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Abstract. 

 

The ever-increasing demand for palm oil has led to a rapid rise in the clearing of 

tropical forests, particularly in areas of South East Asia. Oil palm is central to the 

livelihoods of many people, and it must be ensured that the production of palm oil 

can occur as sustainably as possible. Thus, it is essential to understand how oil palm 

growth varies across tropical landscapes in order to optimise yields. In this project, 

repeat airborne LiDAR data was used to map the height growth of over half a 

million individual oil palms in Malaysian Borneo over a two-year period which 

coincided with the 2015-16 global El Niño event. The ability of oil palms to continue 

growing during this period of uncharacteristically dry and hot weather was 

investigated, and the ecological and landscape features that contributed most to 

differences in growth rates across landscapes were explored. Despite the drought 

conditions, oil palms grew 1.61 m yr-1 in height on average, but growth varied 

substantially among individuals, with smaller oil palms exhibiting the fastest rates of 

height growth. Landscape features such as the distance of palms from forest edges, 

elevation, and terrain ruggedness all had significant effects on height growth, as did 

relative competition with neighbours. However, effect sizes were weak and 

collectively these predictors only explained a small portion of the variation in 

growth among individual oil palms (5%). The project also revealed opportunities for 

improving the efficiency and yields of oil palm agriculture, but doing so requires 

further work to pinpoint the factors that contribute most to driving variation in oil 

palm growth rates across tropical landscapes. 
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Covid-19 statement.  

 

Original plans for this research were to travel to the study site in Borneo to obtain 

information on palm oil production and collect field data for validation. However, 

these activities were curtailed by the COVID-19 pandemic because of travel 

restrictions to Malaysia which remain ongoing. Because of this, I focussed solely on 

the changes in height growth of palms during the project, as I could measure these 

from existing LiDAR data. Information on oil production would have enriched this 

project as it could have allowed the results to be put into a more practical context for 

oil palm plantation owners and managers. This is discussed in more detail in 

Chapter 3 in the section ‘Future Work’. 
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1.1 Introduction. 

 

Oil palm is a recent agricultural success story, having become one of the most 

globally important crops for the production of vegetable oils over the last century 

[1]. The ever-rising demand for palm oil over recent decades has led to an 

exponential rise in the clearing of natural forests to grow oil palm, particularly in 

areas of South East (SE) Asia [2]. With oil palm plantations covering over 19 million 

hectares of agricultural land [3–4], 2018 marked palm oil as the world's most traded 

vegetable oil. This is concerning from an ecological standpoint as oil palm 

plantations support a relatively low level of biodiversity and lower above-ground 

carbon storage compared to that found in both primary and logged forests [5–6]. 

Henceforth, it is essential that there is rapid and careful management of oil palm 

plantations to ensure that sustainable production of the crop can continue while 

minimising costs to the environment. In order to achieve this, it must be understood 

how oil palm growth and yields vary across landscapes. During a time of such rapid 

global change, this understanding must include an appreciation of the consequences 

of future conditions such as rising global temperatures and increasing frequency of 

extreme climate events, such as droughts in the tropics associated with El Niño [7].  

 

The ideal for any agricultural plantation is to increase the productivity of the crop, 

resulting in greater yields produced per unit of land, boosting economic gain while 

reducing environmental disruption. However, determining areas of the landscape 

that vary in their efficiency for growing oil palm is inherently difficult, due to the 

typical vastness of the areas used for producing this crop. Thus, in order to identify 

the conditions required for oil palm to grow most efficiently, the optimum 

techniques for monitoring plant growth over vast landscapes must also be 

considered. This introduction starts by covering how oil palm has risen to become 
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one of the most important crops across the globe and its implications on 

biodiversity, before exploring the techniques used to assess and monitor plant 

growth currently in practice. Current literature on the rates of oil palm growth 

according to a variety of drivers and how such effects may be compounded by El 

Niño are then discussed, and conclusions are drawn on how certain factors may 

affect oil palm growth based on the information currently available. Finally, the 

specifics of this thesis project and the intended research questions under 

investigation are addressed.  

 

1.2 Oil palm; its origins and popularity. 

 

Palm oil is produced from several palm species in the Aceraceae family, including 

Attalea maripa and Elaeis oleifera from South America, but the overwhelming majority 

of commercial palm oil production relies on several cultivars of Elaeis guineensis – the 

African oil palm. E. guineensis is a monoecious plant that can grow to around 20 m in 

height, with long pinnate leaves or fronds, that can reach up to 3-5 m in length [8]. 

The palm bears bunches of fruit known botanically as drupes, consisting of a hard-

shelled nut (endocarp) and an orange-coloured outer pulp (mesocarp), which 

provides the primary source of commercial crude palm oil [9–10].  

 

The first recorded sample of oil palm was thought to be from around 5000 BCE, but 

the botanical description of E.guineensis was produced by Jacquin in 1763 [1–3–11]. 

Though there has been some contention surrounding the origins of oil palm, it is 

now typically accepted that E.guineensis originated in Western Africa [12]. 

Traditional methods of palm oil production tended to yield poor quality oil, and 

thus the plant was predominantly used as a vitamin source; medicine; to produce 
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palm wine; for its edible hearts; and for the harvesting of fronds for thatching and 

fencing [13]. Until the Second World War, the palm oil industry was largely centred 

in Africa [1] and palm groves played a large role in the African economy through the 

16th century. It was in the late 1800s that improvements in oil quality were made 

possible by mechanised mills and regulated standards were brought into production 

[12]. However, attempts to introduce commercial-scale plantations in Africa during 

the 1800s were thwarted by issues surrounding political instability, poor 

infrastructure for processing and transport, internal conflict, and difficulties in 

obtaining land [12]. It is only more recently in the 1960s and 70s that there was a 

huge expansion of oil palm production in SE Asia, predominantly in Malaysia and 

Indonesia. Asia had an advantage over Africa with its continuous high 

temperatures, humidity, and high rainfall which has led to Malaysia and Indonesia 

producing 85% of the oil palm used today [1]. Palm oil has now become a household 

name, found in a vast range of products including spreads, ice creams, cooking oils, 

and shortenings, as well as paints, candles, chemicals, and surfactants [14]. 

Approximately 70% of the palm oil produced presently is used in food, and of the 

non-food industrial purposes, around two-thirds are used to produce biodiesel [15–

16]. 

 

African oil palm has earned the name ‘tree of life’ owing to the fact that almost every 

part of the palm is useful to humans, as well as its propensity to live and flourish for 

many years [14]. The crop is incredibly productive, with average oil palm yields 

reaching 4–5 t oil ha-1 yr-1 (tons per hectare a year), around 10 times the yield of 

soybean oil which has been ranked second among the most productive oil crops [17–

18]. Palm oil derived from the mesocarp is a reddish colour, and contains 

carotenoids as well as other valuable minor components such as tocotrienol 

antioxidants [19]. Its ability to be refined and fractionated allows the production of 

many different types of oil with various properties, resulting in its wide variety of 
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uses [19]. Kernel oil is another derivative of the oil palm that can be extracted from 

the endosperm of the seed via pressing [15–20]. Kernel oil is composed of short-

chain fatty acids and is often used in processing confectionaries due to its high lauric 

acid content and sharp melting profile, as well as for the production of non-edible 

products such as cosmetics and detergent [21]. The proteinaceous residue that is left 

after the extraction of kernel oil is referred to as ‘cake’ and can be used for animal 

feed, meaning that little of the oil palm goes to waste. 

 

1.3 Socio-economic and environmental impacts of oil palm 

production.  

 

The ‘oil palm boom’ has brought with it a variety of positive and negative social, 

economic, and environmental impacts, making it a very contentious and highly 

debated global issue (Fig. 1.1). As a huge driver of economic growth in the countries 

where it is produced, oil palm has been celebrated as a wonder crop, but the social 

and environmental impacts of this growth have also resulted in substantial criticism 

[15–22–24]. These effects can be complexly woven together, and an issue of this 

magnitude calls for careful consideration. In what is the most recent and 

comprehensive overview of these issues, Qaim and colleagues reviewed the 

‘Environmental, Economic, and Social Consequences of the Oil Palm Boom’ in 2021 

[15]. This section aims to give a brief overview of some of their key findings. 
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Fig. 1.1: The direct and indirect consequences of oil palm agriculture categorised into 

'Environmental', 'Economical' and 'Societal' effects. 

 

1.3.1 Economic impacts of oil palm production. 

 

The economic effects of oil palm agriculture are significantly less documented in the 

scientific literature than the ecological and environmental effects, however they 

cannot be overlooked. Palm oil is responsible for around 10% of total national 

exports from Indonesia [25], and the revenue that it generates is substantial, with the 

international palm oil trade estimated at 30 billion US dollars in 2018 [15].  It is 

therefore clear that the crop contributes significantly to the quality of life for many 

people living in SE Asia and beyond.  Indonesia and Malaysia are some of the 
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biggest exporters of the crop and recent studies from Indonesia have indicated that 

oil palm leads to higher employment incomes and lower poverty rates, not just 

locally, but at a regional and national level [15–26–28].  

 

It is not only large companies that are involved in oil palm agriculture, smallholder 

farms also have significant involvement, cultivating around 50% of global oil palm 

[15–29]. Studies have found a clear and consistent pattern that the livelihood of 

farmers is positively affected by oil palm cultivation [15–25–27]. Positive economic 

impacts not only include higher profits for farmers, but also improvements in 

infrastructure, and new employment opportunities for those looking for work [15–

22–28–30–34]. This means that as well as farmers benefitting from increased income, 

positive effects are also found for other members of society such as laborers, those 

involved in the supply chain, intermediaries, traders, and small-scale processors 

[15].  

 

Almost every part of the oil palm can be used for economic gain, meaning that the 

industry can offer a wide range of job opportunities to a diverse range of people, 

leading to lower overall unemployment rates [14]. Such high employment 

opportunities are generated through oil palm agriculture because of the multiple 

manual activities that contribute to its production and processing, such as the 

establishment and maintenance of plantations, harvesting, threshing, picking of 

fruits, and processing into both palm oil and kernel oil or cake [14–15–22–35–36]. 

Despite this, the production of oil palm is less labor-intensive than the alternative 

main plantation in most of these areas, the rubber tree [27–37]. This suggests that 

more labor can be allocated to activities such as expanding farmland or to off-farm 

activities, which in turn could allow the cultivation of larger areas, contributing to 

additional economic gains [37].   
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Studies focused on smallholder farm households in SE Asia have shown that the rise 

in income associated with oil palm agriculture contributes to the accumulation of 

capital, and greater expenditure on important commodities such as health and 

education [15–27–30–33–38–40]. A 2019 study based in Indonesia indicated that the 

oil palm industry was responsible for a 9% reduction in national poverty [15–28]. 

Despite the positive financial benefits that oil palm agriculture achieves, not 

everyone in the community will reap the same benefits [15–22–36–41]. To establish 

an oil palm plantation a considerable amount of initial capital is required, and 

consequently, smallholders lacking access to this may fall behind those with better 

access to capital. As a result, they may adopt oil palm farming more slowly and at a 

later time, contributing to economic inequality [15–41–42]. Any drive to reduce the 

extent of oil palm agriculture must account for the socio-economic knock-on effects 

that this will have on local populations [27]. 

 

1.3.2 Social impacts of oil palm production. 

 

Studies from SE Asia have shown how the economic effects discussed above can 

result in direct positive social outcomes within the community, such as better 

infrastructure in rural areas, electrification, and improved healthcare facilities [15–

28–31]. Kubitza and Gehrke (2018) found that an increase in economic growth led to 

new schools being built within local communities, which subsequently led to better 

education for the young population [43]. As populations gain access to better 

education, other shifts in society emerge as secondary benefits to this, such as 

changes in family planning, resulting in a decline in population growth [15–27–43]. 

There are evidently social and livelihood benefits from the increased economic gain 

and employability in developing countries, particularly when local smallholder 
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farmers start to farm the crop themselves. However, despite the higher wages, the oil 

palm sector does not always offer huge improvements to welfare in terms of non-

income dimensions such as food security [15–44–45].  

 

Similarly to the economic benefits, the social results of increasing employment and 

improving social services remain spatially heterogeneous [25–36]. Multiple studies 

have documented how oil palm expansion into rural communities often leads to 

conflicts with large companies over land and worker rights [15–23–46–47]. Such 

conflicts have arisen between locals and palm oil companies due to unclear property 

rights over land that local communities have claimed under customary law, though 

they lack the formal titles [15–37–48]. When parties are willing to negotiate this may 

be settled through compensation and out-grower schemes, but this is not always 

feasible, nor undertaken in practice [15–33–47]. It is the stakeholder groups, such as 

the investing households, employees, and out-growers that benefit from associated 

socio-economic gains, while the traditional land users suffer from the restrictions, 

decreases in land available to buy, and the increased cost of the land that is left 

available to them [22]. Local villages around plantations have also been found to 

suffer water shortages due to redirected water flows, further increasing tensions 

between farmers and locals, while also being particularly concerning in terms of 

human health and welfare during times of drought [49]. 

