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Abstract

In this thesis, we consider the problem of instrumental variable (IV) selec-
tion when we have a large number of available instruments. We allow that
some of these candidate instruments may be invalid in the sense that they
may violate the exclusion restriction and enter the model as explanatory
variables. We propose three methods for selecting the valid IVs from the
candidates. The first method is the Confidence Interval (CI) method. It
selects as valid the largest group of instruments where all the confidence
intervals of their instrument-specific causal estimates mutually overlap with
each other. It can achieve consistent IV selection under the plurality rule,
which assumes that all the valid instruments form the largest group, where
instruments form a group if their instrument-specific estimators converge to
the same value. We apply this method to estimate the effect of Body Mass
Index (BMI) on diastolic blood pressure using 96 SNPs as candidate instru-
ments. The second method is the adaptive Lasso IV selection method, which
contributes to the literature by allowing for two endogenous regressors. Un-
der the assumption that the number of invalid instruments is smaller than
half of the total number of candidate instruments minus one, we develop a
median-of-medians estimator, which is

√
n-consistent for the causal effects.

Adaptive Lasso using the median-of-medians estimator as penalty weights
can select valid instruments consistently. We apply this method to estimate
the direct effects of educational attainment and cognitive ability on BMI.
The third method combines the agglomerative hierarchical clustering (AHC)
algorithm, a commonly used statistical learning method for clustering anal-
ysis, with the downward testing procedure based on the Sargan-Hansen test
for overidentifying restrictions. Under the plurality assumption, the AHC
method can select valid instruments consistently. The main advantage of
this method is that it performs well in the presence of weak instruments,
can be extended to allow for multiple endogenous regressors, and can be
used to detect potential heterogeneous causal effects. We apply this method
to estimate the short- and long-term effects of immigration on wages in the
US labor market.
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Introduction

Most empirical studies in economics and social sciences focus on causal relation-
ships between different quantities. Econometrics plays an important role in devel-
oping the methodology to examine such causes and effects. A major concern in
identifying causal effects is endogeneity, which arises in many practical settings.
Relevant to this thesis, there might be unobserved factors that confounds the re-
lationship between the exposure and the outcome. One of the most important
and commonly used solutions to endogeneity is instrumental variable (IV) esti-
mation, which was first proposed by Wright (1928) to identify the simultaneous
relationships between price and quantity.

An instrumental variable is required to satisfy two conditions: (i) It must be
correlated with the endogenous exposure, and the correlation should be strong
enough that it provides sufficient variation in the exposure (the relevance con-
dition). (ii) The only pathway from the instrument to the outcome variable is
through the exposure. This implies that the instrument should not have a di-
rect effect on the outcome, nor should it affect the outcome through unobserved
confounders (the exclusion restriction). If we use instruments that fail to satisfy
either of these conditions, it will lead to biased estimation. This thesis focuses on
violations of the exclusion restriction, and, thus, when we refer to an instrument
as “valid” we mean that it satisfies the exclusion restriction, if it does not, we call
it “invalid”. Throughout the thesis, we explore the same core research question:
When there is a large number of candidate instruments and some of them might
be invalid, how can we, without complete knowledge of their validity, select only
the valid instruments for estimation?

When there are more instruments than endogenous variable(s), a common tool
to diagnose violations of the exclusion restriction is the Sargan-Hansen test for
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overidentifying restrictions (Sargan, 1958; Hansen, 1982). Intuitively, this test
checks if all the just-identified models estimate the same parameter values (Wind-
meijer, 2019), which should be the case if all the instruments are valid. Therefore,
if a model is rejected by the test, it indicates that the instrument-specific causal
estimands are different. If we assume a constant causal effect, this heterogeneity
among the instruments indicates violation of the exclusion restriction. While we
can test for violations using the Sargan-Hansen test, it is not clear how to pro-
ceed with estimation if the test detects invalid instruments. Two main strands of
the literature have studied the problem of IV estimation in the presence of invalid
instruments. The majority of these studies focus on the setup where invalid instru-
ments enter the model as explanatory variables, and, thus, have non-zero direct
effects on the outcome.

The first strand proposes IV estimators that are robust to including invalid in-
struments. For example, under the assumption that the direct effects of the invalid
instruments are orthogonal to their effects on the endogenous regressor, Kolesár
et al. (2015) propose a bias-corrected 2SLS estimator. In epidemiology, they also
research such robust IV estimators and commonly apply them in Mendelian ran-
domization (MR) studies, where genetic variants are used as instruments to esti-
mate the effect of an exposure on a health-related outcome. In MR studies, a main
concern is horizontal pleiotropy, which means that some of the genetic variants may
directly affect the outcome. To mitigate this, the literature on pleiotropy-robust
IV estimators has expanded rapidly. For example, Bowden et al. (2015b) propose
the MR-Egger regression. They treat IV estimation with multiple instruments
as a meta-analysis, and suggest a de-biased procedure based on Egger regression.
Another example is the robust adjusted profile score estimator, as proposed by
Zhao et al. (2020). They use maximum profile likelihood regression to obtain a
consistent and asymptotically normal estimator. Similar to Kolesár et al. (2015),
both of these methods also impose assumptions on the direct effects of the invalid
instruments.

The second strand of research focuses on the idea that we can first select
the valid instruments among a set of candidates. Then, after selection, we per-
form standard IV estimation using only the selected valid instruments. Compared
with the bias-corrected solutions, these methods, generally, do not impose restric-
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tions on the direct effects of the invalid instruments. Instead, their identifica-
tion assumptions are usually about the number of valid instruments. Andrews
(1999) propose an IV selection procedure in a generalized method of moment
(GMM) setup based on the Sargan-Hansen test of over-identifying restrictions.
This method becomes computationally infeasible when there are many available
instruments because it requires to evaluate a large number of models. In recent
years, several studies have proposed computationally feasible solutions to the IV
selection problem. Kang et al. (2016) set up a linear model framework for the
IV selection problem, which is adopted by most later studies, including this the-
sis. They propose a method based on the least absolute shrinkage and selection
operator (Lasso) (Tibshirani, 1996). Windmeijer et al. (2019) develop an IV se-
lection method based on adaptive Lasso (Zou, 2006), which provides a theoretical
guarantee for consistent IV selection under the assumption that more than half of
the available instruments are valid (the majority rule). The IV selection method
developed in Guo et al. (2018) is based on hard thresholding and a voting mech-
anism. They achieve consistent selection under the assumption that all the valid
instruments form the largest group, where instruments are said to form a group
if their instrument-specific causal estimators converge to the same value. This is
called the plurality rule, and is a relaxation of the majority rule.

Following the aforementioned second strand of the literature, this thesis ad-
dresses the invalid instrument problem by developing IV selection methods. The
major contributions are:

1. This thesis contributes to the literature by proposing three new methods for
IV selection. The first is the Confidence Interval (CI) method, which can
achieve consistent selection under the plurality assumption. The second is
the adaptive Lasso IV selection method, which can select the instruments
consistently under the adjusted majority rule, and allows for two endogenous
variables. The third is the Agglomerative Hierarchical Clustering (AHC)
method. This method can also achieve consistent selection under the plural-
ity rule, and it allows for multiple endogenous variables. It also performs well
in the presence of weak instruments, and can detect potential heterogenous
treatment effects.
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2. This thesis shows that the developed IV selection methods can be applied
to different contexts, and that they can enhance the credibility of causal
inference. For example, we use the CI method in an MR study to estimate
the causal effect of BMI on diastolic blood pressure using 96 SNPs as in-
struments. We also apply the adaptive Lasso method to a multivariate MR
(MVMR) study, where there are two endogenous exposures. Apart from
MR, we also apply the methods to empirical economics, where we use the
AHC method to estimate the effect of immigration on wages in the US labor
market. Previously, all of these applications have been studied but without
using IV selection. By revisiting them and applying IV selection, we find
that the post-selection causal estimates can be quite different, which shows
the importance of developing data-driven methods that explicitly account
for the presence of invalid instruments.

3. This thesis combines machine learning techniques with traditional econo-
metric methods to tackle the IV selection problem, and, thus, it contributes
to the methodological literature on causal machine learning. While recent
years have seen a significant increase in the usage of machine learning in
economics and econometrics, it can be complicated to adapt such methods
to causal inference, as noted in Athey and Imbens (2019). In particular,
it can in many cases be problematic to apply off-the-shelf machine learning
algorithms to causal inference because their emphasis tends to be prediction
(Athey and Imbens, 2019). In this thesis, we exploit the structure of the IV
selection problem from different perspectives and adapting different machine
learning methods accordingly. First, the IV selection problem can be viewed
as the task of selecting covariates with non-zero coefficients in a sparse linear
model. In this scenario, a commonly used tool is the adaptive Lasso method.
We develop a median-of-medians estimators, which can serve as the penalty
weights of the adaptive Lasso, such that it can be applied to IV selection
with two endogenous regressors. The second way of rephrasing the IV selec-
tion problem is that we want to find clusters of instruments such that the
corresponding just-identified models estimate the same parameter value. For
this purpose, we explore clustering algorithms, and adopt the agglomerative
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hierarchical clustering (AHC) algorithm. In terms of adapting the AHC to
IV selection, we do not tune the algorithm using common practices in ma-
chine learning, as they have no theoretical guarantee for consistent selection.
Instead, we exploit that the AHC algorithm selects models in a downward
step-wise manner, which makes it well suited as a dimension reduction device
for the downward testing procedure proposed by Andrews (1999). Further-
more, although not explicitly discussed in this thesis, the CI method can be
viewed as a novel clustering algorithm. It classifies instruments as being in
the same cluster if the confidence intervals of their just-identified IV esti-
mates mutually overlap with each other. Instead of clustering based on the
point estimates, as the machine learning clustering algorithms usually do,
the CI method instead takes the variance of the estimators into account.

In Chapter 1 of the thesis, we introduce the CI method for IV selection when
there is a single endogenous variable. This method selects as valid the largest
group of instruments where all the confidence intervals of their instrument-specific
causal estimates mutually overlap with each other. At the time of its introduction,
only the CI method and the Hard Thresholding (HT) with Voting method achieve
consistent IV selection under the plurality rule. The advantage of the CI method
over the HT method is that the number of instruments selected as valid decreases
monotonically for decreasing values of the tuning parameter, which is not the
case for the HT method. Therefore, we can combine the CI method with the
downward testing procedure proposed by Andrews (1999), which is based on the
Sargan-Hansen test. In this way, the CI method selects the model with the largest
number of instruments selected as valid that passes the Sargan-Hansen test. We
also show that the CI method has better finite sample performance. We apply the
CI method to estimate the effect of BMI on diastolic blood pressure with 96 SNPs
as instruments.

By the time of the introduction of the CI method, none of the existing IV
selection methods could deal with multiple endogenous variables. To fill this gap, in
Chapter 2, we propose the adaptive Lasso IV selection method which allows for two
endogenous exposures. For consistent selection, the adaptive Lasso requires a

√
n-

consistent estimator as penalty weights (Zou, 2006). For this purpose, we propose a
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median-of-medians estimator that satisfies the requirement for the penalty weights
under the adjusted plurality rule. We apply the method to a MVMR study where
we estimate the direct effects of educational attainment and cognitive ability on
BMI.

There are two main disadvantage of the existing IV selection methods. First,
they may impose the assumption that all the available instruments are relevant for
the endogenous regressor (e.g. Kang et al., 2016; Windmeijer et al., 2019; Wind-
meijer et al., 2021). This can be problematic in the presence of weak instruments.
For example, the CI method tends to select all the weak invalid instruments as
valid, causing severe bias in the post-selection IV estimator. Second, some of the
methods can only detect a single group of instruments, and the methods select this
group as the set of valid instruments, while they treat all the other instruments as
invalid (e.g. Kang et al., 2016; Guo et al., 2018; Windmeijer et al., 2019). However,
when there are heterogeneous causal effects, there might be multiple groups of valid
instruments that represent different causal mechanisms. To address these two dis-
advantages, in Chapter 3, we propose an IV selection method, which combines the
agglomerative hierarchical clustering algorithm with the downward testing proce-
dure based on the Sargan-Hansen test (Andrews, 1999). This method performs
well in the presence of weak instruments in the sense that it always selects invalid
instruments as invalid regardless of their strength. It can identify all the IV groups,
which makes it possible to analyse the possible multiple causal mechanisms. Also,
the method can be extended to allow for more than two endogenous regressors.
We apply this method to estimate the short- and long-term effects of immigration
on wages in the US labor market.
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Chapter 1

The Confidence Interval Method
for Selecting Valid Instrumental
Variables

Abstract

We propose a new method, the confidence interval (CI) method, to select
valid instruments from a larger set of potential instruments for instrumental
variables (IV) estimation of the causal effect of an exposure on an outcome.
Invalid instruments are such that they fail the exclusion conditions and en-
ter the model as explanatory variables. The CI method is based on the
confidence intervals of the per instrument causal effects estimates and se-
lects the largest group with all confidence intervals overlapping with each
other as the set of valid instruments. Under a plurality rule, we show that
the resulting standard IV, or two-stage least squares (2SLS) estimator has
oracle properties. This result is the same as for the hard thresholding with
voting (HT) method of Guo et al. (2018). Unlike the HT method, the num-
ber of instruments selected as valid by the CI method is guaranteed to be
monotonically decreasing for decreasing values of the tuning parameter. For
the CI method, we can therefore use a downward testing procedure based on
the Sargan (1958) test for overidentifying restrictions and a main advantage
of the CI downward testing method is that it selects the model with the
largest number of instruments selected as valid that passes the Sargan test.
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This chapter is co-authored with Frank Windmeijer, Fernando P. Hartwig and
Jack Bowden. Frank developed the core research idea and made major contribu-
tions to the paper. Xiaoran contributed substantially to the theory and the com-
putational work in the simulations and empirical application, including developing
an R package for the method. Fernando and Jack contributed to the development
of the initial research idea, and advised on the empirical application. This paper
is published in the Journal of the Royal Statistical Society, Series B.
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1.1 Introduction

Instrumental variables (IV) estimation is a well established method for determining
causal effects of an exposure on an outcome, when this relationship is potentially
affected by unobserved confounding. For recent reviews and examples, see Clarke
and Windmeijer (2012), Imbens (2014), Kang et al. (2016) and Burgess et al.
(2017).

As Guo et al. (2018, p 793) state, an IV analysis requires instruments that

(a) are associated with the exposure (Condition 1),

(b) have no direct pathway to the outcome (Condition 2) and

(c) are not related to unmeasured variables that affect the exposure and the
outcome (Condition 3).

Condition 1 is often referred to as the relevance condition and Conditions 2 and 3
as the exclusion conditions, see Section 1.2 for details.

This paper is concerned with violations of the exclusion conditions of the in-
struments. Following closely the setup of Kang et al. (2016), Windmeijer et al.
(2019) and Guo et al. (2018), if an instrument satisfies the exclusion Conditions
2 and 3 it is classified as a valid instrument. If an instrument does not satisfy
Condition 2 and/or 3, it is classified as invalid. Use of invalid instruments in an
IV analysis leads to inconsistent estimates of the causal effect and it is therefore
important to select the set of valid instruments from the set of putative IVs that
may include invalid ones.

As an example, Mendelian randomisation is a technique employed in epidemi-
ology to learn about the causal effects of modifiable health exposures on disease. It
posits that genetic variants, which are known to be associated with the exposure
and hence satisfy Condition 1, additionally satisfy the exclusion conditions and
are only associated with the outcome through the exposure. In our Mendelian
randomisation application in Section 1.8, we utilise genetic variants as potential
instruments for BMI in order to determine its causal effect on diastolic blood pres-
sure. However, a genetic variant could be an invalid instrument for various reasons,
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such as linkage disequilibrium and horizontal pleiotropy, see, for example, Lawlor
et al. (2008) and Hinke et al. (2016).

The so-called plurality rule holds if the set of valid instruments forms the
largest group, as specified in Section 1.2. An approach for selecting the valid in-
struments could then be to follow Andrews (1999) and estimate the causal effect
for all 2kz − (kz + 1) possible subsets of at least two instruments, where kz denotes
the total number of instruments, and to select the model that minimises an infor-
mation criterion based on the Sargan (1958) test of overidentifying restrictions. A
large value of the Sargan test statistic is an indication that invalid instruments are
present. This approach is only feasible with a relatively small number of instru-
ments, unlike in our application where we have 96 putative genetic instruments.
We therefore need dimension reduction techniques, even though we are in a setting
of a fixed number of instruments kz with a large sample size n, the setting referred
to as low dimensional by Guo et al. (2018).

Following the Lasso proposal by Kang et al. (2016), Windmeijer et al. (2019)
proposed an adaptive Lasso estimator in combination with a downward testing
procedure based on the Sargan test as in Andrews (1999). When the majority
rule holds, meaning that more than 50% of the potential instruments are valid,
then this approach results in consistent selection of the invalid instruments and
oracle properties of the resulting standard IV, or two-stage least squares (2SLS)
estimator. This means that the limiting distribution of the estimator is the same
as the oracle estimator, which is the 2SLS estimator when the set of invalid instru-
ments is known. Guo et al. (2018) proposed a two-stage hard thresholding with
voting (HT) method that results in consistent selection of the valid instruments
and oracle properties of the 2SLS estimator when the weaker plurality rule holds.

In this paper we develop an alternative method, which we call the confidence
interval (CI) method as presented in Section 1.3. This method simply selects as
valid instruments the largest group of instruments where all confidence intervals
of the instrument specific causal effect estimates overlap, with a tuning parameter
varying the width of the confidence intervals. Like the Guo et al. (2018) method,
we show that the CI method results in consistent selection and oracle properties of
the resulting 2SLS estimator when the plurality rule holds. An advantage of the CI
method is that the number of instruments selected as valid decreases monotonically
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for decreasing values of the tuning parameter, which is not the case for the HT
method as we discuss in Section 1.4. For the CI method, we can therefore use a
downward testing procedure based on the Sargan test and a main advantage of
this CI method is that it selects the model with the largest number of instruments
selected as valid that passes the Sargan test.

Whilst initially making the assumptions of conditional homoskedasticity and
strong instruments in Section 1.2 for ease of exposition, we discuss in Section 1.5
how to adapt the methods to deal with general forms of heteroskedasticity. We
further discuss the first-stage thresholding method of Guo et al. (2018) to dealing
with weak instruments in Section 3.4.2.

We evaluate the two methods in the Monte Carlo exercise in Section 1.7, for
a design very similar to that in Guo et al. (2018). We find that, overall, the
CI method has a better finite sample performance than the HT method in this
design. In the application in Section 1.8 we find that the HT method selects too
few instruments as invalid, resulting in models that are rejected by the Sargan test.
By design, the CI method selects models that pass the Sargan test. It produces
results very similar to the adaptive Lasso method which suggests that the majority
rule is not violated in this application.

We adopt the following notation. x denotes the vector with elements xj. For
a general matrix X, X ′ denotes its transpose. All vectors are taken as column
vectors, including Xi., where the row vector X′

i. is the i-th row of the matrix X.
For a full column-rank matrix X with n rows define PX = X (X′X)−1 X′, the
projection onto the column space of X, and MX = In − PX , where In is the n-
dimensional identity matrix. Proofs of Lemma 1.1 and Theorems 1.3 and 1.4 in
Section 1.3 are presented in the Supplementary Appendix 1.A.1.

1.2 Model and Assumptions

Let the observed outcome for observation i be denoted by the scalar Yi, the treat-
ment or exposure by the scalar Di and the vector of kz potential instruments by
Zi.. The instruments may not all be valid and can have a direct effect on, and/or
an indirect association with the outcome, violating Condition 2 and/or 3. We have
a sample {Yi, Di,Z′

i.}
n
i=1. We follow Kang et al. (2016) and Guo et al. (2018), who,
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starting from the additive linear, constant effects model of Holland (1988), arrived
at the observed data model for the sample given by

Yi = Diβ + Z′
i.α + ui, (1.1)

where β is the causal parameter of interest, and with E [ui|Zi.] = 0, but Di might
be correlated with ui. The parameter vector α represents the possible violations
of the exclusion conditions and can be used to formalise the definition of valid IVs
as follows (Guo et al., 2018, p 797).

Definition 1.1. If αj = 0, then instrument j, j = 1, . . . , kz, is valid, it satisfies
both Conditions 2 and 3. If αj ̸= 0, then instrument j is invalid.

We present some graphical representations of the causal model and possible
violations of the exclusion conditions in Appendix 1.A.3.

Let y and d be the n-vectors of n observations on {Yi} and {Di} respectively,
and let Z be the n×kz matrix of potential instruments. As an intercept is implicitly
present in the model, y, d and the columns of Z have all been centered by the
subtraction of their means. Other covariates can be partialled out in the same way.
Let ZV0 and ZA0 be the sets of valid and invalid instruments, V0 = {j : αj = 0},
A0 = {j : αj ̸= 0}, with dimensions kV0 and kA0 respectively and kz = kV0 + kA0 .
V = {1, ..., kz} denotes the full set and so A0 = V\V0.

The oracle model is then given by

y = dβ + ZA0αA0 + u. (1.2)

Let d̂ = PZd, then the oracle 2SLS estimator for β is the OLS estimator in the
specification

y = d̂β + ZA0αA0 + ξ,

where ξ is defined implicitly, and is given by

β̂or =
(
d̂′MZA0

d̂
)−1

d̂′MZA0
y. (1.3)
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Under standard assumptions, as detailed below, and as n → ∞,

√
n
(
β̂or − β

)
d−→ N

(
0, σ2

βor

)
, (1.4)

where

σ2
βor

= σ2
u

(
plim

( 1
n

d̂′MZA0
d̂
)−1)

, (1.5)

= σ2
u

(
E [Zi.Di]′ E [Zi.Z′

i.]
−1
E [Zi.Di] − E [ZA0,i.Di]′ E

[
ZA0,i.Z′

A0,i.

]−1
E [ZA0,i.Di]

)−1
,

see Appendix 1.A.2 for a derivation.
The vector d̂ = PZd = Zγ̂ is the linear projection of d on Z, with γ̂ the OLS

estimator of γ = E [Zi.Z′
i.]

−1 E [Zi.Di] in the linear model specification

Di = Z′
i.γ + εdi, (1.6)

with E [Zi.εdi] = 0. We initially assume that all instruments satisfy Condition 1,
implying that the kz elements γj in γ, are all different from 0:

Assumption 1.1. γ = (E [Zi.Z′
i.])

−1 E [Zi.Di], γj ̸= 0, j = 1, ..., kz.

This is the same assumption as in Kang et al. (2016) and Windmeijer et al.
(2019). Guo et al. (2018) relaxed this assumption and proposed a first-stage hard
thresholding procedure to consistently select only instruments with γj ̸= 0. We
will discuss this further in Section 3.4.2 and apply this first-stage thresholding in
our application.

Let Γ = E [Zi.Z′
i.]

−1 E [Zi.Yi]. As Yi = Diβ + Z′
i.α + ui = Z′

i.γβ + Z′
i.α + ui +

εdiβ, it follows that Γ = γβ + α. Then define βj as

βj ≡ Γj
γj

= β + αj
γj
, (1.7)

for j = 1, ..., kz. It follows from Definition 1.1 and Assumption 1.1 that for valid
instruments, j ∈ V0, βj = β. Following Theorem 1 in Kang et al. (2016) and Guo
et al. (2018), a necessary and sufficient condition to identify β and the αj, given
Γ and γ, is that the valid instruments form the largest group, where instruments
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form a group if they have the same value for βj. This is the plurality rule. As in
Guo et al. (2018), we maintain the assumption that this condition is satisfied:

Assumption 1.2. |V0| > maxg ̸=0 |Vg|, where Vg =
{
j : αj

γj
= g

}
.

For the sample {Yi, Di,Z′
i.}

n
i=1, and models (1.1) and (1.6), we further assume

that the following standard conditions hold:

Assumption 1.3. E [Zi.Z′
i.] = Q, with Q a finite and full rank matrix.

Assumption 1.4. Let wi = (ui εdi)′. Then E [wi] = 0; E [wiw′
i] =

 σ2
u σuεd

σuεd
σ2
εd

 =

Σ. The elements of Σ are finite.

