 (3.0) 

Birth weight  Grams  
Missing  

3226 (565)  
356 (3.1) 

3266 (522)  
4 (0.1) 

3224 (558)  
14 (0.7) 

3216 (565)  
416 (3.0) 

Data are mean ± SD or n (%) unless stated. Abbreviations: NMR, nuclear magnetic resonance; BiB, Born in Bradford; BMI, body mass index; kg, kilogram; IMD, Index of 
Multiple Deprivation (taken from 2010 national quintiles). There were 9 ethnic groups, of which White British and Pakistani were the main homogeneous groups. The 'Other' 
ethnicity category comprises: White Other, Mixed-White and Black, Mixed-White and South Asian, Black, Indian, Bangladeshi or Other ethnicity. 
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Mass spectrometry metabolomics 

 

Mass spectrometry methods 

 

The untargeted MS metabolomics analysis of over 1,000 metabolites was performed at 

Metabolon, Inc. (Durham, North Carolina, USA). Samples were sent to Metabolon in two separate batches. 

Dataset 1 was completed in December 2017 and consisted of 1,000 maternal pregnancy samples and 

1,000 offspring paired cord blood samples. Dataset 2 was completed in December 2018 and consisted of 

2,000 maternal pregnancy samples. 

At Metabolon, samples were managed by a laboratory information management system and were 

kept at -80°C. Recovery standards were added to samples prior to monitor the extraction process. To 

remove proteins, dissociate small molecules bound to proteins, disassociate molecules trapped in the 

precipitated protein matrices, and to recover chemically diverse metabolites, proteins were precipitated 

with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by 

centrifugation. The resulting extract was divided into five fractions: two for analysis by two separate 

reverse phase ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 

methods with positive ion mode electrospray ionization (ESI), one for analysis by reverse phase UPLC-

MS/MS with negative ion mode ESI, one for analysis by hydrophilic interactive liquid chromatography 

(HILIC)/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples were 

placed on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were stored 

overnight under nitrogen before preparation for analysis.  

The instrument configuration, data acquisition, and metabolite identification and quantitation 

used by Metabolon have been described previously 191. To summarise, the structure of metabolites were 

identified by matching the ion features (retention time, molecular weight (m/z), MS fragmentation 

pattern, preferred adducts, and in-source fragments) in the study samples to a reference library of 

chemical standard entries. The confidence of this metabolite identification met most stringent tier 1 

criteria defined by Schrimpe-Rutledge et al 192. Peaks were quantified using area-under-the-curve of 

primary MS ions. To adjust for instrument batch effects for each run day, the raw ion counts for each 

metabolite were divided by the median value for the run day. Missing values were assumed to be the 

result of falling below the detection sensitivity, and thus were imputed with the minimum detection value 

based on each metabolite. 
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This process provides relative quantification (i.e., multiples of the median (MoM) for the days run) 

of >1,000 metabolites in 10 key classes: amino acids, carbohydrates, lipids, nucleotides, microbiota 

metabolism, carbon metabolism, energy, cofactors & vitamins, xenobiotics, and unidentified metabolites.  

 

Validation of the MS platform 

 

Metabolon conducted data QC for the BiB datasets. Procedures were conducted to: (i) assure that 

all aspects of the Metabolon process are operating within specifications, (ii) assess the effect of a non-

plasma matrix on the Metabolon process and distinguish biological variability from process variability, (iii) 

assess the contribution to compound signals from the process (using Process Blank) and (iv) segregate 

contamination sources in the extraction (using Solvent Blank). 

As an additional data QC, I explored correlations between MS and both NMR and clinical chemistry 

fasting glucose measures (glucose is the only common trait I have data on for MS, NMR, and clinical 

chemistry). Pearson’s correlation coefficient comparing MS to clinical chemistry (0.65) was modest and 

lower than that for NMR (0.73, see above and Figure 2) and the intercept was 0.11 (Figure 5A). Correlation 

between Metabolon and NMR was higher (0.77) and the intercept was 0.10 (Figure 5B). 
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Figure 5. Comparisons of glucose concentrations for Metabolon mass spectrometry (MS) with routine 
glucose oxidase (5A) and Nightingale Health© nuclear magnetic resonance (NMR) (5B). R = Pearson 
correlation coefficient. 
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Participant selection and characteristics of those with MS data 

 

The flow of participants into the MS datasets are illustrated in Figure 6, and the characteristics of 

participants included in the two MS datasets, together with characteristics of the whole BiB cohort are 

provided in Table 3. Selection processes for both MS datasets mean that I would not expect distributions 

of characteristics in these to reflect the whole cohort. Only women of either Pakistani or White British 

ethnic background were included in the MS datasets because, due to cost, BiB were only able to do this 

on a subset of the cohort. As these two groups represent ~85% of BiB it was felt the numbers for any other 

group would be too small for meaningful analyses. In Dataset 1, 1,000 women were selected on the basis 

that they had stored fasting plasma, a useable cord blood sample, genome wide data on both mother and 

offspring and were either of White British or Pakistani origin (Figure 6A). Following these inclusions, 500 

women were selected at random from each ethnic group (White British and Pakistani). In Dataset 2, a 

case-cohort design was used 193,194. A case-cohort design consists of a cohort with an over-sampling of all 

cases. The BiB case-cohort consists of 2,000 women (only pregnancy samples were assayed in Dataset 2). 

As with Dataset 1, women were selected based on certain characteristics shown in Figure 6B, including 

that they had not already had Metabolon MS analyses. From those who fulfilled these pre-specified 

criteria, six groups of cases were selected: women with (a) gestational diabetes; (b) gestational 

hypertension; (c) pre-eclampsia; (d) preterm birth; (e) congenital anomaly; (f) stillbirth. In total, 801 

women had experienced one or more of these conditions. Having selected all cases these were then 

replaced into the eligible cohort and a sub-cohort of 1,199 women were randomly selected from the 

eligible cohort. Thus, the comparison group in this case-cohort study is representative of the eligible 

cohort (i.e., the cohort comparison group includes some of the cases in proportions that would reflect the 

whole cohort). The final BiB case-cohort sample consists of three groups (Figure 6B): 1) selected as 

comparison group (N = 1,199), 2) selected as cases only (N = 408), and 3) selected as a case and control 

(N = 393). The comparison group in any analyses will vary depending on the research question. 

For the MS dataset, researchers are given the option of using the ‘raw’ data from Metabolon or a 

quantified (scaled) data set, in which missing data have been imputed and the multiple of median values 

transformed to SD- (z-) scores (by subtracting the sample mean value for each metabolite from the 

participant value and then dividing by the sample standard deviation for that metabolite). This 

transformation helps overcome the problem of high missing data in metabolomics 195. This cohort for MS 

profiling were sampled on their ethnicity. It is almost 50% White British and Pakistani (there are slightly 

more Pakistani women in Dataset 2), as opposed to around 15% of the whole BiB cohort not belonging to 
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either of these ethnic groups. However aside from this, the sample is representative of the whole cohort 

(Table 3). 

 

 

Figure 6. Illustrating the flow of participants into the Metabolon datasets in the Born in Bradford 
cohort. 
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Table 3. Participant characteristics of the mass spectrometry datasets in the BiB cohort. 