 

Another social problem that has been identified in conjunction with the expansion of 

oil palm is the involvement of the laborers. There were reported issues as recently as 

2018 concerning the use of child labor on plantations in Indonesia [50], as well as the 

exploitation of illegal migrants [15–34]. Poor conditions for workers are not 

uncommon, leading to a wealth of associated human welfare concerns [34–51]. In 

2003, Wong and Anwar showed that Malaysia had one of the highest rates of illegal 
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foreign workers in its workforce, and in the state of Sabah around 90% of the 

laborers in agriculture have migrated from Indonesia [52–53]. Foreign labor 

immigration has been key in the growth of the oil palm industry over the last thirty 

years in places like Kota Tinggi, Malaysia [54]. However, it has also led to strong 

tensions with local populations, who commonly blame immigrant workers for 

economic hardship and associate them with a rise in criminal activities [52–54]. 

 

Some of the negative social effects experienced by societies can also be linked to the 

environmental impacts of oil palm agriculture, such as the overuse of chemical 

fertilisers and pesticides. The presence of high volumes of agrochemicals in the 

landscape has detrimental effects on air and water quality [22]. Pollution in water 

bodies mainly occurs through an excess of fertilisers resulting in nitrate pollution 

which can damage the local fishing industries. As a result, the benefits that oil palm 

agriculture brings to a population may come at the expense of alternative socio-

economic benefits that the fishing trade may offer [15–55–56]. Not only is the air 

quality at a detriment due to agrochemicals, but the land used to create palm 

plantations is typically cleared using fire, releasing smoke, toxic gases, and carbon 

dioxide into the environment. Furthermore established oil palm plantations can lead 

to increased production of haze and aerosols further diminishing air quality [57]. 

Poor air quality has been linked to health problems in local communities, with 

increases in respiratory problems and associated human mortality rates [15–58]. 

These effects are likely to be further exacerbated in the future due to climate change, 

which is expected to result in more frequent heatwaves and droughts and therefore 

higher risk of fires and related health problems [15–59]. 
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1.3.3 Ecological and environmental impacts of oil palm 

expansion. 

 

The abrupt rise in oil palm plantations across the globe has led to a wealth of 

concern in regards to the negative impacts that the clearing of primary forests has on 

the environment and biodiversity. In contrast to other vegetable oils, palm oil has its 

own set of unique problems, because it is typically grown in areas where carbon-

dense tropical rainforests with high levels of biodiversity would have existed 

otherwise [25–60]. Between 2000 and 2017, an average of 350,000 ha of primary forest 

was cleared each year in Borneo, with around half of this associated with oil palm 

agriculture [15–25–59–61–63]. The IUCN reported in 2018 that across Malaysia, 

around 68% of oil palm plantations were developed at the expense of forests, while 

the remaining replaced other land uses including shrubland and pastures [25–61]. 

The loss of carbon-sequestering forests leads to a subsequent increase in the 

warming effect of greenhouse gases on global temperatures. This effect is 

particularly prominent in areas of tropical deforestation, where annual carbon 

emissions have been estimated to contribute ~10% of total anthropogenic greenhouse 

gas emissions worldwide [60]. The deforestation occurring in Borneo is a 

compounding force in the current effects of global climate change, leading to the 

increased occurrence of temperature extremes, higher maximum daily temperatures, 

and decreased precipitation levels [64]. Such effects have been most profound in the 

heavily logged areas of south and east Borneo and these impacts are exacerbated by 

El Niño [64]. 

 

One of the most obvious direct impacts of oil palm agriculture is the loss of habitat 

for wildlife, leading to declines in biodiversity and species richness. The 

development of oil palm plantations also leads to forest fragmentation as the 
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portions of undisturbed land that act as sanctuaries for wildlife become increasingly 

smaller and isolated [65]. This exacerbates the problem of direct habitat loss, as the 

remaining fragments are often unhospitable because oil palm plantations can affect 

the habitats next to them through edge effects and pollution [66]. When oil palm is 

planted as a monoculture, the structural complexity and heterogeneity of a primary 

forest is lost and replaced with the comparatively simple structure of regularly 

planted crops, able to support far lower levels of biodiversity, as well as being 

associated with ecosystem function declines both locally and regionally [25–61–66–

67]. A 2020 study showed that the oil palm monocultures have profound impacts on 

both invertebrate and vertebrate diversity throughout SE Asia, including numerous 

charismatic and endangered vertebrates endemic to Borneo such as the Bornean 

Orangutan and the Sunda Clouded Leopard [68–69]. To maintain biodiversity and 

support endemic species like these, oil palm monocultures are a poor substitute for 

areas of original and native tropical forests [66]. Oil palm plantations have been 

shown to hold fewer than half the vertebrate species of primary forest and far lower 

species richness than disturbed logged or secondary forests. Maintaining a high level 

of biodiversity is vital to sustaining functional and stable ecosystems [59–69]. The 

production of oil palm at this scale, and its expansion into new territories may also 

bring with it the threat of invasive pest species which can severely impact endemic 

biodiversity [69–70]. 

 

It is not just habitat loss and fragmentation that creates an unsuitable habitat for 

many forest specialists, but also the use of agrochemicals, irrigation practises, and 

human disturbance [25]. Land clearing for oil palm plantations is hugely disruptive 

and can result in a variety of secondary impacts such as water pollution, soil erosion, 

and air pollution, all of which can affect a range of ecosystem functions as well as 

making the habitat less viable for a range of different animals and plants [22–25]. 

Excessive application of fertilisers often leads to nitrate pollution of waters, in 
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addition to which, crushed shells and fat residues (known as oil mill effluent) are 

often left untreated and returned to pollute water courses, affecting aquatic life 

further [15–56]. These effects on freshwater ecosystems are further exacerbated by 

higher sediment run-offs due to lower forest cover and subsequent soil erosion [25]. 

 

The loss of both primary and secondary tropical forests associated with palm oil 

production also impacts a variety of other functions and services provided by 

forests. These ecosystem services are defined by the Millennium Ecosystem 

Assessment as ‘the benefits that humans obtain from ecosystems…These include 

provisioning, regulating, and cultural services that directly affect people. They also include 

supporting services needed to maintain all other services…Ecosystem services affect human 

well-being and all its components, including basic material needs such as food and shelter, 

individual health, security, good social relations, and freedom of choice and action’ [71]. 

Forest functions affected by oil palm agriculture include carbon sequestration and 

storage, regeneration of soils, and nutrient cycles [25]. Depending on their age, 

tropical rainforests may hold up to 270 tonnes more carbon per hectare than oil palm 

plantations [15–24–72–73]. Consequently, even though mature oil palm plantations 

can store significantly more carbon aboveground than alternative oils [24], the net 

loss in ecosystem carbon stocks when converting tropical forests to oil palm 

plantations is considerable. 

 

Despite the long list of environmental and ecological impacts associated with palm 

oil production, a study by Beyer and colleagues in 2020 suggests that oil palm may 

be the best crop to farm for oil in terms of its consequences to the environment [25]. 

Because of its incredibly high yields in comparison to alternative vegetable oils, a 

much smaller area of land is required to generate the equivalent quantity of oil. This 

gives oil palm the advantage of requiring less land than other lower-yielding crops, 
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minimising the scale of the environmental impact in comparison to the alternatives 

[25]. Since oil palm can only be grown in tropical regions, the carbon and 

biodiversity impacts per hectare are greater than that of its competitors and yet, 

when accounting for the area requirements for oil production, oil palm represents 

the lowest average loss in terms of both carbon and biodiversity per tonne of oil 

produced [25]. Demand for vegetable oil – whether from oil palm or alternative 

crops – is unlikely to decrease in the future. As a result, finding ways to grow crops 

such as oil palm more sustainably and in ways that are less ecologically damaging is 

key. One way of doing this is to ensure that oil palm is grown as efficiently as 

possible, but to do this variation in oil palm yields and growth rates across 

landscapes must be understood. 

 

1.4 Closing yield gaps to minimise environmental impacts of 

oil palm production. 

 

Yield gaps represent the difference between actual yields and those that are agro-

climatically attainable [25]. Simulation models have been used to calculate the 

maximum theoretical yields of oil palm, working out at around 18.5 t oil ha-1 yr-1, 

highlighting the significant gaps between actual and theoretical yield in the oil palm 

industry [74]. Harvested yields rarely exceed 3 t oil ha-1 yr-1, when estimates suggest 

that with improved cultivation practices and quality inputs up to 8 t oil ha-1 yr-1  

could be harvested [15–20–75]. In order to keep up with the increasing demand for 

palm oil, the area dedicated to oil palm agriculture must be expanded, or the yield of 

existing oil palm plantations must increase [15]. Closing these yield gaps by 

sustainable means is far from simple, especially as demand is still on the rise and 

incentives favour increasing plantation size rather than optimising yields [25]. 

Consequentially, tropical rainforests are at constant threat of being expanded into. 
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There are two scales at which improving crop efficiency can be considered. On a 

large scale, ‘landscape drivers’ of crop growth can be investigated. This describes 

where growth varies across the globe due to factors such as climate -which is where 

the majority of research has been focussed until now. The second option is looking at 

palm growth at a smaller scale and deriving ‘local drivers’ that contribute to oil palm 

growth, which have received much less attention across scientific literature.  

 

Improving the management of oil palm plantations can have a profound impact on 

yield, but to implement beneficial practices across large scales more agronomic 

research is required [15]. The idea of maintaining intact forests while simultaneously 

maximising the productivity of crops is often referred to as the ‘land sparing’ 

approach. The land-sparing approach typically describes high-yielding, intensified 

agriculture, meaning that a greater yield can be obtained from a smaller footprint of 

land [76]. A study in 2016 found that by optimising the management of 190 

Indonesian oil palm smallholdings (e.g., better seed quality, pruning, weed 

management), yields could be increased by up to 65% [77]. If these approaches can 

have such a marked effect on productivity across smallholdings it is essential to 

further investigate their benefits for plantations on a commercial scale [77]. A more 

recent 2018 study showed that the main factors causing gaps between theoretical 

and realised yields in Ghana were incomplete crop harvesting and poor agronomic 

management, although it is likely that the factors leading to yield gaps differ among 

regions and climates [78].  

 

There is of course a risk that by attempting to maximise productivity, environmental 

impacts of oil palm production might actually be increased, for example: through 

greater nitrogen use, irrigation, and pesticides. A second approach to sustainably 

managing agricultural landscapes is the ‘land sharing’ technique. Land-sharing 
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promotes ecosystem services and environmentally friendly crop production which is 

crucial for conserving species that are incompatible with agriculture [76]. One such 

example of this is ‘The Biodiversity and Ecosystem Function in Tropical Agriculture’ 

(BEFTA) Programme [79], which aims to find ways in which increasing landscape 

structural complexity could increase the sustainability of oil palm agriculture 

without detriment to oil palm yield. A growing body of literature suggests that 

increased productivity does not necessarily have to come at the cost of greater 

environmental impacts. For instance, a 2014 study showed that oil palm yields were 

actually greater when planted with a cover crop and that weeding had no net 

positive effect on oil palm yields, suggesting that understorey vegetation does not 

compete strongly with oil palm for water or nutrients [80]. Similarly, other research 

has shown that the common practise of removing epiphytes from oil palms has no 

positive effect on yields [81]. In addition to potentially making oil palm plantations 

more biodiversity-friendly, not having to remove weeds and epiphytes also reduces 

labour costs, benefitting both farmers and the environment.  

 

Numerous other local drivers affect yield, one such factor being soil type. Oil palms 

on sandy substrates have shown an 18-142% increase in yield compared to those of 

marine clay, with significant productivity increases also associated with factors such 

as peat maturity. The issue with the implementation of practices from findings such 

as these is that in many cases, the type of soil used for planting will not offer many 

alternative options due to limited land available to plantation owners. Additionally, 

one 2018 study highlighted issues with productivity losses due to poor harvesting 

processes, showing that yield gaps are not only due to farming techniques [82]. This 

highlights yet another area in the processing of palm oil used on both small and 

large scales that could lead to higher oil production from the same population of 

plants [82]. Among the landscape-driven factors that lead to yield gaps, the variety 

of palm selected for plantations may also contribute to increasing oil palm 
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productivity [20–25–83]. However, growing location has a higher environmental 

impact than crop type does, providing one of the main reasons as to why producing 

oil from the most optimal areas is deemed preferable to the substitution or breeding 

of different types and varieties of vegetable oil [25]. 

 

The factors affecting yield discussed here are a brief overview of just some of the 

factors that could be driving yield gaps and are by no means exhaustive. There are a 

variety of other important factors that have been accounted for in more thorough 

reviews of oil palm and yield gaps [75–82–84]. What is evident from reviewing the 

literature is that better ways of mapping oil palm productivity at scale across entire 

landscapes is required in order to identify where yield gaps are occurring and their 

potential drivers.  

 

1.5 Remote sensing and its potential for uncovering variation 

in oil palm productivity across landscapes. 

 

Traditionally, ecologists have relied on hard-won field data to monitor the dynamics 

and growth of ecosystems such as forests and tree plantations. However, manually 

monitoring plant growth in the field is costly, time-consuming, and prone to error 

[85]. One way to get around these issues is through the use of remote sensing data. 