Assumption 1.5. plim (n−1Z′Z) = E [Zi.Z′
i.] = Q; plim (n−1Z′d) = E [Zi.Di];

plim (n−1Z′u) = E [Zi.ui] = 0; plim (n−1Z′εd) = E [Zi.εdi] = 0;
plim (n−1∑n

i=1 wi) = 0; plim (n−1∑n
i=1 wiw′

i) = Σ.

Assumption 1.6. 1√
n

∑n
i=1 vec (Zi.w′

i)
d→ N (0,Σ ⊗ Q) as n → ∞.

Whilst Assumption 1.5 holds if the observations are i.i.d., as the moments are
assumed to exist, these conditions further hold under various weak dependence
assumptions, see Staiger and Stock (1997, p 560).

Note that conditional homoskedasticity E [wiw′
i|Zi.] = Σ is implicit in As-

sumption 1.6. We make this assumption primarily for ease of exposition and will
relax this in Section 1.5.

The plurality rule, Assumption 1.2, is the main assumption on the instruments
needed to establish oracle properties for the CI method described below and the
HT method of Guo et al. (2018). In particular, the values of αj and γj can be
arbitrary and arbitrarily correlated. The CI and HT methods are robust to any
such correlation. Alternatively, the methods of Kolesár et al. (2015) and Bowden
et al. (2015a) do not make the plurality assumption and can have all instruments
invalid. A bias corrected 2SLS estimator is then consistent under the INstrument
Strength Independent of Direct Effect (INSIDE) assumption that Cov (αj, γj) = 0,
together with the requirement that the number of instruments increases with the
sample size. Guo et al. (2018) provide a discussion of and comparison to these
methods, also including alternative methods proposed by Bowden et al. (2016),
Hartwig et al. (2017) and Burgess et al. (2018).
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1.3 The Confidence Interval Method

From the plurality rule Assumption 1.2, it follows that consistent instrument se-
lection procedures can be based on consistent and asymptotic normal estimators
of the parameters βj as defined in (1.7). Then groups of instruments are formed
by similar estimates β̂j, and, in large samples, the largest group will constitute the
group of valid instruments under Assumption 1.2. Whilst in principle all combi-
nation of instruments could be tested separately, see Andrews (1999), in practice
this may not be feasible when there are a large number of instruments. The Guo
et al. (2018) method as described further in Section 1.4 reduces the dimensionality
of the problem by essentially performing kz (kz − 1) /2 pairwise tests of the null
H0 : βj = βk, combined with a voting scheme to group the instruments.

A clear reduction of the dimensionality of the problem is achieved by alterna-
tively considering testing H0 : βj = δg, for a grid δg spanning the possible values of
β and selecting as the set of valid instruments the largest set over all values of δg
for which a particular value of δg is not rejected. The CI method operationalises
this idea without having to consider the grid points δg by grouping together in-
struments with overlapping confidence intervals.

Let Γ̂ and γ̂ be the OLS estimators for Γ and γ in the model specifications

y = ZΓ + εy; d = Zγ + εd.

Under Assumptions 1.3-1.6 it follows that

√
n

 Γ̂

γ̂

−

 Γ

γ

 d→ N (0,Λ) , (1.8)

where Λ = Ω ⊗ Q−1, with Ω = E [εiε′
i|Zi.], εi = (εyi, εdi)′.

Following Guo et al. (2018), let an estimator for βj be

β̂j = Γ̂j
γ̂j
, (1.9)

then it follows, using the delta method, that
√
n
(
β̂j − βj

)
d→ N

(
0, σ2

j

)
, with,
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denoting Q−1
jj the j-th diagonal element of Q−1,

σ2
j =

τ 2
j Q−1

jj

γ2
j

; τ 2
j =

(
1 −βj

)
Ω

 1
−βj

 . (1.10)

An estimator for the variance of β̂j is then given by

V̂ ar
(
β̂j
)

=
τ̂ 2
j (Z′Z)−1

jj

γ̂2
j

; τ̂ 2
j =

(
1 −β̂j

)
Ω̂

 1
−β̂j

 , (1.11)

where Ω̂ = 1
n

∑n
i=1 ε̂iε̂

′
i, with ε̂i the OLS residual vector (ε̂yi, ε̂di)′. It follows that

nV̂ ar
(
β̂j
)

p→ σ2
j .

We show in Appendix 1.A.5 that β̂j is identical to the 2SLS estimator of βj in
the just-identified model

y = dβj + Z{−j}π
[j] + uj, (1.12)

where Z{−j} = Z\ {Z.j}, using Z.j as the instrument for d. This therefore implies
that β̂j is the IV estimator for β based on instrument Z.j whilst treating all other
instruments as invalid. The variance estimator V̂ ar

(
β̂j
)

as defined in (1.11) is
also the same as the standard 2SLS variance estimator in the just-identified model
(1.12).

The CI method is a fast method that consistently selects the valid instruments.
Let v̂j =

√
V̂ ar

(
β̂j
)
. Given a value ψn, define the confidence interval cij (ψn) for

βj as
cij (ψn) =

[
β̂j − v̂jψn, β̂j + v̂jψn

]
, (1.13)

for j = 1, ..., kz. The following lemma gives the conditions on ψn under which all
confidence intervals within groups Vg will overlap which each other when n → ∞,
whereas none of the confidence intervals in different groups will overlap with each
other.

Lemma 1.1. Let the groups Vg be as defined in Assumption 1.2 and the confidence
intervals cij (ψn), j = 1, . . . , kz, as defined in (1.13). Then, under Assumptions 1.1
and 1.3-1.6, for n → ∞, ψn → ∞, ψn = o

(
n1/2

)
, and ∀g, all confidence intervals
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cij (ψn) within a group, j ∈ Vg, will overlap with each other, whereas none of the
confidence intervals in different groups, cij (ψn), cij′ (ψn), j ∈ Vg, j′ ∈ Vg′, will
overlap with each other.

We can use the results of Lemma 1.1 to obtain a selection rule that consistently
selects the valid instruments as valid, with the resulting 2SLS estimator having
oracle properties. For any value ψn, classify the instruments in groups V̂over

t (ψn),
for t = 1, . . . , T (ψn), with 1 ≤ T (ψn) ≤ kz. For members j ∈ V̂over

t (ψn), all
cij (ψn) overlap with each other. Only the largest of such groups are considered,
and not their subdivisions. If for example all kz confidence intervals overlap with
each other, then T (ψn) = 1. It is clear from this definition that instruments can
be members of multiple groups, and a group can be a singleton. For any value ψn,
we then select as the group of valid instruments the largest group, denoted V̂n,
defined as

V̂n :=
{

V̂m (ψn) :
∣∣∣V̂m (ψn)

∣∣∣ = max
t=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣} . (1.14)

Note that for any value of ψn, there may be multiple groups with the largest
number of overlapping confidence intervals. If that is the case, at this point we
simply randomly select one of these in order to have a single set of instruments for
each ψn. We will discuss selection using the Sargan test in Section 1.3.1.

The next theorem states the conditions under which the selection V̂n is con-
sistent, which follows directly from the results of Lemma 1.1, as V0 is the largest
group by Assumption 1.2.

Theorem 1.1. Let the β̂j be defined as in (1.9) and their confidence intervals as in
(1.13). Let V̂n be one of the largest groups of instruments for which all confidence
intervals overlap with each other as defined in (1.14). For ψn → ∞, ψn = o

(
n1/2

)
,

and under Assumptions 1.1-1.6 it follows that

lim
n→∞

P
(
V̂n = V0

)
= 1.

The next theorem states the oracle properties of the 2SLS estimator based on
selecting ZV̂n

as the valid instruments and thus ZÂn
= Z\

{
ZV̂n

}
as the set of
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invalid instruments. This result follows directly from Theorem 2 in Guo et al.
(2018).

Theorem 1.2. Let ZÂn
= Z\

{
ZV̂n

}
and let β̂Ân

be the 2SLS estimator of β, given
by

β̂Ân
=
(
d̂′MZÂn

d̂
)−1

d̂′MZÂn
y.

Then under the conditions of Theorem 1.1, it follows that

√
n
(
β̂Ân

− β
)

d→ N
(
0, σ2

or

)
.

For any value ψn the sets of overlapping confidence intervals can easily and
rapidly be obtained as follows.

Algorithm 1.1. Denote the lower and upper endpoints of cij (ψn) as defined in
(1.13) by cilj (ψn) and ciuj(ψn). Order the confidence intervals in ascending order
of the lower endpoints, and use the notation cil[j](ψn) and ciu[j](ψn) for the ordered
intervals. For j = 2, ..., kz, let no[j] (ψn) = ∑j−1

k=1 1
(
ciu[k] (ψn) > cil[j] (ψn)

)
. Then

the largest set(s) of overlapping intervals are those associated with the maximum
value of no[j] (ψn).

For the sequences ψn → ∞, ψn = o
(
n1/2

)
, it follows from the results of Lemma

1.1 and Theorem 1.1 that V̂n as defined in (1.14) converges to the unique set V0.
It is therefore immaterial for consistent selection and oracle properties how we
choose the set V̂n for those values of ψn where there are multiple groups with the
largest number of overlapping confidence intervals. We can extend the range of
sequences ψn if we choose in that case the group with the minimum value of the
Sargan test as we show next.

1.3.1 Sargan Test

For the oracle model (1.2),

y = dβ + ZA0αA0 + u = XA0θA0 + u,
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with XA0 =
[

d ZA0

]
and θA0 =

(
β α′

A0

)′
, the Sargan (1958) test statistic

is given by

S
(
θ̂A0

)
= û(θ̂A0)′Z (Z′Z)−1 Z′û(θ̂A0)

û(θ̂A0)′û(θ̂A0)/n
, (1.15)

where û(θ̂A0) = y − XA0θ̂A0 , with θ̂A0 the 2SLS estimator of θA0 .
As E [Zi.ui] = 0, and for kA0 < kz, it follows under Assumptions 1.1 and 1.3-1.6

that
√
n
(
θ̂A0 − θA0

)
d→N (0,Σ0), with Σ0 = σ2

uplim
(
X′

A0Z (Z′Z)−1 Z′XA0/n
)−1

,
and S

(
θ̂A0

)
d→ χ2

kz−kA0 −1. For any other selection ZA ̸= ZA0 with kA ≤ kA0 , we
have that S

(
θ̂A
)

= Op (n).
The results of the confidence interval selection method can be linked to the

behaviour of the Sargan test statistic as it follows from the results of Theorems
1.1 and 1.2 that, under the conditions of Theorem 1.1, S

(
θ̂Ân

)
d→ χ2

kz−kA0 −1.
We can now allow for a wider range of values of the sequence ψn if we select

from the groups with the largest number of overlapping confidence intervals the
one with the minimum value of the Sargan test statistic. Let M (ψn) denote the
number of groups with the largest number of overlapping confidence intervals, the
collection of these groups denoted by

{
V̂max
m′ (ψn)

}
, m′ = 1, . . . ,M (ψn).

Then define V̂sar
n as

V̂sar
n : =

{
V̂m (ψn) :

∣∣∣V̂m (ψn)
∣∣∣ = max

t=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣ , (1.16)

S
(
θ̂Âm(ψn)

)
= min

m′=1,...,M(ψn)
S
(
θ̂Âmax

m′ (ψn)

)}
,

where Âm (ψn) = V\V̂m (ψn) and Âmax
m′ (ψn) = V\V̂max

m′ (ψn), m′ = 1, . . . ,M (ψn).
The next theorem gives the conditions for consistent selection and oracle prop-

erties when selecting V̂Sar
n as the set of valid instruments.

Theorem 1.3. Let the β̂j be defined as in (1.9) and their confidence intervals
as in (1.13). Let V̂sar

n be as defined in (1.16) and Âsar
n = V\V̂sar

n . For kV0 <

kz, let cn = O (1) > 0 be such that when n → ∞, ψn → ∞, for ψn√
n

≤ cn,
maxt=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣ → kV0 and for ψn√
n
> cn, maxt=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣ →
K, with K ≥ kV0 + 1. Then for n → ∞, ψn → ∞, kV0 = kz, or kV0 < kz and
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ψn√
n

≤ cn, and under Assumptions 1.1-1.6 it follows that

lim
n→∞

P
(
V̂sar
n = V0

)
= 1

and
√
n
(
β̂Âsar

n
− β

)
d→ N

(
0, σ2

or

)
.

1.3.2 Downward Testing Procedure

From the results of Theorem 1.3, we can devise a downward testing procedure
as in Andrews (1999), reducing the dimension of the problem by evaluating only
the models selecting the sets with the largest number of overlapping confidence
intervals as valid instruments. The Andrews (1999) downward testing procedure
uses the Sargan test statistic as a selection device for the consistent selection of
the valid instruments. It starts with the model that selects all kz instruments as
valid. If the Sargan test rejects this model, then the procedure next evaluates the
kz models with kz − 1 instruments selected as valid, treating each instrument in
turn as invalid. If the minimum of the kz Sargan test statistics does not reject
the null, then the associated model is selected as the valid model. If the minimum
rejects the null, then all

(
kz

2

)
models with kz − 2 instruments selected as valid are

evaluated. This gets repeated until a model with kz−kA−1 degrees of freedom has
a Sargan test result that does not reject the null hypothesis. Denote the minimum
of the

(
kz

kA

)
Sargan statistics of all possible models with kA instruments selected

as invalid by Smin (kA). Let

Âns :=
{
A, kA = min (0, 1, ..., kz − 2) : S

(
θ̂A
)

= Smin (kA) < ζn,kz−kA−1
}
.

Then if the critical values ζn,kz−kA−1 of the χ2
kz−kA−1 distribution satisfy

ζn,kz−kA−1 → ∞ for n → ∞, and ζn,kz−kA−1 = o (n) , (1.17)

it follows from the results in Andrews (1999), that, under Assumptions 1-6,
limn→∞ P

(
Âns = A0

)
= 1, or equivalently, limn→∞ P

(
V̂ns = V0

)
= 1, with V̂ns =

V\Âns.
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In order to use the CI method to reduce the dimension of the downward testing
procedure, consider the set of breakpoints

ψ∗
j,r =

∣∣∣β̂j − β̂r
∣∣∣

v̂j + v̂r
, (1.18)

for j = 1, . . . , kz − 1, r = j + 1, . . . , kz. From Algorithm 1.1 it follows that for
ψn ≤ ψ∗

j,r, cij (ψn) and cir (ψn) do not overlap, whereas they do when ψn > ψ∗
j,r.

Let ψ∗
[kz−1] = maxj,r

(
ψ∗
j,r

)
. For ψn > ψ∗

[kz−1] all kz confidence intervals overlap.
At ψn = ψ∗

[kz−1], the number of overlapping confidence intervals in the largest
groups drops by one to kz − 1, and there will be two groups, denoted as before
as
{
V̂max
m′

(
ψ∗

[kz−1]

)}
, m′ = 1, . . . ,M

(
ψ∗

[kz−1]

)
, with M

(
ψ∗

[kz−1]

)
= 2. The next

breakpoint where the size of the largest groups of overlapping confidence intervals
is equal to kz − 2 is the minimum of the maximum of the breakpoints (1.18) in the
two largest groups of size kz−1. Denote these maximum group specific breakpoints
by ψ∗

m′,[kz−2] = max
{j,r}∈V̂max

m′

(
ψ∗

[kz−1]

) (ψ∗
j,r

)
, for m′ = 1, 2, and the minimum by

ψ∗
[kz−2] = minm′

(
ψ∗
m′,[kz−2]

)
. Note that for ψ∗

[kz−2] < ψn ≤ ψ∗
[kz−1], the maximum

group size remains kz − 1. Then at ψn = ψ∗
[kz−2], there will be 2 ≤ M

(
ψ∗

[kz−2]

)
≤ 3

groups with the maximum kz − 2 overlapping confidence intervals, and the next
breakpoint where the size of the largest groups of overlapping confidence intervals
is equal to kz − 3 is again determined by the minimum of the maxima of the
breakpoints (1.18) in these groups. Repeating this, we get the kz − 2 breakpoints

ψ∗
[2] < ψ∗

[3] < ... < ψ∗
[kz−1], (1.19)

with ψ∗
[s] = minm′

(
ψ∗
m′,[s]

)
, ψ∗

m′,[s] = max
{j,r}∈V̂max

m′

(
ψ∗

[s+1]

) (ψ∗
j,r

)
, and at each break-

point we have 2 ≤ M
(
ψ∗

[s]

)
≤ kz − s + 1 = kA + 1 groups with the maximum s

overlapping confidence intervals.
Combining the results of Theorem 1.3 with the downward testing procedure of

Andrews (1999) we get the following consistent selection and oracle properties.

Theorem 1.4. Let the breakpoints
{
ψ∗

[s]

}kz−1

s=2
be as defined in (1.19) and let ψ∗

[kz ] =
ψ∗

[kz−1] + δ, for a constant δ > 0, so that the model with all kz instruments selected
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as valid is included. Let

V̂dts
n : =

V̂sar
n (ψ∗

n) ; ψ∗
n = max

s=2,...kz

(
ψ∗

[s]

)
: S

θ̂
Âsar

n

(
ψ∗

[s]

) < ζn,s−1

 ,
where Âsar

n

(
ψ∗

[s]

)
= V\V̂sar

n

(
ψ∗

[s]

)
, with V̂sar

n

(
ψ∗

[s]

)
defined in (1.16), and where

ζn,s−1 satisfy the conditions stated in (1.17). Let Âdts
n = V\V̂dts

n . Then under the
conditions of Theorem 1.3 it follows that

lim
n→∞

P
(
V̂dts
n = V0

)
= 1

and
√
n
(
β̂Âdts

n
− β

)
d→ N

(
0, σ2

or

)
.

It follows from Theorem 1.4 that ψ∗
n = Op

(
n1/2

)
, as ψ∗

n is asymptotically
equivalent to ψ∗

[kV0 ] and ψ∗
[kV0 ]/

√
n is asymptotically equivalent to cn as specified

in Theorem 1.3, see for details the proof in Appendix 1.A.1.
Following a result in Pötscher (1983), Andrews (1999) shows that (1.17) holds

if the p-value of the Sargan test satisfies pn → 0 and log(pn) = o(n). Therefore,
instead of choosing values ζn,s−1 for each s, we can choose a single sequence pn for
consistent selection. Windmeijer et al. (2019) choose as threshold p-value for the
Sargan test 0.1/ log (n), following the suggestion of Belloni et al. (2012) and which
satisfies the conditions for consistent model selection and oracle properties of the
resulting 2SLS estimator.

With this strategy, there is a maximum of kz (kz − 1) /2 models to be evalu-
ated. Together with the use of Algorithm 1.1, which has a computational cost
of O (kz log (kz)), at at most kz − 2 breakpoints, the computational cost of this
downward testing algorithm is of the order O (k2

z log (kz)). We give a stepwise de-
scription of the full downward testing algorithm in Appendix 1.A.4, together with
an illustration using a single generated data set.1

Under the plurality Assumption 1.2, the CI downward testing procedure will
1This method is available in the R-package CIIV, https://github.com/xlbristol/CIIV. Ap-

pendix 1.A.9 further discusses how the method can be applied with multi-sample (e.g. GWAS)
summary data under the assumption that the instruments are independent.
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consistently select the set of valid instruments. In any application it may well be
the case that multiple sets of maximum size are found for which the Sargan test
statistics do not reject the null. The method of Andrews (1999) is then to select the
model with the minimum value of the Sargan test statistics for these models with
the same degrees of freedom, which is replicated by V̂dts

n . In practice, however,
a researcher should acknowledge the fact that there are multiple such models,
which could be an indication of a violation of Assumption 1.2, and investigate
their results, which could lead to additional insights on the possible pathways
from instruments to exposure and from exposure to outcomes.

Whilst the CI method achieves dimension reduction by ignoring the covariances
between the estimators β̂j when constructing the sets with overlapping confidence
intervals, by using the downward Sargan based testing procedure the selected
model is the one with the largest number of instruments with overlapping confi-
dence intervals for which the joint null hypothesis is not rejected, incorporating
the full covariance structure.

1.4 Hard Thresholding Method

Consider next pairwise testing of the null hypotheses H0 : βj = βk, j = 1, ..., kz −
1; k = j + 1, ..., kz. These are equivalent to H0 : Γj

γj
= Γk

γk
and a reformulation

is given by H0 : Γk − Γj

γj
γk = π

[j]
k = 0. Guo et al. (2018) use the latter as the

basis for their pairwise testing using Wald test statistics. Unlike the score test,
the Wald test is not invariant to the reformulation of a nonlinear restriction, see
e.g. Davidson and MacKinnon (2004, pp 422-424), and whilst the Wald tests for
H0 : βj = βk are symmetric, this is not the case for H0 : π[j]

k = 0. As we discuss
below in Section 1.4.3, the score test here is the same as the Sargan test for
overidentifying restrictions when Z.j and Z.k are the excluded instruments.

An estimator for π[j]
k is given by

π̂
[j]
k = Γ̂k − Γ̂j

γ̂j
γ̂k. (1.20)

It follows from the delta method that
√
n
(
π̂

[j]
k − π

[j]
k

)
d→ N

(
0, σ2

π
[j]
k

)
, with σ2

π
[j]
k

=
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τ 2
j

(
Q−1
kk − 2

(
γk

γj

)
Q−1
kj +

(
γk

γj

)2
Q−1
jj

)
, where τ 2

j is as defined in (1.10). An estimator

for the variance of π̂[j]
k is therefore given by

V̂ ar
(
π̂

[j]
k

)
= τ̂ 2

j

(Z′Z)−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)−1

kj +
(
γ̂k
γ̂j

)2

(Z′Z)−1
jj

 , (1.21)

where τ̂ 2
j is as defined in (1.11), with nV̂ ar

(
π̂

[j]
k

)
p→ σ2

π
[j]
k

.
Guo et al. (2018) consider the test statistics2

t
[j]
k = π̂

[j]
k

v̂
π

[j]
k

(1.22)

for k, j = 1, .., kz, k ̸= j, where v̂
π

[j]
k

=
√
V̂ ar

(
π̂

[j]
k

)
. Let σ̂

π
[j]
k

=
√
nv̂

π
[j]
k

. It follows

that under the null, H0 : π[j]
k = 0, t[j]k

d→ N (0, 1). Hence, for the sequence ψn → ∞,
ψn = o

(
n1/2

)
, when π

[j]
k = 0,

lim
n→∞

P
(∣∣∣t[j]k ∣∣∣ ≤ ψn

)
= 1, (1.23)

and when π
[j]
k ̸= 0,

lim
n→∞

P
(∣∣∣t[j]k ∣∣∣ ≤ ψn

)
= lim

n→∞
P

∣∣∣∣∣∣
√
n
(
π̂

[j]
k − π

[j]
k

)
σ̂

[j]
πl

+
√
nπ

[j]
k

σ̂
[j]
πk

∣∣∣∣∣∣ ≤ ψn

 = 0. (1.24)

Guo et al. (2018) then define the set V̂ [j]
n as

V̂ [j]
n =

{
k :

∣∣∣t[j]k ∣∣∣ ≤ ψn
}
. (1.25)

These are the instruments k = 1, ..., kz, for which H0 : π[j]
k = 0 is not rejected using

critical value, or threshold, ψn. Note that instrument j is always contained in V̂ [j]
n .

It follows that, for ψn → ∞, ψn = o
(
n1/2

)
, if βk = βj, limn→∞ P

(
k ∈ V̂ [j]

n

)
= 1

and if βk ̸= βj, limn→∞ P
(
k ∈ V̂ [j]

n

)
= 0.

2We provide detail of the correspondence between the specification in Guo et al. (2018) and
our notation in Appendix 1.A.6.
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As these are not joint, but only pairwise comparisons, Guo et al. (2018) propose
a majority and plurality voting scheme to consistently obtain the set of valid
instruments. In their terminology, V̂ [j]

n is expert j’s ballot that contains expert j’s
opinion about which instruments are valid. The number of votes an instrument k
gets is given by

VMk =
kz∑
j=1

1
(
k ∈ V̂ [j]

n

)
.