  Dataset 1  
(N = 1,000  
mother/child  
pairs) 

Dataset 2  
case-cohort a 
(N = 2,000) 

Dataset 2 random  
cohort sample  
only b (N = 1,199) 

BiB cohort  
(N = 13,776) 

Characteristics  Category  - -  - 

Maternal age  Years 27.5 (5.7) 27.5 (5.7) 26.91 (5.5) 27.3 (5.6) 

 Missing  0 (0) 0 (0) 0 (0.0) 1445 (10.5) 

Maternal parity  Nulliparous  
Multiparous  
Missing  

359 (37.0)  
611 (61.1)  
30 (3.0) 

745 (37.3)  
1213 (60.1)  
42 (2.1) 

433 (37.4)  
725 (60.5)  
41 (3.4) 

5101 (37.0)  
7773 (56.4)  
902 (6.5) 

Maternal BMI  (kg/m 2)  
Missing  

26.7 (6.0)  
36 (3.6) 

26.8 (5.9)  
97 (4.9) 

25.9 (5.4)  
60 (5.0) 

26.0 (5.7)  
3281 (23.8) 

Maternal ethnicity  White British  
Pakistani  
Other  
Missing  

500 (50.0)  
500 (50.0)  
0  
0 

933 (46.7)  
1067 (53.4)  
0  
0 

537 (44.8)  
662 (55.2)  
0  
0 

5055 (37.8)  
6088 (45.5)  
2223 (16.6)  
410 (3.0) 

Index of multiple  
deprivation  

Quintile 1 (most deprived)  
Quintile 2  
Quintile 3  
Quintile 4  
Quintile 5 (least deprived)  
Missing  

656 (65.6)  
175 (17.5)  
112 (11.2)  
38 (3.8)  
19 (1.9)  
0 (0) 

1340 (67.0)  
358 (17.9)  
212 (10.6)  
53 (2.6)  
37 (1.8)  
0 (0) 

823 (68.6)  
203 (16.9)  
123 (10.3)  
31 (2.6)  
19 (1.6)  
0 (0) 

7566 (66.4)  
2052 (18.0)  
1250 (11.0)  
334 (2.9)  
190 (1.7)  
2384 (17.3) 

Offspring sex  Male  
Female  
Missing  

512 (51.2)  
488 (48.8)  
0 (0) 

1053 (52.7)  
947 (47.3)  
0 (0) 

625 (52.1)  
574 (47.9)  
0 (0) 

6891 (50.0)  
6470 (48.4)  
415 (3.0) 

Offspring  
birthweight  

Grams  
Missing  

3304 (517)  
0 (0) 

3232 (574)  
1 (0) 

3318 (486)  
0 (0) 

3216 (565)  
416 (3.0) 

a This column comprises of the full case-cohort dataset of 2,000 pregnancies. This includes 801 selected cases and the 1,199 random cohort.  
b This column includes only the 1,199 random cohort to compare to the full case-cohort with the selected cases. Data are mean ± SD or n (%) unless stated.  
Abbreviations: BiB, Born in Bradford; BMI, body mass index; kg, kilogram; IMD, Index of Multiple Deprivation (taken from 2010 national quintiles).  
There were nine ethnic groups, of which White British and Pakistani were the main homogeneous groups. The 'Other' ethnicity category comprises: White Other, Mixed-
White and Black, Mixed-White and South Asian, Black, Indian, Bangladeshi or Other ethnicity.  
Please note because of the way participants were selected into the MS datasets I would not expect characteristics to match those of the whole cohort. 
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Overlap between metabolomics datasets 

 

Having participants in multiple datasets (i.e., maternal pregnancy, offspring cord, offspring 12–24 

months) and across the two metabolomic platforms provides scope for unique research opportunities. 

Figure 7 illustrates the overlap between BiB metabolomic datasets. The numbers are all based around the 

offspring, for example the number of maternal pregnancy metabolite data in any cell refer to the number 

of offspring who have a mother with those samples. There were 11,557 children from 11,480 pregnancies 

whose mothers had a pregnancy NMR sample. Of these, 6,756 children also had a cord blood sample and 

1,981 had at least one measurement from either the 12- or 24-month ALL IN subsample. All the mothers 

with a pregnancy MS sample (from either the first or second dataset) also have an NMR sample. There 

were 7,919 children in total with an NMR sample in cord blood with 1,275 of these also having at least 

one measure from the 12- or 24-month subsample. Of those with NMR cord blood data, 2,486 had a 

mother with MS pregnancy data (from either the first or second dataset) and 1,000 have MS cord blood 

data. There were 2,108 children with at least one NMR measure at either the 12- or 24-months 

assessment and of these, 690 have a mother with MS metabolite measures in pregnancy data (from either 

dataset) and 229 have MS cord blood data. Although the exclusion criteria for MS dataset 2 was no prior 

MS metabolomics (Figure 6), there was one mother with MS metabolomics in both datasets from different 

pregnancies. 
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Figure 7. Showing the overlap between the metabolomic datasets in the Born in Bradford cohort 
presented at the offspring level. 
Abbreviations: NMR, Nuclear magnetic resonance; MS, mass spectrometry. 

 

Using the BiB metabolomic data, including a summary of published, ongoing and future research using 

these data 

 

The current BiB metabolite data have been quantified on blood samples collected during 

pregnancy, cord blood at birth and in the offspring at 12- and 24-months. These are critical time periods 

for life-course research and the combination of these data with large amounts of genomic, epigenomic, 

social and health data makes BiB a platform which provides scope for unique research opportunities. 
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Issues for data users 

 

Batch effects 

 

The quantified NMR metabolites that have been measured in BiB are represented in clinically 

meaningful units, so can be compared to results from other studies. By contrast the Metabolon MS 

metabolites are quantified in relative abundance i.e., in relation to other quantified MS measurements 

that were run on the same day. The MS Dataset 1 and Dataset 2 were obtained ~2 years apart and have 

been normalised to different references, so are not directly comparable. For example, the value of a 

specific metabolite from a maternal pregnancy sample in Dataset 1 compared to the same metabolite in 

Dataset 2 may differ because they are from different batches. Because of the different selection process 

for the two datasets (Dataset 1 is paired pregnancy-offspring cord blood samples and Dataset 2 has a 

case-cohort sampling frame) it is not possible to normalize them to the same reference. I recommend 

running analyses separately in each of the two datasets and comparing results, then meta-analyse if 

appropriate.  

 

Comparisons with clinical chemistry measurements 

 

I have illustrated above strong correlations between glucose and lipids measured using clinical 

chemistry and the NMR platform. I found weaker (though directionally consistent) associations of BMI 

with these outcomes measured using NMR compared to those with clinical chemistry. In a second 

example, results were consistent between the two methods for the associations of pre-eclampsia with 

glucose and lipids. Researchers considering using these data might want to check for consistency with 

associations using the clinical chemistry measurement available in BiB. For the MS data I was only able to 

explore correlations with glucose and found this to be high between clinical chemistry and MS. 

 

Summary of published research using the BiB metabolomics data 

 

Bristol researchers undertook a collaboration between BiB and the UK Pregnancies Better Eating 

and Activity Trial (UPBEAT), a randomised control trial of obese pregnant women (BMI ≥ 30kg/m 2) 196. 

They found evidence that maternal pregnancy NMR samples can improve prediction of pregnancy-related 
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disorders 196. The prediction models consisting of NMR-derived metabolomics and established risk factors 

(maternal age, smoking, BMI, ethnicity, and parity) performed better than established risk factors alone 

for gestational diabetes, hypertensive disorders of pregnancy, small/large for gestational age but not 

preterm birth in BiB. Results were directionally consistent but attenuated in UPBEAT. The attenuated 

results in that validation sample may reflect the differences between the studies participants 

characteristics, model overfitting in BiB, or both. 

In other work, I have shown that the distributions of most of the NMR metabolic measures 

differed by ethnicity 197. White European women had higher levels of most lipoprotein subclasses, 

cholesterol, glycerides and phospholipids, monosaturated fatty acids, and creatinine but lower levels of 

glucose, linoleic acid, omega-6 and polyunsaturated fatty acids, and most amino acids, compared with 

South Asian women. This suggests a more lipidomic pregnancy metabolic profile in White Europeans and 

a stronger glycaemic metabolic profile in South Asian women. Higher BMI and having gestational diabetes 

were associated with higher levels of several lipoprotein subclasses, triglycerides, and other metabolites 

in both groups but with evidence of weaker magnitudes of association for most of these in the South Asian 

women. 