Remote sensing describes the process of measuring emitted, reflected, or back-

scattered electromagnetic radiation from the Earth's surface via sensors located at a 

distance from the point of interest [86]. These sensors can be placed in a range of 

environments and include ground-based, aerial, and space-borne varieties that can 

be either active (emitting and detecting their own source of radiation, such as laser 

beams or radio waves) or passive (simply measuring natural radiation reflected off 
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the earth’s surface, such as heat or light in the visible spectrum [87]. Over the past 

two decades, remote sensing has revolutionised the way ecosystems are mapped, 

and their changes through time at broad spatial scales, as well as ushering in a new 

era of precision agriculture that is helping farmers to improve yields on their land 

[88–89]. 

 

In the context of oil palm agriculture, remote sensing imagery is being increasingly 

used to map the overall extent of oil palm plantations [90], as well as identifying and 

measuring the size of individual palms [89]. For instance, in 2014 researchers 

showed how high-resolution satellite imagery and traditional image processing 

could be used to accurately detect around 90% of individual oil palms in a plantation 

[91]. This was further improved upon in 2016 when Santoso and colleagues used 

Quickbird satellite imagery to produce around 98% accuracy [85]. In addition to 

high-resolution satellite imagery, another promising technology for mapping oil 

palms is airborne light detection and ranging (LiDAR). LiDAR is an active remote 

sensing technology that relies on a high-frequency laser scanner to emit 100,000s of 

laser beams per second and then measure the time it takes for these to hit an object 

and be reflected back to the scanner. In this way, LiDAR technologies can create a 

detailed 3D representation – or point cloud – of both the vegetation and the 

underlying topography. LiDAR has been used to successfully identify and estimate 

the height and biomass of individual oil palms in Malaysian Borneo [92]. This 

suggests that by using repeat LiDAR datasets collected over time, it should be 

possible to identify hotspots of oil palm growth across landscapes, as well as areas 

where growth is slower than expected – thereby mapping yield gaps at scale. 

Moreover, these same LiDAR data could also be used to capture landscape features 

that may help explain why oil palms are growing particularly well or poorly in 

specific locations. 
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1.6 Factors affecting oil palm growth rates. 

 

There are a wide variety of intrinsic and extrinsic factors that may explain why some 

individual plants grow faster than others across landscapes, including genetics, local 

soil conditions, microclimate, pathogen prevalence, and fertiliser use. Here, a subset 

of landscape features that can be either directly measured or estimated from LiDAR 

data are investigated (Table 1). From this, the main factors that potentially affect oil 

palm growth in tropical landscapes are outlined and these form a basis for the 

analyses presented in this thesis. 

 

Table 1: Topographic and vegetation structural attributes believed to affect oil palm growth 

and the metrics used to measure or investigate them. TWI= Topographic wetness index, TPI= 

Topographic position Index, TRI= Terrain ruggedness index. 

 

 

 

1.6.1 Topography and its influence on water availability and 

microclimate. 
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The exact location within a landscape where a plant germinates can profoundly 

influence its future potential for survival and growth. Topographic features such as 

terrain aspect, slope, elevation, and curvature can affect plant growth in a number of 

ways, as they influence soil structure, nutrient availability, water flow, and other 

local microclimatic conditions such as air temperature, humidity, and exposure to 

wind and solar radiation [93].  

 

The topography of a landscape can be used to predict where water might 

accumulate across the region. Oil palm requires stable light and moisture supplies in 

order to achieve the most efficient growth and yield production. A minimum annual 

rainfall for the successful growth of oil palm is estimated at around 1800 mm, but in 

Malaysia 2000 mm per year has been found to produce optimum yields [94]. In SE 

Asia droughts and heatwaves are typically associated with El Niño events, where 

sea surface temperature increases by around 0.5 °C – peaking in December. Oil palm 

favours high temperatures, with anything below 18 °C inhibiting growth, but the 

crop is believed to be vulnerable to drought [95–96].  

 

Droughts can lead to the immediate death of plants due to hydraulic failure, or 

alternatively result in a slower death through carbon starvation, or a combination of 

both mechanisms [97–98]. Though water limitations have been found in multiple 

cases to restrict the growth of oil palms there is a gap in the literature on the 

topographic and canopy metrics that may contribute to water stress and lead to 

variation in yields across landscapes [99–105]. A study by Woittiez and colleagues 

found that when there are water deficits >400 mm per year, yields are more than 

halved [75]. This indicates the importance of investigating landscape-driven 

information to predict the impacts of drought-related changes in growth [106]. 
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For optimal growth of oil palms, it is thought that dry periods should not exceed a 

maximum of 3 months per year. An almost continuous water supply is required for 

their successful growth, and excessive dry periods lead to crop reduction around 10 

months after the drought period due to the abortion of inflorescences, the death of 

existing fruit bunches, and changes in sex determination of inflorescences, increasing 

male skew [94]. Drought periods can additionally disturb the production and 

expansion of plantations as seedlings require a minimum period to establish and 

develop a root system before being exposed to this type of physiological stress [94]. 

Due to the unique vegetative structure of the leaves and stem in oil palms, there is 

around a three-year interval between the inflorescence and production of a mature 

fruit bunch. Because of this, causal links between environmental factors and fruit 

yield are complicated [10]. It becomes even more difficult to predict or anticipate the 

effects of drought on oil palm when also considering how the landscape itself will 

experience different levels of drought intensity due to variation in topography and 

its influence on local microclimates. 

 

Sun and colleagues found that water stress not only affects growth, but also nutrient 

concentration, biomass partitioning, and the physiological and morphological traits 

of oil palms [99]. They determined that oil palm growth in drought conditions 

responds negatively to fertilisation and that it compounds the drought stress by 

dissolving the fertiliser. In this experiment, oil palms showed an ability to slow their 

growth and alter the way they allocated biomass between organs, with their root-to-

shoot ratio increasing under water stress [99]. This highlighted that it is not only 

landscape features that may produce variation in the effects of drought experienced 

by oil palm, but that this can also be confounded by management practises.  
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Another study conducted by Cao and colleagues confirms the inhibition of oil palm 

seedling growth under water-limited conditions, however it must be appreciated 

that the effects on vulnerable seedlings are likely to be more severe than the effects 

on mature and established palms [107]. This is likely to be reflected in the 

vulnerability of plantations across a landscape to the effects of drought, dependent 

on the development stages of palms in the region and their associated water-stress 

tolerance. Silva’s experiment in 2017 focussed on mature palms and identified the 

molecular reasons behind reduced growth during drought, including the decreased 

activity of enzymes associated with carbon metabolism such as sucrose-phosphate 

synthase, Rubisco, and ADP-glucose pyro-phosphorylase [108]. They investigated 

how two different hybrids of oil palm adjusted their carbon metabolism to cope with 

drought and found that although both could tolerate drought conditions, differences 

in the hybrids showed in their ability to adjust to the conditions [108]. 

 

Other than the effects associated with reductions in growth caused by drought, 

Eycott identified how drought may also cause variations in the resilience of 

particular ecological functions throughout oil palm agroecosystems [109]. They 

measured several functions including seed removal, mealworm predation, 

herbivory, and decomposition of leaf litter throughout the El Niño period, and 

determined that the ecological processes that were measured across the plantations 

were resilient to changes in rainfall. Their findings indicated that ecological 

functions could remain robust under future changes and frequency of drought 

periods. Despite this, what is most important from an economic perspective is that 

yields do not decrease with such changes. Corley and colleagues advocate that 

drought-tolerant varieties of oil palm are necessary to prevent yield reductions and 

that such selection must be completed during the drought conditions that crops will 

be planted in [94]. 
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Having discussed the effects of water stress on oil palms, the extent to which 

landscape features affect where water is more likely to accumulate in the landscape 

must be appreciated to understand where palms may be most affected by drought. 

There are a host of reasons for variations in water availability and microclimate 

across a landscape, including structural attributes of vegetation such as density and 

terrain roughness [93–110]. One way to quantify ‘roughness’ within a landscape is 

the ‘terrain ruggedness index’ (TRI), which captures how jagged or flat the terrain is 

on average by expressing the amount of elevation difference between adjacent cells 

of a digital elevation grid. Rougher landscapes may be more variable in terms of soil 

moisture compared to flatter ones. This is because where peaks and troughs form, 

water is more likely to be retained in the lower regions and run-off from the elevated 

regions, creating pockets of wetter and drier soils even at a very localised scale.  

 

Alongside any river over three metres wide across Sabah, 20 metre strips of riparian 

forest reserves border the watercourses (Sabah Water Resources Enactment, 1998). 

These riparian buffers are intended to improve the quality of the water by reducing 

runoff, maintaining hydrological processes and associated ecosystem functions, and 

reducing flood risks. But these areas also have the additional benefit of functioning 

as a reserve habitat for forest-dependent species, supporting biodiversity and 

landscape connectivity [111–113]. A 2021 study by Williamson and colleagues 

evidenced that riparian buffers 20-30m wide at each side of a river can provide a 

cooler and more humid microclimate than that of continuous forest, and adoption of 

wider buffers may bring benefits both in terms of hydrological processes and 

terrestrial biodiversity to the surrounding landscape [114]. Humidity is an important 

factor in oil palm growth, with plants requiring relative humidity to be >75% per 

year to maintain optimal growth. The distance of oil palms to rivers is therefore 

likely to influence both the microclimate that they experience, as well as the 

availability of water to them. TWI is another metric that can be calculated from a 
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digital elevation model (DEM) as a proxy for soil moisture. TWI identifies areas that 

accumulate water flow and shows topographically dry and wet areas of land [115]. 

The impacts of El Niño are likely to be experienced to a higher degree in areas with 

low TWI, because of the existing limits on water availability, than areas that 

originally have wetter soils. 

 

The topographic position index (TPI) or the curvature of the terrain refers to the 

difference in elevation between a particular point and the mean elevation of the 

surrounding area. Positive values indicate areas on ridges and negative ones denote 

depressions. Jucker and colleagues found that TPI strongly influenced both local air 

temperature and vapour pressure deficit (VPD), with ridges experiencing much 

drier and hotter conditions compared to gullies [93]. VPD describes the difference in 

moisture between the air and the amount of moisture the air can hold when it is 

fully saturated, and plays a strong role in driving transpiration in plants (and 

therefore their overall water status). Plants growing on ridges and steep slopes 

therefore tend to experience stronger competition for water as well as nutrients. Oil 

palm is most often grown where land is relatively flat due to recommendations from 

the ‘Roundtable on Sustainable Palm Oil’, ‘Malaysian Palm Oil Board’, and 

‘Standards for Oil Palm Production’, that palm oil production on flat surfaces is 

higher [92]. However, these recommendations are often near-impossible to follow in 

tropical landscapes that vary considerably in their topography, leading to 

considerable variation in the landscape position on which different oil palms are 

planted. 

 

In addition to water flow, terrain aspect and slope also influence when and for how 

long a particular area is exposed to the sun, thereby affecting air and soil 

temperature, as well as photosynthetic activity [116–117]. Intuitively, the number of 
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hours of solar exposure will affect photosynthesis rates, with lower rates of 

photosynthesis resulting in lower fruit yield and vice versa. Tropical landscapes 

typically experience high rates of solar radiation and because plantations are mostly 

located on relatively flat land, aspect is not thought to be a strong determinant of 

growth. However, aspect does have known effects on microclimates in tropical 

rainforests, with eastern facing slopes having hotter and drier microclimates than 

those that are west-facing [114]. It has been proposed that the higher maximum 

temperatures on east-facing slopes are due to greater insolation from clear mornings, 

as local cloud cover generally develops in the afternoons [116]. It is also of interest to 

note that the effect of solar radiation is most prominent for maximum daily 

temperature, with less pronounced effects on minimum temperatures. This means 

that aspect and slope could play an important role in exacerbating conditions of 

extreme heat, such as those observed during El Niño events [118–120]. 

 

In addition to water flow and microclimate, topography can also influence local 

variation in soil nutrient availability. A study by De Toledo and colleagues 

portioned the effects of soils and topography on tree mortality and found that these 

were dependent on tree size. Moreover, the effect of soils and topography on tree 

mortality increased after storms, highlighting the importance of considering factors 

such as watershed morphology and wind exposure for predicting patterns of tree 

mortality [121]. Toledo’s study found that trees on steep slopes with fertile soils, and 

those in sandy soils in valleys exhibited higher tree mortality rates than those on 

well-drained clay soils on flat terrain. This shows the importance of accounting for 

topography when thinking about landscape-scale variation in plant demographic 

rates. 

 

Finally, the position of an oil palm in relation to areas of primary forest is also of 

note in terms of microclimate and not just in terms of competition.  Those oil palms 
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closest to forest edges are more likely to experience the influence of a different type 

of microclimate, not only since they may be experiencing edge effects, but also 

because they will be influenced by differences in the local climate and water 

availability around forest areas. Nunes and colleagues determined that canopy 

height reduction due to fragmentation was also affected by topography, with forests 

located on ridges displaying a reduced canopy height of 0.5 metres in contrast to 

riparian forests, and forests situated within valleys [98]. Forest canopy structure as a 

product of topography and microclimate can vary greatly leading to variation in 

micrometeorological and light conditions, for example, a closed canopy can buffer 

daily temperature changes, as well as wind and radiation [98]. 

 

1.6.2 Competition for light and nutrients. 
 

Competition in plants refers to the impacts on plant growth or fitness induced by the 

presence of neighbours. This typically involves a reduction in resources available to 

the plant such as water, light, and nutrients. Because LiDAR explicitly measures 

vegetation density and its spatial variation, it can provide key information on how 

planting density and configuration affect how individual oil palms compete with 

one another for light and water.  