The majority rule then selects an instrument as valid if it gets a vote from more
than 50% of the experts. The group of instruments selected as valid is then given
by

V̂M =
{
k : VMk >

kz
2

}
. (1.26)

If none of the instruments gets a majority vote, the plurality rule is applied, which
defines the set of instruments selected as valid by

V̂P =
{
k : VMk = max

l
VMl

}
. (1.27)

Let V̂HT
n = V̂M ∪ V̂P , then Guo et al. (2018, pp 13-14) show that under As-

sumptions 1.1-1.6 it follows that

lim
n→∞

P
(
V̂HT
n = V0

)
= 1

and
√
n
(
β̂HTn − β

)
d→ N

(
0, σ2

or

)
,

where β̂HTn =
(
d̂′M

ZÂ
HT
n

d̂
)−1

d̂′M
ZÂ

HT
n

y, Z
Â

HT
n

= Z\
{
Z

V̂
HT
n

}
.

1.4.1 Choice of Tuning Parameter

Guo et al. (2018) do not treat ψn as a classical tuning parameter and they do not
specify the rate, ψn → ∞, ψn = o

(
n1/2

)
, as obtained for results (1.23) and (1.24)

above. They set ψn =
√

2.012 log (max (kz, n)) which in the setting here with fixed
kz and n > kz would lead to ψn =

√
2.012 log (n). The motivation seems to be

from the fact that there are kz (kz − 1) statistics t[j]k . If they were all independent
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N (0, 1) distributed random variables, then it follows that for an increasing number
of instruments kz,

lim
kz→∞

P
(

max
k,j

(∣∣∣t[j]k ∣∣∣) > √
2 log (kz (kz − 1))

)
= 0, (1.28)

see Donoho and Johnstone (1994). For the kz fixed case considered here, if the t[j]k
were independent N (0, 1) distributed random variables, we have that

E
[
max
k,j

(
t
[j]
k

)]
<
√

2 log (kz (kz − 1)). (1.29)

It is unclear how the result in (1.29) translates into an optimal choice ψn as
a function of n, even if the t

[j]
k were independently distributed, which they are

clearly not. We find in the Monte Carlo experiments below that the value of
ψn =

√
2.012 log (n) can be much too large, resulting in selecting a large group

of instruments as valid that includes invalid instruments. Guo et al. (2018, p
800) state that in practice, the max (kz, n) is often replaced by kz or n to im-
prove the finite sample performance. In the R-routine TSHT.R, Kang (2018),
the default threshold parameter for the low dimensional setting is set equal to
ψ =

√
2.012 log (kz), in line with the results (1.28) and (1.29) above. In principle

this choice of ψ does not lead to consistent selection for fixed kz and n → ∞. In
their Monte Carlo simulations, Guo et al. (2018) instead set ψ =

√
2.01 log (kz).

We will use these latter two values to evaluate the performance of the hard thresh-
olding method in the simulations and application below.

1.4.2 Voting

The Guo et al. (2018) method achieves dimension reduction by pairwise testing
of H0 : π[j]

k = 0 and the voting mechanism. A weakness of the voting scheme is
that it does not have a mechanism to choose between sets of instruments when
there are ties, and the number of instruments selected as valid is not guaranteed
to be monotonically decreasing for decreasing values of ψn. Consider the example
as depicted in Table 1.1. There are 5 potential instruments. In the left panel of
the table, for a value ψ1 for the tuning parameter, instruments 2 and 3 both get
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three votes, including the votes for themselves, whereas instruments 1 and 2 get
two votes and instrument 5 only one vote. Hence, V̂HT

n,1 = {2, 3} and the number
of instruments selected as valid is equal to 2. Next consider the right panel, with
ψ2 < ψ1, and the situation is such that ψ2 ≤

∣∣∣t[2]
3

∣∣∣ ≤ ψ1 and ψ2 ≤
∣∣∣t[3]

2

∣∣∣ ≤ ψ1,
but

∣∣∣t[j]k ∣∣∣ ≤ ψ2 for k, j ∈ {1, 2} and k, j ∈ {3, 4}. Now instruments 1, 2, 3 and 4
all get two votes. Application of the plurality rule (1.27) then leads to selecting
these four instruments all as valid, V̂HT

n,2 = {1, 2, 3, 4}, and so the number of valid
instruments selected here increases for a decreasing value of ψ. Because of this, the
Andrews (1999) Sargan test based downward testing procedure can not be applied
in general to the HT method.

Table 1.1: Examples of voting

ψ1 ψ2 < ψ1
k\j 1 2 3 4 5 VMk k\j 1 2 3 4 5 VMk

1 x x - - - 2 1 x x - - - 2
2 x x x - - 3 2 x x - - - 2
3 - x x x - 3 3 - - x x - 2
4 - - x x - 2 4 - - x x - 2
5 - - - - x 1 5 - - - - x 1

As is clear from Table 1.1, the voting mechanism can select the instruments
in non-overlapping groups all as valid. One way to overcome the problem of ties
in the voting matrix is to find the maximal cliques, but as this problem is np
complete, Karp (1972), this negates the dimension reduction properties of the
voting scheme. This problem is circumvented in the CI method, which keeps track
of the groupings and selects the group of instruments with the smallest value of
the Sargan test in case of ties.

Further note that for the HT method the number of instruments selected as
valid can be both larger and smaller than the number of votes, as the examples in
Table 1.1 show. With the asymmetric t[k]

j , it could also be the case that only one
instrument is selected as valid. This would happen, for example, if the left panel
was changed with

∣∣∣t[3]
2

∣∣∣ > ψ1, but
∣∣∣t[2]

3

∣∣∣ ≤ ψ1, in which case only instrument 2 is
selected as valid with three votes.
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1.4.3 Relationship with Sargan Test

Proposition 1.A.5 in Appendix 1.A.5 shows that t[j]k as defined in (1.22) can equiv-
alently be specified as

t
[j]
k =

π̂
[j]
k,2sls√

V̂ ar
(
π̂

[j]
k,2sls

) ,
after 2SLS estimation of the parameters in the just-identified model (1.12)

y = dβj + Z{−j}π
[j] + uj,

with Z{−j} = Z\ {Z.j}, using Z.j as the instrument for d, and using the notation
π̂

[j]
2sls =

(
π̂

[j]
k,2sls

)
k ̸=j

. Instead of the t, or Wald test, one could perform a score test

for the null H0 : π[j]
k = 0, with the only difference that the variance is estimated

under the null. This score test is the same as the Sargan test of overidentifying
restrictions in the model

y = dβjk + Z{−jk}π
[jk] + ujk, (1.30)

where Z{−jk} = Z\ {Z.j,Z.k}, using both Z.j and Z.k as instruments for d, see
Newey and West (1987) and the discussion in Appendix 1.A.5. Denoting this
Sargan statistic by Sjk, then under the null H0 : E [Zi.ujk,i] = 0, and under
Assumptions 1.1 and 1.3-1.6, Sjk d→ χ2

1.
Unlike the t

[j]
k , for which t

[j]
k ̸= t

[k]
j , the Sjk are symmetric, Sjk = Skj, an

invariance feature of the score test which is invariant to specifying the null as
H0 : Γk

γk
− Γj

γj
= 0 or H0 : Γk − Γj

γj
γk = 0. There are therefore kz (kz − 1) /2

statistics Sjk and, instead of the selection rule V̂ [j]
n =

{
k :

∣∣∣t[j]k ∣∣∣ ≤ ψn
}
, we can use

the asymptotically equivalent rule V̂ [j]
n =

{
k :

√
Sjk ≤ ψn

}
.

1.5 Robustness to Heteroskedasticity

Both the confidence interval and hard thresholding procedures can be adapted to
be robust to heteroskedasticity, clustering and/or serial correlation. Consider for
example conditional heteroskedasticity of the general form E [wiw′

i|Zi.] = Σ (Zi.)
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and E [εiε′
i|Zi.] = Λ (Zi.), with the functions Σ (Zi.) and Λ (Zi.) unknown. Let

η̂ =
(

Γ̂′
γ̂ ′
)′

, then a robust estimator of V ar (η̂) is given by

V̂ arr (η̂) =
(
I2 ⊗ (Z′Z)−1)( n∑

i=1
(ε̂iε̂′

i ⊗ Zi.Z′
i.)
)(

I2 ⊗ (Z′Z)−1)
,

and straightforward application of the delta method results in robust variance
estimators V̂ arr

(
β̂j
)

and V̂ arr
(
π̂

[j]
k

)
.

For the CI method, instead of using the Sargan test for selection, a robust score
test needs to be used, like the two-step Hansen J-test, (Hansen, 1982). For the
oracle model (1.2),

y = dβ + ZA0αA0 + u = XA0θA0 + u,

the two-step GMM estimator is given by

θ̂A0,2 =
(
X′

A0ZW−1
n

(
θ̂A0,1

)
Z′XA0

)−1
X′

A0ZW−1
n

(
θ̂A0,1

)
Z′y,

where θ̂A0,1 is an initial one-step estimator, for example the 2SLS estimator, and

Wn

(
θ̂A0,1

)
=

n∑
i=1

(
Yi − X′

A0,i.θ̂A0,1
)2

Zi.Z′
i..

Let û2 = y − XA0θ̂A0,2 then the Hansen J-test statistic is given by

J
(
θ̂A0,2, θ̂A0,1

)
= û′

2ZW−1
n

(
θ̂A0,1

)
Z′û2.

As E [Zi.ui] = 0, J
(
θ̂A0,2, θ̂A0,1

)
d→ χ2

kz−kA0 −1, thus generalising the result for the
Sargan test under conditional homoskedasticity to the case of general heteroskedas-
ticity.

As the oracle estimator, we can then specify the 2SLS estimator with robust
standard errors, or the efficient two-step GMM estimator.
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1.6 Weak Instruments

The relevance Assumption 1.1 states that γj ̸= 0 for all j = 1, ..., kz. In our appli-
cation we use 96 single nucleotide polymorphisms (SNPs) as potential instruments
for BMI to investigate its effect on blood pressure. These SNPs have been found to
be associated with BMI in independent genome wide association studies (GWAS),
see Locke et al. (2015). Whilst the assumption is therefore very likely to be valid,
it may well be the case that in our sample individual instruments are weak in the
sense that they only explain a small amount of the variation of the exposure.

The presence of many weak instruments leads to bias in the 2SLS estima-
tor. This many weak instrument bias is much less for the Limited Information
Maximum Likelihood (LIML) and Continuously Updated GMM (CU-GMM) es-
timators, see Davies et al. (2015) and the references therein. Analogous to the
problem of heteroskedasticity discussed in the previous section, to counter a po-
tential many weak instruments bias problem of the 2SLS estimator, the CI and HT
methods can estimate the parameters by LIML or CU-GMM, with the CI method
adjusting the Sargan or Hansen test statistic accordingly.

For the selection of valid instruments, a very weak invalid instrument could
often be classified as a valid instrument in the CI method due to its large standard
error, and can change the selection in the HT method by giving votes to a large
number of instruments. In order to overcome the selection problem with weak
instruments, Guo et al. (2018) proposed a first-stage hard thresholding for H0 :
γj = 0 and to classify instruments as uninformative and treated as invalid if

∣∣∣tγj

∣∣∣ =
∣∣∣∣∣∣ γ̂j√
V̂ ar (γ̂j)

∣∣∣∣∣∣ < ωn, (1.31)

with ωn =
√

2.01 log {max (kz, n)}, and where V̂ ar (γ̂j) can be a robust variance
estimator in case of heteroskedasticity. As with the setting of ψn discussed in
Section 1.4.1, the threshold parameter is set to ωn =

√
2.01 log (kz) in the R

routine TSHT.R (Kang, 2018), also for the low dimensional, fixed kz case, and we
will apply this first-stage thresholding in our application.

A potential problem with this first-stage thresholding is that, as the instru-
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ments are not a priori considered to be valid, there is a chance that invalid in-
struments are more likely to cross the threshold. This may occur for instruments
of the type Z2 as displayed in Figure 1.A.1 in Appendix 1.A.3. As Z2 affects the
unmeasured confounders that in turn affect the exposure, the Z2-exposure rela-
tionship itself is confounded and could result in a stronger observed effect of the
instrument on the exposure than it otherwise would have been, and a larger chance
of crossing the first-stage threshold.

1.7 Some Monte Carlo Results

In order to illustrate how the CI and HT methods utilise the available information,
following the discussion in Sections 1.3 and 1.4, we consider a design similar to
that in Guo et al. (2018, Table 2) who considered a setting with a small number of
potential instruments, kz = 7, in their design where the majority rule is violated,
but the plurality rule holds. We consider here such setting but with a larger
number of potential instruments, kz = 21. We present a replication of their kz = 7
design in Appendix 1.A.7.

The data are generated from

Di = Z′
i.γ + εdi

Yi = Diβ + Z′
i.α + ui,

where  ui

εdi

 ∼ N

 0
0

 ,
 1 ρ

ρ 1

 ;

Zi. ∼ N (0,Σz) ;

with β = 1; kz = 21; ρ = 0.25; kA0 = 12, α = ca (ι′
6, 0.5ι′

6,0′
9)

′ and γ = cγ × ιkz ,
where ιr is an r-vector of ones, and 0r is an r-vector of zeros. There are therefore
3 groups of instruments, Vcα/cγ = {1, 2, . . . , 6}, V0.5cα/cγ = {7, 8, . . . , 12} and V0 =
{13, 14, . . . , 21}. V0 is the largest group and so the plurality rule holds, but not
the majority rule. The elements of Σz are given by Σz,jk = ρ|j−k|

z . We set ρz = 0.5
and cα = cγ = 0.4. As in Guo et al. (2018), in this setting all instruments are
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strong, and the first-stage thresholding is omitted. Note that this simple design
represents invalid instruments with a direct effect on the outcome of the type Z1

as displayed in Figure 1.A.1 in Appendix 1.A.3.
Before evaluating estimation results using the downward testing CI method and

the HT method as described above, Figure 1.1 shows the frequency of selection of
the oracle model for the HT and CI methods, the latter on the basis of V̂sar

n (ψ)
as defined in (1.16), for 10, 000 Monte Carlo replications, as a function of values
ψ = (0.15, 0.20, ..., 6.95, 7) and for a sample size of n = 2000. It is clear that
the CI method utilises the available information better in this case and obtains a
maximum frequency of selecting the oracle model of 0.98 at ψ = 2.60, whereas the
maximum frequency for the HT method is only 0.60 at ψ = 2.40.

Figure 1.2 shows the average total number of instruments selected as invalid,∣∣∣Ân

∣∣∣, and the average number of invalid instruments selected as invalid as a func-
tion of ψ. Whilst both methods can correctly select the 12 invalid instruments as
invalid for a range of values of ψ, the CI method can do so without also selecting
valid instruments as invalid. In contrast, the HT method selects on average addi-
tional valid instruments as invalid, resulting in the difference in the frequencies of
selecting the oracle model. At ψ = 2.40, the HT method selects on average 11.94
invalid instruments correctly as invalid, but selects on average a total of 13.52 in-
struments as invalid. At ψ = 2.60, the CI method selects on average 11.99 invalid
instruments correctly as invalid, and selects on average a total of 12.01 instruments
as invalid, hence the much higher frequency of selecting the oracle model for the
CI method.

As is clear from Figure 1.2, the number of selected instruments as invalid is
not monotonically increasing for decreasing values of the threshold ψ for the HT
method, as discussed in Section 1.4.2, whereas it is for the CI method.

The proposed threshold value for the HT method, ψn =
√

2.012 log (n) =
5.54 is clearly too large a value in this design. The alternative choice is ψ =√

2.012 log (kz) = 3.51. As shown in Figure 1.1, the probability of selecting the
oracle model at this value is equal to only 0.018. Figure 1.2 shows that the average
number of correctly selected invalid instruments at this value of ψ is 10.93, and
quite a few valid instruments are selected as invalid, with the average total num-
ber of instruments selected as invalid equal to 18.42. Guo et al. (2018) used the
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Figure 1.1: Frequency of selecting oracle model as a function of ψ. n = 2000,
kz = 21, kA0 = 12, cα = cγ = 0.4.
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Figure 1.2: Average total number of instruments selected as invalid (all) and num-
ber of invalid instruments selected as invalid (inv) as a function of ψ. n = 2000,
kz = 21, kA0 = 12, cα = cγ = 0.4.
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value of ψ =
√

2.01 log (kz) in their Monte Carlo simulations, which in this case is
equal to ψ = 2.47, very close to the optimal value of ψ = 2.40 for the maximum
frequency of oracle selection. Here the probability of selecting the oracle model is
equal to 0.59, on average correctly selecting 11.91 invalid instruments as invalid,
and selecting on average a total number of 13.68 instruments as invalid.

Table 1.2 shows estimation results for the downward testing CI method and the
HT method for this design for different values of the sample size n = 500, 1000, 2000, 5000,
for 10, 000 Monte Carlo replications. As in Guo et al. (2018), we present the median
absolute error (mae), the coverage probability of the 95% confidence interval for β
and the average length of the confidence intervals. In addition, we present the aver-
age number of instruments selected as invalid,

∣∣∣Ân

∣∣∣, the frequency of selecting the
oracle model, por, and the frequency of selecting all invalid instruments as invalid,
pallinv. The 95% confidence interval is given by

[
β̂Ân

− 1.96v̂
β̂

Ân

, β̂Ân
+ 1.96v̂

β̂
Ân

]
,

with v̂
β̂

Ân

=
√
V̂ ar

(
β̂Ân

)
, the 2SLS standard error.

34



Table 1.2: Estimation Results, kz = 21

mae coverage CI length
∣∣∣Ân

∣∣∣ por pallinv
n = 500
2SLS or 0.017 0.943 0.093 12.000 1.000 1.000
2SLS 0.423 0.000 0.088 0.000 0.000 0.000
HT4kz 0.321 0.000 0.083 1.982 0.000 0.000
HT2kz 0.330 0.000 0.091 6.901 0.000 0.000
CIsar 0.032 0.639 0.097 10.661 0.098 0.106
n = 1000
2SLS or 0.011 0.949 0.066 12.000 1.000 1.000
2SLS 0.423 0.000 0.062 0.000 0.000 0.000
HT4kz 0.325 0.000 0.065 6.822 0.000 0.000
HT2kz 0.305 0.088 0.222 17.102 0.001 0.137
CIsar 0.014 0.889 0.066 11.599 0.538 0.561
n = 2000
2SLS or 0.008 0.949 0.047 12.000 1.000 1.000
2SLS 0.424 0.000 0.044 0.000 0.000 0.000
HT4kz 0.320 0.176 0.208 18.421 0.018 0.277
HT2kz 0.012 0.836 0.088 13.681 0.585 0.911
CIsar 0.008 0.943 0.047 12.008 0.978 0.992
n = 5000
2SLS or 0.005 0.950 0.030 12.000 1.000 1.000
2SLS 0.424 0.000 0.028 0.000 0.000 0.000
HT4kz 0.005 0.947 0.030 12.031 0.984 1.000
HT2kz 0.006 0.951 0.035 12.687 0.749 1.000
CIsar 0.005 0.946 0.030 12.012 0.989 1.000
Notes: Results from 10,000 MC replications; median absolute error; 95% CI
coverage and length; number of instruments selected as invalid; frequency of
selecting oracle model; frequency of selecting all invalid instruments as invalid.

Results are presented for the HT method, using ψ =
√

2.012 log (kz) = 3.51
and ψ =

√
2.01 log (kz) = 2.47 as threshold values, denoted HT4kz and HT2kz

respectively, and for the CI method using the downward testing procedure based
on the Sargan test threshold p-value of 0.1/ log (n) as described in Section 1.3.2 and
denoted CIsar. Also given are the estimation results for the oracle 2SLS estimator
(2SLS or) and the naive 2SLS estimator (2SLS) that treats all instruments as valid.

The CIsar estimator is better behaved than the HT estimators, especially at
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the smaller sample sizes n = 500 and n = 1000, with the CIsar estimator having a
much smaller mae and much better coverage probability than either HT estimator.
For example, at n = 1000 the mae for CIsar is very similar to that of oracle 2SLS,
0.014 vs 0.011, and the coverage probability is 0.89, with the average length of
the confidence interval being the same as that of the oracle estimator and equal
to 0.066. In contrast, the mae for HT2kz at n = 1000 is equal to 0.31. Its coverage
probability is only 0.088, and the average length of the confidence interval is large
and equal to 0.22. The latter is due to the fact that too many instruments get
selected as invalid, the average

∣∣∣Ân

∣∣∣ being 17.10, compared to 11.60 for CIsar. In
terms of mae and coverage probability HT2kz is better behaved than HT4kz for
n = 1000 and n = 2000. Although all three estimators are close to oracle 2SLS
at n = 5000, and select all invalid instruments correctly as invalid, the HT4kz

is now better behaved overall than HT2kz as HT2kz still selects on average too
many instruments as invalid, 12.69, versus 12.03 and 12.01 for HT4kz and CIsar
respectively. This is as expected, as the threshold parameter needs to increase
with the sample size for consistent selection in this fixed kz setup.

The results for the kz = 7 case as presented in Appendix 1.A.7 show again a
better performance of the CIsar estimator in terms of mae and coverage probability
compared to the HT estimators, although the differences are overall smaller due
to the smaller number of instruments.

The CI method, as it ignores covariances for the grouping of instruments, is
well suited to low instrument correlation settings as in Mendelian randomisation,
but it clearly does also very well in the instrument correlation setting as specified
above. The HT method may well have better finite sample properties in different
settings, but a main advantage of the CI downward testing method is that it selects
the model with the largest number of instruments selected as valid that passes the
Sargan test. In contrast, the HT method may select models that do get rejected
by the Sargan test, as we find in the application presented next.
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1.8 Application: The Effect of BMI on Blood
Pressure

We use data on 105, 276 individuals from the UK Biobank and investigate the
effect of BMI on diastolic blood pressure, DBP. See for further details Windmeijer
et al. (2019). We use 96 SNPs as potential instruments for BMI as identified
in independent GWAS studies, see Locke et al. (2015). Because of skewness, we
log-transformed both BMI and DBP. The linear model specification includes age,
age2 and sex, together with 15 principal components of the genetic relatedness
matrix as additional explanatory variables. Because of the log-transformation, the
interpretation of the causal parameter of interest β is that of an elasticity, i.e. an
increase of BMI by 1% changes DPB by β%.

Table 1.3 presents the estimation results. R code for the estimation procedure is
available at https://github.com/xlbristol/CIIV. We present here the results based
on the assumption of conditional homoskedasticity. Robust methods as discussed
in Section 1.5 produce virtually identical results. The first set of results is based
on the full set of instruments, not performing a first-stage thresholding, or in other
words setting ωn = 0 in (1.31). The OLS estimate of the causal parameter is equal
to 0.206 (se 0.002), whereas the 2SLS estimate treating all 96 instruments as valid
is much smaller at 0.087 (se 0.016). The Sargan test, however, rejects the null that
all the instruments are valid with a p-value of 2.05e-19.

The HT4kz method does not select any instruments as invalid, whereas HT2kz

selects 3 instruments as invalid. The HT2kz estimate is equal to 0.104 (se 0.016),
slightly larger that the 2SLS estimate, but the Sargan test still has a very small
p-value of 3.11e-11, rejecting this model.
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Table 1.3: Estimation results, the effect of ln(BMI) on ln(DBP )

p-value
estimate st err

∣∣∣Ân∣∣∣ Sargan test
ωn = 0, kz = 96

OLS 0.206 0.002
2SLS 0.087 0.016 0 2.05e-19
HT4kz 0.087 0.016 0 2.05e-19
HT2kz 0.104 0.016 3 3.11e-11
CIsar 0.140 0.019 13 0.011

Post-ALassosar 0.163 0.018 11 0.013
ωn = 3.03, kz = 62

OLS 0.206 0.002
2SLS 0.086 0.016 0 2.80e-19
HT4kz 0.098 0.016 1 5.29e-14
HT2kz 0.104 0.017 2 1.90e-11
CIsar 0.174 0.020 9 0.014

Post-ALassosar 0.174 0.020 9 0.014
Notes: sample size n = 105, 276.

Using a threshold p-value of 0.1/ log(n) = 0.0086 for the downward testing CIsar
procedure results in a selection of 13 instruments as invalid. The CIsar estimate is
0.140 (se 0.019), indicating a downward bias of the 2SLS estimator when treating
all instruments as valid. The p-value of the Sargan test in the resulting model is
equal to 0.011.