In recent collaborations between the BiB cohort and the Pregnancy Outcome Prediction study 

(POPs) using Metabolon MS data, there was evidence that 4’-hydroxyglutamate improves prediction of 

pre-eclampsia compared to clinical risk factors alone 3 and that a ratio of four metabolites (1-(1-enyl-

stearoyl)-2-oleoyl-GPC, 1,5-anhydroglucitol,5α-androstan-3α,17α-diol disulfate and N1,N12-

diacetylspermine) together with the sFlt-1:PIGF ratio is a better predictor of fetal growth restriction/small 

for gestational age than sFlt-1:PIGF alone4 . Initial associations in POPs, a nulliparous, largely White 

European, affluent cohort from the Southeast of England, were validated in BiB. As I have outlined, BiB is 

a cohort of mixed ethnic background, with high levels of deprivation and including both nulliparous and 

multiparous women. The consistency of associations between POPs and BiB suggests that the prediction 

accuracy may be widely generalisable and that the metabolites predicting these outcomes may be causally 

related to them. 

Furthermore, combining the MS metabolomics with genomic sequence data has enabled the 

establishment of metabolomic consequences of loss of functional rare variants in autozygous individuals 

and the health effects of this loss of function 198. This has supported the development of the drug 

lumasiran for a rare kidney disease 199. 

 

Ongoing and future research 
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Ongoing work using both the NMR and MS metabolomics data will explore how the pregnancy 

metabolic environment relates to fetal growth (using repeat ultrasound scan measures and birth weight), 

preterm delivery, and congenital heart disease. Potential causal effects in these studies will be explored 

where possible by replication, the use of Mendelian Randomisation (MR) and triangulation with other 

types of data and study designs. In ongoing work, teams are using data from both MS datasets to evaluate 

whether MS-derived metabolomics are better predictors of gestational diabetes, hypertensive disorders 

of pregnancy, small and large for gestational age and preterm birth, than risk factors alone (with external 

validation being undertaken in the POPs cohort). By combining both NMR and MS data, teams are 

exploring the relationships between maternal pregnancy metabolites and their offspring cord blood 

metabolites. To date, there is no published work using the offspring metabolomics data. Researchers can 

find information on planned follow up data elsewhere, to understand whether these data could be useful 

to their ongoing or future research 200. 

BiB also contributes to metabolomic studies that are being undertaken by large collaborative 

efforts. This includes the European H2020 funded LifeCycle project 126, in which teams are exploring 

exposure to maternal hypertensive disorder of pregnancy, gestational diabetes, small and large for 

gestational age and preterm delivery on offspring subsequent metabolic profile. In the Consortium of 

Metabolomics Studies (COMETS) 183 there are ongoing projects including trans-ethnic genome-wide 

association analyses (GWAS), and exploring effects of BMI, smoking, dietary patterns and hypertension 

on maternal metabolomic profiles. 

 

Discussion and future directions for metabolomic analyses in BiB 

 

In this data note I have described multiple datasets with NMR and MS metabolomic measures in 

the BiB cohort. The wealth of metabolomics data available in BiB provides opportunities for addressing a 

range of research questions. In this section, I discuss the strengths and limitations of the data, together 

with some insights for using these data. I also provide information on plans for future measurements of 

metabolomics in BiB. 

A key strength of these datasets is that they are based within a cohort that has very detailed 

information on 13,776 pregnancies. This includes detailed socioeconomic, education, cognitive, and 

mental and physical health data. BiB has OGTT results and fasting pregnancy blood samples on most (83%) 

of the mothers, genomics (genome wide and sequence) data and epigenomics data in maternal pregnancy 
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and offspring cord blood. Few studies have pregnancy metabolomics data or OGTT data in numbers of 

this size. It is possible to look at metabolomics and its role in prediction of adverse pregnancy/perinatal 

outcomes and health and development in children. BiB has large numbers of South Asian and White 

European families, residing in a city with high levels of socioeconomic deprivation. The ethnic diversity 

allows us to try and understand ethnic differences in the developmental origins of disease, for example, 

why South Asian populations have a higher risk of type two diabetes and coronary heart disease. There is 

also scope to explore how diet could relate to the range of metabolomic measurements that BiB 

possesses. Further information on dietary variables can be found online in the BiB data dictionary 

https://borninbradford.github.io/datadict/. 

Having access to two metabolomics profiles (NMR and MS) is beneficial. The NMR platform mostly 

consists of lipids and lipoproteins, but also provides quantified fatty acids, amino acids, glycolysis 

metabolites, ketone bodies and glycoprotein acetyl (an inflammatory marker). It provides considerably 

more information than clinical chemistry measures that are conventionally measured in cohorts (e.g., 

glucose, total cholesterol, LDLc, HDLc and triglycerides) and at not much more cost (~£20 per sample). As 

a result, BiB has been able to obtain these data on large numbers of women in pregnancy, offspring cord 

blood and in samples taken in offspring at 12- and 24- months assessments. By contrast, the MS data 

covers more of the metabolome, including being able to assess energy metabolism (which might be 

important in pregnancy) and markers of medications such as paracetamol. However, it is more expensive 

(~£80-£200, depending on how many samples are assayed at a time). By having access to both datasets 

here, researchers can have broader coverage of the metabolome 201. There are potential uses for both 

platforms – ranging from disease prediction to causal analyses using methods such as MR 202. Both 

platforms have been used in previous GWAS of metabolites 203. As such, BiB could be used to explore 

whether genetic instruments from GWAS can be related to NMR or MS metabolites in pregnancy. 

Access to this unique metabolomic data is a big advantage in BiB. However, there has been 

difficulty in trying to validate findings in external cohorts. The work described above cannot be replicated 

because researchers cannot find other independent studies with relevant data 197. It is hoped that this 

data note will encourage other studies to collect similar data in pregnancy, offspring cord blood, and in 

mothers and offspring postnatally throughout their life-course. 

There are some additional important limitations of the data to consider. The impact of these 

limitations will depend on the research question. All the metabolomics datasets were collected on 

subsamples ranging from 11,480 with maternal pregnancy NMR samples (83% of the eligible 13,776 

participants) to 1,000 (7%) with MS cord blood samples. Smaller sample sizes may be statistically 

https://borninbradford.github.io/datadict/
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inefficient in some analyses and the selection processes (Figure 4 and Figure 6) may result in selection 

bias in some analyses. It is notable and provides some reassurance that, even for the smaller samples, 

distributions of most characteristics are similar between participant groups with different types of 

metabolomics at different time points and the whole cohort (Table 2 and Table 3). As Metabolon MS data 

have been collected only on White British and Pakistani women it cannot be assumed that analyses with 

these data would generalize to other ethnic groups. BiB cohort participants were largely recruited at the 

OGTT (with a small number recruited after that). This was opportunistic as there was no funding for 

initiating the cohort. After consultation with the community and health care providers, it was established 

that this would be a suitable time to obtain consent, interview pregnant women and collect a fasting blood 

sample for research. However, it means that women who did not attend the OGTT could have been missed 

and were not captured later in pregnancy or at delivery, and those who delivered pre-term before they 

attended their OGTT. BiB participants have previously compared to non-BiB births occurring between 

2007–2011 134. Summary data from obstetric and delivery records were obtained for 11,761 non-BiB 

births, which would include some who moved to Bradford shortly before delivery (and would not have 

been eligible to recruit). The comparison showed a small number of differences. BiB participants were less 

likely to include younger mothers (age 20–24 years) and had a higher proportion of South Asian and 

nulliparous mothers. There were differences in gestational age and preterm delivery that reflected 

recruiting BiB participants relatively late in pregnancy 134. This selection on gestational age may introduce 

selection bias in some BiB analyses, including those using the metabolomics data described here. 

A limitation is that BiB only has pregnancy metabolomics at a single time point and does not have 

pre-pregnancy measurements. Previous research suggests metabolites change upon becoming pregnant 

and then revert to pre-pregnancy levels 5 and that they change during pregnancy 81. Earlier measures 

would be valuable for prediction of future adverse outcomes to enable earlier antenatal monitoring and 

intervention. 