 

There are a variety of factors that contribute to the level of competition that an oil 

palm will endure for light, one of the most obvious being exposure to sunlight. 

Within the tropical regions where oil palm is grown, there is almost a continuous 

supply of sunlight distributed across plantations, meaning that solar radiation is less 

likely to be a limiting factor to palm growth. However, not all of this light will be 

distributed equally across each palm in a plantation. Optimal solar exposure for oil 

palms has been estimated between 1,800 and 2,200 hours a year, or a minimum of 5 
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hours a day, every day of the year [94]. In areas where plants may differ in heights, it 

is the tallest palms that will be best suited to compete for sunlight, and these may 

form shades using their canopies over smaller, less developed stands. Yields of oil 

palm have been found to decrease significantly where they are shaded by other 

palms because of competition for light [20–122]. High levels of solar radiation are 

vital in terms of bunch yield, and even across the same plantations, side-rows of oil 

palm with less shading often produce greater yields than those in inner rows [94].  

Because of this, by investigating the average heights of palms around a particular 

individual, researchers can get an idea of the level of competition that the palm is 

facing for light. 

 

Typically, oil palms are found planted in triangular or square patterns with 

approximately 9 m spacing between them, a density found to be optimal in terms of 

competition between palms [94]. Despite this, a blanket approach to planting across 

a heterogenous landscape will mean that this approach may be optimal in some 

areas while suboptimal in others. For instance, in areas of the landscape where there 

is a poor ability to retain soil moisture, it may be that palms would be optimally 

spaced out at further distances, to allow for less competition where water is scarcer. 

By measuring the vegetation density within an oil palm’s neighbourhood and 

exploring how this influences growth at different positions within the landscape 

(e.g., exposed ridges vs flat, low-lying areas), it would be possible to determine if 

planting density can be optimised to match the features of a particular landscape. 

 

Another interesting phenomenon that may relate to competition – although likely 

associated with local microclimate as well – is the existence of edge effects. Edge 

effects are often described from the perspective of primary forest, where there tends 

to be increased tree mortality at the boundary of oil palm plantations. The effects of 
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these boundaries on the palms planted at the edges of plantations have been 

documented far less across scientific literature. Palms at the edges of plantations will 

not only be competing with their oil palm neighbours, but also be competing with 

forest trees. Competition for nutrients, water, and light will all vary more 

substantially for oil palms at the edges of plantations than those at the centre of 

plantations, and a 2014 study by Edwards and colleagues attempted to quantify 

these effects [82]. One of the key concerns of oil palm growers is that plantations 

closer to unmanaged forests may be at risk of spill-over from pests and pathogens. 

Natural forest habitats have the potential to act as reservoirs of pests, parasites, 

invasive weeds, and disease [82]. The spill-over of biodiversity from primary forest 

to agricultural land therefore has the potential to cause ecosystem ‘disservices’ to oil 

palm [82–123–124]. There is also reluctance from oil palm plantation managers to 

incorporate areas of natural forest between plantations because this would reduce 

the amount of land available for growing crops, and thus incur a cost to local 

production as well as making the management of the crop more difficult. The issue 

of incorporating natural land could also potentially increase the demand for 

converting land elsewhere to agriculture if it is not coupled with the intensification 

of oil palm production [82–125].  

 

On the other hand, retaining natural habitats such as forest fragments and riparian 

strips within agricultural landscapes has been advocated as a means of benefitting 

ecosystem services and consequentially increasing yield [82–126–132]. This has the 

additional benefit of providing conservation advantages to biodiversity. Results 

from Edwards’ study indicate that proximity of palms to natural forests actually had 

a neutral effect on oil palm yields. Thus, even though oil palm may not benefit 

directly from association with natural forest, they do not seem to be inhibited either, 

proving there may be the potential to make landscapes more biodiversity-rich, 

without a consequential reduction in yield.  
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1.6.3 Life stage and ontogenetic effects on growth. 
 

Because of the ontogenetic trends in growth all plants experience, an association 

between how growth and yield might vary with plant size -which can be used as a 

proxy for plant age in oil palms- can be derived [133]. Ontogeny describes the 

development of an organism from its earliest stages to maturity, and this relates 

directly to the propensity a plant has for growth. Oil palm height growth rates are 

fastest during the first 5-10 years after planting, before declining as plants reach their 

plateau in height of around 12-16 m at an age of 20-25 years [133]. Not only do palms 

experience less vertical growth with age but they also exhibit a marked decline in 

yield, especially after an age of around 20 years [134]. A study based on palms from 

ages 11 to 21 years found that the age of the palm displayed a negative relationship 

with fresh fruit bunch yield, indicating that the productivity of oil palms will decline 

with their development [135]. From this, It could be predicted that the taller palms 

grow across the landscape, the more likely it is that their growth rate and fruit 

production will subsequently decline. 

 

The top most part of the palm – its crown – is made up of the plant's large leaves (or 

fronds) and reproductive structures that grow outwards from the trunk. Together, 

this is what is visible from airborne and satellite imagery, including LiDAR point 

clouds. A 2015 study by Chemura and colleagues investigated the relationship 

between age and crown projection area of oil palms, using object-based image 

analysis applied to multispectral data [136]. The crown projection areas determined 

from this were used in conjunction with a regression model for estimating the age of 

oil palms in a larger area. These data indicated that there was a strong linear 

relationship between the age of oil palms and their crown area, up to the age of 13 

years, after which the relationship weakened [136]. This suggests that by combining 

information on the height of the palm and its crown area (both of which can be 
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retrieved from LiDAR) it should be possible to accurately estimate an individual’s 

age and life stage (e.g., immature, mature, senescing). 

 

The crown size directly relates to the canopy cover of oil palms, which has in turn 

been used to estimate aboveground carbon stocks of oil palm plantations [92–137]. In 

an experiment aiming to compare the conditions of oil palm canopies between non-

thinned and thinned plantations, thinning was not found to lead to lower palm oil 

yield [137]. With knowledge of the age of oil palms and surrounding forest areas, 

better resource utilisation and optimal management of agriculture can be informed. 

By making operations such as fertilisation suited to palm age more efficient, 

productivity can be increased, aiding the problem of increasing yield without 

increasing the area under production [136]. Not only this, but knowing the age of oil 

palm is required for assessing certification requirements for organisations such as 

RSPO (Roundtable on Sustainable Palm Oil), and remote sensing has the capability 

to assist with age estimation across larger areas [136]. 

 

Palm height, aboveground biomass, or some other metric of size also have the 

potential for predicting an oil palm's susceptibility to drought. Taller plants have 

more difficulty in transporting water to their leaves than smaller plants do, and 

because larger palms have subsequently larger crowns, they require greater amounts 

of water to meet higher transpiration demands. This potentially puts the largest 

palms across the landscape at higher risk of mortality or reduced growth rates 

during El Niño events compared to smaller palms. In saying this, larger palms will 

also have bigger root systems than their shorter counterparts, leading to a greater 

capacity for water uptake from soils. Plant height as a factor that determines 

mortality has been studied in depth in the case of droughts, but less so in the context 

of oil palm agriculture. In 2019, Stovall and colleagues tracked 1.8 million trees over 

8 years, in conifer-dominated forests. Almost half of all trees over 30 m died, which 
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was more than double the number of tree fatalities under 15 m [138]. It was 

determined that tree height was the single strongest predictor of mortality during 

extreme drought events, over maximum VPD, temperature, precipitation, available 

water storage, cover, and slope. 

 

1.7 Conclusions. 

 

A review of the literature has shown that a variety of factors with the propensity to 

affect oil palm growth- particularly during periods of drought -need further 

investigation. Creating a blanket ban on oil palm is not a feasible option for limiting 

the environmental consequences of oil palm agriculture, as this would have 

profound knock-on effects to many people's livelihoods. It is essential that the most 

efficient ways of growing oil palm are found, without further compromising existing 

primary forests that hold so much value. For such an economically important crop, it 

cannot be overstated how important it is to optimise its growth, both for 

environmental purposes as well as for economic security in developing nations. The 

effects on oil palm growth throughout drought at an individual plant level are 

under-studied, and it is necessary to identify the factors contributing to the changes 

that might occur in growth because of El Niño events. Creating clear and concise 

methods for identifying palms and tracking their growth over time using LiDAR 

data is also of huge importance and can give researchers valuable insight into oil 

palms at an individual level.  

 

1.8 Aims and content. 

 

The aim of this thesis is to investigate differences in the growth of oil palms during 

El Niño periods in Sabah. The study site is situated in Malaysian Borneo and the 
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data investigated was collected as part of the SAFE (Sustainability of Altered Forest 

Ecosystem) project between 2014 and 2016. Two main questions were posed: 

1) How much did oil palms grow during a period characterised by 

unseasonably hot and dry conditions, and how variable were growth rates 

across the landscape? 

2) Can developmental, ecological, and landscape features be identified that 

explain why some oil palms grew faster than others during this two-year 

period? 

 

This introduction and literature review constitute the first chapter of the thesis, and 

are intended to give an overview and context to the themes addressed in chapter 

two. Chapter two consists of an introduction, methods, results, and conclusion. It 

begins with a brief introduction to the context and specifics of the project. Detailed 

information on the methods used is then discussed, before a section outlining the 

results and a discussion of these with reference to existing literature. Chapter three 

considers chapter two in further detail, going into depth on the limitations of the 

project and further work required in the area. An overview is also provided of how 

the conclusions sit in the context of the field, and final closing remarks on the project 

outcomes are addressed. 
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Chapter 2: Using repeat 

airborne LiDAR to map the 

growth of individual oil 

palms in Malaysian Borneo 

during the 2015-16 El 

Niño’. 
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2.1 Abstract. 

 

The ever-increasing demand for palm oil has led to a rapid rise in the clearing of 

tropical forests, particularly in areas of South East Asia. Oil palm is central to the 

livelihoods of many people, and it must be ensured that the production of palm oil 

can occur as sustainably as possible. Thus, it is essential to understand how oil palm 

growth varies across tropical landscapes in order to optimise yields. In this project, 

repeat airborne LiDAR data was used to map the height growth of over half a 

million individual oil palms in Malaysian Borneo over a two-year period which 

coincided with the 2015-16 global El Niño event. The ability of oil palms to continue 

growing during this period of uncharacteristically dry and hot weather was 

investigated, and the ecological and landscape features that contributed most to 

differences in growth rates across landscapes were explored. Despite the drought 

conditions, oil palms grew 1.61 m yr-1 in height on average, but growth varied 

substantially among individuals, with smaller oil palms exhibiting the fastest rates of 

height growth. Landscape features such as the distance of palms from forest edges, 

elevation, and terrain ruggedness all had significant effects on height growth, as did 

relative competition with neighbours. However, effect sizes were weak and 

collectively these predictors only explained a small portion of the variation in 

growth among individual oil palms (5%). The results highlight the high resilience of 

oil palms to climate extremes associated with El Niño events. The project also reveals 

opportunities for improving the efficiency and yields of oil palm agriculture, but 

doing so requires further work to pinpoint the factors that contribute most to driving 

variation in oil palm growth rates across tropical landscapes. 

 

2.2 Introduction. 
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African oil palm has earned some notable accolades – including ‘tree of life’ [14], 

‘wonder crop’ [139] and ‘natures gift to man’ [140] – as almost every part of the palm 

has a use, and it produces 10 times more oil per hectare than its closest competitor, 

soybean [17–18]. This has resulted in oil palm becoming one of the most important 

crops worldwide for the production of vegetable oil over the late century [14]. 

Nowhere is this truer than in parts of SE Asia [2], such as in Indonesia where palm 

oil accounts for around 10% of total national exports and is central to the livelihoods 

of countless people [25]. However, this rapid rise in the demand for oil palm has 

come at a huge environmental cost, as the expansion of the oil palm industry has led 

to the large-scale conversion of tropical forests to monoculture plantations. On the 

island of Borneo alone over 3 million ha of primary forest were cleared to make way 

for oil palm agriculture between 2000 and 2017, with substantial impacts on 

biodiversity and carbon storage [15–25–59–61–63]. Oil palm plantations have been 

shown to hold fewer than half the vertebrate species of primary forests and far lower 

species richness than disturbed logged or secondary forests [66]. This puts many of 

the ecosystem services provided by stable and diverse tropical landscapes at risk 

[59–70]. Moreover, intact tropical rainforests can hold as much as 270 tonnes more 

carbon per hectare than oil palm plantations [24–72–73]. Consequently, the 

continued expansion of oil palm agriculture is weakening the tropical forest carbon 

sink, which has played a key role in slowing the pace of climate change over the past 

half-century [15]. 

 

The solution to this challenge is not simply to ban or replace palm oil. Not only 

would this have huge socio-economic impacts for millions of people, but the 

environmental impacts of vegetable oil production would simply be displaced 

elsewhere, likely with worse outcomes for biodiversity and climate given how 

productive oil palm is compared to alternative crops [25]. Instead, it is vital to find 

ways to produce oil palm more sustainably. One way to do this is to increase 
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efficiency by maximising yields – the so-called ‘land sparing’ approach [76–141]. 