Further presented are the estimation results of the post adaptive Lasso esti-
mator of Windmeijer et al. (2019), also using a downward Sargan p-value based
testing procedure. This method selects 11 instruments as invalid, resulting in an
estimate of 0.163 (se 0.018) and a p-value of the Sargan test of 0.013. This method
has oracle properties if more than 50% of the instruments are valid, an assumption
that does not appear to be invalid given the estimation results of the CIsar method.
It is more efficient in this case than the CIsar method as it finds a model with a
larger group of valid instruments that passes the Sargan test.

Of the selected invalid instruments, the CI and Lasso methods have eight in
common. In particular, the Lasso method is able to select as invalid two instru-
ments that are very weak with large values of

∣∣∣β̂j∣∣∣ and se
(
β̂j
)
. The CI method is
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not able to classify these as invalid, as discussed in Section 3.4.2. We can there-
fore apply the first-stage thresholding in order to exclude these instruments from
consideration.

The second set of results presented in Table 1.3 performs a first-stage threshold-
ing using the Guo et al. (2018) recommended value of ωn =

√
2.01 log (kz) = 3.03.

A total of 34 instruments do not pass this threshold. They are treated as invalid
and included in the model as explanatory variables. The OLS and naive 2SLS
estimators are virtually unchanged. The HT4kz estimator selects one additional
instrument as invalid, with the p-value of the Sargan test of the resulting model
equal to 5.29e-14, clearly rejecting the model. The HT2kz procedure selects 2
instruments as invalid and the model is also rejected by the Sargan test. Inter-
estingly, the CIsar and post adaptive Lasso procedures result in the same model
selection with the same 9 instruments selected as invalid. The resulting estimate
is equal to 0.174 (se 0.020), again showing that the naive 2SLS estimator of the
effect of log (BMI) on log (DBP ) is downward biased. This result is quite close
to the OLS result, indicating that there is much less unobserved confounding in
this relationship than suggested by the naive 2SLS estimator. The 9 instruments
selected as invalid for ωn = 3.03 are a subset of the 13 instruments selected for
ωn = 0 for CIsar. For the Lasso procedure, 8 of the 9 instruments selected as
invalid for ωn = 3.03 were also selected as invalid for ωn = 0.

Figure 1.A.4 in Appendix 1.A.8 displays the confidence intervals for the ωn =
3.03, kz = 62 case at the selected final breakpoint ψ∗

n = 2.35. Only one of the
instruments selected as invalid has a positive estimate for the causal effect, whereas
the other 8 have negative estimates, resulting in a larger estimate of the causal
effect when these instruments are treated as invalid.

In order to compare the results to those found by Zhao et al. (2019) we also
performed the analysis on the untransformed BMI and DPB variables. The results
for OLS in this case are 0.559 (0.0062), for 2SLS, 0.248 (0.0452), and for CIsar,
0.568 (0.0565), with 13 instruments found to be invalid. For the pre-selected
kz = 62 case, the results for 2SLS are 0.244 (0.0469), and for CIsar, 0.494 (0.0557),
with 9 instruments found to be invalid. In the latter case these invalid instruments
are identical to the ones found above, but this is not the case when kz = 96. Again
these results suggest that the original OLS results suffer much less from unobserved
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confounding bias than the naive 2SLS estimator suggests. These results are similar
to those found in the two-sample summary data analysis of Zhao et al. (2019), who
found profile score, RAPS, IVW and weighted median estimates of 0.601 (0.054),
0.402 (0.106), 0.514 (0.102) and 0.472 (0.176) respectively in their analysis with
160 SNPs as potential instruments.

1.9 Conclusion and Discussion

We have shown that the confidence interval method for selecting the set of valid
instruments from a putative set of instruments that may include invalid ones for
an instrumental variables analysis is a viable alternative to the hard threshold-
ing method and the adaptive Lasso method when the plurality rule holds. The
methods developed for selecting invalid instruments thus far have only considered
a single endogenous treatment variable. Recent analyses have considered models
with multiple treatments, see e.g. Sanderson et al. (2019) for an examination of
multivariable Mendelian randomisation. An extension of the instrument selection
methods for multiple treatment models is not straightforward. When the majority
rule applies, the adaptive Lasso method can be utilised by constructing an ini-
tial consistent median-of-medians estimator, see Chapter 2. For the HT and CI
methods, such an extension is the subject of future research.
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1.A Appendix

1.A.1 Proofs of Lemma 1.1 and Theorems 1.3 and 1.4

Lemma 1.1

Proof. It suffices to show the result for V0. Invoking Assumption 1.2, it follows
that |V0| > 1. Consider a valid instrument Zq, q ∈ V0, and invalid instrument Zs,
s ∈ A0. Consider wlog the case with βs > β. Let σ̂j =

√
nv̂j. The joint limiting

distribution of the estimators β̂q and β̂s is given by

√
n

 β̂q

β̂s

−

 β

βs

 d→ N

 0
0

 ,
 σ2

q σqs

σqs σ2
s

 .
Then the confidence intervals will not overlap when n → ∞, as

lim
n→∞

P
(
β̂q + v̂qψn < β̂s − v̂sψn

)
= lim

n→∞
P
(
β̂q − β̂s < −ψn (v̂q + v̂s)

)
(1.A.1)

= lim
n→∞

P

√
n
((
β̂q − β̂s

)
− (β − βs)

)
√
σ2
q + σ2

s − 2σqs
< −ψn

σ̂q + σ̂s√
σ2
q + σ2

s − 2σqs
+

√
n (βs − β)√

σ2
q + σ2

s − 2σqs


= 1,

as √
n
((
β̂q − β̂s

)
− (β − βs)

)
√
σ2
q + σ2

s − 2σqs
d→ N (0, 1)

and ψn = o
(
n1/2

)
.

For any pair of valid instruments Zq and Zk, q, k ∈ V0, we have that the
confidence intervals will overlap with probability 1 when n → ∞, as

lim
n→∞

P
(
β̂q + v̂qψn > β̂k − v̂kψn

)
= lim

n→∞
P
(
β̂q − β̂k > −ψn (v̂q + v̂k)

)
= lim

n→∞
P

 √
n
((
β̂q − β̂k

))
√
σ2
q + σ2

k − 2σqk
> −ψn

σ̂q + σ̂k√
σ2
q + σ2

k − 2σqk


= 1,
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as ψn → ∞. The above results hold for all groups Vg. Therefore, for n → ∞,
ψn → ∞, ψn = o

(
n1/2

)
, all confidence intervals of the instruments within a group

will overlap, whereas none of the confidence intervals of instruments in different
groups Vg and Vg′ will overlap.

Theorem 1.3

Proof. It follows directly from Theorem 1.1 that V̂sar
n → V0 when n → ∞, ψn → ∞

and ψn = o
(
n1/2

)
. For ψn = O

(
n1/2+δ

)
for δ > 0, it follows from Lemma

1.1 that the confidence intervals of all kz instruments overlap with each other. As
maxt=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣ is nondecreasing in ψn, there exists cn satisfying the con-
ditions stated if kV0 < kz. From Lemma 1.1 it follows that the sequence cn depends
on the values of β, βs, σ̂q and σ̂s, s = 1, . . . , kA0 ∈ A0, q = 1, . . . , kV0 ∈ V0. Then,
for ψn√

n
increasing to cn, for n → ∞ we have that all confidence intervals of the valid

instruments will overlap with each other, but there will be at least one and a maxi-
mum of kz −kV0 additional sets of kV0 overlapping confidence intervals from a mix-
ture of valid and invalid instruments. For these mixtures, the Sargan test statistic
is Op (n) and only for the set of valid instruments it has a limiting χ2

kz−kA0 −1 distri-

bution. Therefore, limn→∞ P
(

minm′=1,...,M(ψn) S
(
θ̂Âmax

m′ (ψn)

)
= S

(
θ̂A0

))
= 1 and

the results follow.

Theorem 1.4

Proof. For kV0 = kz, the Sargan test statistic for the model with the full set of
instruments selected as valid has a limiting χ2

kz−1 distribution and hence in the
model with the largest value of ψ∗

[s] = ψ∗
[kz ] it follows that

lim
n→∞

P

S
θ̂

Âsar
n

(
ψ∗

[kz ]

) < ζn,kz−1

 = 1,

as ζn,kz−1 → ∞.
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Next consider kV0 < kz. For any s > kV0 the set of instruments selected as
valid is a mixture of valid and invalid instruments and hence

lim
n→∞,s>kV0

P

S
θ̂

Âsar
n

(
ψ∗

[s]

) < ζn,s−1

 = 0,

as S
θ̂

Âsar
n

(
ψ∗

[s]

) = Op (n) for s > kV0 , and ζn,s−1 = o (n).

For s = kV0 , by construction we have that maxt=1,...,T (ψ∗
[kV0 ])

∣∣∣V̂over
t

(
ψ∗

[kV0 ]

)∣∣∣ =

kV0 , and for ψn > ψ∗
[kV0 ], maxt=1,...,T (ψn)

∣∣∣V̂over
t (ψn)

∣∣∣ > kV0 . Further, it follows from
Lemma 1.1 that ψ∗

[kV0 ] = Op

(
n1/2

)
and therefore ψ∗

[kV0 ]/
√
n satisfies the conditions

for cn as described in Theorem 1.3. For n → ∞, for ψn = ψ∗
[kV0 ], the set of

groups with the maximum kV0 overlapping confidence intervals,
{
V̂max
m′

(
ψ∗

[kV0 ]

)}
,

m′ = 1, . . . ,M
(
ψ∗

[kV0 ]

)
, therefore includes V0 and contains other sets that are

mixtures of valid and invalid instruments. It follows that

lim
n→∞

P

(
S

(
θ̂Âsar

n (ψ∗
[kV0 ])

)
< ζn,kV0 −1

)
= 1,

and
lim
n→∞

P

(
S

(
θ̂Âsar

n (ψ∗
[kV0 ])

)
= S

(
θ̂A0

))
= 1.

The breakpoint ψ∗
[kV0 ] is the maximum of the

{
ψ∗

[s]

}kz

s=2
for which this occurs and

hence,
lim
n→∞

P
(
S
(
θ̂Âsar

n (ψ∗
n)

)
= S

(
θ̂A0

))
= 1,

and the results follow.

1.A.2 Limiting Distribution of Oracle 2SLS Estimator β̂or.

The oracle model is given by

y = dβ + ZA0αA0 + u = XA0θA0 + u,
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with XA0 = [d ZA0 ] and θA0 =
(
β α′

A0

)′
. The instrument matrix is given by

Z = [ZV0 ZA0 ] and the 2SLS estimator for θA0 is

θ̂A0 =
(
X′

A0PZXA0

)−1
X′

A0PZy.

For kA0 < kz and under Assumptions 1.1 and 1.3-1.6, as n → ∞,

√
n
(
θ̂A0 − θA0

)
d→ N

(
0, σ2

uplim
(( 1

n
X′

A0PZXA0

)−1))
,

see e.g. Davidson and MacKinnon (2004, p 322).
As PZXA0 = [PZd ZA0 ] ,it follows that

X′
A0PZXA0 =

 d′PZ

ZA0

 [PZd ZA0 ] =
 d′PZd d′ZA0

Z′
A0d Z′

A0ZA0

 .
For the inverse of a partitioned matrix we have

(
X′

A0PZXA0

)−1
=
 e f ′

f G

 ; e =
(
d′PZd − d′PZA0

d
)−1

,

and, as PZA0
PZ = PZA0

, it follows that d′PZd − d′PZA0
d = d̂′d̂ − d̂′PZA0

d̂ =
d̂′MZA0

d̂.
It therefore follows that, as n → ∞,

√
n
(
β̂or − β

)
d→ N

(
0, σ2

uplim
(( 1

n
d̂′MZA0

d̂
)−1))

,

with, under Assumption 5,

plim
( 1
n

d̂′MZA0
d̂
)

= plim
( 1
n

(
d′PZd − d′PZA0

d
))

= E [Zi.Di]′ E [Zi.Z′
i.]

−1
E [Zi.Di]

− E [ZA0,i.Di]′ E
[
ZA0,i.Z′

A0,i.

]−1
E [ZA0,i.Di] .
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1.A.3 Correlated Instruments and Violations of the Exclu-
sion Conditions

We next give some graphical representations of the causal model and possible
violations of the exclusion conditions. First consider the directed acyclic graph
(DAG), Pearl (2009), shown in Figure 1.A.1. The nodes are the treatment D,
outcome Y , unobserved confounders UC and three putative instruments Z1, Z2

and Z3. The directed edges represent the direction of effect. There is a causal
effect from D to Y , which is confounded by UC. The three instruments all satisfy
Condition 1, as they all have directed edges toD, but there is a direct pathway form
Z1 to Y and an indirect pathway from Z2 to Y via UC. Hence Z1 and Z2 are invalid
instruments, with α1 ̸= 0 and α2 ̸= 0 in model (1.1). Z3 is a valid instrument after
conditioning on Z1 and Z2, i.e. after including Z1 and Z2 as explanatory variables
in model (1.1). Note that this is independent of the correlation structure between
the instruments, as indicated by the bidirectional edges, as conditioning on Z1 and
Z2 blocks any pathway from Z3 to Y other than via D. Hence Z3 then satisfies
both Conditions 2 and 3, α3 = 0, and is a valid instrument.

Next consider violation of exclusion Condition 3 with unobserved confounders
affecting the instrument and outcome. In Figure 1.A.2, Z4 is an invalid instrument
because unobserved confounding UC affects both Z4 and the outcome Y .

In the left panel of Figure 1.A.2, there is a directed effect from Z4 to Z3, and
after conditioning on Z4, Z3 is a valid instrument as then the pathway from UC

to Z3 is blocked. In the right panel of Figure 1.A.2 there is a directed effect from
Z3 to Z4. This results in Z4 being a collider and hence rendering Z3 invalid after
conditioning on Z4. Both α3 and α4 are then different from zero in model (1.1).

1.A.4 Downward Testing Algorithm and Illustration

The algorithm for the downward testing CI method is as follows:

1. Select all instruments as valid and compute the Sargan test statistic. Choose
pn → 0, log (pn) = o (n), for example pn = 0.1/ log (n). If the p-value of the
Sargan test statistic, using the χ2

kz−1 distribution, is larger than pn, then
stop, there is no evidence that any of the instruments are invalid. If the
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Figure 1.A.1: Directed Acyclic Graph. UC represents unmeasured confounders.
Z1 and Z2 are invalid instruments. Z3 is a valid instrument after conditioning on
Z1 and Z2, independent of any directional correlations between the instruments.

Figure 1.A.2: Instrument Z4 is invalid. In the left panel, Z3 is a valid instrument
after conditioning on Z4. In the right panel, Z3 becomes an invalid instrument
after conditioning on Z4.

p-value is smaller than pn then go to step 2.

2. Calculate the set of kz (kz − 1) /2 possible breakpoints ψ∗
j,r =

∣∣∣β̂j − β̂r
∣∣∣ / (v̂j + v̂r),

j = 1, . . . , kz − 1, r = j + 1, . . . , kz. Let s = kz − 1 and set ψn = ψ∗
[s] =

maxj,r
(
ψ∗
j,r

)
.

3. Find the groups with the largest number of overlapping confidence intervals
using Algorithm 1.1.

4. Compute the Sargan test statistics for the groups found in step 3. If the
p-value of the minimum of these Sargan test statistics, using the χ2

s−1 distri-
bution, is larger than pn, then stop and select the associated group as valid
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instruments. If the p-value is smaller then pn, then go to step 5.

5. Set s = s − 1 and set ψn = ψ∗
[s], which is the smallest of the maximum

breakpoints for the groups found in step 3, see (1.19).

6. Repeat steps 3-5 until the p-value in step 4 is larger than pn and s > 1. If
no such model can be found, then no group of instruments can be classified
as valid.

The computational cost of the ordering Algorithm 1.1 is O (kz log (kz)), and there-
fore the computational cost of this algorithm is of the order O (k2

z log (kz)).
We illustrate the procedure using one set of data generated from a design with

kz = 7, n = 1000, kA0 = 4, α = (0.8, 0.4, 0.4, 0.2,0′
3) and γ = (0.8, 0.4, 0.6, 0.8, 0.8, 0.4, 0.4).

All other parameter settings are as in the Monte Carlo design in Section 1.7. In
this setting there are four groups of instruments, V0 = {5, 6, 7}, V0.25 = {4},
V0.67 = {3} and V1 = {1, 2}. For this sample size, we set pn = 0.1/ log(n) = 0.015.

For the generated data set, the Sargan test treating all instruments as valid
rejects the null. The estimates β̂j, standard errors v̂j and breakpoints ψ∗

j,r =∣∣∣β̂j − β̂r
∣∣∣ / (v̂j + v̂r) are given by

β̂j v̂j

2.08 0.058
1.84 0.111
1.67 0.069
1.28 0.052
0.98 0.050
0.81 0.122
1.05 0.080

ψ∗
j,r

j\r 2 3 4 5 6 7
1 1.46 3.29 7.30 10.25 7.06 7.49
2 0.95 3.41 5.36 4.41 4.13
3 3.18 5.80 4.48 4.14
4 3.02 2.71 1.76
5 0.96 0.58
6 1.19

Therefore ψ∗
[kz−1] = ψ∗

[6] = 10.25, and for ψn = ψ∗
[6] we have two groups with

six overlapping confidence intervals using Algorithm 1.1, as displayed in Figure
1.A.3. Table 1.A.1, together with Figure 1.A.3, shows the step-by-step results of
the downward testing CI method, here resulting in correctly selecting instruments
{5, 6, 7} as the set of valid instruments.
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Table 1.A.1: Step-by-step results of algorithm

s ψn V̂max
m′ Âmax

m′ p-value Sargan ψ∗
m′,[s−1] ψ∗

[s−1], (j, r)

7 >10.25 {1, 2, 3, 4, 5, 6, 7} ∅ 2.20e-92 10.25 10.25, (1, 5)

6 10.25 {2, 3, 4, 5, 6, 7} {1} 5.61e-41 5.80 5.80, (3, 5)
{1, 2, 3, 4, 6, 7} {5} 4.88e-55 7.49

5 5.80 {2, 4, 5, 6, 7} {1, 3} 1.98e-17 5.36
{2, 3, 4, 6, 7} {1, 5} 1.19e-25 4.48 4.48, (3, 6)

4 4.48 {4, 5, 6, 7} {1, 2, 3} 1.41e-05 3.02 3.02, (4, 5)
{2, 4, 6, 7} {1, 3, 5} 3.03e-15 4.41
{2, 3, 4, 7} {1, 5, 6} 2.82e-13 4.14

3 3.02 {5, 6, 7} {1, 2, 3, 4} 0.36 > 0.015
{4, 5, 7} {1, 2, 3, 6} 1.56e-5

1.A.5 Alternative Representation of Estimators β̂j and π̂
[j]
k

Consider the model specifications

y = dβj + Z{−j}π
[j] + uj, (1.A.2)

for j = 1, ..., kz, where Z{−j} = Z\ {Z.j}, the instrument matrix with the j-th
instrument omitted. From models (1.1) and (1.6) it follows that

uj = u + αj
γj
εd

βj = β + αj
γj

π
[j]
k = αk − αj

γj
γk

= βγk + αk −
(
β + αj

γj

)
γk = Γk − βjγk

where here the index k = 1, 2, ..., j − 1, j + 1, ...kz is the index for the included
instruments. For example for kz = 3, π[1] =

(
π

[1]
2 π

[1]
3

)′
, π[2] =

(
π

[2]
1 π

[2]
3

)′
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Figure 1.A.3: Confidence intervals for values of ψn = ψ∗
[s], for s = 6, ..., 3, with

largest groups of overlapping confidence intervals indicated by intersections with
dotted horizontal lines. Instrument number j on x-axis.

and π[3] =
(
π

[3]
1 π

[3]
2

)′
.

For estimating the parameters in (1.A.2) by 2SLS using instruments Z, this
is a just-identified model as Z.j is the only excluded instrument. Let Xj =[

d Z{−j}

]
, then the 2SLS estimator for θj =

(
βj π[j]′

)′
is given by

θ̂j,2sls =
(
X′
jPZXj

)−1
X′
jPZy = (Z′Xj)−1 Z′y, (1.A.3)
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and so

β̂j,2sls = θ̂j,2sls,1; (1.A.4)
π̂

[j]
k,2sls = θ̂j,2sls,k∗ , (1.A.5)

where k∗ = k + 1 (k < j). The estimator for the variance of θ̂j,2sls is given by

V̂ ar
(
θ̂j,2sls

)
= σ̂2

uj

(
X′
jPZXj

)−1
, (1.A.6)

where σ̂2
uj

= û′
j,2slsûj,2sls/n, ûj,2sls = y − Xθ̂j,2sls, and hence

V̂ ar
(
β̂j,2sls

)
= σ̂2

uj

(
X′
jPZXj

)−1

11
(1.A.7)

V̂ ar
(
π̂

[j]
k,2sls

)
= σ̂2

uj

(
X′
jPZXj

)−1

k∗,k∗
. (1.A.8)

The following proposition establishes the equivalences of β̂j and β̂j,2sls; V̂ ar
(
β̂j
)

and V̂ ar
(
β̂j,2sls

)
; π̂[j]

k and π̂
[j]
k,2sls; and V̂ ar

(
π̂

[j]
k

)
and V̂ ar

(
π̂

[j]
k,2sls

)
.

Consider the estimators β̂j, β̂j,2sls, π̂[j]
k and π̂

[j]
k,2sls as given in (1.9), (1.A.4),

(1.20) and (1.A.5) respectively, and the variance estimators V̂ ar
(
β̂j
)
, V̂ ar

(
β̂j,2sls

)
,

V̂ ar
(
π̂

[j]
k

)
and V̂ ar

(
π̂

[j]
k,2sls

)
as defined in (1.11), (1.A.7), (1.21) and (1.A.8) respec-

tively. Then β̂j = β̂j,2sls; π̂[j]
k = π̂

[j]
k,2sls; V̂ ar

(
β̂j
)

= V̂ ar
(
β̂j,2sls

)
; and V̂ ar

(
π̂

[j]
k

)
=

V̂ ar
(
π̂

[j]
k,2sls

)
.

Proof. Recall that we have the reduced-form and first-stage specifications

y = ZΓ + εy

d = Zγ + εd,

with the OLS estimators denoted Γ̂ and γ̂. The estimators for βj are given β̂j = Γ̂j

γ̂j

and the Guo et al. (2018) hard thresholding method is based on comparing the esti-
mators π̂[j]

k = Γ̂k− β̂j γ̂k = Γ̂k− Γ̂j

γ̂j
γ̂k to 0. Define π̂[j] =

(
π̂

[j]
1 , ..., π̂

[j]
j−1, π̂

[j]
j+1, ..., π̂

[j]
kz

)′
.

Let the OLS residuals be ε̂y = y − ZΓ̂ and ε̂d = y − Zγ̂, and define Ω̂ =
1
n

(
ε̂y ε̂d

)′ (
ε̂y ε̂d

)
. Then the estimator for the variance of β̂j, using the delta
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method, is given by

V̂ ar
(
β̂j
)

=
τ̂ 2
j

γ̂2
j

(Z′Z)−1
jj ,

where

τ̂ 2
j =

(
1 −β̂j

)
Ω̂

 1
−β̂j

 = 1
n

(
ε̂y − β̂j ε̂d

)′ (
ε̂y − β̂j ε̂d

)
= 1

n

(
y − β̂jd

)′
MZ

(
y − β̂jd

)
.

For π̂[j]
k we have the variance estimator

V̂ ar
(
π̂

[j]
k

)
= τ̂ 2

j

(Z′Z)−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)−1

kj +
(
γ̂k
γ̂j

)2

(Z′Z)−1
jj

 .
For ease of exposition and wlog, let j = 1, and partition Z =

[
Z.1 Z2

]
,

where Z2 is an n × (kz − 1) matrix. Equivalently, partition γ =
(
γ1 γ′

2

)′
and

Γ =
(

Γ1 Γ′
2

)′
. Then consider the specification

y = dβ1 + Z2π
[1] + u1.