This data note has focused on metabolomics data that have been quantified by high throughput 

commercial platforms (Nightingale Health© NMR and Metabolon MS). On a small subsample of BiB 

participants (N = 199) NMR urine and serum MS blood metabolites have been quantified at Imperial 

College, London, as part of the HELIX collaboration. HELIX aims to identify the human exposome in 

pregnancy and childhood. Metabolite measurements were undertaken alongside similar subsamples from 

five other cohorts (total N = 1,192). In all six cohorts, samples were from children aged between 6–11 

years (BiB participants were mean age 6.6 years). 44 urine metabolites (24 semi-quantified) and 188 

serum (56 fully quantified) metabolites were measured. I have not described these metabolomics datasets 



 

 305 

here as the assays are unique to a small subgroup of BiB participants and any research on these 

participants is best done together with the other HELIX cohort subgroups on whom the same metabolomic 

data obtained at the same time and using the same methods is available. Further information about the 

samples and methods used can be found elsewhere 204. 

Up until March 2020, BiB were undertaking a follow-up of BiB parents and offspring, including 

collecting further blood samples with funding available to complete the NMR analyses on offspring and 

parent serum/plasma collected at this follow-up. However, that follow-up stopped on the 16th March 2020 

when restrictions on normal life due to the COVID-19 pandemic began in the UK. At the time of submitting 

this paper BiB did not know when face-to-face data collection will be possible to start again and what the 

best plans would be for further blood sample collection. At the relevant time BiB will discuss different 

potential scenarios for completing that planned follow-up with relevant scientific advisory groups. 

Whatever the decision, BiB should have some participants with serum/plasma NMR measures collected 

~8–9 years after birth. BiB are also planning to measure metabolites on the available maternal pregnancy 

urine samples. Urine metabolites often provide a more accurate measure of dietary intake and medicine 

use than serum/plasma measures and would be a valuable addition to the existing datasets described 

here. Any new data will be made available to the wider research community. 
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Chapter 5 
 

In the published version of this work, I included an Excel document containing all numerical 

results and refer to these in text. Due to the significant number of pages these tables would take up, 

I have not included them in this thesis. The Tables I am referring to are Tables S5.5-S5.9. For the 

interested reader, they can be found with the pre-print (doi: 

https://doi.org/10.1101/2022.02.04.22270425) and also within the Open Science Framework 

repository (doi: https://doi.org/10.17605/OSF.IO/U3C4N).  

 

 

 

 

 

 

 

https://doi.org/10.1101/2022.02.04.22270425
https://doi.org/10.17605/OSF.IO/U3C4N
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Figure S5.1. Illustrating the flow of participants into the Metabolon datasets in the Born in Bradford 

cohort. Panel A shows dataset 1 which includes 1,000 pregnancies and infants with MS metabolomics 

during pregnancy (26–28 weeks’ gestation (dataset 1a)) and in cord blood (dataset 1b; dataset 1b is not 

included in any analyses in the present study). 1,000 women were selected on the basis that they had 

stored fasting plasma, a useable cord blood sample and genome wide data on both mother and offspring. 

Following these inclusion criteria, 500 women were selected at random from the two largest ethnic 

groups: White British and Pakistani, which make up 85% of the cohort. Panel B shows dataset 2 which 

includes 2,000 pregnancies (26–28 weeks’ gestation) with MS metabolomics within a case-cohort design. 

This consisted of a cohort with an over-sampling of all cases of six pregnancy / perinatal outcomes. 

Abbreviations: MS, mass spectrometry; BiB, Born in Bradford; GWAS, genome wide association study; 

EDTA, ethylenediaminetetraacetic acid; HDP, hypertensive disorders of pregnancy; GD, gestational 

diabetes; GHT, gestational hypertension; PE, pre-eclampsia, PTB, preterm birth; CA, congenital anomaly; 

SB, still birth. Taken with permission from Taylor & McBride et al: 

https://doi.org/10.12688/wellcomeopenres.16341.2.  

 

 

https://doi.org/10.12688/wellcomeopenres.16341.2
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Text S5.1. Confounder data 

 

Age was obtained for all women at pregnancy booking. Ethnicity was self-reported by the mother 

at her recruitment questionnaire interview and based on the UK Office of National Statistics guidance. For 

women who did not have ethnicity data collected at the recruitment interview, data were abstracted from 

primary care medical records, which use a similar categorization. Women classified as South Asian 

included those who indicated they were Pakistani, Indian, or Bangladeshi. Women classified as White 

European included those who indicated that they were White British or other White European origin. 

Parity was categorised as having one or more previous pregnancies (multiparous (yes)) or no previous 

pregnancy (nulliparous (no)). I used the residential 2010 index of multiple deprivation (IMD) score 

presented as quintiles as a marker of socioeconomic position (SEP). Height was measured at recruitment 

(26–28 weeks’ gestation) using a Leicester Height Measure (Seca, London, UK). Maternal BMI was 

calculated using the height measured at recruitment and weight measured at first antenatal clinic visit 

(approximately 12 weeks’ gestation), and it was also extracted from medical records. All women were 

recruited from the same hospital which used Seca two-in-one scales (Harlow Healthcare Ltd., London, UK) 

to measure weight. For smoking and alcohol, women were asked the number of cigarettes smoked per 

day during pregnancy in the first questionnaire (26-28 weeks’ gestation). I then assigned women as 

smokers and non-smokers. Women were asked whether they drank alcohol during pregnancy or 3 months 

before and assigned drinkers and non-drinkers.  

 

Text S5.2. Defining congenital heart disease 

Table S5.1. ICD codes for defining CHDs.  

Methods to define CHDs were the same as those described above in Appendices for Chapter 4 (Text 

S4.3). Click here to navigate to them.  

 

Text S5.3. Genetic Data. 

Genetic data methods were the same as those described above in Appendices for Chapter 4 (Text S4.1). 

Click here to navigate to them.
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Figure S5.2. An overview of included cohorts and selection of study participants. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents 

and Children; MoBa, Norwegian Mother, Father and Child Cohort; CHD, congenital heart disease; BiB, Born in Bradford; GWAS, genome-wise 

association study. 
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Table S5.2: Logistic regression results from the presence/absence xenobiotic analysis. 

Metabolite Sub pathway ORc (95% CI) ORa (95% CI) 

saccharin Food Component/Plant 1.82 (0.91, 4.03) 2.16 (1.02, 5.13) 

salicyluric glucuronide Drug - Analgesics, Anesthetics 2.01 (1.05, 3.70) 2.27 (1.16, 4.29) 

alliin Food Component/Plant 0.60 (0.33, 1.10) 0.35 (0.17, 0.73) 

ferulic acid 4-sulfate Food Component/Plant 0.74 (0.40, 1.34) 0.50 (0.25, 0.96) 

naringenin 7-glucuronide Food Component/Plant 0.28 (0.05, 0.93) 0.14 (0.01, 0.66) 

glucuronide of piperine 

metabolite C17H21NO3 (5) 

Food Component/Plant 0.42 (0.20, 0.81) 0.47 (0.22, 0.93) 

Odds ratios are given for the presence of the metabolite during pregnancy and odds of having CHD in the 
offspring. 
ORc = unadjusted odds ratio (N = 2,605 [46 CHD cases]); ORa = adjusted odds ratio (N = 2,426 [42 CHD cases]), 
adjusted for: maternal age, ethnicity, parity, SEP, BMI, smoking). 
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Table S5.3. Participant characteristics for the 3 studies included in Mendelian randomisation analyses. 

Characteristic Category BiB (N = 7,433) ALSPAC (N = 7,360)  MoBa (N = 23,869) 

Offspring     

CHD Yes 81 (1.1) 61 (0.8) 177 (0.7) 

Sex Male 3,818 (51.4) 3,703 (50.3) 12,139 (50.9) 

 Female 3,615 (48.6) 3,657 (49.7) 11,704 (49.0) 

Maternal     

Age, years  27.4 (5.6) 29.2 (4.6) 30.1 (4.5) 

Parity Nulliparous 2,963 (40.1) 3,257 (46.6) 11,288 (47.3) 

BMI, kg/m2  26.2 (5.7) 22.5 (4.2) 24.1 (4.3) 

Ethnicity White European 3,084 (42.6) 7,360 (100.0) a NA b 

 South Asian 3,503 (48.4) - - 

 Other 656 (9.1) - - 

Any smoking during 
pregnancy 

Yes 1,175 (18.1) 1,679 (26.1) 1,814 (8.6) 

Any alcohol during pregnancy Yes 1,040 (49.3) 4,866 (79.9) 6,209 (31.5) 
Data are means ± SD or n (%) unless stated. % are based on data available (data were not complete).  
a All non-white European women with ethnicity data were not included in the analysis.  

b 
There are no data available that describe ethnicity in MoBa, but it is believed that 99-100% are of White European origin.  