Research shows that there are often significant gaps between actual and potential oil 

palm yields. Harvested yields rarely exceed 3 t oil ha−1 yr−1, when estimates suggest 

that better cultivation practises could almost triple average yields to around 8 t ha−1 

yr−1 [15–20–75]. Closing these yield gaps would be a win-win for both people and the 

environment, as it would allow more oil to be produced from less land. However, 

while some of the large-scale drivers of these yield gaps (e.g., climate, soils) are 

known, much less is known about what causes yields to vary locally across 

landscapes – the scale at which farmers can actually intervene by adapting planting 

strategies. For example, local factors such as topography can have a profound 

influence on soil water and nutrient availability, as well as on microclimatic factors 

such as air temperature, VPD, and solar radiation – all of which directly constrain 

plant growth [93]. Moreover, these same landscape features can exacerbate or 

dampen the effects of extreme climate events, such as the extraordinarily hot and 

dry conditions associated with El Niño events [98]. 

 

One of the main challenges of identifying oil palm yield gaps across tropical 

landscapes is the scale of the plantations, which is often vast. This makes tracking 

the growth rates of oil palms from the ground both logistically challenging and 

prohibitively expensive [1]. One solution to this challenge is to leverage remote 

sensing technologies to map oil palm plantations from above, an approach that is 

becoming increasingly popular under the banner of precision agriculture [142–143]. 

One particularly promising technology in this regard is LiDAR, which 

simultaneously captures the 3D structure of both vegetation and the underlying 

terrain in superb detail [142]. This makes LiDAR the ideal tool for measuring 

vegetation height and biomass at large scales and exploring how landscape features 

constrain their variation [144–146]. LiDAR data has also been used to segment and 

measure the size of the crowns of individual plants, including oil palms [92–147]. All 
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of this suggests that by using repeat LiDAR surveys conducted at two or more 

points in time, it should be possible to track the growth of individual oil palms 

through time and explore how and why it varies across entire landscapes [98]. 

 

To test this idea, repeat LiDAR data acquired across an oil palm-dominated 

landscape in Malaysian Borneo was used to map the height growth of >500,000 

individual oil palms between 2014–16. This period coincided with the global 2015-16 

El Niño event, which resulted in unusually hot and dry conditions lasting multiple 

months across the region. Using these data, two main questions were proposed 

about oil palm growth and its variation across tropical landscapes: 

1) How much did oil palms grow during this period characterised by 

unseasonably hot and dry conditions, and how variable were growth rates 

across the landscape? 

2) Can developmental, ecological, and landscape features be identified that 

explain why some oil palms grew faster than others during this two-year 

period? 
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2.3 Methods. 

 

 

Fig. 2.1: Workflow diagram illustrating the main steps involved in processing the data, 

carrying out a validation of the palm segmentation routine, and the final data analysis. 
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2.3.1 Study area. 

 

The data used in this project were acquired as part of the Stability of Altered Forest 

Ecosystems (SAFE) project, situated in the Malaysian state of Sabah, in Borneo [148]. 

The SAFE project is one of the largest ecological experiments in the world on 

biodiversity and ecosystem change in tropical forests as a result of human 

modification, forest degradation, and fragmentation. The region’s climate is tropical, 

with a mean annual temperature of 26.7°C and an annual rainfall of 2,600–3,000 mm 

[145]. The SAFE landscape is highly fragmented and comprised of a variety of land-

use types, ranging from oil palm plantations of varying ages, logged and fragmented 

secondary forests, and unlogged old-growth forests. This study focusses on oil palm 

plantations in this region spanning an area of approximately 94km2. The site was 

affected by the 2015-16 global El Niño event, leading to particularly hot and dry 

weather spells which were especially strong towards the end of 2015 and early 2016. 

For more information on the logging history of the study area, see Ewers et al. (2011) 

[148]. 

 

2.3.2 2014 Data. 

 

LiDAR data were first acquired across the SAFE landscape in November of 2014 

with a Leica ALS50‐II LiDAR sensor flown by NERC's Airborne Research Facility. 

Data were collected as a discretised point cloud with a median pulse density of 15.3 

pulses per m2 [93]. For the purposes of this study, point cloud data were classified 

into ground and non-ground returns with the software ‘LAStools’ 

(https://rapidlasso.com/lastools). A DEM was then fit to the ground returns to 

https://rapidlasso.com/lastools
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generate a 1 m resolution raster. The DEM values were then subtracted from the 

non-ground returns to generate a normalized point cloud from which a 0.5 m 

resolution CHM was generated using the pit-free algorithm described in 

Khosravipour et al. (2014) [149]. Further details of this data acquisition and 

processing can be found in Jucker et al. (2018) [145]. The DEM and CHM data are 

archived online and freely available at: https://doi.org/10.5281/zenodo.4020697. In 

addition to the LiDAR data, true-color RGB imagery was also acquired across the 

SAFE landscape using a Phase One iXU-RS 1000 100 MP digital camera mounted 

alongside the LiDAR scanner. Individual images were subsequently georeferenced, 

orthorectified, and stitched together into a mosaic spanning the same area as the 

CHM and DEM. 

 

2.3.3 2016 Data. 

 

The second LiDAR dataset was collected by the Global Airborne Observatory (GAO; 

formerly the Carnegie Airborne Observatory) [150] in April 2016 as part of a larger-

scale project mapping aboveground carbon stocks across the entire state of Sabah 

[151]. As the goal of this project was to maximize coverage of the region to best 

capture spatial variation in forest structure and aboveground biomass, the flights 

were conducted at a higher elevation than in 2014 and the resulting point density 

was lower (1.1 pulses m2 on average). The processing of the point cloud data 

followed a similar approach to the 2014 data described above. ‘LAStools’ 

(https://rapidlasso.com/lastools) was used to classify the point clouds into ground 

and non-ground returns, following which a 2 m resolution DEM and CHM were 

created. Further details of data acquisition and processing can be found in Asner et 

al. (2018) [151]. 

 

https://doi.org/10.5281/zenodo.4020697
https://rapidlasso.com/lastools
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2.3.4 Data processing. 

 

All subsequent data processing and analysis were carried out using a combination of 

QGIS [152] and R [153]. For a general overview of the workflow described below, see 

Fig. 2.1. First, to minimise errors due to misalignment between the two datasets, the 

Georeferencer plug-in in QGIS was used to manually align the 2016 CHM to the 2014 

data. Following this, the full extent of the 2014 and 2016 CHMs were cropped so that 

only overlapping areas covering oil palm plantations were retained for further 

analysis (Fig. 2.2). This was achieved using a shapefile of the SAFE project landscape 

marking the boundary of oil palm plantations, as well as creating a shapefile 

marking the area of overlap between the two datasets, as the 2016 data only covered 

a portion of the area flown in 2014. Additionally, areas of riparian forest 

surrounding rivers and areas affected by cloud cover were manually delineated and 

removed from the CHMs. 
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Fig. 2.2: Map of the SAFE project landscape, showing the distribution of oil palm plantations 

and remaining forest areas. Areas of cloud cover which were masked from the analysis are 

shown in grey, while the dark blue line shows the contour of the area of overlap between the 

2014 and 2016 LiDAR data.  

 

2.3.5 Creating a validation dataset. 

 

To develop an effective approach for identifying and delineating individual oil 

palms from LiDAR across the entire SAFE landscape, a validation dataset was 

Oil palm plantations. 

Overlap of 2014 and 2016 data. 

Cloud cover. 

Primary and logged forest. 
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created that would allow a comparison of the accuracy of different crown 

segmentation approaches. An area of 4.5 ha straddling the boundary between a 

mature and young oil palm plantation was chosen (Fig. 2.3). Using both the RGB 

imagery and 2014 CHM data, all oil palm crowns within this area were manually 

delineated. A 5 m buffer was then applied to the area and  any oil palms falling 

within it were removed, to avoid including individuals with crowns falling partially 

outside the extent of the imagery. This left a total of 409 manually delineated oil 

palms to assess the accuracy of the crown delineation algorithms (Fig. 2.3). These 

were further grouped into young (< 6 m tall, n = 177) and mature oil palms (>= 6 m 

tall, n = 232), in order to determine how delineation accuracy might vary among size 

classes. 

 

To identify individual oil palm crowns the lidR package in R was used [154]. This 

involved first using a local maximum filter (LMF) algorithm to locate the tops of 

individual palms and then applying the itcSegments algorithm to delineate the 

border of their crowns [147]. This approach was applied to both the point cloud and 

CHM data from 2014 and has been used successfully in the past to map individual 

oil palms from LiDAR [92]. The LMF algorithm allows the user to specify a window 

size across which to search for local maxima (i.e., palm crowns), which were varied 

between 6-10 m. This range was chosen as oil palms were planted approximately 8-9 

m apart on average. The accuracy of the various segmentation routines were 

assessed by comparing the computer segmented crowns to those manually 

delineated by hand and calculating (i) the number of correctly segmented palms, (ii) 

the number of omitted palms (i.e., those which the algorithm failed to detect) and 

(iii) the number of over segmented palms (i.e., those which the algorithm incorrectly 

split into two or more palms). The primary goal was to keep the number of over-

segmented palms as low as possible, as this would otherwise introduce a source of 

pseudoreplication in subsequent analyse. Therefore, an upper threshold of 2% over 
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segmented palms was set, above which the algorithm was deemed too imprecise. 

Based on this preliminary analysis, the segmentation was run on the CHM rather 

than the point cloud data, as accuracy was comparable while being computationally 

much faster on the CHM (see Results section for details).  

 

 

Fig. 2.3: Manually delineating oil palms to create a validation dataset for individual oil palm 

segmentation. RGB imagery (a) and CHM data (b) from 2014 were used to manually 

delineate individual oil palm crowns in an area of approximately 4.5 ha. Crowns falling 

within a 5 m buffer from the edge of this area were excluded (teal polygons in c), leaving a 

total of 409 manually delineated crowns for training and validating algorithms (yellow 

polygons in c). 

 

2.3.6 Calculating height growth of individual oil palms across 

the SAFE landscape. 
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The best performing segmentation routine was used to automatically identify 

individual oil palm crowns across the entire 2014 CHM. To calculate height change 

between 2014 and 2016, the 2014 CHM was resampled to 2 m to match the resolution 

of the 2016 data. The polygons of the individual oil palm crowns were then 

overlayed onto the CHMs from 2014 and 2016 and the maximum height value of 

pixels falling within each polygon was extracted. Finally, to calculate the height 

change (in m yr-1) of each oil palm the height in 2014 was subtracted from that of 

2016 and this was divided by the time interval between surveys (1.417 years). 

 

As part of this process, any crowns < 2 m in height and with a crown area < 9 m2 in 

2014 (the size of the smallest palm that was manually delineated in the validation 

dataset) were excluded from the analysis. To filter out possible outliers (e.g., 

remnant plants left within the landscape which would have mistakenly been 

counted as oil palms, or oil palms which died between surveys), any individual > 20 

m in height (which is an upper limit for oil palms) and those which exhibited a 

percentage height change of ≤ 0 % or ≥ 200% (calculated as 
𝐻2016−𝐻2014

𝐻2014
× 100) were 

also excluded. In total, this filtering step removed only a small fraction of the total 

number of segmented oil palms. 

 

2.3.7 Drivers of local-scale variation in oil palm height 

growth.  

 

To explore the factors that could explain variation in oil palm growth rates across the 

landscape, data was assembled on a range of features linked to topography, 

ecological context, and plant development stage. First, using the 2014 DEM a 

number of terrain metrics were calculated that have been shown to capture variation 
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in hydrology, soil water availability, nutrients, local microclimate, and exposure to 

sun and wind [93]. These included terrain elevation, slope, aspect, TRI, TPI, and 

TWI. Prior to calculating these metrics, the DEM was aggregated to a resolution of 10 

m to smooth out any local artifacts and speed up subsequent computations. TWI was 

then calculated using the dynatopmodel package in R, while all other predictors were 

derived using the raster package [155]. Following this step, aspect values were cosine 

transformed to obtain a variable ranging in value between -1 (corresponding to 

north-facing slopes) and 1 (south-facing) [156].    

 

In addition to these topographic metrics, a shapefile of rivers across SAFE was used 

to calculate the distance from rivers for all oil palms using the sf package in R [157]. 

Similarly, the distance to the closest forest edge from each oil palm was calculated to 

test whether changes in microclimate, soil structure and pathogen loads related to 

proximity to intact forests might affect oil palm growth. To further test the effects of 

planting configuration and competition for light, the 2014 CHM was used to 

calculate the mean canopy height in a 20 m radius around each oil palm and 

regressed against the palms’ height. The residuals of this model were used as an 

indicator of whether a given individual experiences stronger or weaker competition 

than expected based on its size (hereafter referred to as relative competition effect). 

Finally, as a measure of plant developmental stage, the crown volume of each oil 

palm was derived by multiplying the crown area by the palms’ height in 2014 [158]. 

 

To determine how well each of these predictors contributes to explaining variation 

in oil palm growth across the landscape multiple regression was used. To avoid 

issues with multicollinearity, Pearson’s correlation coefficients (ρ) were calculated 

between all model predictors prior to model fitting. Any that exceeded ρ > ± 0.5 were 

excluded from the analysis. Based on this, the following predictors were retained in 
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the regression model: crown volume, relative competition effect, distance to the 

forest edge, ground elevation, TWI, TRI, and aspect. The response variable – height 

change – was log-transformed to normalise the model residuals, while all model 

predictors were scaled to have a mean of 0 and standard deviation of 1 to allow their 

effect sizes to be directly comparable. As a post-hoc test of collinearity among model 

predictors, the variance inflation factors for the fitted model were calculated and 

confirmed as < 2 for all predictor variables [159]. 