Let Z∗ =
[

d̂ Z2

]
, then Z∗ = ZĤ, with

Ĥ =
 γ̂1 0
γ̂2 Ikz−1

 ; Ĥ−1 =
 γ̂−1

1 0
−γ̂2γ̂

−1
1 Ikz−1

 .
The 2SLS estimator for θ1 =

(
β1 π[1]′

)′
is given by

θ̂1,2sls = (Z∗′Z∗)−1 Z∗′y = Ĥ−1 (Z′Z)−1 Z′y = Ĥ−1Γ̂.

Hence

β̂1,2sls = Γ̂1

γ̂1
= β̂1

π̂
[1]
2sls = Γ̂2 − γ̂2

Γ̂1

γ̂1
= Γ̂2 − β̂1γ̂2 = π̂[1].
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Let û1,2sls = y − dβ̂1,2sls − Z2π̂
[1]
2sls. As the model is just identified, it follows that

Z′û1,2sls = 0, hence û1,2sls = MZû1,2sls = MZ

(
y − β̂1d

)
. Therefore,

σ̂2
u1 = 1

n
û′

1,2slsû1,2sls = 1
n

û′
1,2slsMZû1,2sls

=
(
y − β̂1d

)′
MZ

(
y − β̂1d

)
= τ̂ 2

1 .

The estimator of the variance of the 2SLS estimator θ̂1,2sls is given by

V̂ ar
(
θ̂1,2sls

)
= σ̂2

u1 (Z∗′Z∗)−1 = σ̂2
u1Ĥ−1 (Z′Z)−1 Ĥ−1′.

Let Ĥ−1
1. be the first row of Ĥ−1. Then

V̂ ar
(
β̂1,2sls

)
= σ̂2

u1Ĥ−1
1. (Z′Z)−1 (Ĥ−1

1.

)′

= σ̂2
u1

(
γ̂−1

1 0
)

(Z′Z)−1

 γ̂−1
1

0


= τ̂ 2

1
γ̂2

1
(Z′Z)−1

11 = V âr
(
β̂1
)
.

For k = 2, ..., kz, let ek−1
kz−1 be a kz − 1 dimensional unit vector with (k − 1)-th

element equal to 1. Then,

V̂ ar
(
π̂

[1]
k,2sls

)
= σ̂2

u1Ĥ−1
k. (Z′Z)−1 (Ĥ−1

k.

)′

= τ̂ 2
1

(
− γ̂k

γ̂1

(
ek−1
kz−1

)′ ) (Z′Z)−1

 − γ̂k

γ̂1

ek−1
kz−1


= τ̂ 2

1

(Z′Z)−1
kk − 2

(
γ̂k
γ̂1

)
(Z′Z)−1

k1 +
(
γ̂k
γ̂1

)2

(Z′Z)−1
11

 = V âr
(
π̂

[1]
k

)
.

It therefore follows that the t-test statistic for testing H0 : π[1]
k = 0, given by

t
[1]
k = π̂

[1]
k√

V̂ ar
(
π̂

[1]
k

) ,
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is identical to the 2SLS t-statistic for testing the null H0 : π[1]
k in the just-identified

model
y = dβ1 + Z2π

[1] + u1.

This generalises to any j.
Next, partition Z =

[
Z.1 Z.2 Z3

]
, π[1] =

(
π

[1]
2 π

[1]′
3

)′
and consider the

test for H0 : π[1]
2 = 0 in

y = dβ1 + Z.2π
[1]
2 + Z3π

[1]
3 + u1.

The model under the null is then given by

y = dβ1 + Z3π
[1]
3 + u1 (1.A.9)

and the score test for H0 : π[1]
2 = 0 is then the same as the Sargan test for overiden-

tifying restrictions in (1.A.9) after estimation by 2SLS using instruments Z, see
Newey and West (1987). The Guo et al. (2018) method is a Wald test approach,
which is asymmetric, that is t[1]

2 ̸= t
[2]
1 , whereas the Sargan test is symmetric, i.e.

the score test for testing H0 : π[1]
2 = 0 is identical to the score test for testing

H0 : π[2]
1 = 0 in the specification

y = dβ2 + Z.1π
[2]
1 + Z3π

[2]
3 + u2.

1.A.6 Formulation of Threshold Set by Guo et al. (2018)

In their formulation of the model, Guo et al. (2018) explicitly include exogenous
explanatory variables X, and their matrix W =

[
Z X

]
. In the low dimension

setting we consider here, the X variables have been partialled out, and W = Z,
where it is implicitly understood that Z are the residuals after linear regression on
X. Then, following their notation, Û = (Z′Z/n)−1 and σ̂2[j]

is the same as τ̂ 2
j as

defined in (1.11). The formulation of the threshold set V̂ [j] is given in Guo et al.

53



(2018, equation (7), p 9)) as

V̂ [j] =

k :
∣∣∣π̂[j]
k

∣∣∣ ≤
√
σ̂2[j]

∥∥∥∥W{
Û.k −

(
γ̂k

γ̂j

)
Û.j

}∥∥∥∥
2√

n

√
2.012 log (max (kz, n))

n

 .

Denote
√

2.012 log (max (kz, n)) = ψn. Then consider

σ̂2[j]

n2

∥∥∥∥∥W
{

Û.k −
(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥∥
2

2

= σ̂2[j]

n2

∥∥∥∥∥Z
{

Û.k −
(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥∥
2

2

= τ̂ 2
j

(
(Z′Z)−1

.k −
(
γ̂k
γ̂j

)
(Z′Z)−1

.j

)′

Z′Z
(

(Z′Z)−1
.k −

(
γ̂k
γ̂j

)
(Z′Z)−1

.j

)

= τ̂ 2
j

(Z′Z)−1
kk − 2

(
γ̂k
γ̂j

)
(Z′Z)−1

kj +
(
γ̂k
γ̂j

)2

(Z′Z)−1
jj


= V̂ ar

(
π̂

[j]
k

)
,

as defined in (1.21).
Therefore,

√
σ̂2[j]

∥∥∥∥W{
Û.k −

(
γ̂k

γ̂j

)
Û.j

}∥∥∥∥
2√

n

√
2.012 log (max (kz, n))

n

=

√
σ̂2[j]

n

∥∥∥∥∥Z
{

Û.k −
(
γ̂k
γ̂j

)
Û.j

}∥∥∥∥∥
2
ψn

=
√
V̂ ar

(
π̂

[j]
k

)
ψn
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and hence

V̂ [j] =
{
k :

∣∣∣π̂[j]
k

∣∣∣ ≤
√
V̂ ar

(
π̂

[j]
k

)
ψn

}

=

k :

∣∣∣∣∣∣∣∣
π̂

[j]
k√

V̂ ar
(
π̂

[j]
k

)
∣∣∣∣∣∣∣∣ ≤ ψn

 =
{
k :

∣∣∣t[j]k ∣∣∣ ≤ ψn
}

1.A.7 Some Further Monte Carlo Results

Table 1.A.2 presents results for the same design as in Guo et al. (2018, Table
2), with kz = 7, kA0 = 4, α = ca (ι′2, 0.5ι′2,0′

3)
′, ρz = 0, cα = 0.2, and cγ =

0.6. The results for mae and CI length for the HT2kz estimator are very similar
to those reported in Guo et al. (2018). There are some differences in coverage
probabilities, but this is due to the fact that they report results from only 500
Monte Carlo repetitions, whereas we do 10,000 replications. The results show
again a better performance of the CIsar estimator in terms of mae and coverage
probability compared to the HT estimators, although the difference are overall
smaller than those presented in Table 1.2 due to the smaller number of instruments.
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Table 1.A.2: Estimation Results, kz = 7

mae coverage CI length
∣∣∣Ân

∣∣∣ por pallinv
n = 500
2SLS or 0.029 0.949 0.169 4.000 1.000 1.000
2SLS 0.143 0.002 0.110 0.000 0.000 0.000
HT4kz 0.136 0.059 0.114 0.441 0.000 0.000
HT2kz 0.120 0.194 0.127 1.691 0.000 0.004
CIsar 0.102 0.291 0.127 1.756 0.001 0.001
n = 1000
2SLS or 0.020 0.946 0.119 4.000 1.000 1.000
2SLS 0.144 0.000 0.078 0.000 0.000 0.000
HT4kz 0.123 0.076 0.087 1.405 0.000 0.001
HT2kz 0.096 0.266 0.120 3.454 0.026 0.113
CIsar 0.071 0.332 0.099 2.674 0.044 0.044
n = 2000
2SLS or 0.015 0.946 0.084 4.000 1.000 1.000
2SLS 0.143 0.000 0.055 0.000 0.000 0.000
HT4kz 0.088 0.206 0.088 3.657 0.039 0.143
HT2kz 0.040 0.590 0.098 4.236 0.385 0.601
CIsar 0.026 0.654 0.079 3.568 0.558 0.558
n = 5000
2SLS or 0.009 0.950 0.053 4.000 1.000 1.000
2SLS 0.143 0.000 0.035 0.000 0.000 0.000
HT4kz 0.010 0.892 0.055 4.054 0.900 0.953
HT2kz 0.010 0.924 0.057 4.114 0.871 0.970
CIsar 0.009 0.938 0.053 4.009 0.985 0.988
n = 10000
2SLS or 0.007 0.952 0.038 4.000 0.000 0.000
2SLS 0.143 0.000 0.025 0.000 0.000 0.000
HT4kz 0.007 0.951 0.038 4.020 0.986 0.999
HT2kz 0.007 0.932 0.040 4.115 0.879 0.975
CIsar 0.007 0.943 0.038 4.011 0.989 0.993
Notes: Results from 10,000 MC replications; median absolute error; 95% CI
coverage and length; number of instruments selected as invalid; frequency of
selecting oracle model; frequency of selecting all invalid instruments as invalid.
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1.A.8 Confidence Intervals for Application
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Figure 1.A.4: Confidence intervals for ψ∗
n = 2.35 for effect of ln (BMI) on

ln (DPB), ωn = 3.03, kz = 62. Largest group of instruments with overlapping
confidence intervals with p-value for Sargan test statistic less than pn indicated by
intersections with dotted horizontal line. CIs for instruments selected as invalid
represented by dashed lines, for those selected as valid by solid lines. Mid-points
of CIs are point estimates β̂j represented by solid circles.

1.A.9 Summary Data

The CI method can be applied with multi-sample (e.g. GWAS) summary data,
where only

{
Γ̂j, se

(
Γ̂j
)}kz

j=1
and {γ̂j, se (γ̂j)}kz

j=1 are available from different, inde-
pendent sources, under the assumption that the instruments are independent. The
individual estimates are often obtained from bivariate regressions, and hence these
are only valid when the instruments are independent. From the sets of individual
estimates, we obtain the estimates β̂j = Γ̂j/γ̂j and v̂j =

√
V̂ ar

(
β̂j
)
, and so we can

construct the confidence intervals cij (ψn) as in (1.13). Starting from the model

57



where all instruments are assumed to be valid, the Sargan test is replaced by the
minimum distance Q-statistic,

Q
(
β̂kz

)
=

kz∑
j=1

(
β̂j − β̂kz

v̂j

)2

,

where β̂kz is the minimum-distance/inverse-variance weighted (IVW) estimator
given by

β̂kz =
∑kz
j=1 wjβ̂j∑kz
j=1 wj

where wj = v̂−2
j .

If all instruments are valid, then Q
(
β̂kz

)
d→ χ2

kz−1, and we can then follow the
steps of the algorithm described in Appendix 1.A.4, where now an estimator based
on s selected instruments as valid, denoted r = 1, ..., s, is given by

β̂s =
∑s
r=1 wrβ̂r∑s
r=1 wr

,

with associated Q-statistic

Q
(
β̂s
)

=
s∑
r=1

(
β̂r − β̂s

v̂r

)2

.

So, instead of including invalid instruments as explanatory variables in the model,
here invalid instruments are excluded from the analysis altogether, which gives
equivalent results when instruments are independent.
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Chapter 2

Adaptive Lasso Method for
Selecting Valid Instrumental
Variables with Two Endogenous
Variables

Abstract

In a linear instrumental variable (IV) setup with two endogenous exposure
variables, we investigate the adaptive Lasso as a method for selecting valid
instrumental variables from a set of available instruments that may contain
invalid ones. An instrument is invalid if it has a direct effect on the outcome
or affects the outcome through unobserved factors. Following Windmeijer
et al. (2018), we propose a median-in-medians estimator. This estimator
is consistent for the causal effects under the condition that the number of
invalid instruments is smaller than half of the total number of the candidate
instruments minus one. We show that the adaptive Lasso, which uses the
median-in-medians estimator for the penalty weights, can achieve oracle
selection and estimation. This is evidenced by our Monte Carlo simulation
results. We apply the method to estimate the causal effects of educational
attainment and cognitive ability on body mass index (BMI).
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search idea.
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2.1 Introduction

Instrumental variables (IV) are widely used to determine the causal effect of a
treatment/exposure on an outcome when their relationship is potentially con-
founded by unobserved factors. In IV estimation, it is crucial that all the in-
struments are valid. This requires that (a) the instruments must be associated
with the endogenous exposure variable (the relevance condition), and (b) the only
pathway from the instruments to the outcome is through the exposure; the instru-
ments must not have direct effects on the outcome nor affect the outcome through
unobservables (the exclusion restriction). In our research, we are concerned with
the situation where we have a large number of available instruments that satisfy
the relevance condition. However, some of the instruments may violate the exclu-
sion restriction and hence be invalid. If we include these invalid instruments in
IV estimation, it will result in inconsistent estimation. One mitigation strategy is
to select just the valid instruments and use these for IV estimation. This is the
strategy we use in this work.

Previous work has tackled the IV selection problem in the case of a single
endogenous variable. Kang et al. (2016) establish the model setup for IV selec-
tion, which has been adopted by most later work. They develop the identification
conditions and propose a selection method based on the least absolute shrinkage
and selection operator (Lasso) (Tibshirani, 1996). Windmeijer et al. (2019) pro-
pose a method based on the adaptive Lasso (Zou, 2006) under the assumption
that more than half of the candidate instruments are valid; the so-called majority
rule. Compared to Lasso, the adaptive Lasso method suggested by Windmeijer
et al. (2019) theoretically guarantees consistent selection without assuming the
restrictive Irrepresentable Condition. Guo et al. (2018) refine the identification
condition proposed by Kang et al. (2016) and they establish the sufficient and
necessary identification condition which is the plurality rule. It states that all the
valid instruments form the largest group where instruments form a group if their
instrument-specific estimators for the causal effect of interest converge to the same
value. The Hard Thresholding with Voting method proposed by Guo et al. (2018)
can achieve consistent selection under the plurality rule, which is a relaxation
of the majority rule. Also assuming the plurality rule, Windmeijer et al. (2021)
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propose the Confidence Interval method which theoretically guarantees consistent
selection, and also has better finite sample performance compared to the Hard
Thresholding method.

Unlike the existing literature above, we consider the case of two endogenous
variables. This setting can be motivated by Mendelian Randomization (MR) which
is used in epidemiology. In MR studies, genetic variants are used as instruments
for estimating the causal effect of an endogenous exposure on a health-related
outcome. In many cases, there may be additional endogenous variables that we
want to control for apart from the primary (endogenous) exposure. For example,
Sanderson et al. (2019) estimate the effect of educational attainment on body
mass index (BMI) conditional on cognitive ability. Both educational attainment
and cognitive ability are endogenous, and, thus, to use IV selection, the method
must handle multiple endogenous variables.

We contribute to the literature by extending the adaptive Lasso method in
Windmeijer et al. (2019) to allow for two endogenous variables. To this end, we
propose a median-of-medians estimator which is

√
n-consistent under the so-called

modified majority rule. This rule requires that the number of invalid instruments
is less than half of the total number of the candidate instruments minus one.
Using this median-of-medians estimator for the penalty weights, the adaptive Lasso
can select the valid instruments consistently, and the resulting post-selection IV
estimator has the same limiting distribution as if we knew the true set of valid
instruments. These properties are jointly as the oracle property (Fan and Li, 2001).

To obtain the median-of-medians estimator, the inputs we need are all the
just-identified estimators for the causal effects. To guarantee the identification of
the casual parameters in each of the just-identified models, we need to impose
the full rank assumption, which states that the 2 × 2 matrices formed by the
first-stage coefficients of all pairs of instruments must have full rank. In general,
this assumption requires that all instruments should be relevant for both endoge-
nous variables. In practice, however, this might not be the case, as the candidate
instruments may be identified separately for each endogenous variable. For ex-
ample, genetic variants that are candidate instruments for educational attainment
and cognitive ability are identified in separate GWAS studies. Therefore, an in-
dividual instrument might only be relevant for one of the endogenous exposures,
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which violates the full rank assumption. To relax the assumption, we also propose
an adjustment to the method that uses a block structure.

The rest of the paper is structured as follows. Section 2.2 introduces the
model setup for the IV selection and estimation problem. Section 2.3 develops
the adaptive Lasso IV selection method using the median-of-medians estimator as
penalty weights. We also combine the adaptive Lasso with the downward testing
procedure for model selection proposed by Andrews (1999). In Section 2.4, we
introduce the block structure variation of the method that accounts for violation of
the full rank assumption. Section 2.5 presents the Monte Carlo simulation results.
In Section 2.6, we apply our method to Mendelian randomisation and estimate the
causal effects of educational attainment and cognitive ability on BMI. Section 2.7
concludes.

Notation. In the remainder of the paper, let ∥.∥q denote the lq-norm of a
vector. For a matrix Xn×p with full column rank, let PX = X(X′X)−1X′ and
MX = In − PX where In is the n-dimensional identity matrix.

2.2 Model Setup

As in Kang et al. (2016), we consider the following potential outcomes model which
allows for potentially invalid instruments. For i = 1, ..., n, the observed outcome for
an individual i is denoted by the scalar Yi, the two endogenous exposure/treatment
variables by Xi ∈ R2, and the kz candidate instrumental variables by Zi ∈ Rkz

(kz > 2). Some of the candidate instruments may be invalid in the sense that they
may have direct effects on the outcome or affect the outcome through unobserved
factors. Let Y (x,z)

i be the outcome if individual i were to have exposure value x
and instrument value z. For a set of values (x∗, z∗), the potential outcomes model
is

Y
(x∗,z∗)
i = Y

(0,0)
i + x∗′θ + z∗′ϕ.

According to Holland (1988), it follows that the observed data model is

Yi = Y
(0,0)
i + X′

iθ + Z′
iϕ, (2.1)

63



where {Yi,X′
i,Z′

i}ni=1 is a random sample, θ is the parameter of interest, and ϕ

measures the direct effect of possibly invalid instruments on the outcome.
Apart from a direct effect, another possible violation of the exclusion restriction

is if the invalid instruments affect the outcome through unobservables. To capture
this indirect effect, we model the unobserved factor Y (0,0)

i in the following way:

E[Y (0,0)
i |Zi] = Z′

iµ, (2.2)

where the indirect effect is measured by the parameter µ. If we combine (2.1) and
(2.2), the observed date model is

Yi = X′
iθ + Z′

iα + ui, (2.3)

where α = ϕ + µ. By definition,

ui = Y
(0,0)
i − E[Y (0,0)

i |Zi]

and hence E[ui|Zi] = 0. The parameter α captures the violation of the exclusion
restriction; a valid instrument, which has zero direct effect as well as zero indirect
effect, has an entry in α that equals 0. Formally, following the definition of an
invalid instrument proposed by Kang et al. (2016), for j ∈ 1, ..., kz, an instrument
Zj is invalid if αj ̸= 0 and valid if αj = 0. Let V and A be the sets of indices of the
valid and invalid instruments respectively: V = {j : αj = 0}, A = {j : αj ̸= 0},
with dimensions kV and kA, then kz = kV +kA. Let ZV and ZA be the sets of valid
and invalid instruments. In this setup, we are interested in the identification and
estimation of both V and θ in large samples with fixed kz.

Let y be the n-vector of n observations on Yi, and let X and Z be the n × 2
and n×kz matrices of the endogenous treatment/exposure variables and candidate
instrumental variables, respectively. Rewrite the outcome equation (2.3) in matrix
form:

y = Xθ + Zα + u, (2.4)
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where u is the n− vector of ui. The first-stage linear projection of X on Z is

X = ZΠ + vx, (2.5)

where Π = E[Z′Z]−1E[Z′X] and E[Ziv
′
xi] = 0.

The ideal properties of the estimators for the set of valid instruments and the
causal effects, denoted by V̂ and θ̂, are summarized by the concept of the oracle
property (Fan and Li, 2001). This property states that the probability of selecting
the true set of valid instruments converges to 1 as sample size, n, goes to infinity,
i.e. P (V̂ = V) → 1, and that the nonzero estimators have the same asymptotic
distributions as they would have had if the set of valid instruments was known in
advance. The oracle model is given by

y = Xθ + ZAαA + u.

Let X̂ = PZX, then the oracle 2SLS estimator for θ is the OLS estimator in the
specification

y = X̂θ + ZAαA + ξ,

where ξ is defined implicitly. The oracle estimator for θ is given by

θ̂or =
(
X̂′MZAX̂

)−1
X̂′MZAy. (2.6)

Under standard assumptions, the limiting distribution of θ̂or is

√
n
(
θ̂or − θ

)
d−→ N

(
0,σ2

θor

)
, (2.7)

where

σ2
θor

= σ2
u

(
E [ZiXi]′ E [ZiZ′

i]
−1
E [ZiXi] − E [ZA,iXi]′ E

[
ZA,iZ′

A,i

]−1
E [ZA,iXi]

)−1
.

The derivation is similar to Appendix A.2 of Windmeijer et al. (2021).
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2.3 The Adaptive Lasso Method for IV Selection
and Estimation

2.3.1 The Adaptive Lasso with the Median-of-medians Es-
timator

Based on the adaptive Lasso method for IV selection in Windmeijer et al. (2019),
we extend the method to allow for two endogenous variables. Let θ = (β, τ)′,
where β and τ are coefficients of the two endogenous treatment/exposure variables.
Consider again the model

y = X1β + X2τ + Zα + u. (2.8)

Under model (2.5) and (2.8), we assume throughout that the following assumptions
2.1 to 2.5 hold.

Assumption 2.1. Let Πjk be the matrix containing the j-th and i-th row of Π.
rank(Πjk) = 2 for any j, k = 1, ..., kz, j ̸= k.

This pair-wise rank condition is necessary for the identification of the casual param-
eters in each of the just-identified models. The resulting just-identified estimators
are key inputs to the adaptive Lasso IV selection method, as explained below.

Assumption 2.2. The number of invalid instruments satisfies: kA < (kz − 1)/2

This is a sufficient condition for identification. Under the majority rule kA < kz/2,
Windmeijer et al. (2019) propose the adaptive Lasso IV selection method allowing
for a single endogenous variable. Similarly, we need the modified majority rule
kA < (kz−1)/2, as stated in Assumption (2.2), to guarantee consistent IV selection
and estimation.

Assumption 2.3. E [ZiZ′
i] = Q, with Q a finite and full rank matrix.

Assumption 2.4. Let wi = (ui v′
xi)

′. Then E [wi] = 0;
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Conditional homoskedasticity: E [wiw′
i|Zi] =


σ2
u σuvx1 σuvx2

σuvx1 σ2
vx1 σvx1vx2

σuvx2 σvx1vx2 σ2
vx2

 = Σ. The

elements of Σ are finite.

For ease of exposition, we assume conditional homoskedasticity. We can easily
relax this assumption to allow for heteroskedasticity and/or clustering by replacing
the Sargan test by the Hansen J-test, and doing post-selection two-step GMM
instead of 2SLS or by using the robust 2SLS standard errors and.

Assumption 2.5. plim (n−1Z′Z) = E [ZiZ′
i] = Q; plim (n−1Z′X) = E [ZiX′

i];
plim (n−1Z′u) = E [Ziui] = 0; plim (n−1Z′vx) = E [Ziv

′
xi] = 0.