Abbreviations: BiB, Born in Bradford; ALSPAC, Avon Longitudinal Study of Parents and Children; MoBa, Norwegian Mother, Father and Child Cohort Study; CHD, congenital heart 
disease; BMI, body mass index; kg, kilograms; m, meters. 
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Figure S5.3.  Flow chart to illustrate the analysis pipeline and selection of metabolites for Mendelian randomisation. The two metabolites 

(Glycerophosphoethanolamine and X-24295) were the two metabolites removed from MR analyses because they had a small number of SNPs and these were not 

present in MoBa and had no proxy’s. 
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Table S5.4. Characteristics of maternal GRS and associations with the corresponding metabolite in BiB (N = 1,326).  

Metabolite Super pathway HMDB N SNPs in GRSa Coefficient (95% CI)b P-Value R2 (%) F-statistic 

Isoleucine Amino Acid HMDB00172 5 0.06 (0.0006, 0.11) 0.05 0.3 3.9 

N-Acetylleucine Amino Acid HMDB11756 2 0.37 (0.32, 0.43) 9.38E-41 12.6 191.4 

Indolelactate Amino Acid HMDB00671 1 0.04 (-0.01, 0.09) 0.15 0.2 2.0 

Betaine Amino Acid HMDB00043 9 0.19 (0.14, 0.25) 1.23E-11 3.4 46.7 

N-Acetylarginine Amino Acid HMDB04620 10 0.59 (0.55, 0.63) 8.55E-122 34.0 683.3 

N-Acetylcarnosine Amino Acid HMDB12881 9 0.25 (0.20, 0.30) 1.57E-20 6.3 89.2 

Leucine Amino Acid HMDB00687 6 0.02 (-0.04, 0.07) 0.55 0.3 0.4 

Myo-Inositol Lipid HMDB00211 2 0.02 (-0.04, 0.08) 0.56 0.03 0.3 

Phosphoethanolamine (Pe) Lipid HMDB00224 2 0.07 (0.02, 0.12) 0.01 0.5 6.4 

Androsterone Sulfate Lipid HMDB02759 11 0.30 (0.25, 0.36) 1.12E-28 8.9 129.4 

Glycolithocholate Sulfate* Lipid HMDB02639 2 0.10 (0.05, 0.16) 0.0004 1.0 12.7 

Epiandrosterone Sulfate Lipid  10 0.25 (0.20, 0.31) 1.69E-20 6.3 89.0 

1-Arachidonoyl-Gpi* (20:4)* Lipid HMDB61690 2 0.15 (0.10, 0.21) 2.27E-08 2.3 31.6 

Phosphocholine Lipid HMDB01565 6 0.15 (0.10, 0.20) 1.98E-09 2.7 36.5 

Taurolithocholate 3-Sulfate Lipid HMDB02580 4 0.10 (0.04, 0.15) 0.0004 0.9 12.5 

5alpha-Androstan-3alpha,17beta-
Diol Disulfate 

Lipid - 6 0.07 (0.02, 0.13) 
0.009 0.5 6.9 

5alpha-Androstan-3alpha,17beta-
Diol Monosulfate (1) 

Lipid - 14 0.23 (0.18, 0.29) 
4.41E-17 5.2 72.5 

5alpha-Sndrostan-3beta,17beta-Diol 
Disulfate 

Lipid HMDB00493 11 0.24 (0.19, 0.30) 
6.05E-19 5.8 81.5 

Androstenediol (3alpha, 17alpha) 
Monosulfate (3) 

Lipid - 13 0.31 (0.26, 0.37) 
3.97E-30 9.4 136.7 

Glycerol 3-Phosphate Lipid HMDB00126 3 0.12 (0.07, 0.17) 4.80E-06 1.6 21.1 

1-Stearoyl-2-Oleoyl-GPC (18:0/18:1) Lipid HMDB08038 3 0.13 (0.08, 0.18) 1.16E-06 1.8 23.9 

Glycodeoxycholate 3-Sulfate Lipid - 5 0.20 (0.15, 0.25) 2.18E-14 4.3 59.7 

Biliverdin Cofactors and Vitamins HMDB01008 3 0.52 (0.48, 0.57) 3.01E-93 27.2 493.9 

Succinylcarnitine (C4) Energy HMDB61717 7 0.35 (0.30, 0.40) 1.56E-45 14.1 216.7 

X - 11787 NA - 5 0.28 (0.23, 0.34) 3.93E-26 8.1 116.7 

X - 18921 NA - 3 0.27 (0.22, 0.33) 2.80E-25 7.8 112.5 

X - 24544 NA - 5 0.19 (0.14, 0.24) 2.03E-13 4.0 55.1 
a SNPs for isoleucine and leucine taken from: https://www.nature.com/articles/s41588-020-00751-5; remainder of SNPs taken from a recent GWAS of metabolon metabolites (unpublished).  

b Estimates from linear regression interpreted as difference in metabolite (scaled/imputed metabolites were log-transformed and presented in SD units as per manuscript methods) per SD 
increase in genetic risk score. MS-derived metabolomics measured using plasma taken during pregnancy around 26-28 weeks’ gestation in the BiB cohort (see methods). 
N = 1,326 is the number of women in BiB dataset 2 with Metabolon metabolomics data and GWAS data.  
Abbreviations: HMDB, The Human Metabolome Database; SNP, single nucleotide polymorphism; GRS, genetic risk score; CI, confidence interval.  

https://www.nature.com/articles/s41588-020-00751-5
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Figure S5.4. Scatter plots of the variance explained by the weighted genetic risk score for each of the 27 metabolites included in MR analyses. Results are from 

linear regression analyses of GRS against all metabolites (exposure: GRS, outcome: metabolite) in BiB dataset 2 (see flowchart above for BiB dataset 2).  The x-

axes are R2 expressed as a percentage and the y-axes are the -log10 P-value. The 5 metabolites with the lowest p-values in each scatter plot are labelled. Those 

with a -log10 P-value >10 are filled in red, with the remainder filled grey. The metabolite I am trying to instrument with the GRS is filled with gold. A highly 

specific GRS for a given metabolite would produce a scatter plot with the gold-filled point in the top right corner (high variance explained and strongly 

associated) with the remainder of the metabolites lower down towards the left corner.  
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Chapter 6 
 

 

 

 

Figure S6.1. Illustrating the flow of participants into the NMR metabolomic analyses in the Born in 

Bradford cohort.
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Text S6.1. Methods for confounder data. 

 

Age was obtained for all women at pregnancy booking. Ethnicity was self-reported by the mother 

at her recruitment questionnaire interview and based on the UK Office of National Statistics guidance. For 

women who did not have ethnicity data collected at the recruitment interview, data were abstracted from 

primary care medical records, which use a similar categorization. Women classified as South Asian 

included those who indicated they were Pakistani, Indian, or Bangladeshi. Women classified as White 

European included those who indicated that they were White British or other White European origin. 

Parity was categorised as having one or more previous pregnancies (multiparous (yes)) or no previous 

pregnancy (nulliparous (no)). I used the residential 2010 index of multiple deprivation (IMD) score 

presented as quintiles as a marker of socioeconomic position (SEP). Height was measured at recruitment 

(26–28 weeks’ gestation) using a Leicester Height Measure (Seca, London, UK). Maternal BMI was 

calculated using the height measured at recruitment and weight measured at first antenatal clinic visit 

(approximately 12 weeks’ gestation), and it was also extracted from medical records. All women were 

recruited from the same hospital which used Seca two-in-one scales (Harlow Healthcare Ltd., London, UK) 

to measure weight. For smoking, women were asked the number of cigarettes smoked per day during 

pregnancy in the first questionnaire (26-28 weeks’ gestation). I then assigned women as smokers and non-

smokers.  