 

2.4 Results. 

 

2.4.1 Accuracy of oil palm segmentation. 

 

For the individual oil palm segmentation, a window size of 9 m proved the best 

compromise between minimising over-segmentation while also ensuring as few 

individuals as possible were omitted by the algorithm (Fig. 2.4). This proved to be 

the case regardless of the initial size of the palm or the input data (point cloud or 

CHM). Using this approach applied to the CHM, 65.8% of manually delineated oil 

palms were correctly segmented while over-segmentation was kept to 1.7%. The 

segmentation accuracy was greater for small palms < 6 m in height (84.8%), whereas 

for mature individuals it was only 51.3%. The accuracy of the segmentation 

algorithm was almost identical when applied to the point cloud data (see Table S1 in 

the Appendix), but was substantially slower. Therefore, the segmentation of the 

whole landscape was run using the CHM data as input. 
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Fig. 2.4: Accuracy of oil palm automatic segmentation using the CHM and window size of 9, 

against manually delineated palm crowns on a section of 409 palms in the landscape. 

Correctly segmented oil palms represent those where a single individual was found within a 

manually delineated polygon, over segmented palms are ones where more than one individual 

was found within a manually delineated polygon, and omitted palms are ones where no 

individual was found within a manually delineated polygon. 

 

2.4.2 Oil palm height growth and its variation. 

 

After applying the data quality filters described in the Methods, a total of 550,566 oil 

palms across the SAFE landscape were delineated and their height growth 

measured. There was a significant difference in the mean height of palms in 2014 

(7.94 m) and their height in 2016 (10.32 m) (t = -295.79, P < 0.0001), with palms 

Correctly segmented palms 

Omitted palms 

Over-segmented palms 

Palm tops found by the 

algorithm 
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growing an average of 1.61 m yr-1 between the two LiDAR flights. However, there 

was considerable variability in the rate of height growth across the study area, with 

90% of values ranging between 1.00 m yr-1 (5th percentile) to 3.90 m yr-1 (95th 

percentile). Height growth rates varied significantly depending on the initial size of 

oil palms in 2014 (t = 81.87, P < 0.0001), with smaller individuals (< 6 m in height) 

growing an average 1.69 m yr-1, while larger ones (> 6 m in height) grew 1.56 m yr-1 

(Fig. 2.5).  

 

 

Fig. 2.5: Comparison of the distribution of height growth per year (log-transformed) of short 

(< 6 m in height in 2014) and tall oil palms (>= 6 m in height in 2014). Dashed vertical lines 

indicate the mean values for each group.  
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2.4.3 Drivers of spatial variation in oil palm height growth 

across the landscape. 

 

 

Fig. 2.6: Maps of a subset of the SAFE landscape showing variation in oil palm canopy height 

in both 2014 (A) and 2016 (B), and how this maps on to the digital elevation model (C) and 

terrain ruggedness index (D). The bottom right-hand panel (E) shows the segmented oil 

palms within this area, colour-coded by their height growth rate, ranging from low (blue) to 

high (yellow). 
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Between LiDAR data collected in 2014 and 2018, the heights of palms in the 

landscape changed significantly (Fig. 2.6). Of the predictors included in the multiple 

regression model, all but TWI and aspect emerged as statistically significant (Fig. 

2.7). Initial crown volume emerged as the single strongest predictor of height 

growth, with mature oil palms with large crown volumes exhibiting slower rates of 

height growth on average than younger palms with smaller crown volumes. 

Distance from forest edges was the second strongest predictor of height growth, 

with palms planted closer to forest edges growing more quickly than those further 

away. By contrast terrain elevation, relative competition effect, and TRI were all 

positively correlated with oil palm height growth rates. However, despite being 

statistically significant, the effect size of these predictor variables was generally low 

and together they only explained 5% of the variation in oil palm height growth rates 

across the SAFE landscape.   
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Fig. 2.7: Standardised regression coefficients (± 95% confidence intervals) for all predictor 

variables included in the multiple regression model [160]. 

 

2.5 Discussion. 

 

These findings demonstrate that oil palms were able to grow over the two-year 

period between 2014-2016 despite experiencing drought conditions as a result of El 

Niño. Palms varied in their ability to grow according to particular factors in the 

environment such as topographic and canopy differences, however, the ability of 

these landscape features to explain variation in growth rates was minimal. The 

strongest predictor of palm growth over the time period was the initial size of palms, 

with those that were initially larger growing significantly more slowly in height than 

those that were initially smaller. A similar negative relationship between distance to 

forest edge was also found, with growth tending to decline with increasing distance 

to the forest edge. Furthermore, the results highlighted a positive relationship of 

palm growth with the relative competition effect, TRI, and elevation, and a non-

significant relationship with both TWI and aspect. 

 

2.5.1 Growth during El Niño events. 

 

It is reasonable to predict that the most growth over the two years would be 

expected in areas where conditions were most favourable for oil palms. Because of 

the drought coinciding with this period, it was also likely that water stress would be 

one of the greatest pressures on palms, and thus areas of the landscape where water 

accumulated to a greater extent may indicate where palms could be expected to 

display the highest levels of growth. Factors such as the distance of oil palms to 
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rivers, and the elevation of the terrain have an impact on both the microclimate that 

plants experience, as well as the availability of water or wetness of the soil. In oil 

palm, water deficits can affect growth, dependant on genotype and drought stress 

severity [99–108–161–163]. With rising global temperatures and increasing frequency 

of El Niño events and drought [7] it is expected that oil palms with less access to 

water, such as those further from rivers or on elevated, hilly terrain may suffer more 

in terms of the energy that they could put into vertical growth.  

 

There was extensive variation in the extent that palms grew across the landscape, 

likely due to differences in stress severity as a result of topographic variation in the 

landscape as discussed below. However, what is clear from the results is the fact that 

oil palms across the landscape did grow during this period, suggesting a strong 

resilience of the palms to cope with drought. This is a highly important finding for 

oil palm agriculture as it suggests that increasing frequency of severe climatic 

conditions and global change will have little effect on the production of oil palm, 

boding well in terms of the economic and social impacts that would be inflicted on 

many SE Asian populations [15–25–26–43–82]. Despite the fact that this resilience is 

highlighted, it must be done so tentatively as the study did not take into account 

delayed effects of drought on oil palm growth, which would require longer-term 

monitoring of the palms. What is important to take into consideration is the fact that 

El Niño and drought periods differ in their severity, and this particular case cannot 

be used as a definitive outcome for palms in all cases of drought. The extent that a 

palm is pushed to its physiological limits in terms of water stress will heavily 

depend on the maximum temperatures reached and the length of these stress 

periods [97–98–105]. With an appreciation of this caveat it is reasonable to hope that 

in drought periods that are similar to, or less severe than the 2014-2016 El Niño 

events in SE Asia, oil palms will be able to show this resilience in the face of climatic 

stress.  
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It was also predicted that palms at a later life stage, would experience slower growth 

than smaller palms at an earlier stage in their development due to propensity for 

growth declining with development due to effects induced by life stage and 

ontogeny. By far, the strongest predictor of palm growth in the study was the initial 

size of palms, with taller palms growing significantly more slowly than those palms 

that were initially shorter. The ability that oil palms can grow has been found to 

decline with age and crown volume was used in this study as a proxy for life stage 

or age [133]. The results here are consistent with the finding that palm changes in 

height and age are highly correlated with one another [133–164]. 

 

2.5.2 Spatial variation in growth. 

 

The growth of palms varied substantially across the landscape (Fig. 2.6), however 

the predictors that were tested in the analysis did not explain a large amount of this 

variation (5%). Spatial variations in levels of competition for resources other than 

water, such as nutrients and light are also likely to have affected palm growth. Palm 

growth varied positively with the relative competition that oil palms experienced, 

which indicates the resources that exert the most pressure on palms. Had oil palm 

growth exhibited a negative relationship with relative competition it may have 

suggested that there was intense competition for nutrients and water, thus palms 

could not access what they need to grow efficiently. However, since height increased 

with relative competition, it shows that palms were dedicating their energy to 

vertical height growth, indicating that the most important resource that palms were 

competing for was likely to be light. This is because when there is more competition 

for light than nutrients and water, such as cases where competing neighbours are 

taller, it may be expected that greater vertical growth would be observed in plants, 
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as they attempt to compete with their taller neighbours for access to light. Despite 

this, competition does not seem to have a very large effect in determining growth, 

possibly due to the way oil palms have been planted, and the high levels of light 

exposure that Borneo receives. This is likely to mean that oil palms have been 

planted at a distance whereby they are not experiencing a great amount of 

competition for light, showing that plantation arrangements are relatively successful 

at the ~9 m planting interval used across this landscape. The light levels across the 

landscape and hence resulting competition were even less likely to vary 

substantially across the landscape due to the relative flatness of the terrain. 

 

The negative relationship between palm growth and a palms distance from forest 

edge was interesting, as it goes against the concept that the agricultural ideal of 

‘monoculture’ is ideal for palm growth [82–165]. It is typically thought that 

proximity to primary forest could be a source of pests and disease, and plantations 

of large monoculture between them are most agriculturally productive [82–166]. This 

does not seem to be the case in what has been observed from this experiment. It 

could be that proximity to primary forest is a better predictor of water availability 

than the metrics used as proxies for access to soil moisture, but alternatively it may 

suggest that the increased biodiversity around oil palms closer to primary forest 

offers them a growth advantage that was not anticipated such as increased soil 

nutrients from increased bacterial diversity and microbial biomass [82–166]. This 

finding could offer a way of both increasing productivity while also reducing the 

negative impacts of oil palm agriculture on the environment by encouraging the use 

of ecologically beneficial practices. The introduction of more unmanaged forest in 

and around plantations, or even the addition of intercropping techniques could 

increase palm yield while also creating wildlife corridors and more areas of refuge 

for native wildlife. This would also have the benefit of creating a more structurally 

complex landscape, beneficial to a variety of animals and plants [82–126–132]. What 



 

66 
 

is interesting is that when the growth of oil palms is compared to the growth of 

forest under regeneration from heavy logging in the same region, the forest 

continued to grow despite higher evaporative demand, except when it was located 

close to oil palm plantations. These edge effects were experienced up to 300m from 

plantations which suggests that the oil palms were likely better competitors than 

plants in the surrounding forest [98]. 

 

Variation in topography constrains a range of factors likely to affect palm growth, 

ranging from local nutrients, hydraulic conditions, soil structure, to other local 

microclimatic conditions such as air temperature, humidity, and exposure to wind 

and solar radiation [93]. Elevation is known to affect microclimatological factors 

such as air temperature and humidity through changes in atmospheric pressure or 

exposure to wind and solar radiation, whereby increasing elevation relates to 

increased VPD and decreased temperatures [93–120]. Here, elevation of palms across 

the landscape exhibited a positive relationship with palm growth. The effects of 

elevation were relatively weak, probably due to the fact that the palms were across a 

fairly flat landscape, and there were not necessarily any extremely high elevations 

whereby temperature would have cooled enough to affect growth. Nevertheless, 

palms growing at higher elevations grew faster than those at lower elevations, and 

this may be related to competition for light. At higher elevations, light availability 

may likely be slightly greater than at low elevations, whereby palms may experience 

some shading effects from crowns of palms situated at higher elevations [20–122]. 

This is an interesting finding as it could be expected that areas of lower elevation- 

such as valleys- would have better access to water due to an accumulation in the 

soils from run-off. If water had been a restricting factor to growth the opposite trend 

to that which was observed may have been found within the results.  
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TRI gives an idea of the localised roughness of the landscape. Where it is higher 

there are more differences between the land where a palm is planted, and the land 

directly surrounding it. Rougher landscapes may be variable in terms of the wetness 

of soils than flatter landscapes due to localised peaks and troughs across a small 

scale. The positive relationship between TRI and palm growth reveals that palms are 

likely to benefit from more rugged terrain than a smoother landscape. This is an 

interesting finding in terms of plantation management, as often landscapes are 

flattened before plantations are established, to make access for heavy machinery and 

crop management more simple. These findings could advocate that flattening the 

land is actually negatively impacting palm growth and thus save managers large 

amounts of labour and money, as well as reducing the use of CO2 emitting 

machinery across landscapes for plantation establishment. 

 

Although it was anticipated that water availability would be one of the greatest 

predictors of palm growth across the landscape during El Niño events, TWI did not 

prove to be a significant predictor. Despite the drought period, water availability 

and wetness of soils did not appear to affect the vertical growth of palms over the 

two years. This could indicate that a water minimum threshold was not reached, 

whereby the effects of drought may have been observed, however it could also 

indicate that TWI was not the best proxy to use for water available to oil palms. The 

most likely explanation though is that these palms are resilient to periods of drought 

once they have established to at least 2 m tall, though the long-term impacts of water 

stress and the response to different durations of the period would also need 

investigating. 