Based on the definition of a valid instrument, IV selection is equivalent to
identifying which entries in α that are zero. For this purpose, we consider using
the adaptive Lasso to estimate α, as the Lasso-type methods will shrink some
entries in α to exactly zero. Hence, we can obtain estimators for V and A from
the adaptive Lasso estimator for α, which we denote by α̂ad. The estimators for V
and A are then V̂ = {j : α̂ad,j = 0} and Â = {j : α̂ad,j ̸= 0}. Following Windmeijer
et al. (2019), the adaptive Lasso estimator for α and θ is defined as

(α̂ad, θ̂ad) = argmin
α,θ

1
2 ∥PZ(y − Zα − Xθ)∥2

2 + λn
kz∑
j=1

αj
α̂w,j

, (2.9)

where α̂w,j, the penalty weight for αj, is a pre-specified estimator for αj, which we
will discuss in detail below. The l2 norm is (y − Zα− Xθ)′PZ(y − Zα− Xθ). As
θ is not penalized, according to Kang et al. (2016) and Windmeijer et al. (2019),
we can rewrite the adaptive Lasso in (2.9) as:

α̂ad = argmin
α

1
2
∥∥∥y − Z̃α

∥∥∥2

2
+ λn

kz∑
j=1

αj
α̂w,j

, (2.10)

where Z̃ = MX̂Z, MX̂ = In−X̂(X̂′X̂)−1X̂′. λn is the tuning parameter controlling
the strength of the penalization. A larger λn leads to more entries in α being
shrunk to zero, which implies that the adaptive Lasso selects more instruments as
valid. According to Theorem 1 and Remark 1 in Zou (2006), the adaptive Lasso
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estimator for α, as defined in (2.10), can select the valid instruments consistently
if:

• the penalty weight α̂w,j is a
√
n-consistent estimator for αj,

• λn → ∞, λn = o(
√
n).

The intuition of these conditions is as follows. If α̂w,j is a
√
n-consistent estimator

for αj, then α̂w,j will be close to zero when αj = 0. Since α̂w,j enters in the
denominator in (2.10), a value close to zero will produce a large penalty weight,
and, thus, make it more likely that αj is shrunk to zero.

To implement the adaptive Lasso, we need to find a
√
n-consistent estimator

for α that we can use for the penalty weights. We obtain such an estimator in the
following way. The reduced form specification for y is

y = ZΓ + vy,

where
Γ = Πθ + α. (2.11)

Using OLS, we can estimate Γ and Π by Γ̂ = (Z′Z)−1 Z′y and Π̂ = (Z′Z)−1 Z′X,
both of which are

√
n-consistent estimators. If we can find a

√
n-consistent estima-

tor for θ, then we can obtain a
√
n-consistent estimator for α from (2.11). Under

the majority rule kA < 1
2kz, and with a single endogenous variable, Windmeijer

et al. (2019) propose a
√
n-consistent median estimator for θ. In their case, where

θ is a scalar, there would be kz just-identified estimators for θ. Hence, if Zj is
valid, then the just-identified estimator θ̂j using only Zj as the valid instrument
is consistent and, thus, it converges to θ. However, for invalid instruments, their
just-identified estimators converge to values different from θ. When Windmeijer et
al. (2019) impose the majority rule kA < 1

2kz, more than half of the just-identified
estimators are consistent, and, therefore, their median must also be a consistent
estimator for θ. In our case, where there are two endogenous variables, a natural
extension of Windmeijer et al. (2019) would be to assume

(
kV
2

)
> 1

2

(
kz

2

)
such that

the median of the
(
kz

2

)
just-identified estimators is consistent for θ. However, in-

stead of this straightforward extension, we propose a median-of-medians estimator
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under the milder condition kA < kz−1
2 , which allows for more invalid instruments

than
(
kV
2

)
> 1

2

(
kz

2

)
. As an illustration, suppose kz = 100, then the maximum

number of invalid instruments allowed for in the simple extension is 29, while for
the median-of-medians estimator, this number can be 49. Similar to Windmeijer
et al. (2019), the inputs for obtaining the median-of-medians estimator are all the
just-identified estimators. Based on (2.11), for any pair of instruments {Zj, Zk},
j, k = 1, ..., kz, j ̸= k, we have Γj

Γk

 =
 Πj1 Πj2

Πk1 Πk2

 β

τ

+
 αj

αk

 ,
which we write compactly as

Γjk = Πjkθ + αjk,

where the vectors Γjk and αjk contain the j-th and k-th elements of Γ and α,
respectively. Under Assumption 2.1, Π−1

jk exists for any j, k, j ̸= k. It follows that

Π−1
jk Γjk = θ + Π−1

jk αjk. (2.12)

We let θ̂jk denote the just-identified estimator for θ using Zj and Zk as the valid
instruments. It is given by 2SLS on the following specification:

y = Xθjk + Z−jkα−jk + ujk, (2.13)

where Z−jk denotes all the candidate instruments except for Zj and Zk. Following
Proposition A1 in Windmeijer et al. (2019), it can be shown that the just-identified
estimator generated from specification (2.13) using 2SLS is equivalent to

θ̂jk = Π̂−1
jk Γ̂jk. (2.14)

As we prove in Appendix 3.A.2 in Chapter 3, it follows that

plim
(
θ̂jk
)

= Π−1
jk Γjk = θ + Π−1

jk αjk. (2.15)
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From (2.15), if Zk and Zj are any valid pair of instruments, i.e. it holds that
αjk = 0, then θ̂jk is a consistent estimator for θ. However, if at least one of Zj
and Zk is invalid, i.e. αjk ̸= 0, then the resulting θ̂jk is inconsistent.

Using the just-identified estimators, we construct the
√
n-consistent median-of-

medians estimator for θ as follows. Focusing on β, which is the first element of θ,
we have kz −1 just-identified estimators that use Zj as one of the two instruments.
We take the median of these kz −1 estimators, and denote this median by β̂mj . We
repeat this procedure for all the candidate instruments to get kz median estimators
for β. We again take the median of these median estimators to get a

√
n-consistent

median-of-medians estimator for β, which we denote by β̂mm. We repeat the same
procedure for τ , which is the second element of θ, to obtain a

√
n-consistent

estimator τ̂mm for τ . The median-of-medians estimator of θ is then:

θ̂mm = (β̂mm, τ̂mm)′. (2.16)

Using an example, we illustrate the algorithm for obtaining the median-of-
medians estimator. Suppose we have six candidate instruments with instruments
Z1 and Z2 being invalid. Table 2.1 lists the just-identified estimators for β and
they are estimated using each IV pair. We color all the invalid instruments and
inconsistent estimators with red. For the general case, the just-identified estimator
β̂jk is a consistent estimator for β if and only if both Zj and Zk are valid. Hence,
all the estimators in Column (1) and Column (2) are inconsistent as at least one

Z1 Z2 Z3 Z4 Z5 Z6
(1) (2) (3) (4) (5) (6)

Z1 β̂21 β̂31 β̂41 β̂51 β̂61

Z2 β̂12 β̂32 β̂42 β̂52 β̂62

Z3 β̂13 β̂23 β̂43 β̂53 β̂63

Z4 β̂14 β̂24 β̂34 β̂54 β̂64

Z5 β̂15 β̂25 β̂35 β̂45 β̂65

Z6 β̂16 β̂26 β̂36 β̂46 β̂56

median β̂m1 β̂m2 β̂m3 β̂m4 β̂m5 β̂m6

Table 2.1: Illustration of the Median-of-Medians Estimator
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of the invalid instruments Z1 and Z2 is involved in the estimation. If we take
the median of the estimators in each of Column (1) and Column (2), then the
resulting median estimators β̂m1 and β̂m2 would also be inconsistent. In Column
(3) to (6), more than half of the kz − 1 estimators in each column are consistent
as we assume kA < kz−1

2 . Hence, the median estimators for these columns, which
we refer to as the “column median estimators”, i.e. β̂m3 to β̂m3 , are all consistent.
Now, we take the median of all these column median estimators (as shown in the
last row of Table 2.1), i.e. β̂mm = median(β̂m1 , ..., β̂m6 ). The assumption kA < kz−1

2

implies kA < kz

2 . Thus, more than half of the column median estimators β̂m1 , ..., β̂m6
are consistent. Therefore, the median of these column median estimators β̂mm is
also consistent. In this way, under the assumption kA < kz−1

2 , even if we have
no knowledge about which of the instruments are valid, the median-of-medians
estimator is always consistent. We repeat the procedure for the second entry in
θ̂jk, to get a consistent estimator τ̂mm for τ . In this way, we get a consistent
estimator θ̂mm = (β̂mm, τ̂mm)′ for θ.

The following theorem establishes the
√
n-consistency of the median-of-medians

estimator defined in (2.16). See Appendix 2.A for the proof.

Theorem 2.1. Under model specification (2.5) and (2.8) and Assumption 2.1 -
2.5, for j = 1, ..., kz, let β̂j be the (kz − 1)-vector with each element defined as the
first element of θ̂jk = Π̂−1

jk Γ̂jk, k = 1, ...kz, k ̸= j. Define the median estimator β̂mj
as

β̂mj = median(β̂j)

and the median-of-medians estimator β̂mm as

β̂mm = median(β̂m1 , ..., β̂mkz
).

If kA < (kz − 1)/2, then β̂mm is a consistent estimator for β

plim(β̂mm) = β.

Let δjk = Π−1
jk αjk and δj be the (kz − 1)-vector with each element defined as the
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first element of δjk. Let δ̂mj = median(δj). The limiting distribution of β̂mm is

√
n
(
β̂mm − β

)
d−→ Q[L],kz ,kA ,

where Q[L],kz ,kA is the L-th order statistic of the limiting distribution of β̂mj for
j ∈ V. L is determined by kz, kA and the signs of δ̂mj for j ∈ A. For kV even, the
L-th order statistic is defined as either the average of the L-th and L+ 1-th order
statistics or the average of the L− 1-th and L-th order statistics.
For j ∈ V, the limiting distribution of β̂mj is

√
n
(
β̂mj − β

)
d−→ qj,[l],kz ,kA ,

where qj,[l],kz ,kA is the l-th order statistics of the limiting normal distribution of
√
n
(
β̂jk − β

)
with k ∈ V. l is determined by kz, kA and the signs of δ̂jk for j ∈ A.

The results stated above also hold for τ , the second entry of θ. Therefore, the
median-of-medians estimator defined in (2.16) is a

√
n-consistent estimator for θ.

Using θ̂mm, we obtain a
√
n-consistent estimator for α by

α̂mm = Γ̂ − Π̂θ̂mm. (2.17)

Following Theorem 1 and Remark 1 in Zou (2006), if we plug the estimator in
(2.17) into the adaptive Lasso defined in (2.10), then the resulting estimated set
of valid instruments V̂n = {j : α̂ad,j = 0} satisfies P (V̂n = V) → 1 with λn → ∞,
λn = o(

√
n). Hence, we select valid instruments consistently with the adaptive

Lasso.
Similar to Kang et al. (2016) and Windmeijer et al. (2019), we can obtain the

adaptive Lasso estimator for θ as follows:

θ̂ad =
X̂′

1X̂1 X̂′
1X̂2

X̂′
1X̂2 X̂′

2X̂2

−1 X̂′
1(y − Zα̂ad)

X̂′
2(y − Zα̂ad)

 , (2.18)

and it has the oracle distribution as in (2.7). As an alternative to obtaining the
causal estimator directly from the adaptive Lasso as in (2.18), we can also esti-
mate θ by post-selection 2SLS using the estimated set of valid V̂n in the following
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specification:
y = Xθ + ZÂn

αÂn
+ u, (2.19)

where Ân = {j : α̂ad,j ̸= 0}. Note that we include the selected invalid instruments
in Ân as additional explanatory variables in the above model. Following Theorem
2 in Guo et al. (2018), the next theorem states the oracle property of the post-
selection 2SLS estimator obtained from (2.19) using ZV̂n

as the valid instruments.

Theorem 2.2. Let θ̂n be the post-selection 2SLS estimator obtained from (2.19),
which is given by

θ̂n =
(

X̂′MZ
Ân

X̂
)−1

X̂′MZ
Ân

y.

Under the conditions of Theorem 2.1 and λn → ∞, λn = o(
√
n), it follows that

√
n
(
θ̂n − θ

)
d−→ N

(
0,σ2

θor

)
.

The proof of Theorem 2 follows directly from Theorem 2 in Guo et al. (2018)
under P (V̂n = V) → 1.

Inference for θ̂n can be implemented as an analogue of that for the oracle
estimator defined in (2.6), as they have the same limiting distribution. From
(2.7), the variance estimator is

σ̂2
θ = nσ̂2

u

(
(Z′X)′ (Z′Z)−1 (Z′X) −

(
Z′

Ân
X
)′ (

Z′
Ân

ZÂn

)−1 (
Z′

Ân
X
))−1

,

where σ̂2
u = û′û/n and û = y − Xθ̂n − ZÂn

α̂Ân
.

2.3.2 The Downward Testing Procedure

Consistent IV selection using the adaptive Lasso depends on the choice of the
tuning parameter λn which controls the strength of penalization. While it is clear
in theory that λn needs to satisfy λn → ∞, λn = o(

√
n), it can be challenging to

pick a specific value of λn for a given sample. A common practice of choosing the
tuning parameter is k-fold cross-validation. However, it is well known that cross-
validation works better for prediction rather than model selection (Bühlmann and
Van De Geer, 2011), and cross-validation almost always results in inconsistent
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variable selection, as stated in Chand (2012).
As an alternative, and similar to Windmeijer et al. (2019), we combine the

adaptive Lasso with the downward testing procedure for moment selection as pro-
posed by Andrews (1999) which uses the Sargan test statistic as the selection
criterion. The downward testing procedure starts with a model treating all kz in-
struments as valid. If the Sargan test rejects the model, then the procedure moves
to models with kz−1 valid instruments and tests all such models. If the Sargan test
rejects them all, then it moves to evaluate all models with kz−2 valid instruments,
and so on, until it finds the model with kV valid instruments that is not rejected
by the Sargan test. This procedure quickly becomes computationally infeasible,
since, for each number of instruments (kz, kz − 1, ..., kV), we need to exhaustively
test models corresponding to all possible combinations of instruments.

The adaptive Lasso can mitigate the computational challenges in the downward
testing procedure. When Lasso is implemented using the Least-Angle Regression
(LARS) algorithm (Efron et al., 2004), it generates a selection path starting with
a model with kz valid instruments, and, for each LARS step, the number of valid
instruments decreases by one. This means that, for each number of valid instru-
ments (kz, kz − 1, ..., kV), we only need to evaluate a single model, i.e. the one
on the LARS selection path, instead of all combinations of instruments. Suppose
that, for a certain number of valid instruments kn, the model on the LARS selec-
tion path has the set of valid instruments V̂kn and the set of invalid instruments
Âkn . Now, the model on the selection path is

y = Xθ + ZÂkn
αÂkn

+ uÂkn
. (2.20)

The Sargan statistic is given by

Ŝ
(
θ̂kn

)
= û(θ̂kn)′Z (Z′Z)−1 Z′û(θ̂kn)

û(θ̂kn)′û(θ̂kn)/n
,

where θ̂kn is the 2SLS estimator using ZV̂kn
as instruments in model (2.20), and

u(θ̂kn) is the residual. We compare Ŝ
(
θ̂kn

)
with a critical value for the Sargan

test, which we denote by ζn,kn−2. We select, as the valid set of instruments, the
V̂kn with the largest kn that satisfies Ŝ

(
θ̂kn

)
< ζn,kn−2. If there are multiple such

74



models, we select the one with the smallest Sargan statistic.
According to Andrews (1999), if the critical value ζn,kn−2 from the χ2

kn−2 dis-
tribution satisfies

ζn,kn−2 → ∞ for n → ∞, and ζn,kn−2 = o (n) , (2.21)

then the consistent selection and oracle post-selection estimation results summa-
rized in Theorem 2.1 and 2.2 hold. In practice, following Windmeijer et al. (2019)
and Windmeijer et al. (2021), instead of a critical value ζn,kn−2 for the Sargan test,
we use a p-value pn. If pn satisfies pn → 0 and log(pn) = o(n), then condition
(2.21) is satisfied (Windmeijer et al., 2019). As in Windmeijer et al. (2019) and
Windmeijer et al. (2021), for a given sample, we set pn = 0.1/log(n), as suggested
by Belloni et al. (2012). After IV selection, we obtain the causal estimator using
post-selection 2SLS in the same way as in (2.19). Here Theorem 2.2 holds for the
post-selection 2SLS estimator as IV selection is consistent.

2.4 The Block Structure for Obtaining the
Median-of-medians Estimator

In the previous sections, we maintained Assumption 2.1. However, in practical
applications, this assumption is likely to be violated because the candidate in-
struments might be identified for each endogenous variable separately, such that a
given instrument may only be relevant for one of them. In this case, the pairs of
instruments that are relevant for a given exposure variable (and only this variable)
would violate the pair-wise full rank assumption. To mitigate this, we propose a
variation of our method which uses a block structure to obtain the

√
n-consistent

median-of-medians estimator for the adaptive Lasso. The block structure relaxes
Assumption 2.1 as it only requires each instrument to be relevant for at least one
endogenous variable:

Πj ̸= 0 for j = 1, ..., kz.

Under the block structure, the majority assumption 2.2 also needs to be ad-
justed. Suppose that the number of instruments selected for each endogenous
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variable is, respectively, kz1 and kz2 , and that the corresponding number of invalid
instruments is, respectively, kA1 and kA2 . Note that the sets of instruments for
the two endogenous variables can overlap. In general, the block structure requires
that the majority assumption 2.2 holds for each set of instruments:

kA1 < (kz1 − 1)/2 and kA2 < (kz2 − 1)/2. (2.22)

We now give two examples to illustrate how we obtain the median-of-medians
estimator under the block-structure. In the first example, suppose we have 8 can-
didate instruments, Z1, ..., Z8. Instruments Z1, ..., Z5 are only relevant for the first
endogenous variable, while the remaining instruments Z6, ..., Z8 are only relevant
for the second one. Hence, the two sets of instruments do not overlap. In this
case, the majority assumption can be relaxed to

kA1 < kz1/2 and kA2 < kz2/2. (2.23)

For the sake of example, let instruments Z1, Z2 and Z6 be invalid, such that our
setup satisfies (2.23). Here we obtain just-identified estimators only from pairs
that contain instruments from two different sets, see Table 2.2. As in Table 2.1,
invalid instruments and inconsistent estimators are marked as red. Condition
(2.23) guarantees that the medians of the estimators in Column (3) to (5) are
consistent, and that the median of all the column medians (med1(β̂), ...,med5(β̂))
are consistent as well. In this way, we obtain a consistent median-of-medians
estimator, i.e. medianβ = median(med1(β̂), ...,med5(β̂))).

Z1 Z2 Z3 Z4 Z5
(1) (2) (3) (4) (5)

Z6 β̂16 β̂26 β̂36 β̂46 β̂56

Z7 β̂17 β̂27 β̂37 β̂47 β̂57

Z8 β̂18 β̂28 β̂38 β̂48 β̂58

medianβ med1(β̂) med2(β̂) med3(β̂) med4(β̂) med5(β̂)

Table 2.2: Illustration of the Block Structure with no overlapping instruments.

In the second example, we consider the case where two sets of instruments are

76



still identified for each endogenous variable separately, but they are overlapping
with each other, i.e. some of the instruments are relevant for both variables.
Suppose we have 7 instruments where instruments Z1, ..., Z5 are relevant for the
first endogenous variable, Z3, ..., Z7 are relevant for the second endogenous variable,
and, thus, Z3, ..., Z5 are relevant for both variables. In this setup, condition (2.22)
holds. Again, the just-identified estimators are estimated only with the pairs of
instruments that are from two different sets, unless at least one of them is relevant
for both, see Table 2.3. As condition (2.22) is satisfied, the median-of-medians
estimator is consistent.

Z1 Z2 Z3 Z4 Z5

Z3 β̂13 β̂23 - β̂34 β̂35

Z4 β̂14 β̂24 β̂34 - β̂45

Z5 β̂15 β̂25 β̂35 β̂45 -
Z6 β̂16 β̂26 β̂36 β̂46 β̂56

Z7 β̂17 β̂27 β̂37 β̂47 β̂57

medianβ med1(β̂) med2(β̂) med3(β̂) med4(β̂) med5(β̂)

Table 2.3: Illustration of the Block Structure with overlapping instruments.

2.5 Monte Carlo Simulations

We conduct Monte Carlo simulations to evaluate the performance of our method
in three settings. In the first setting, all instruments are relevant for both of the
endogenous variables, while in the other two settings, some of the instruments are
relevant for only one of the variables. We run the simulations for 1, 000 replications,
and we implement the adaptive Lasso using the Lars package (Hastie and Efron,
2013) in R. We generate the simulation data from

y = Xθ + Zα + u

X1 = ZΠx1 + ϵ1

X2 = ZΠx2 + ϵ2
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where 
ui

ε1i

ε2i

 ∼ N




0
0
0

 ,


1 ρ1 ρ2

ρ1 1 0
ρ2 0 1


 ;

Zi ∼ N (0,Σz) ;

with θ = cθ(0.5, 1)′ , cθ = 0.6; kz = 21; ρ1 = 0.25, ρ2 = 0.3; kA = 9, α =
cα (ι′

9,0′
12)

′, cα = 0.4. We follow the simulation setup in Windmeijer et al. (2021).
We generate the elements of Πx1 and Πx2 from a uniform distribution on the
interval [1.5, 2.5], and we set the elements of Σz to be Σz,jk = 0.5|j−k|. In this
setup, all the instruments are relevant for both endogenous variables, and both the
pair-wise full rank assumption 2.1 and the majority assumption 2.2 are satisfied.

First, in Table 2.4, we present the IV selection and estimation results of the
adaptive Lasso method with penalty parameters chosen by 10-fold cross-validation.
The first two columns of Table 2.4 report statistics related to estimation, and in
both of these columns, we average the statistics over the two entries in θ. Column 1
presents the averaged median absolute error (MAE), while Column 2 shows the
averaged standard deviation (SD). The remaining three columns in Table 2.4 report
statistics related to IV selection. Column 3 is the number of instruments selected
as invalid, Column 4 is the frequency with which all invalid instruments have
been selected as invalid, and Column 5 is the frequency with which the oracle
model has been selected. The three panels in Table 2.4 correspond to the sample
sizes N = 500, 1000, 2000. In each panel, the first row, denoted “Oracle 2SLS”,
shows the results for the oracle 2SLS estimator, which is the 2SLS estimator that
uses the true set of valid instruments, while it controls for the remaining invalid
ones. The second row, denoted “Naive 2SLS”, reports the results for the naive
2SLS estimates, which is the 2SLS that considers all candidate instruments to be
valid. The third row, denoted “θ̂mm”, shows the results for the median-in-medians
estimator θ̂mm, as defined in (2.16). The fourth and fifth rows, denoted “Post-
ALasso”, report the results for the post-selection 2SLS estimators, which are the
2SLS estimators that use the instruments selected as valid, and include the invalid
instruments as control variables. The last two rows, denoted “ALasso”, show the
results for our adaptive Lasso estimators, as defined in (2.18). We present results
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for the adaptive Lasso and Post-Selection 2SLS estimators using two different types
of cross-validation. First, as denoted with the “CV ” subscript, we show cross-
validation using the tuning parameter that gives the minimum cross-validation
Sargan statistics. Second, as denoted with the “CV SE” subscript, we show cross-
validation using the tuning parameter chosen by the one-standard-error rule.