 

Text S6.2. Defining congenital heart disease 

Methods to define CHDs were the same as those described above in Appendices for Chapter 4 (Text 

S4.3). Click here to navigate to them.  

 

Text S6.3. Genetic Data. 

Genetic data methods were the same as those described above in Appendices for Chapter 4 (Text S4.1). 

Click here to navigate to them. 
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Figure S6.2. An overview of included cohorts and selection of study participants. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; 

MoBa, Norwegian Mother, Father and Child Cohort; CHD, congenital heart disease; BiB, Born in Bradford; GWAS, genome-wise association study. 
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Figure S6.3. Confounder adjusted associations of maternal pregnancy metabolic traits with offspring congenital heart disease in the Born in Bradford cohort (N = 

8,551 & N CHD cases = 96). The associations show confounder adjusted odds ratios of CHD per standard deviation change metabolic trait levels for 148 traits 

separated by the trait class. Metabolic traits were measured at ~26-28 weeks’ gestation. Associations were adjusted for maternal age, ethnicity, parity, Index of 

Multiple Deprivation, body mass index, and smoking. Abbreviations: OR, odds ratio; CHD, congenital heart disease; SD, standard deviation. 
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Figure S6.4. Unadjusted associations of maternal pregnancy metabolic traits with offspring congenital heart disease in the Born in Bradford cohort (N = 11,195 & 

N CHD cases = 127). The associations show odds ratios of CHD per standard deviation change metabolic trait levels for 63 (out of 148) key traits separated by the 

trait class. Metabolic traits were measured at ~26-28 weeks’ gestation. Abbreviations: OR, odds ratio; CHD, congenital heart disease; SD, standard deviation. 
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Figure S6.5. Confounder adjusted associations of maternal pregnancy metabolic traits with offspring congenital heart disease in the Born in Bradford cohort 

stratified by ethnicity (grey fill = South Asian women, black fill = White European woman). The associations show confounder adjusted odds ratios of CHD per 

standard deviation change metabolic trait levels for 63 (out of 148) key traits separated by the trait class. Metabolic traits were measured at ~26-28 weeks’ 

gestation. Associations were adjusted for maternal age, ethnicity, parity, Index of Multiple Deprivation, body mass index, and smoking. Abbreviations: OR, odds 

ratio; CHD, congenital heart disease; SD, standard deviation. 
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Table S6.1. Associations of genetic risk scores (N = 145) with the corresponding metabolic trait in BiB (N = 7,154 participants with genome-wide and NMR 

data).  

Metabolite Class Coefficient (95% CI)b P-Value R2 (%) F-statistic 

Alanine Amino acids 0.008 (0.007, 0.009) 3.73E-44 2.7 196.9 

Glutamine Amino acids 0.010 (0.009, 0.011) 1.54E-87 5.4 404.4 

Glycine Amino acids 0.010 (0.010, 0.011) 6.88E-172 10.4 825.5 

Histidine Amino acids 0.000 (0.000, 0.001) 3.46E-05 0.2 17.2 

Isoleucine Amino acids 0.001 (0.000, 0.001) 2.32E-09 0.5 35.8 

Leucine Amino acids 0.000 (0.000, 0.001) 6.15E-05 0.2 16.1 

Phenylalanine Amino acids 0.000 (0.000, 0.001) 3.09E-03 0.1 8.8 

Tyrosine Amino acids 0.000 (0.000, 0.001) 1.51E-14 0.8 59.3 

Valine Amino acids 0.001 (0.000, 0.001) 4.76E-05 0.2 16.6 

Apolipoprotein A-I Apolipoproteins 0.042 (0.037, 0.047) 2.15E-61 3.8 278.6 

Apolipoprotein B Apolipoproteins 0.056 (0.051, 0.061) 2.36E-99 6.1 462 

Esterified cholesterol Cholesterol 0.219 (0.202, 0.237) 1.08E-124 7.6 587 

Free cholesterol Cholesterol 0.095 (0.088, 0.102) 1.18E-135 8.3 641.8 

Cholesterol in HDL Cholesterol 0.070 (0.062, 0.078) 1.77E-60 3.7 274.3 

Cholesterol in LDL Cholesterol 0.180 (0.167, 0.194) 7.11E-144 8.7 683 

Remnant cholesterol (non-HDL, non-LDL -cholesterol) Cholesterol 0.111 (0.100, 0.121) 5.02E-94 5.7 436 

Serum total cholesterol Cholesterol 0.317 (0.292, 0.342) 2.06E-127 7.7 600.5 

Cholesterol in VLDL Cholesterol 0.043 (0.037, 0.049) 2.41E-40 2.4 179 

22:6, docosahexaenoic acid Fatty acids  0.009 (0.008, 0.010) 6.45E-72 4.4 329 

Omega-3 fatty acids Fatty acids  0.025 (0.023, 0.028) 1.92E-93 5.7 433.2 

Omega-6 fatty acids Fatty acids  0.156 (0.137, 0.175) 5.74E-56 3.4 252.8 

18:2, linoleic acid Fatty acids  0.122 (0.105, 0.140) 3.42E-42 2.6 187.7 

Monounsaturated fatty acids; 16:1, 18:1 Fatty acids  0.132 (0.109, 0.155) 2.06E-29 1.8 127.9 

Polyunsaturated fatty acids Fatty acids  0.169 (0.148, 0.190) 3.15E-55 3.4 249.3 

Saturated fatty acids Fatty acids  0.119 (0.094, 0.143) 8.69E-22 1.3 92.6 

Total fatty acids Fatty acids  0.345 (0.281, 0.409) 5.40E-26 1.6 112.1 

Estimated degree of unsaturation Fatty acids  0.014 (0.013, 0.015) 3.85E-159 9.7 760.5 

Albumin Fluid balance 0.000 (0.000, 0.000) 1.05E-06 0.3 23.9 

Creatinine Fluid balance 0.001 (0.001, 0.001) 2.66E-28 1.7 122.8 

Triglycerides in HDL Glycerides and phospholipids 0.002 (0.001, 0.003) 3.84E-06 0.3 21.4 

Triglycerides in LDL Glycerides and phospholipids 0.011 (0.010, 0.013) 1.78E-45 2.8 203.2 

Phosphatidylcholine and other cholines Glycerides and phospholipids 0.090 (0.080, 0.101) 1.27E-63 3.9 289.3 

Serum total triglycerides Glycerides and phospholipids 0.026 (0.012, 0.039) 1.69E-04 0.2 14.2 

Sphingomyelins (mmol/l) Glycerides and phospholipids 0.020 (0.018, 0.022) 9.75E-90 5.5 415.1 
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Total cholines Glycerides and phospholipids 0.092 (0.081, 0.103) 9.84E-59 3.6 266 

Total phosphoglycerides Glycerides and phospholipids 0.077 (0.068, 0.086) 2.67E-61 3.8 278.2 

Triglycerides in VLDL Glycerides and phospholipids 0.028 (0.017, 0.038) 4.04E-07 0.4 25.7 

Citrate Glycolysis related metabolites 0.001 (0.001, 0.001) 1.06E-07 0.4 28.3 

Glucose Glycolysis related metabolites 0.037 (0.025, 0.048) 2.09E-10 0.6 40.5 

Lactate Glycolysis related metabolites 0.017 (0.005, 0.028) 4.31E-03 0.1 8.2 

Pyruvate Glycolysis related metabolites 0.002 (0.001, 0.002) 4.79E-10 0.5 38.9 

Glycoprotein acetyls Inflammation 0.011 (0.006, 0.015) 3.85E-06 0.3 21.4 

Acetate Ketone bodies 0.000 (-0.000, 0.000) 8.39E-01 0 0 

3-hydroxybutyrate Ketone bodies 0.004 (0.003, 0.005) 2.12E-16 0.9 67.8 

Mean diameter for HDL particles Lipoprotein particle size 0.054 (0.050, 0.059) 2.89E-114 7 535.3 