 

The aspect of slopes where palms were planted also did not exert a significant 

pressure on oil palm growth. This is most likely because the landscape was relatively 
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flat, and due to the location being equatorial, most palms experienced a similar level 

of solar exposure per day, not accounting for competition. Aspect may exert more of 

a pressure in regions further from the equator or those with more varied, hilly 

landscapes.  

 

2.5.3 Limitations and future work. 

 

As the predictors only explained around 5% of the large degree of variation 

observed in palm growth over the two years, further work must take place to 

identify those factors which are most important in predicting the variation. The 

results suggest that other factors which were not captured in the model were driving 

variation in growth. The range of different potential predictors that were not 

accounted for is vast, and planning an experiment that accounts for the majority of 

all potential sources of variation in growth would require a wide and detailed 

review of the literature. Some drivers worth investigating may be differences in 

fertiliser use which were not accounted for in this study, or perhaps different 

cultivars planted across the landscape [167–168]. A more robust survey of predictors 

could be investigated over the same landscape to try and account for the high levels 

of variation by including drivers such as these in the model, along with other factors 

like soil type and pest prevalence [167–169–170]. 

 

An important factor that was not taken into account during this study was spatial 

autocorrelation. Spatial autocorrelation describes how palms that are spatially closer 

together will experience similar conditions, and thus some predictor variables are 

likely to correlate between them. Spatial correlation is therefore likely to result in an 

overestimation of certainty in fitted model parameters. However, there are 
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difficulties in fitting a spatial model to data on a scale this large. Future studies 

which aim to look at individual palms across a large scale must derive a way of 

accounting for spatial autocorrelation that may occur when fitting a model. One such 

way of doing this would be to use the coordinates of palms as a predictor in the 

model or another approach such as auto covariate models, or dividing the landscape 

and fitting spatial models based on generalised least squares regression [171].  

 

The experiment could also be improved methodologically by achieving better 

segmentation of crowns in the landscape. Though the validation showed that over-

segmentation could be limited in the analyses, this meant there were a substantial 

number of omitted palms across the landscape. Fine-tuning the algorithm could 

better delineate crowns, and thus could have resulted in a greater sample size, 

demonstrative of a greater proportion of the population.  The fitting of a random 

forest model or general additive model instead of the more simple linear regression 

could also be useful in the future in order to look at predictors more flexibly. In 

terms of distributing these findings as advice to plantation owners and management, 

it may have been a good idea to measure oil production from palms, rather than 

vertical height growth. Despite vertical height growth being a proxy for 

aboveground carbon and yield, precise conversion of the experimental data to such 

metrics may make the outcome more obvious in the context of plantation 

management. 

 

Finally, it must also be determined which topographic and canopy structural factors 

influence oil palm growth under ‘normal’ climactic conditions (i.e., non-El Niño 

years) and which instead only influence growth under conditions of drought. Doing 

this would require collecting or sourcing additional LiDAR data from years that 

were not affected by El Niño events. Similarly, it is also worth looking into different 
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lengths and severity of drought periods as a form of meta-analysis, as it may be that 

there is a limit of temperature and humidity whereby effects are only observed past 

a particular stress threshold. 

 

2.5.4 Conclusions. 

 

The experiment indicated that oil palms in Malaysian Borneo are resistant to 

drought, and do not suffer declines in growth during extreme climatic periods such 

as El Niño. What is interesting to note is that water did not seem to be a limiting 

factor in palm growth even over drought periods. The greatest predictor of oil palm 

growth was the initial size of the palm, with larger palms growing more slowly than 

shorter ones, likely due to differences in life stage and development. Differences 

across spatial scales, did have an impact on the rate of palm growth, but the effects 

were minimal. From this, it can be assumed that regardless of variation within the 

landscape, oil palms grow successfully during drought and are likely to be resilient 

in the face of climate change.  
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Chapter 3: Discussion and 

conclusions. 
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3.1 Aims and Approach 
 

In recent decades, demand for oil palm has continued to rise, putting increasing 

pressure on tropical forest ecosystems that are essential for both biodiversity 

conservation and climate change mitigation[1–2–5–6]. Therefore, there is a growing 

demand for accurate and effective monitoring of oil palm plantations that allows 

converted lands to be used as efficiently as possible to reduce pressure on natural 

ecosystems. Moreover, with increasing global temperatures as a result of 

anthropogenic impacts on the earth’s atmosphere, there is also an urgent need to 

understand how resilient crops like oil palm will be under new climatic regimes, 

such as the warmer and drier conditions associated with El Niño events [7].  

 

Of the vegetable oils, oil palm is the most efficient crop, suggesting that it is a more 

environmentally friendly option than its alternatives [17–18]. It is not a feasible 

option to completely eliminate the use of oil palm, as it is now a staple of many 

people's livelihoods. This highlights the necessity to find the most productive ways 

of growing oil palm without further compromising existing primary forests. 

Previous work has focussed on identifying climatic conditions under which oil palm 

grows most efficiently, providing evidence for where in the world oil palm should 

be planted. However, there has been a gap in the scientific research in identifying 

local drivers of variation in oil palm growth at the individual palm level across 

landscapes. A review of the current scientific literature on the topic indicated that 

particular local drivers had the propensity to affect oil palm growth, and that these 

effects may be confounded during periods of drought.  

 

In this project, methods were developed for identifying palms across vast landscapes 

and tracking their growth over time using repeat LiDAR data. For the first time at 
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this scale, the growth of palms over time was tracked and analysed in order to 

understand how it varied with a range of topographic and canopy structural metrics 

during a period of anomalously warm and dry conditions. Using LiDAR data 

obtained from the SAFE project in Malaysian Borneo [148], alternative segmentation 

algorithms were compared on a subset of CHM and point cloud data from 2014. The 

best performing segmentation algorithm was then applied to the entire landscape 

and the height growth of ~550,000 palms over a two-year period coinciding with the 

2015-16 El Niño event in SE Asia was calculated. Finally, a multiple regression 

model was fitted to the data to determine if features such as terrain slope, distance 

from rivers, distance from forest edges, and relative competition could assist in 

explaining why some oil palms grew faster than others across during this period. 

 

3.2 Summary of main findings. 

 

The findings from this project determined that oil palms were able to grow over the 

two years between 2014-2016 despite experiencing drought conditions as a result of 

El Niño climatic events. On average oil palms grew 1.6 m yr-1 between the two 

LiDAR surveys. However, there was substantial variation in growth rates, which 

ranged from 1.0 m yr-1 (5th percentile) to 3.9 m yr-1 (95th percentile). Variations in 

their ability to grow according to particular factors in the environment such as 

topographic and canopy differences were observed, however the effects of the 

variation were minimal. The greatest predictor of palm growth over the period was 

the initial crown volume of palms, with those that were initially larger growing 

significantly less than those that were initially smaller. The results also highlighted a 

positive relationship between competition for light, TRI and elevation with palm 

growth. Furthermore, distance to forest edge exhibited a negative relationship with 

change in palm height, as growth tended to decline with increasing distance to the 
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forest edge. It was therefore concluded from the results that oil palms could continue 

to grow during extreme conditions and that growth rates varied across the 

landscape. However, the results could not convincingly explain the reasons as to 

why growth varied across the landscape, as the majority of variation was not 

explained by the predictors that were investigated. 

 

The study also highlights a relatively fast and simple approach to deriving 

individual palms across a large landscape and segmenting them into individual 

palm crowns. A validation of the methods showed that this could be achieved with a 

minimum amount of over-segmentation (<2%) while maintaining a fairly high 

proportion of correctly segmented palms (65.8%). The project demonstrated how 

repeat LiDAR data can be used effectively to track aspects of landscapes over time, 

and that it can be completed with a high level of detail. The fact that the oil palms 

across the landscape grew during this period, suggests a strong resilience of the 

palms to cope with drought. This is a highly important finding for oil palm 

agriculture as it suggests that increasing frequency of severe climatic conditions and 

global change will have little effect on the production of oil palm, boding well in 

terms of the economic and social impacts that would be inflicted on many SE Asian 

populations [2–6].  

 

3.3 Limitations and possible solutions. 

 

Although oil palm’s resilience in the face of drought is highlighted, it is done so 

tentatively as there were several limitations present in the analysis. The first of these 

limitations was the accuracy of palm segmentation and crown delineation. The 

experiment could be improved methodologically by achieving better segmentation 

of crowns across the landscape. Though the segmentation was validated to confirm 
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that the most accurate technique for crown delineation was used, around 34.2% of 

palms were not correctly identified according to the manual delineation. 

Assessments of the performance of a variety of crown delineation methods and 

algorithms from LiDAR data have shown that different algorithms segment a highly 

varied number of crowns with different characteristics [172–173]. As in the 2019 

study by Aubry-Kientz et al., a comparative assessment of a variety of individual 

crown segmentation techniques could potentially be completed, including 

algorithms such as AMS3D [174–175], itcSegment [147], Graph-Cut [176], Profiler 

[177–178] and SEGMA [179], to identify the best performing algorithm for oil palms. 

Considerable differences in the algorithms' ability to detect large and small crowns 

have been found [172], suggesting that the validation that was completed- whereby 

large and small palm crowns were separated-  would be advisable to use in an 

algorithm comparison as well.  

 

In the individual tree crown delineation comparison from Aubry-Kientz et al., the 

segmentation methods that were based on point cloud data (AMS3D and Graph-

Cut) were more accurate than those based on CHMs. This finding was reflected in 

the validation though the CHM-derived data was used rather than the point cloud 

data which yielded slightly more accurate results for palms in the landscape. This 

was due to time and computer processing constraints for this project, as point cloud 

data took substantially longer to segment than CHM data. In contrast, other studies 

have found that methods based on local maxima detection from a CHM  using 

variable-sized moving windows are the best performing, and these differences are 

likely due to variation in crown shape and density [173]. There are not any known 

studies at present that have focused solely on testing algorithms for the 

identification of oil palm, which would be a key step in finding the best performing 

algorithm for this study. Some recent studies have shown the benefits of combining 

approaches using the CHM for the identification of potential apices or crowns, and 
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the point cloud data for refining the delineation [172–180–181]. With unlimited time 

and processing power available, utilising the data derived from the point cloud to 

delineate palms could have been useful in improving the accuracy of delineation. 

Despite this there was only a difference of around 3% incorrectly segmented palms 

between cloud and CHM data, so it is not expected that vast improvements in crown 

delineation accuracy would be observed from this alone, and thus it should be used 

in combination with comparisons of different algorithms. 

 

The main limitation faced in the delineation of tree crowns was the speed at which 

the algorithms ran on the vast scale of the data. The computer processing took 

upwards of ~90 hours and the landscape had to be divided into 18 separate sections 

for the delineation to run smoothly. One important issue to factor into an 

algorithm/method comparison would be the speed at which it runs. For instance, 

some methods may be much slower and not scalable, and thus missing some crowns 

may be an acceptable compromise for speed. A compromise between speed and 

accuracy should be factored into choosing the best algorithm for delineation. Other 

methods that may be suitable for oil palm delineation could be to use crown 

geometry to identify specific patterns or shapes, this is likely a better method to use 

in a relatively uniform oil palm plantation than in landscapes such as tropical forests 

[172]. The issue with allowing a large number of omissions in palm crown detection 

is that it could introduce bias into the analysis. Missed crowns may just mean that 

there was lower replication but if the palms missed show systematic differences to 

those that have been segmented there may be a cause for concern. This could 

potentially be tested using a reference dataset to determine whether bias has been 

introduced, and adjust the algorithm accordingly to compromise between omissions 

in the data and over-segmentation. 
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Another limitation is how the data was filtered to remove outliers. In the analysis, 

palms where the height had decreased between 2014 and 2016 were filtered out, 

under the justification that this would be theoretically impossible, and that the 

analysis was focused on investigating height growth. However, this does have the 

implication of introducing some bias into the analysis as it is very likely that some 

palms with negative height change values are due to measurement errors. Due to the 

nature of oil palm fronds, it is justifiable to assume that LiDAR may have collected 

data from the top of the palm fronds in 2014 that it then missed in 2016. This 

measurement error could have occurred in the opposite time scale as well, whereby 

fronds missed in 2014 may have been reported in 2016, yet this error was not 

accounted for. The filtering step could be potentially refined by assigning an 

arbitrary value of negative height change, based on the typical length of crown 

fronds, that should be retained in the results. This would account for negative height 

changes as a result of missed fronds in the LiDAR data collection. Maximum height 

change could also have been filtered by determining a maximum threshold of 

growth possible over the survey period, from literature based on palms grown in 

ideal conditions. Though there was an upper limit of palms 20 m tall and a 

percentage height change limit of 200%, palms showing growth up to 13 m were still 

included in the analysis which is theoretically highly unlikely. Alternatively, there 

are several other ways of removing outliers that could be tested, with the potential to 

provide a more objective and justifiable alternative to filtering the data than the 

methods used. By removing the filtering steps used in the data processing steps, and 

instead looking at a boxplot of the logged changes in tree height, potential outliers 

within the data could be detected. From this, a Rosner test could be used on the 

potential outliers to help determine those that were true outliers and those which 

were not, without automatically disregarding any negative values. Other methods of 

outlier detection could include a log transformation of absolute height change and 

subsequent Z-Score analysis. 
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In terms of the validation, there is also the issue that the manual delineation that was 

used as the ‘true’ crown segmentation for justification of the segmentation, was not 

actually completely representative of the true crown segmentation. The manual 

delineation was carried out with great care, cross-referencing CHMs from both 2014 

and 2016 with RGB imagery of the palms. However, the delineation was subject to 

human error whereby palms may have been over-segmented or omitted by accident. 