In terms of IV selection, in all three sample sizes, the CV-procedure dominates
the CVSE-procedure, especially for the smallest sample with N = 500. Both
methods improve as the sample size increases. The frequencies of selecting the
oracle model are both almost equal to 1 at N = 2, 000 with 0.992 for CV and
0.956 for CVSE. In line with the selection performance, the post-selection 2SLS
estimates are close to the oracle model at N = 2, 000. In all three sample sizes,
the post-selection 2SLS estimates outperform the adaptive Lasso estimates.
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MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

Panel (a), N = 500
Oracle 2SLS 0.0624 0.0912 9 1 1
Naive 2SLS 0.2856 0.2685 0 0 0
θ̂mm 0.1263 0.1517
Post-ALassoCV 0.1295 0.3060
Post-ALassoCV SE 0.2912 0.4368
ALassoCV 0.3460 0.4212 8.095 0.440 0.440
ALassoCV SE 0.4393 0.4542 6.908 0.115 0.115

Panel (b), N = 1, 000
Oracle 2SLS 0.0439 0.0681 9 1 1
Naive 2SLS 0.2889 0.2037 0 0 0
θ̂mm 0.0892 0.1268
Post-ALassoCV 0.0513 0.1627
Post-ALassoCV SE 0.0716 0.2332
ALassoCV 0.2047 0.2843 8.857 0.882 0.882
ALassoCV SE 0.2895 0.3446 8.509 0.634 0.634

Panel (c), N = 2, 000
Oracle 2SLS 0.0305 0.0473 9 1 1
Naive 2SLS 0.2796 0.1448 0 0 0
θ̂mm 0.0618 0.0941
Post-ALassoCV 0.0307 0.0574
Post-ALassoCV SE 0.0319 0.0881
ALassoCV 0.1341 0.1795 8.991 0.992 0.992
ALassoCV SE 0.1753 0.2244 8.949 0.956 0.956

This table reports IV selection and estimation results of the adaptive
Lasso method with 10-fold cross validation. The reported statistics in-
clude median absolute error (column 1), standard deviation (column 2),
number of IVs selected as invalid (column 3), frequency with which all
invalid IVs have been selected as invalid (column 4), and frequency with
which oracle model has been selected (column 5). The simulations are
based on 1, 000 repetitions.

Table 2.4: Adaptive Lasso with 10-fold Cross Validation

Using the same simulation setup, we also conduct simulations where, instead
of cross-validation, we rely on the downward testing procedure described in Sec-
tion 2.3.2. Table 2.5 reports the simulation results for the adaptive Lasso with
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downward testing, and each row shows one of the sample sizes N = 500, 1000, 2000.
We see that the adaptive Lasso with the downward testing procedure outperforms
the methods based on cross-validation. In particular, we find that the adaptive
Lasso reaches a high frequency, 0.947, of selecting the oracle model even at the
smallest sample size N = 500. This is much better than the corresponding fre-
quencies for the CV (0.440) and CVSE (0.115) that we reported in Table 2.4.

MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

N = 500 0.0853 0.1446 9.09 0.987 0.947
N = 1000 0.0544 0.0690 9.02 1 0.983
N = 2000 0.0375 0.0478 9.018 1 0.984

This table reports IV selection and estimation results of the adaptive
Lasso method with downward testing stopping rule. The reported statis-
tics include median absolute error (column 1), standard deviation (col-
umn 2), number of IVs selected as invalid (column 3), frequency with
which all invalid IVs have been selected as invalid (column 4), and fre-
quency with which oracle model has been selected (column 5). The
simulations are based on 1, 000 repetitions.

Table 2.5: Adaptive Lasso with Downward Testing

Next, we consider two simulation settings where some of the instruments are
relevant only for one of the endogenous variables, and, thus, the pair-wise full rank
assumption 2.1 may not hold. We conduct simulations both with and without the
block structure for these settings.

In simulation design (1), which we call “partial overlap”, we consider the case
where some of the instruments are relevant for both endogenous variables. We set
Πx1 = (γx1 ,0′

8)′ and Πx2 = (0′
10,γx2)′ where γx1 is a vector with 13 elements and

γx2 a vector with 11 elements that are all generated from a uniform distribution
on the interval [1.5, 2.5]. In this case, three instruments are relevant for both
endogenous variables, while the remaining instruments are only relevant for one.
We set α = (0′

6, ι
′
5,0′

2, ι
′
3,0′

5)′, such that 5 out of 13 relevant instruments for X1

are invalid, and 4 out of 11 for X2 are invalid. Note that the adjusted majority
assumption (2.22) is satisfied in this setup.

In simulation design (2), which we call “no overlap”, we consider the case where

81



the two sets of instruments are completely separate, such that no instrument is rele-
vant for both endogenous variables. We set Πx1 = (γx1 ,0′

11)′ and Πx2 = (0′
10,γx2)′,

where γx1 has length 10 and γx2 has length 11. We let α = (ι′
4,0′

6, ι
′
5,0′

6)′ such
that 4 out of 10 relevant instruments for X1 are invalid, and 5 out of 11 for X2

are invalid. All the other parameters are identical to simulation design (1). Again,
note that the adjusted majority assumption 2.23 is satisfied.

Table 2.6 reports the results for simulation design (1), where some instruments
are relevant for both endogenous variables (i.e., partial overlap). Table 2.7 shows
the results for simulation design (2), where none of the instruments are relevant for
both endogenous variables (i.e. no overlap). In all cases, we conduct IV selection
and estimation using adaptive Lasso with the downward testing procedure, both
with and without the block structure to obtain the median-of-medians estimators,
as described in Section 2.4. Both tables report the same statistics as earlier, and
the panels correspond to different choices of sample size, N = 500, 1000, 2000.
In each panel, the first row, denoted “Oracle 2SLS”, shows the results for the
oracle 2SLS estimator, which is the 2SLS estimator that uses the true set of valid
instruments, while it controls for the remaining invalid ones. The second row,
denoted “Naive 2SLS”, reports the results for the naive 2SLS estimates, which
is the 2SLS that considers all candidate instruments to be valid. The third row,
denoted “θ̂mm”, shows the results for the median-in-medians estimator obtained
without the block structure. The fourth row, denoted “Post-ALasso”, reports
IV selection and estimation results using the adaptive Lasso downward testing
procedure without the block structure. The fifth row, denoted “θ̂mmblock”, shows the
median-in-medians estimator obtained with the block structure. The sixth row,
denoted “Post-ALassoblock”, presents IV selection and estimation results using the
adaptive Lasso downward testing procedure with the block structure.

For all three sample sizes, results with the block structures dominates the ones
without. This can be seen from the fact that θ̂mmblock has smaller MAE than θ̂mm.
Also the frequencies of selecting the oracle model with the block structure are also
larger than these without the block structure. The edge of the block structure is
even more significant in the "no overlap" setup. Here the selection performance
without the block structure does not improve with the sample size anymore, and
the frequencies of selecting the oracle model remains around 0.5. But for the block
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structure, the oracle selection frequency is very close to 1 even at N = 500 (0.971).

MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

Panel (a), N = 500
Oracle 2SLS 0.0106 0.0152 8 1 1
Naive 2SLS 0.2578 0.0198 0 0 0
θ̂mm 0.0532 0.0580
Post-ALasso 0.0109 0.0780 8.129 0.997 0.931
θ̂mmblock 0.0470 0.0318
Post-ALassoblock 0.0107 0.0157 8.025 1.000 0.983

Panel (b), N = 1, 000
Oracle 2SLS 0.0073 0.0107 8 1 1
Naive 2SLS 0.2579 0.0141 0 0 0
θ̂mm 0.0377 0.0553
Post-ALasso 0.0074 0.0274 8.085 0.996 0.950
θ̂mmblock 0.0324 0.0222
Post-ALassoblock 0.0073 0.0109 8.017 1.000 0.986

Panel (c), N = 2, 000
Oracle 2SLS 0.0051 0.0078 8 1 1
Naive 2SLS 0.2577 0.0098 0 0 0
θ̂mm 0.0281 0.0594
Post-ALasso 0.0052 0.1315 8.094 0.996 0.952
θ̂mmblock 0.0242 0.0155
Post-ALassoblock 0.0051 0.0077 8.013 1.000 0.989

This table reports IV selection and estimation results of the adaptive
Lasso method with the block structure in simulation design (1) with
partial overlap. The reported statistics include median absolute error
(column 1), standard deviation (column 2), number of IVs selected as
invalid (column 3), frequency with which all invalid IVs have been se-
lected as invalid (column 4), and frequency with which oracle model has
been selected (column 5). The simulations are based on 1, 000 repeti-
tions.

Table 2.6: IV selection with the block structure – Simulation design (1) with
partial overlap.
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MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

Panel (a), N = 500
Oracle 2SLS 0.0109 0.0161 9 1 1
Naive 2SLS 0.3285 0.0209 0 0 0
θ̂mm 0.1124 0.1472
Post-ALasso 0.0159 0.1779 10.241 0.791 0.515
θ̂mmblock 0.0839 0.0394
Post-ALassoblock 0.0111 0.0192 9.044 0.999 0.971

Panel (b), N = 1, 000
Oracle 2SLS 0.0075 0.0111 9 1 1
Naive 2SLS 0.3288 0.0149 0 0 0
θ̂mm 0.0892 0.1629
Post-ALasso 0.0102 0.2413 10.052 0.786 0.565
θ̂mmblock 0.0599 0.0283
Post-ALassoblock 0.0076 0.0115 9.019 1.000 0.987

Panel (c), N = 2, 000
Oracle 2SLS 0.0054 0.0080 9 1 1
Naive 2SLS 0.3286 0.0107 0 0 0
θ̂mm 0.0703 0.1667
Post-ALasso 0.0071 0.1847 10.086 0.803 0.544
θ̂mmblock 0.0411 0.0196
Post-ALassoblock 0.0054 0.0084 9.020 1.000 0.987

This table reports IV selection and estimation results of the adaptive
Lasso method with the block structure in simulation design (2) with no
overlap. The reported statistics include median absolute error (column
1), standard deviation (column 2), number of IVs selected as invalid
(column 3), frequency with which all invalid IVs have been selected as
invalid (column 4), and frequency with which oracle model has been
selected (column 5). The simulations are based on 1, 000 repetitions.

Table 2.7: IV Selection with the block structure – Simulation design (2) with no
overlap
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2.6 Application: The Effects of Educational At-
tainment and Cognitive Ability on BMI

We apply our IV selection method to a multivariable Mendelian randomization
(MVMR) study. We estimate the effects of educational attainment and cognitive
ability on Body Mass Index (BMI), as in Sanderson et al. (2019). Both educational
attainment and cognitive ability have been found to be negatively correlated with
BMI (Sanderson et al., 2019). However, as educational attainment and cognitive
ability are highly correlated, it is unclear to what extent each of them have a
direct effect on BMI. In this application, we account for both variables in order
to disentangle their direct effects. We use 74 SNPs as instruments for educational
attainment and 18 SNPs for cognitive ability, and one SNPs overlaps between the
two sets of candidate instruments. These SNPs have previously been identified in
independent Genome-Wide Association Studies (GWAS), see Okbay et al. (2016)
for educational attainment, and Sniekers et al. (2017) for cognitive ability. We
use data on 107, 371 individuals from the UK Biobank. Educational attainment
is measured in years of completed education, and it is imputed based on the
individuals’ qualifications, which is standard in the literature, see, e.g., Okbay
et al. (2016). Cognitive ability is measured as a unitless fluid intelligence score
that the UK biobank constructs from a series of tests completed by the individuals
during assessment. We standardise the cognitive ability to mean zero and variance
one. BMI is the ratio of weight to height, both of which were measured for all
individuals during assessment, and we log-transform it due to skewness. Hence, we
interpret our estimates as the percentage change in BMI that is associated with a
one unit increase in the relevant explanatory variable. We also include additional
covariates that control for age at assessment, sex, and the first 10 genetic principal
components, all of which are available from the UK biobank. See Sanderson et al.
(2019) for a detailed definition of the variables and presentation of the data.

Table 2.8 reports the results of our analysis. Columns (1) and (2) show, respec-
tively, the point estimates and their standard errors. Column (3) is the number
of instruments selected as invalid, and column (4) shows the p-value of the Sargan
test. Panel (a) presents the estimates from a naive 2SLS regression where we treat
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Estimate Std. error # Invalid p-value, Sargan
(1) (2) (3) (4)

Panel (a) – 2SLS
Educational attainment −0.035 0.004 0 1.69e-13
Cognitive ability 0.031 0.011

Panel (b) – Post-ALasso
Educational attainment −0.029 0.005 10 0.011
Cognitive ability 0.021 0.012
mededu −0.031
medcog 0.017

Panel (c) – Post-ALassoblock

Educational attainment −0.029 0.005 10 0.011
Cognitive ability 0.021 0.012
mededu −0.034
medcog 0.031

This table reports the estimation results of the effects of educational
attainment and cognitive ability on ln(BMI). The sample size is n =
107371. The number of instruments for educational attainment is kedu =
74. The number of instruments for cognitive ability is kcog = 18. There is
one instrument identified for both educational attainment and cognitive
ability.

Table 2.8: The impacts of educational attainment and cognitive ability on
ln(BMI)

.

all the candidate instruments as valid. Both estimates are statistically significant
at the 1% level. However, these results are from the naive 2SLS regression, and
they might be biased due to the presence of invalid instruments. This is supported
by the small p-value of the Sargan test (1.69e-13). In practice, SNPs can exhibit
so-called pleiotropic effects, which would make them invalid instruments. In our
setting, pleiotrophy would mean that some of the SNPs, either for educational
attainment or cognitive ability, have direct effects on BMI.

Instead of the naive 2SLS, we now conduct IV selection using the adaptive
Lasso with the downward testing procedure, as described in Section 2.3.2, and
we obtain post-selection 2SLS estimates. In Panel (b) and (c) of Table 2.8, we
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report the results for the direct effects of educational attainment and cognitive
ability using our method, and we show the estimates both with (Panel (c)) and
without (Panel (b)) the block structure. We also present the associated median-
of-medians estimates, denoted mededu and medcog for, respectively, educational
attainment and cognitive ability. The threshold p-value for the Sargan test is
0.1/log(n) = 0.0086.

For educational attainment, the median-of-medians estimates are insensitive to
the use of the block structure, and we find that mededu = −0.0314 with the block
structure and mededu = −0.034 without. For cognitive ability, the estimates differ
significantly, and the estimate with the block structure is medcog = 0.017, while
it is medcog = 0.031 without. Consider that the two sets of SNPs for educational
attainment and cognitive ability are identified in separate GWAS studies, it may be
preferable to estimate with the block structure, although in this case the adaptive
Lasso selects the same 10 instruments as invalid with two methods.

The method selects the same invalid instruments with and without the block
structure, as shown in Column (3). Therefore, the estimates of the direct effects
and their standard errors are the same in Panel (b) and (c). We find that our
method selects 10 instruments as invalid. Six of these are for educational at-
tainment, three are for cognitive ability, and one is for both variables. As seen
in Column (4), the Sargan statistic for the selected model is 0.011, which is a
significant improvement over the Sargan statistic reported for the naive 2SLS in
Panel (a). We find that both post-selection 2SLS estimates are closer to zero
compared to the estimates for the naive 2SLS. The post-selection estimate for
educational attainment is -0.029, while, for cognitive ability, it is 0.021.

Compared to the results for the naive 2SLS, the effect of educational attainment
on BMI is still significant at the 1% level, while the effect of cognitive ability is now
insignificant, even at the 5% level. These results indicate that higher educational
attainment lowers BMI, although, the naive 2SLS regression may have exaggerated
the magnitude of this effect. We find limited evidence of a direct effect of cognitive
ability on BMI, as the estimate becomes smaller and statistically insignificant when
we conduct IV selection.

For the results in Table 2.8, we assume conditional homoskedasticity. However,
a robust version of our method, i.e. using the two-step Hansen-J test and the post-
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selection two-step GMM estimator, produces almost identical results. We use the
Sanderson-Windmeijer conditional F-statistic (Sanderson and Windmeijer, 2016)
to evaluate the power of the instruments in predicting educational attainment and
cognitive ability jointly. When we include the instruments in the naive 2SLS, the
conditional F statistics are 2.57 for educational attainment and 2.65 for cognitive
ability. Both of them are significantly lower than the rule-of-thumb value of 10,
showing that the joint prediction power of the instruments is relatively weak.
One way to deal with this weak IV problem to create a weighted score of all the
instruments, that is, one score for each of educational attainment and cognitive
ability, and then use these two scores as the instruments in the regression. In
the naive 2SLS, when we use the weighted scores, the conditional F statistics are
67.73 for educational attainment and 68.65 for cognitive ability, which are much
larger than the rule-of-thumb value of 10. For the post-selection 2SLS, we create
the weighted scores using only the selected valid instruments. The estimate for
educational attainment is -0.042 (se 0.009) and for cognitive ability it is 0.041 (se
0.024). This maintains the conclusion that educational attainment has a significant
negative effect on BMI, while the direct effect of cognitive ability is insignificant.

2.7 Conclusion

We investigate the use of the adaptive Lasso method for selecting valid instrumen-
tal variables from a set of candidate instruments when some of the instruments
may be invalid. While existing work has focused on a single endogenous variable,
our method contributes to the literature by allowing for two endogenous variables.
Under the modified majority rule, we show that the adaptive Lasso method can
achieve consistent selection and oracle estimation. In this work, we consider the
number of candidate instruments to be fixed, but in some settings it may grow
with the sample size (or even at a quicker rate), and, therefore, future research
will focus on extending the method to handle such cases.

88



2.A Appendix

Proof. The proof for Theorem 2.1 follows a similar way as the proof for Theorem 1
in Windmeijer et al. (2019). Under the model setup (2.5) and (2.8), and stated as-
sumptions 2.1-2.5, for the first entry in the just-identified estimator θ̂jk = (β̂jk, τ̂jk)′

as defined in (2.14) using Zj and Zk as valid instruments, following (2.15), we have

plim(β̂jk) = β + (Π−1
jk αjk)1 = β + δjk

where j, k = 1, ..., kz, j ̸= k. From the definition of the valid instrument, it follows
that if j, k ∈ V , then δjk = 0 as αjk = 0. If j ∈ V while k ∈ A, depending on the
value of Π−1

jk , in some special cases, it is possible that δjk equals to 0 as αj = 0.
Here we focus on the general case where δjk ̸= 0. By the continuous mapping
theorem, it follows that

plim(β̂mj ) = median(plim(β̂j)) = median(βιkz−1 + δj) = β + δ̂mj (2.A.1)

If j ∈ V , as kA < (kz − 1)/2, then more than 50% of the entries in δj are equal
to zero. It follows that δ̂mj is equal to zero, thus β̂mj is consistent for β. If j ∈ A,
δjk are nonzero for all k, then δmj is nonzero. From (2.A.1) it follows that β̂mj is
inconsistent for β.
Similar to (2.A.1), we have

plim(β̂mm) = median(plim(β̂m1 ), ..., plim(β̂mkz
)) (2.A.2)

kA < (kz − 1)/2 indicates that kA < kz/2. Therefore, the majority of β̂mj satisfies
plim(β̂mj ) = β. It follows that from (2.A.2) that β̂mm is a consistent estimator for
β

plim(β̂mm) = median(plim(β̂m1 ), ..., plim(β̂mkz
)) = β

By the delta method, the limiting distribution of β̂j can be obtained as

√
n
(
β̂j − (βιkz−1 + δj)

)
d−→ N (0,Σj) (2.A.3)

For j ∈ V , let δj = (δ′
j,A,0

′
kV−1

)′ where δj,A includes all δjk ̸= 0. Partition β̂j
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accordingly as β̂j = (β̂′
j,A, β̂

′
j,V)′ . Then for β̂j,V , we have

√
n
(
β̂j,V − βιkV −1)

)
d−→ N (0,Σj,V) (2.A.4)

As

√
n(β̂mj −β) = median(

√
n
(
β̂j − βιkz−1

)
) = median

√
n(β̂j,A − (βιkA + δ̂j,A)) +

√
nδ̂j,A√

n(β̂j,V − βιkV0 −1)

 ,
using the continuous mapping theorem, the limiting distribution of

√
n(β̂mj − β)

is the median of the limiting distribution of
√
n
(
β̂j − βιkz−1

)
. It follows from

(2.A.3) and (2.A.4) that
√
n(β̂j,V − βιkV0 −1) = Op(1) while

√
n(β̂j,A − (βιkA +

δ̂j,A)) +
√
nδ̂j,A −→ ∞. From the previous result, we know that the majority of

the entries of
√
n
(
β̂j − βιkz−1

)
are in

√
n(β̂j,V − βιkV0 −1). Therefore, the limiting

distribution of β̂mj is

√
n(β̂mj − β) = median(

√
n
(
β̂j − βιkz−1

)
) d−→ qj,[l],kz ,kA (2.A.5)

For j ∈ A, we have

√
n(β̂mj −β) = median(

√
n
(
β̂j − βιkz−1

)
) = median(

√
n
(
β̂j − (βιkz−1 + δj)

)
+

√
nδj)

As δj ̸= 0, it follows from (2.A.3) that
√
n
(
β̂j − (βιkz−1 + δj)

)
+

√
nδj −→ ∞,

then
√
n(β̂mj − β) = median(

√
n
(
β̂j − βιkz−1

)
) −→ ∞ (2.A.6)

Let β̂mV and β̂mA be the vectors containing β̂mj for j ∈ V and j ∈ A respectively.
Then we have

√
n
(
β̂mm − β

)
= median

√
n
(
β̂mA − βι

)
√
n
(
β̂mV − βι

)
As kA < kz/2, it follows from (2.A.5) and (2.A.6) that

√
n
(
β̂mm − β

)
d−→ Q[L],kz ,kA .
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Chapter 3

Agglomerative Hierarchical
Clustering for Selecting Valid
Instrumental Variables

Abstract

We propose a procedure, which combines hierarchical clustering with a test
of overidentifying restrictions for selecting valid instrumental variables (IV)
from a large set of IVs. Some of these may be invalid in the sense that they
may fail the exclusion restriction. We show that if the largest group of IVs is
valid, our method achieves oracle properties. The advantage of our method
is that it addresses weak instruments, multiple endogenous regressors and
heterogeneous treatment effects. In simulations our procedure outperforms
the Hard Thresholding and the Confidence Interval method. The method is
applied to estimating the effect of immigration on wages.
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3.1 Introduction

Instrumental variables estimation is a widely used statistical method for analysing
the causal effects of treatment variables on an outcome when the causal relationship
between them is confounded. For consistent IV estimation, all instruments must
be valid, which requires that

(a) The instruments are associated with the endogenous variables (relevance
condition)

(b) The instruments do not affect the outcome directly or through unobserved
factors (exclusion restriction)

In practice, a main challenge in IV estimation is that when there are many can-
didate instruments, some of them may be invalid in the sense that they fail the
exclusion restriction. Hence, the key task is to estimate the causal effect in situa-
tions where many IVs are invalid.

In this paper, we propose a new method to select the valid instruments and to
estimate the causal effect. The method combines the agglomerative hierarchical
clustering (AHC) algorithm, a statistical learning algorithm typically employed in
cluster analysis, with the Sargan test for overidentifying restrictions. Our estima-
tor relies on the plurality rule (Guo et al., 2018), which states that the largest
group of IVs consists of valid instruments. Instruments are said to form a group
if their instrument-specific just-identified estimators converge to the same value.
Under the plurality rule, our method achieves oracle selection. This means that
the estimator works as well as if the true set of valid instruments were known; valid
instruments can be selected consistently, and the two-stage least squares (2SLS)
estimator, using the instruments selected as valid, has the same limiting distribu-
tion as the ideal estimator that uses the true set of valid instruments. Our method
improves the existing methods as it (1) allows for multiple endogenous regressors,
(2) deals effectively with weak instruments, and (3) accommodates heterogeneous
effects. In simulations, we also show that it outperforms the existing methods.

An example of a setting with many IVs is the estimation of the effect of im-
migration on wages in labor economics. To identify the causal effect, researchers
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often use the lagged origin-country specific immigration pattern, as measured by
previous shares of immigrants. If all the IVs are valid, that is, if none of the pre-
vious shares by origin-country are directly or indirectly correlated with wages, the
causal effect can be consistently estimated. This assumption is often invoked in the
literature.1 However, some of the shares may violate the exclusion restrictions, as
they may affect the wage variable directly through long-term dynamic adjustment
processes, or be correlated with unobserved demand shocks.

Another field that makes use of many instruments, some of which may be in-
valid, is Mendelian Randomization (MR). In MR, researchers use genetic variation
to estimate the causal effect of an exposure on an outcome (Von Hinke et al., 2016).
This field has also inspired much of the initial invalid IV selection literature. An
example is the estimation of the effect of C-reactive protein on coronary heart
disease (Wensley et al., 2011).

In the applied literature, the common solutions is to either (1) select the valid
instruments from the set of potential instruments based on economic intuition,
or (2) directly include all the candidate instruments in IV estimation. These
approaches can be problematic because including invalid instruments often leads to
severely biased results. Therefore, under incomplete knowledge of the instruments
validity, it is important to develop data-driven IV selection methods to select the
valid instruments.