Mean diameter for LDL particles Lipoprotein particle size -0.004 (-0.005, -0.003) 6.00E-08 0.4 29.4 

Mean diameter for VLDL particles Lipoprotein particle size 0.099 (0.076, 0.122) 6.47E-17 1 70.2 

Cholesterol in IDL Lipoprotein subclasses 0.066 (0.061, 0.071) 1.36E-141 8.6 671.5 

Cholesterol esters in IDL Lipoprotein subclasses 0.046 (0.042, 0.050) 9.04E-135 8.2 637.3 

Free cholesterol in IDL Lipoprotein subclasses 0.020 (0.018, 0.021) 3.05E-146 8.9 694.9 

Total lipids in IDL Lipoprotein subclasses 0.099 (0.092, 0.107) 3.43E-136 8.3 644.4 

Concentration of IDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 8.48E-139 8.4 657.5 

Phospholipids in IDL Lipoprotein subclasses 0.026 (0.024, 0.028) 3.12E-141 8.6 669.7 

Triglycerides in IDL Lipoprotein subclasses 0.006 (0.005, 0.007) 1.38E-31 1.9 138.1 

Cholesterol in large HDL Lipoprotein subclasses 0.047 (0.043, 0.051) 3.83E-104 6.4 485.4 

Cholesterol esters in large HDL Lipoprotein subclasses 0.036 (0.032, 0.039) 3.64E-102 6.2 475.7 

Free cholesterol in large HDL Lipoprotein subclasses 0.009 (0.008, 0.010) 4.69E-71 4.3 324.8 

Total lipids in large HDL Lipoprotein subclasses 0.083 (0.075, 0.091) 3.12E-90 5.5 417.5 

Concentration of large HDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 3.22E-72 4.4 330.4 

Phospholipids in large HDL Lipoprotein subclasses 0.035 (0.032, 0.039) 1.55E-85 5.2 394.7 

Triglycerides in large HDL Lipoprotein subclasses 0.003 (0.003, 0.004) 2.22E-77 4.7 355.3 

Cholesterol in large LDL Lipoprotein subclasses 0.091 (0.085, 0.098) 5.52E-148 9 703.7 

Cholesterol esters in large LDL Lipoprotein subclasses 0.068 (0.063, 0.073) 8.46E-143 8.7 677.6 

Free cholesterol in large LDL Lipoprotein subclasses 0.022 (0.021, 0.024) 7.71E-145 8.8 687.9 

Total lipids in large LDL Lipoprotein subclasses 0.126 (0.116, 0.135) 1.46E-146 8.9 696.6 

Concentration of large LDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 8.78E-145 8.8 687.6 

Phospholipids in large LDL Lipoprotein subclasses 0.025 (0.023, 0.027) 1.77E-136 8.3 645.8 

Triglycerides in large LDL Lipoprotein subclasses 0.006 (0.006, 0.007) 2.83E-46 2.8 206.9 

Cholesterol in large VLDL Lipoprotein subclasses 0.004 (0.003, 0.005) 3.94E-15 0.9 62 

Cholesterol esters in large VLDL Lipoprotein subclasses 0.001 (0.001, 0.002) 8.37E-06 0.3 19.9 

Free cholesterol in large VLDL Lipoprotein subclasses 0.002 (0.001, 0.002) 2.87E-08 0.4 30.9 

Total lipids in large VLDL Lipoprotein subclasses 0.013 (0.009, 0.018) 2.15E-08 0.4 31.4 
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Concentration of large VLDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 5.31E-09 0.5 34.2 

Phospholipids in large VLDL Lipoprotein subclasses 0.003 (0.002, 0.004) 9.11E-11 0.6 42.1 

Triglycerides in large VLDL Lipoprotein subclasses 0.007 (0.004, 0.010) 2.11E-07 0.4 27 

Cholesterol in medium HDL Lipoprotein subclasses 0.019 (0.016, 0.021) 1.83E-50 3.1 226.7 

Cholesterol esters in medium HDL Lipoprotein subclasses 0.015 (0.013, 0.016) 6.80E-48 2.9 214.6 

Free cholesterol in medium HDL Lipoprotein subclasses 0.003 (0.002, 0.003) 3.94E-26 1.6 112.7 

Total lipids in medium HDL Lipoprotein subclasses 0.032 (0.027, 0.036) 5.66E-45 2.7 200.8 

Concentration of medium HDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 8.74E-39 2.3 171.7 

Phospholipids in medium HDL Lipoprotein subclasses 0.016 (0.014, 0.018) 9.76E-57 3.5 256.5 

Triglycerides in medium HDL Lipoprotein subclasses 0.000 (0.000, 0.001) 4.33E-03 0.1 8.1 

Cholesterol in medium LDL Lipoprotein subclasses 0.056 (0.052, 0.060) 3.38E-144 8.7 684.6 

Cholesterol esters in medium LDL Lipoprotein subclasses 0.044 (0.041, 0.048) 2.22E-136 8.3 645.3 

Free cholesterol in medium LDL Lipoprotein subclasses 0.010 (0.009, 0.011) 5.39E-124 7.5 583.5 

Total lipids in medium LDL Lipoprotein subclasses 0.070 (0.065, 0.076) 1.97E-127 7.7 600.6 

Concentration of medium LDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 5.27E-136 8.3 643.5 

Phospholipids in medium LDL Lipoprotein subclasses 0.014 (0.012, 0.015) 2.64E-124 7.6 585.1 

Triglycerides in medium LDL Lipoprotein subclasses 0.003 (0.003, 0.004) 1.27E-49 3 222.7 

Cholesterol in medium VLDL Lipoprotein subclasses 0.009 (0.007, 0.011) 5.56E-21 1.2 88.9 

Cholesterol esters in medium VLDL Lipoprotein subclasses 0.007 (0.006, 0.008) 1.18E-47 2.9 213.4 

Free cholesterol in medium VLDL Lipoprotein subclasses 0.003 (0.002, 0.004) 4.92E-12 0.7 47.9 

Total lipids in medium VLDL Lipoprotein subclasses 0.029 (0.023, 0.036) 4.09E-17 1 71.1 

Concentration of medium VLDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 1.32E-10 0.6 41.4 

Phospholipids in medium VLDL Lipoprotein subclasses 0.005 (0.004, 0.007) 2.66E-15 0.9 62.8 

Triglycerides in medium VLDL Lipoprotein subclasses 0.008 (0.004, 0.012) 4.51E-05 0.2 16.7 

Cholesterol in small HDL Lipoprotein subclasses 0.017 (0.015, 0.018) 2.84E-111 6.8 520.5 

Cholesterol esters in small HDL Lipoprotein subclasses 0.013 (0.012, 0.015) 7.14E-87 5.3 401.2 

Free cholesterol in small HDL Lipoprotein subclasses 0.002 (0.002, 0.003) 2.96E-36 2.2 159.9 

Total lipids in small HDL Lipoprotein subclasses 0.041 (0.038, 0.044) 3.71E-142 8.6 674.4 

Concentration of small HDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 1.01E-145 8.8 692.3 

Phospholipids in small HDL Lipoprotein subclasses 0.024 (0.022, 0.027) 1.63E-112 6.9 526.6 

Triglycerides in small HDL Lipoprotein subclasses 0.002 (0.001, 0.002) 1.28E-18 1.1 78 

Cholesterol in small LDL Lipoprotein subclasses 0.035 (0.032, 0.038) 4.63E-152 9.2 724.4 

Cholesterol esters in small LDL Lipoprotein subclasses 0.028 (0.026, 0.030) 1.15E-144 8.8 687 

Free cholesterol in small LDL Lipoprotein subclasses 0.006 (0.006, 0.007) 2.82E-123 7.5 579.9 

Total lipids in small LDL Lipoprotein subclasses 0.044 (0.041, 0.048) 9.21E-134 8.1 632.2 

Concentration of small LDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 3.94E-140 8.5 664.2 

Phospholipids in small LDL Lipoprotein subclasses 0.009 (0.008, 0.010) 4.82E-119 7.2 558.9 