This would mean that choosing the best method of segmentation according to how 

many palms matched up with the manual delineation may not be truly 

representative of the method that was actually most descriptive of the landscape. To 

have improved this, using a known piece of land whereby palms had been manually 

counted and measured in the field could have ensured greater accuracy, however, 

this would have implemented great logistical issues for this project. If the study site 

could’ve been accessed, field measurements of palms could have been taken to check 

against the manually delineated crowns to improve the accuracy of the reference 

dataset [172]. 

 

The issue of human error in the manual delineation of palm crowns also extends to 

the generation of shapefiles used to section out the landscape, such as riparian river 

zones and cloud anomalies. There likely remained anomalous areas in the data set 

due to factors such as cloud cover, but the majority of these should have been 

accounted for within the filtering stage of the data processing. It is also likely that 

when delineating areas of riparian forest around rivers, some oil palms would also 

have been included in the ‘riparian forest’ zones, and potentially some non-oil palm 

vegetation may have been included in the analysis. Manually delineated shapefiles 

could be improved through the use of RGB imagery to cross-reference delineations 

from CHMs, adding to data processing time but possibly increasing the accuracy of 

delineation. Though this factor could have introduced some error in the results, with 
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such a large sample size these effects would likely be very small and most likely 

buffered out.  

 

Differences in the resolution and general acquisition parameters of the two datasets 

could be an important source of error. LiDAR estimates can be affected by point 

density but were not accounted for in the analysis [182]. To identify errors associated 

with point density, two areas in the landscape where point density in 2014 was the 

same but in 2016 it was variable, could have been found. By comparing the height 

change rates in these two areas it could then be determined whether the area with 

low point density in 2016 showed lower growth than the one with high point 

density, and to what degree they varied. Biases arriving from differences in the point 

density could then be accounted for by only using areas of the landscape where 

point density in 2016 was high, as in Nunes et al., (2021). Alternatively, point density 

in 2016 could have been included as a predictor in the model. The point density in 

2014 was relatively homogeneous, while in 2016 it was more variable. By including 

point density as a predictor in the model, this variation in the estimated growth rates 

could be accounted for. Higher point density increases the likelihood of detecting the 

tops of the crowns and thus increases the possibility of observing a greater change in 

height. As both the resolution and point density of the 2016 data were lower than the 

2014 data, here the results air on the side of conservative, and it is more likely that 

true growth was slightly greater than was estimated.  

 

Another important factor that was not taken into account during the study was 

spatial autocorrelation. Linear models such as that used in this analysis assume that 

all observations are independent of each other. The problem here is that in spatial 

data such as the position of oil palms in the landscape, those observations that are 

spatially closer together will experience similar conditions. Thus individuals with 
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closer spatial proximity to each other are more likely to exhibit similar behaviors 

than what may be assumed by chance and thus do not fit the assumption of 

independence. Spatial autocorrelation is therefore likely to result in an 

underestimation of uncertainty in the fitted model parameters [98–183]. To test for 

spatial correlation in the data ‘Moran's I’ could have been calculated for the residuals 

in the model and subsequent significance test for spatial autocorrelation in the 

residuals completed. Plotting a semi-variogram of the model could have also been 

used to confirm predictions about spatial autocorrelation. However, there is 

difficultly in fitting a spatial model to data on a scale this large as it is a very 

computationally intensive process. One solution to this issue would be to sub-

sample the landscape to reduce the volume of data, repeating the randomisation 

routine numerous times to adequately capture the full extent of the data. This would 

allow fitting models that explicitly account for the spatial structure of the data, such 

as those that can be fit through maximum likelihood estimation using the nmle 

function in R [98]. 

 

What is important to take into consideration is the fact that El Niño and drought 

periods differ in their severity, and this particular case cannot be used as a definitive 

outcome for palms in all cases of drought. The 2015/2016 El Niño event across 

Borneo was relatively weak [98–184]. The highest temperatures reached were in the 

March of 2016 where temperatures exceeded the long-term average of preceding 

non-drought years by 2.1 °C [98]. The extent that a palm is pushed to its 

physiological limits in terms of water stress will heavily depend on the maximum 

temperatures reached and the length of these stress periods [7–9]. It must be 

appreciated that different responses may be observed with differing levels of water 

stress and temperature. 
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3.4 Future work. 

 

Complications during the completion of this thesis meant that travel to Borneo to 

visit the study site was not feasible. Originally, plans were to visit Sabah in order to 

obtain some data on oil production. As this was impossible, the focus of the study 

was moved onto height growth alone. In terms of distributing the findings as advice 

to plantation owners and management, it would have been more practical to 

measure oil production from palms, rather than vertical height growth. Despite 

vertical height growth being able to act to some extent as a proxy for aboveground 

carbon and yield, precise conversion of the experimental data to such metrics could 

have made the findings more applicable in the context of plantation management. In 

a 1998 experiment, researchers recorded oil extraction rates at factories and 

determined that short-term impacts of haze and drought had a significant negative 

effect on oil extraction rates [185]. Future works could take a similar approach to 

determine an outcome that is more applicable to industry usage than vertical height 

growth of palms. 

 

This work indicated that oil palm growth rates do vary substantially across the 

landscape, suggesting that if this could be explained, yields could be markedly 

improved. The predictors used in the analysis fail to explain a large quantity of these 

variations, suggesting that other factors were at play and were not captured in the 

model. The range of factors that could be responsible for this variation is vast, 

indicating that more research needs to be conducted into resolving what the greatest 

predictors of oil palm growth actually are. Possible drivers that were most obviously 

missing from the analysis were factors such as fertiliser use, soil type, cultivation 

type, and pest management. Though not for this landscape specifically, these factors 

have been investigated previously, so potential further work could include a meta-
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analysis of the importance of different predictors on oil palm growth or yield, as 

well as actual field measurements of such factors across the SAFE landscape. 

 

The multiple linear regression that was used in the analysis has the advantage of 

being fast to run and easy to interpret. However, relying on linear models does limit 

the extent to which the data can be exploited. First, by definition, linear models are 

limited to representing linear relationships between variables (although more 

complex relationships can be expressed through data transformation). Second, 

multiple regression models assume that predictor variables are independent of one 

another, something which is rarely true in real-world data. This means that to limit 

the degree of correlation between predictors (and avoid multicollinearity, which 

biases parameter estimates), certain predictor variables must be excluded from the 

analysis based on their correlated nature. Alternative modelling approaches such as 

random forest models or general additive models (GAMs) provide much more 

flexibility when it comes to accounting for correlated predictors and allowing for 

non-linear relationships between response and explanatory variables. Their 

downside is that the results are less straightforward to interpret in ecological terms. 

Moreover, they can also suffer from overfitting and are much more computationally 

intensive to run. Nonetheless, if this work was taken further to identify other drivers 

of variation in growth and see if a higher proportion of the variation could be 

explained, the assumptions of the linear regression may no longer be met and a 

different model may be necessary. 

 

This work could also be extended by determining the above-ground carbon density 

(ACD) of oil palms across the landscape, and the changes in this over drought 

periods, with methods similar to that of Nunes and colleagues in 2017 [92]. At the 

level of individual trees, oil palm aboveground biomass (AGB) can be derived as the 
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dry mass in kg for each palm from its height (H) in meters and the following 

equation [186]: 

AGB = 37.47 × H + 3.6334 

A carbon content conversion factor of 0.47 can then be applied, following the 

methods of Martin and Thomas (2011) [92–187]. LiDAR-derived maps of ACD could 

be used to quantifying the effects of oil palm agriculture on greenhouse gas 

emissions, the development of carbon prediction models would open doors to 

making the industry more environmentally sustainable [92]. 

 

The study took place over a relatively short time period in relation to the lifespan of 

oil palms. Oil palm is a fast-growing crop, so two years would have been enough 

time for differences in growth to actually be observed. However, the results did not 

take into account the delayed effects of drought on oil palm growth, which would 

require longer-term monitoring of the palms. Effects of drought on oil palm yields 

are known 6-12 months after a long dry season, and effects on height growth may 

display similar delayed effects [188]. Thus effects from drought in the early 2015 

period may have been observed by the time 2016 data was collected, but the highest 

temperatures and VPD of the period were during March 2016 [98], meaning that by 

the second LiDAR flight palms may not have displayed any resulting effects. If more 

recent data after the last LiDAR flight in 2016 could be sourced, the work could be 

extended by examining findings from a longer time series of data. Future works 

could involve actually carrying out more of these LiDAR flights across the SAFE 

landscape, but they could even take advantage of high-resolution satellite imagery 

or structure from motion data to estimate changes in palm height over time. 

Additional surveys of the region are vital to investigate the effects of the worst 

period of drought during that time, and whether potential delayed drought-induced 

effects, affected the plantations. 



 

84 
 

 

3.5 Conclusions. 

 

This experiment indicates that oil palms in Malaysian Borneo are resistant to 

drought, and do not suffer arrested growth during extreme climatic periods such as 

El Niño. One of the most interesting findings is that water does not seem to be a 

limiting factor in palm growth even over drought periods. The greatest predictor of 

oil palm growth by far was the initial size of the palm, with taller palms growing 

more slowly than shorter ones, likely due to differences in life stage and 

development. Oil palm growth rates vary substantially across the landscape, 

suggesting that if this could be explained, yields of palm oil could be substantially 

improved. However, the predictors tested in this analysis explained little of the 

variation. 

 

Particular factors in the landscape that have a positive relationship with palm 

growth have highlighted that there may be scope to improve palm growth while also 

benefitting the environment. Increases in palm growth associated with competition 

for light, proximity to forest edges, and proximity to rivers may indicate that palms 

can grow as well or better when intercropped, or in closer association with natural 

primary or riparian forest, in a land-sharing style approach to plantations. 

Furthermore, identifying that elevation and TRI relationships positively correlated 

with oil palm growth may connote that land does not have to be flattened before 

planting for palms to grow well, and that plantation management could save a great 

deal of expense, labor, and disruption to the environment by refraining from such 

practices and maintaining existing variation in the topology of the landscape. 
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This study aimed to address the following two questions: 

1) How much did oil palms grow during this period characterised by 

unseasonably hot and dry conditions, and how variable were growth rates across the 

landscape? 

2) Can developmental, ecological, and landscape features be identified that 

explain why some oil palms grew faster than others during this two-year period? 

The study has allowed these two questions to be answered thoroughly, as well as 

providing a range of suggestions for improvements to the experiment and further 

work: 

 

1) Oil palm grew on average 1.67 m yr-1 between LiDAR flights in 2014 and 2016. 

There was considerable variability in the rate of height growth across the study 

area, with 90% of values ranging between 1.00 m yr-1 (5th percentile) to 3.90 m 

yr-1 (95th percentile). 

2) The greatest predictor of oil palm growth was the initial size of the palm, with 

shorter palms growing more quickly than taller palms. Increases in palm growth 

were also associated with greater competition for light, smaller distances to forest 

edges, higher elevations, and greater terrain ruggedness. Despite this, the effect 

size of these predictor variables was generally low and together they only 

explained ~5% of the variation. 

 

This project has indicated that regardless of differences across the landscape oil 

palms do grow successfully under drought conditions and are likely to be resilient in 

the face of climate change. Oil palm growth is highly variable across landscapes, and 

with more work into the most important factors predicting this variation, there is the 

opportunity to greatly increase yields. There is also potential scope for improving 
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plantation practices that could increase yield while simultaneously reducing the 

level of environmental damage caused across the landscape. 
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Appendix. 

 

Table S1: Accuracy of the segmentation algorithm and its variation depending on the initial 

size of oil palms (< 6 m vs >= 6 m), the input data (CHM vs point cloud), and the window 

size (6-10 m). Correctly segmented oil palms represent those where a single individual was 

found within a manually delineated polygon, over segmented palms are ones where more 

than one individual was found within a manually delineated polygon, and omitted palms are 

ones where no individual was found within a manually delineated polygon. 

 

 

 

 

Data Palm Size Window size
Correctly segmented 

palms (%)

Over segmented 

palms (%)
Omissions (%)

CHM All 8 69.44 4.16 26.41

CHM All 9 65.77 1.71 31.78

CHM All 10 61.86 0.49 37.65

CHM Small 8 87.57 3.39 2.82

CHM Small 9 84.75 1.69 6.78

CHM Small 10 80.79 0.56 11.86

CHM Large 8 55.60 5.17 39.22

CHM Large 9 51.29 1.72 46.98

CHM Large 10 47.41 0.43 52.16

Cloud All 8 67.48 4.16 28.36

Cloud All 9 68.22 0.98 30.81

Cloud All 10 59.17 0.24 40.59

Cloud Small 6 81.92 3.95 7.91

Cloud Small 7 84.18 0.56 9.04

Cloud Small 8 80.79 0.00 12.43

Cloud Large 8 57.33 7.33 35.34

Cloud Large 9 54.74 1.72 43.53

Cloud Large 10 48.71 0.43 50.86
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Figure S1: Canopy height model of all 2014 LiDAR data used in the analysis. The small red 

box indicates the section of the landscape that Fig. 2.6 is derived from. 
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