Triglycerides in small LDL Lipoprotein subclasses 0.001 (0.001, 0.002) 4.57E-21 1.2 89.3 
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Cholesterol in small VLDL Lipoprotein subclasses 0.016 (0.015, 0.018) 3.32E-67 4.1 306.4 

Cholesterol esters in small VLDL Lipoprotein subclasses 0.012 (0.010, 0.013) 8.05E-76 4.6 347.7 

Free cholesterol in small VLDL Lipoprotein subclasses 0.004 (0.004, 0.005) 4.92E-33 2 144.8 

Total lipids in small VLDL Lipoprotein subclasses 0.021 (0.016, 0.026) 2.63E-16 0.9 67.4 

Concentration of small VLDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 3.37E-28 1.7 122.3 

Phospholipids in small VLDL Lipoprotein subclasses 0.006 (0.005, 0.007) 2.26E-27 1.6 118.5 

Triglycerides in small VLDL Lipoprotein subclasses 0.007 (0.005, 0.009) 3.91E-10 0.5 39.3 

Cholesterol in very large HDL Lipoprotein subclasses 0.028 (0.026, 0.031) 2.05E-125 7.6 590.6 

Cholesterol esters in very large HDL Lipoprotein subclasses 0.020 (0.019, 0.022) 3.01E-127 7.7 599.7 

Free cholesterol in very large HDL Lipoprotein subclasses 0.008 (0.007, 0.009) 4.75E-120 7.3 563.9 

Total lipids in very large HDL Lipoprotein subclasses 0.058 (0.053, 0.063) 6.58E-105 6.4 489.2 

Concentration of very large HDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 7.28E-146 8.8 693 

Phospholipids in very large HDL Lipoprotein subclasses 0.030 (0.027, 0.032) 2.23E-96 5.9 447.4 

Triglycerides in very large HDL Lipoprotein subclasses 0.002 (0.002, 0.002) 2.70E-63 3.9 287.7 

Cholesterol in very large VLDL Lipoprotein subclasses 0.001 (0.000, 0.001) 1.07E-04 0.2 15 

Cholesterol esters in very large VLDL Lipoprotein subclasses 0.000 (0.000, 0.000) 7.13E-06 0.3 20.2 

Free cholesterol in very large VLDL Lipoprotein subclasses 0.000 (0.000, 0.000) 5.95E-04 0.2 11.8 

Total lipids in very large VLDL Lipoprotein subclasses 0.003 (0.002, 0.005) 5.41E-07 0.4 25.2 

Concentration of very large VLDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 3.43E-07 0.4 26 

Phospholipids in very large VLDL Lipoprotein subclasses 0.001 (0.000, 0.001) 1.85E-06 0.3 22.8 

Triglycerides in very large VLDL Lipoprotein subclasses 0.002 (0.001, 0.003) 2.77E-08 0.4 30.9 

Cholesterol in very small VLDL Lipoprotein subclasses 0.020 (0.019, 0.022) 8.30E-114 6.9 533 

Cholesterol esters in very small VLDL Lipoprotein subclasses 0.014 (0.013, 0.015) 3.78E-115 7 539.7 

Free cholesterol in very small VLDL Lipoprotein subclasses 0.006 (0.005, 0.007) 2.12E-90 5.5 418.3 

Total lipids in very small VLDL Lipoprotein subclasses 0.033 (0.030, 0.037) 2.76E-71 4.4 325.9 

Concentration of very small VLDL particles Lipoprotein subclasses 0.000 (0.000, 0.000) 2.66E-73 4.5 335.6 

Phospholipids in very small VLDL Lipoprotein subclasses 0.011 (0.010, 0.012) 2.64E-70 4.3 321.2 

Triglycerides in very small VLDL Lipoprotein subclasses 0.003 (0.002, 0.004) 1.01E-11 0.6 46.5 

Cholesterol in chylomicrons and extremely large VLDL Lipoprotein subclasses 0.000 (-0.000, 0.000) 3.85E-01 0 0.8 

Cholesterol esters in chylomicrons and extremely large VLDL Lipoprotein subclasses -0.000 (-0.000, 0.000) 7.82E-01 0 0.1 

Free cholesterol in chylomicrons and extremely large VLDL Lipoprotein subclasses 0.000 (-0.000, 0.000) 6.70E-02 0 3.4 

Total lipids in chylomicrons and extremely large VLDL Lipoprotein subclasses 0.000 (-0.000, 0.001) 3.56E-01 0 0.9 

Concentration of chylomicrons and extremely large VLDL particles Lipoprotein subclasses 0.000 (-0.000, 0.000) 1.42E-01 0 2.2 

Phospholipids in chylomicrons and extremely large VLDL Lipoprotein subclasses 0.000 (-0.000, 0.000) 2.17E-01 0 1.5 
a SNPs for isoleucine and leucine taken from: https://www.nature.com/articles/s41588-020-00751-5; remainder of SNPs taken from a recent GWAS of metabolon metabolites (unpublished).  

b Estimates from linear regression interpreted as difference in metabolite (scaled/imputed metabolites were log-transformed and presented in SD units as per manuscript methods) per SD 
increase in genetic risk score. MS-derived metabolomics measured using plasma taken during pregnancy around 26-28 weeks’ gestation in the BiB cohort (see methods). 
N = 1,326 is the number of women in BiB dataset 2 with Metabolon metabolomics data and GWAS data.  
Abbreviations: HMDB, The Human Metabolome Database; SNP, single nucleotide polymorphism; GRS, genetic risk score; CI, confidence interval. 

https://www.nature.com/articles/s41588-020-00751-5
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Figure S6.6. Showing the correlation structure of the NMR traits (top) and the GRS’s for NMR traits (bottom).  
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Monounsaturated fatty acids; 16:1, 18:1
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Figure S6.7. Scatter plots of the variance explained by the weighted genetic risk score for 60 metabolic traits included in MR analyses. There were 145 traits 

included in total, but 60 are shown here to match the truncated figures of key traits presented in the main text for clarity. Results are from linear regression 

analyses of GRS against all metabolic traits (exposure: GRS, outcome: metabolic trait) in BiB. The x-axes are R2 expressed as a percentage and the y-axes are the -

log10 P-value. The 5 metabolic traits with the lowest p-values in each scatter plot are labelled. Those with a -log10 P-value >10 are filled in red, with the 

remainder filled grey. The metabolic trait I am trying to instrument with the GRS is filled with gold. A highly specific GRS for a given metabolite would produce a 

scatter plot with the gold-filled point in the top right corner (high variance explained and strongly associated) with the remainder of the metabolites lower down 

towards the left corner. 
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Exploring directional consistency between phenotype (conventional multivariable regression) and genotype (Mendelian randomization) associations with metabolic traits
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A: Main multivariable regression results
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Figure S6.8. Showing results comparing the main confounder adjusted associations of all maternal metabolic traits with offspring CHDs (Panel A: N = 8,551 & N 
CHD cases = 96) to the Mendelian randomisation analyses of maternal genetic risk scores and offspring CHDs (Panel B: N = 38,662 & N CHD cases = 319). N.B. 
results from each analysis are presented on different scales; I am not attempting to quantify estimates in the MR analyses, the aim is to compare the direction of 
effect. The confounder adjusted associations are as above in Figure SX. The MR analyses are adjusted for the top 10 genetic principal components and genetic 
batches in MoBa. The results were pooled using random effects meta-analyses. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; GRS, genetic 
risk score; MR, Mendelian randomisation; OR, odds ratio; CI, confidence interval.  
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Exploring directional consistency between main MR results and MR results excluding the BiB cohort
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Figure S6.9. Exploring consistency of MR analyses when excluding BiB. Results on the left were pooled using random effects meta analyses and results on the 

right (for ALSPAC and MoBa) were pooled using fixed effect meta analyses.  
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Figure S6.10. Pooled MR analyses in all participants with mother and offspring genotype data. Left results were adjusted for the top 10 genetic principal 

components and genetic batches in MoBa. Results on the right were additionally adjusted for offspring genotype. The results were pooled using random effects 

meta-analyses. 
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