Previous work focus on the IV selection problem in the case of a single en-
dogenous variable. Kang et al. (2016) propose a selection method based on the
least absolute shrinkage and selection operator (LASSO). Windmeijer et al. (2019)
make improvements by proposing an adaptive Lasso based method that has oracle
properties under the assumption that more than half of the candidate instruments
are valid (the majority rule). Guo et al. (2018) propose the Hard Thresholding
with Voting method (HT), which has oracle properties under the sufficient and
necessary identification condition that the largest group is formed by all the valid
instruments (the plurality rule). This is a relaxation of the majority rule. Under
the same identification condition, Windmeijer et al. (2021) propose the Confidence
Interval method (CIM), which has better finite sample performance.
Our research adds to the literature in five ways:

1See Table 6 in Apfel (2021) for a non-exhaustive list of papers in this literature.
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1. We combine agglomerative hierarchical clustering with a traditional statisti-
cal test, the Sargan over-identification test, to yield a novel downward testing
algorithm for IV selection. Under the plurality rule, our method has the the-
oretical guarantee that it consistently selects the true set of valid instruments
in a computationally feasible manner.

2. We extend our method to settings with multiple endogenous regressors. Pre-
vious methods do not allow for this, but, in our setting, it is a straightforward
extension.

3. Our method performs well in the presence of weak instruments, whether they
are valid or invalid, which is an advantage over existing methods.

4. We also discuss the application of our method to a setting with heterogeneous
treatment effects. We show that we can retrieve and inspect the entire group
structure, which is not possible with existing methods.

5. Computationally, our algorithm has lower complexity than the CI and HT
methods. Also, the only pre-specified parameter for our algorithm is the
critical value for the Sargan test. The optimal choice of this parameter, such
that consistent selection is guaranteed, is well studied in the literature.

We use Monte Carlo simulations to examine the performance of our method, and
compare it with the HT and CI methods. We benchmark against these methods as
they also rely on the plurality rule. The simulation results show that our method
achieves oracle performance in large sample settings, both with single and multiple
endogenous regressors, when all the instruments are strong. Also, our method
outperforms HT and CIM when some of the candidate instruments are weak. We
apply our method to estimate the short- and long-run effects of immigration on
wages in the US. We also provide an R-package that implements our method.

The remainder of this paper is structured as follows. In Section 3.2, we state
the model and assumptions and illustrate some of the well-established properties
of the 2SLS just-identified estimator. In Section 3.3, we describe the basic method
and the algorithm when there is a single endogenous variable, and investigate
its asymptotic properties. In Section 3.4, we present extensions to settings with
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multiple endogenous regressors and weak instruments, and discuss our method in
presence of heterogeneous treatment effects. In Section 3.5, we provide Monte
Carlo simulation results. In Section 3.6, we apply our method to estimate the
effects of immigration on wages. Section 3.7 concludes.

3.2 Model and Assumptions

3.2.1 Model Setup

In the following, we introduce the notation used in the paper. Matrices are in
upper case and bold. Vectors are in lower case and bold. Scalars are in lower case
and not in bold. Let y be an n× 1-vector of the observed outcome, d1, ..., dP be
P endogenous regressor vectors (each n×1), which can be subsumed in an n×P -
matrix D, z1, ..., zJ be J instrument vectors, which can be subsumed in an n×J -
matrix Z. Let error terms be u and εp for p ∈ {1, ..., P}, which are all n× 1 error-
vectors and are correlated with σup := cov(u, εp). The latter covariances measure
the endogeneity of the regressors in D. The P × 1 coefficient vector of interest is
β. The J×P matrix γ contains the first-stage coefficients. Let s be the number of
instruments in the set of invalid instruments, I, g be the number of instruments in
the set of valid instruments, V , and J = g + s be the total number of instruments
in the overall set of instruments, J . The arithmetic mean of a variable x is defined
as µx = Σx

n
, the mean of a vector is the vector of dimension-wise arithmetic means,

∥·∥ denotes the L2-norm, and | · | denotes cardinality when used around a set and
an absolute value when used around a quantity. The symbol & denotes the logical
conjunction, and. The n × n projection matrix is PX = X(X′X)−1X′, and the
annihilator matrix is MX = I − PX and D̂ = PZD are the fitted values.

In Section 2 and Section 3, we consider a model with a single endogenous
regressor, i.e. P = 1. The extension of our method to the case with multiple
endogenous regressors can be found in Section 4.1. All the proofs in the Appendix
are for a general P . Following the literature on invalid IV selection (Kang et al.,
2016), we adopt the following observed data model, which takes the potentially
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invalid instruments into account:

y = dβ + Zα + u, (3.1)

with E[ui|zi] = 0. The linear projection of d on Z is

d = Zγ + ε (3.2)

The vector α is J × 1 and has entries αj, each of which is associated with an
individual instrument. Each entry indicates which of the instruments that has a
direct effect on the outcome variable and hence is invalid. Following Definition 1
in Guo et al. (2018), we define a valid instrument as:

Definition 3.1. For j = 1, ..., J , instrument zj is valid if αj = 0. If αj ̸= 0, then
zj is an invalid instrument.

The ideal model, which selects the truly valid instruments as valid and controls
for the set of invalid instruments, is the oracle model, defined as follows:

y = dβ + ZIαI + u = XIθI + u. (3.3)

where X = (d ZI) and θI = (β α′
I)′.

3.2.2 Assumptions

The assumptions that follow are the same as in Windmeijer et al. (2021). The first
assumption makes sure that all the just-identified estimators exist.

Assumption 3.1. Identification of just-identified models.

γ = (E[ziz′
i])−1E[zidi]), γj ̸= 0 j = 1, ..., J.

Assumption 3.2. Rank assumption.

E(ziz′
i) = Q with Q a finite and full rank matrix.
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Assumption 3.3. Error structure.

Let wi = (ui εi)′. Then, E(wi) = 0 and E[wiw′
i] =

 σ2
u σu,ε

σu,ε σ2
ε

 = Σ with

V ar(ui) = σ2
u, V ar(εi) = σ2

ε Cov(ui, εi) = σu,ε and the elements of Σ are finite.

Assumption 3.4.

plim(n−1Z′Z) = E(ziz′
i) = Q ; plim(n−1Z′d) = E(zidi)

plim(n−1Z′u) = E(ziui) = 0 ; plim(n−1Z′ε) = E(ziεi) = 0

plim(n−1
n∑
i=1

wi) = 0 ; plim(n−1wiw′
i) = Σ.

Assumption 3.5. 1√
n

n∑
i=1

vec(ziw′
i)

d→ N(0,Σ⊗ Q) as n → ∞.

We modify the assumptions above when there are more than one endogenous
regressor. From (3.1) and (3.2), we have the outcome-instrument reduced form

y = ZΓ + ϵ

where Γ = γβ + α. Each individual instrument zj is associated with a just-
identified estimator for β, denoted by β̂j, which is defined as the two-stage least
squares (2SLS) estimator using zj as the single valid instruments, and treating the
remaining IVs as controls. There are J just-identified IV estimators. We write
these estimators as in Windmeijer et al. (2021).

β̂j = Γ̂j
γ̂j

where Γ̂j and γ̂j are the OLS estimators for Γj and γj respectively. Then we have

Property 3.1. Properties of just-identified estimates.
Under Assumptions 3.1 to 3.5 it holds that

plim(β̂j) = plim

 Γ̂j
γ̂j

 = β + αj
γj
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Hence, the inconsistency of β̂j is plim(β̂j) − β = αj

γj
= q. We define a group

following the definition in Guo et al. (2018) as:

Definition 3.2. A group Gq is a set of IVs that has the same estimand βj = β+q.

Gq = {j : βj = β + q}

The group consisting of all valid instruments is

G0 = {j : q = 0}

Let the number of groups be Q.
The next assumption is the key assumption for identification. It states that

among the Q groups formed by z1, ..., zJ , the largest group is composed by all the
valid IVs. A group is defined as above, as a set of instruments whose just-identified
estimators converge to the same value β + q.

Assumption 3.6. Plurality Rule.

g > max
q ̸=0

|Gq|

3.3 IV Selection and Estimation Method

Based on the definition of groups, and the plurality rule, a natural strategy for IV
selection is to find the Q IV groups, and then select the largest group as the set
of valid instruments. In this paper, we explore clustering methods to discover the
IV groups. First, we adapt the general clustering framework to the IV selection
problem, which is summarized in the minimisation problem in 3.4. This general
method needs a pre-specified parameter K, which is the number of clusters. We
show that when K equals the number of groups, there is a unique solution to this
minimization problem. This solution coincides with the true underlying partition.
However, the fact that consistent selection depends on K makes it difficult to
implement in practice, as we do not have prior knowledge about the number of
groups. If K is too large (larger than the number of groups), then the largest

99



group will be split. If K is too small, then the largest group might be in a
cluster with some other group. To tackle this problem, we propose a downward
testing procedure that combines the agglomerative hierarchical clustering method
(Ward’s method) with the Sargan test for overidentifying restrictions to select the
valid instruments. This procedure allows us to select the valid instruments without
pre-specifying K.

3.3.1 Clustering Method for IV Selection

Let S = {S1, ...,SK} be a partition of J just-identified estimators β̂j into K cluster
cells. The clustering result is the solution to the following minimization problem:

Ŝ(K) = argmin
S

K∑
k=1

∑
β̂j∈Sk

||β̂j − S̄k||2, (3.4)

where S̄k is the arithmetic mean of all just-identified estimators in cluster Sk.
Let the clustering result Ŝ(K) be an estimator of sets containing IV-estimators β̂j.
The IV-estimators in a cluster Ŝk are selected to belong to a certain group:

Ĝk = {j : β̂j ∈ Ŝk}

Based on Assumption 3.6, the cluster that consists of estimators that use valid
IVs is estimated as the cluster that contains the largest number of just-identified
estimators:

Ŝm(K) = {S(K) : |Ŝ(K)| = max
k

|Ŝk(K)|}

The valid IVs are selected as those IVs that are used to estimate the largest cluster
Ŝm(K)

V̂(K) = {j : β̂j ∈ Ŝm(K)}

Then, the remaining IVs are selected as invalid

Î(K) = J \ V̂(K).
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When the number of clusters K is equal to the number of groups Q, then there is
a partition minimizing the sum in Equation 3.4. This occurs, when the grouping
is such that Ĝk = Gq, i.e. each selected group Ĝk is in fact formed by a true group,
Gq. Define the partition leading to this grouping of IVs as the true partition
S0 = {S01, ...,S0Q}.

To see that, first note that if the partition is such that Ŝk = S0q ∀k, q, i.e.
Ŝ(K) = S0,

g(Ŝ(K)) = g(S0) = plim{
K∑
k=1

∑
β̂j∈Sk

||β̂j − S̄k||2} = 0.

For all β̂j ∈ Sk, we have plim β̂j = plim S̄k, and plim{||β̂j −S̄k||2} = 0. This is the
case for all k ∈ 1, ...K, hence g(S0) = 0. Second, if the partition is such that some
Sk ̸= S0q, i.e. S ≠ S0, then plim β̂j ̸= plim S̄k for some β̂j ∈ Sk and g(S) > 0.
This means that when n → ∞ there is a unique solution for Equation 3.4, which
is such that S = S0. A necessary condition for this to hold is that K = Q.

3.3.2 Ward’s Algorithm for IV Selection

To choose the correct value of K without prior knowledge of the number of groups,
we propose a selection method which combines Ward’s algorithm, a general ag-
glomerative hierarchical clustering procedure proposed by Ward (1963), with the
Sargan test of overidentifying restrictions. Our selection algorithm has two parts,
and the set of instruments selected as valid by the algorithm is denoted by V̂dts.

The first part is Ward’s algorithm, as described in Algorithm 3.1 below. Ward’s
algorithm aims to minimize the total within-cluster sum of squared error. This is
achieved by minimizing the increase in within-cluster sum of squared error at each
step of the algorithm. The method generates a path of cluster assignments with
K clusters at each step so that K ∈ {1, ..., J}. After obtaining the clusters for
each K, we use a downward testing procedure based on the Sargan-test to select
the set of valid instruments (Algorithm 3.2).

Ward’s Algorithm works as follows

Algorithm 3.1. Ward’s algorithm
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1. Input: Each just-identified point estimate is calculated. The Euclidean dis-
tance between all of these estimates is calculated and written as a dissimilar-
ity matrix.

2. Initialization: Each just-identified estimate has its own cluster. Hence,
initially, the total number of clusters is J .

3. Joining: The two clusters that are closest as measured by their weighted
squared Euclidean distance |Sk||Sl|

|Sk|+|Sl|
||S̄k − S̄l||2 are joined to a new cluster.

|Sk| is the number of estimates in cluster k. S̄k denotes the mean of cluster
k, which is the arithmetic mean of all the just-identified estimates in Sk.

4. Iteration: The joining step is repeated until all just-identified point-estimates
are in one cluster.

This yields a path of S = J − 1 steps, on which there are clusters of size K ∈
{1, ..., J}. Ward (1963) also allows for alternative objective functions. These are
associated with different dissimilarity metrics and different ways to define the
distance between clusters. We discuss alternative choices of these so-called linkage
methods and dissimilarity metrics in Section 3.4.4.

After generating the clustering path using Algorithm 3.1, we select the set of
valid instruments following Algorithm 3.2:

Algorithm 3.2. Downward testing procedure

1. Starting from K = 1, find the cluster that contains the largest number of
just-identified estimators.

2. Do the Sargan test on the instruments associated with the largest cluster,
using the rest of IVs as controls. If there are multiple such clusters, select
the one with the smallest Sargan statistic.

3. Repeat the procedure for each K = 2, ..., J − 1.

4. Stop the first time that the model selected by the largest cluster at some K
does not get rejected by the Sargan test.
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5. Select the instruments associated with the cluster from Step 4 as valid instru-
ments.

The Sargan statistic in Step 4 is given by

Sar (K) = û(θ̂K)′Z (Z′Z)−1 Z′û(θ̂K)
û(θ̂K)′û(θ̂K)/n

where θ̂K is the 2SLS estimator using the instruments associated with the largest
cluster for each K as valid instruments and controlling for the rest of the in-
struments, and û(θ̂K) is the 2SLS residual. Later, we show that, to guarantee
consistent selection, the critical value for the Sargan test, denoted by ξn,J−|Î|−P ,
should satisfy ξn,J−|Î|−P → ∞ and ξn,J−|Î|−P = o(n). In practice, we choose the
significance level 0.1

log(n) following Windmeijer et al. (2021).
The procedure is illustrated in Figure 3.1, which shows a situation with six

instruments. Three of them are valid as they affect the outcome variable only
through the endogenous regressor, while it is not the case for the other three
invalid instruments. In the figure, the circles above the real line denote the just-
identified estimate for the coefficient β0 estimated by each of the six instruments.
In the explanation below, we refer to these estimates and their corresponding
instruments by No. 1 to No. 6, from left to right.

In the initial Step (0) of the clustering process, each just-identified estimate
has its own cluster. In Step (1), we join the two estimates which are closest in
terms of their weighted Euclidean distance, i.e. those estimated with instrument
No. 3 and No. 4 (the two orange circles). These two estimates now form one
cluster and we only have five clusters. We re-calculate the distances with the
new cluster and merge the closest two into a new cluster. We continue with this
procedure, until there is only one cluster left in the bottom right graph. We
continue with Algorithm 3.2 and evaluate the Sargan test at each step, using the
instruments contained in the largest cluster. When the p-value is larger than a
certain threshold, say 0.1/log(n), we stop the procedure. Ideally this will be the
case at Step (3) of the algorithm, because here the largest group (in orange) is
formed only by valid IVs (No. 2, No. 3 and No. 4). If this is the case, only the
valid IVs are selected as valid.
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Figure 3.1: Illustration of the Algorithm with One Regressor
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Step: 3, Nr. of clusters: 3
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Step: 4, Nr. of clusters: 2

��

Step: 5, Nr. of clusters: 1

3.3.3 Oracle Selection and Estimation Property

In this section, we state the theoretical properties of the IV selection results ob-
tained by Algorithm 3.1 and Algorithm 3.2, and of the post-selection estimators.
See Section 3.4 for detailed theoretical results developed for the general case P ≥ 1.
We establish that our method can achieve oracle properties in the sense that it can
select the valid instruments consistently, and that the post-selection IV estimator
has the same limiting distribution as if we knew the true set of valid instruments.

104



Theorem 3.1. Consistent selection
Let ξn be the critical value for the Sargan test in Algorithm 3.2. Let V̂dts be the set
of instruments selected from Algorithm 3.1 and Algorithm 3.2. Under Assumptions
3.1 - 3.6, for ξn → ∞ and ξn = o(n),

lim
n→∞

P (V̂dts = V) = 1.

The post-selection 2SLS estimator using the selected valid instruments and con-
trolling for the selected invalid instruments has the same asymptotic distribution
as the oracle estimator:

Theorem 3.2. Asymptotic oracle distribution
Let ZÎ = Z \ ZV̂dts with ZÎ , ZV̂dts being the selected invalid and valid instruments
respectively. Let β̂V̂dts be the 2SLS estimator given by

β̂V̂dts = (d̂′MZÎ
d̂)−1d̂′MZÎ

y

Under Assumptions 3.1 - 3.6, the limiting distribution of β̂V̂dts is

√
n(β̂V̂dts − β) d→ N(0, σ2

or)

where σ2
or is the asymptotic variance for the oracle 2SLS estimator given by

σ2
or = σ2

u

(
E [zi.di]′ E [zi.z′

i.]
−1
E [zi.di] − E [zI,i.di]′ E

[
zI,i.z′

I,i.

]−1
E [zI,i.di]

)−1
.

with I being the true set of invalid instruments.

The proof of Theorem 3.2 follows from the proof of Guo et al. (2018, Consistent
selection leads to oracle properties, Theorem 2)

3.3.4 Computational Complexity

Recent implementations of the hierarchical agglomerative clustering algorithm
have a computational cost of O(J2) (Amorim et al., 2016). In the downward
testing procedure, a maximum of J − 1 different models need to be tested. There-
fore, the computational cost of the downward testing algorithm is O(J2). This is
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an improvement over the CIM, which has a time complexity of O(J2log(J)) and
where the maximal number of tests is J(J − 1)/2.

3.4 Extensions

In this section, we propose an extension of our method to a setting with multi-
ple endogenous regressors, and we discuss the performance of our method in the
presence of weak instruments as compared with the HT and CI method. We also
discuss a setting with heterogeneous treatment effects.

3.4.1 Multiple Endogenous Regressors

One shortcoming of previous IV selection methods is that they only allow for one
endogenous regressor. Therefore, in this section, we show how our method can be
extended to select invalid instruments when P > 1. First of all, the inputs to our
method, all the just-identified estimators, are estimated by all the P -combinations
from z1, ..., zJ . Hence, we now have

(
J
P

)
instead of J just-identified estimators. Let

[j] be a set of indices of any P instruments such that the model is exactly identified
with these P instruments. Let Z[j] denote the corresponding n × P instrument
matrix. To guarantee that all the

(
J
P

)
just-identified estimators exist, we modify

Assumption 3.1 as follows:

Assumption 3.1.a. Existence of just-identified estimators
For all possible values of [j], let γ[j] be the combinations of the kth-rows of γ for
all k ∈ [j]. Then we assume

rank(γ[j]) = P.

The plurality assumption must also be modified for P > 1. For P = 1, As-
sumption 3.6 states that the valid instruments form the largest group, where in-
struments form a group if their just-identified estimators converge to the same
value. If we find the largest set of just-identified estimators that converge to the
same value, then this set is automatically the largest group of instruments, as
each just-identified estimator is estimated by a single instrument. However, when
P > 1, each just-identified estimator is estimated by multiple instruments, hence

106



the equivalence between the largest set of just-identified estimators and the largest
group of instruments may not hold. In this case, we modify the plurality rule so it
is based on the combinations of P instruments instead of individual instruments.
This modification starts with revisiting the asymptotics of the just-identified esti-
mators for P > 1. The details can be found in Appendix 3.A.2.

Let β̂[j] be the just-identified 2SLS estimator estimated with Z[j], then anal-
ogously to the case with one regressor, we have the following property of the
just-identified estimates:

Property 3.2. Properties of the just-identified estimates with P ≥ 1
Under Assumptions 3.1.a to 3.5 it holds that

plimβ̂[j] = β + γ−1
[j] α[j] = β + q

where the inconsistency of β is β̂[j] − β = γ−1
[j] α[j] = q and there are

(
J
P

)
incon-

sistency terms q. Note that q is a P × 1 vector. When P > 1, not every IV is
associated with a single scalar q, so we introduce the concept of a family:

Definition 3.3. A family is a set of just-identifying IV combinations that is as-
sociated with just-identified estimators which converge to the same value.

Fq = {[j] : β[j] = β0 + q}

Note that each element of a family is itself a set of P IVs, such that a model
is just-identified. By definition, the family that consists of IV combinations that
generate consistent estimators is

F0 = {[j] : q = 0}.

Let there be Q families. Note that when P = 1 a group of IVs is automatically a
family.

Analogously to Assumption 3.6, we assume that F0 is the largest family:

|F0| > max
q ̸=0

|Fq|

We show in Appendix 3.A.3, that a combination of IVs is an element of F0 if and
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only if all of the P IVs in the combination are in fact valid. This means that the
family of valid IVs consists of all combinations that use P IVs from the set of valid
instruments, V , and hence |F0| =

(
g
P

)
. Therefore, the plurality assumption can be

modified to

Assumption 3.6.a. Family plurality
(
g

P

)
> max

q ̸=0
|Fq|

The inconsistency term of elements in Fq with q ̸= 0 depends on the first-stage
coefficient vectors and hence there is no direct relation from α[j] to q. One way
in which this new plurality can be fulfilled, is when the largest set of IVs has
zero direct effects αj = 0. Moreover, the vectors γ−1

[j] α[j] constituted by P -sets
with α[j] ̸= 0 are sufficiently dispersed. Strictly speaking, the family plurality
assumption can also hold when the largest group of IVs has some direct effect
αj = c. If the dispersion of γ−1

[j] α[j] is large enough, the largest family will still be
constituted by valid IVs only.

The procedure to estimate V is analogous to the one in the preceding section
(see Appendix 3.A.1 for an illustration) except that we now need to account for the
presence of families. First, for a certain number of clusters, K, a unique cluster
is selected by the algorithm. This works as follows: The algorithm selects the
cluster which contains the largest number of point estimates, β̂[j], as the cluster
potentially associated with the valid instruments at K. Again, this largest cluster
is Ŝm(K).

Ŝm(K) = {Ŝ(K) : |Ŝ(K)| = max
k

|Ŝk(K)|}

The cluster Ŝm(K) denotes a cluster of just-identified estimates. This needs to
be translated to the family associated with the largest cluster, i.e. the set of
IV-combinations, F̂(K), used for the estimates that end up in the largest cluster.

F̂m(K) = {[j] : β̂[j] ∈ Ŝm(K)}

In the case with one regressor, each cluster is directly associated with a group
of IVs. Now, the families need to be translated to sets of IVs to be tested. To
achieve this, for each K, the potentially valid IVs are selected as those that are in

108



combinations contained in the largest family.

V̂m(K) = {j : [j] ∈ F̂(K)}

The remaining IVs are then selected as invalid.

Î(K) = J \ V̂m(K)

For eachK, there might be cases where there are multiple maximal clusters Ŝm(K),
and then there are multiple associated V̂m(K). Let V̂M(K) denote the set of the
multiple V̂m(K). In such a case, we select the cluster in which the most IVs are
involved. If there are multiple clusters with the maximal number of estimates and
of IVs, we select the set of IVs which leads to a lower Sargan test. Then for each
K, the unique set of instruments to be checked by the Sargan test is:

V̂Sar(K) = {V̂m(K) : V̂m(K) = max|V̂M(K)| & minSar(V̂M(K))} (3.5)

The downward testing procedure considers the selection via V̂Sar(K), for each
number of clusters K ∈ {1, ...,

(
J
P

)
− 1}, and chooses the smallest K such that the

selected group of IVs passes the Sargan test:

V̂dts = {V̂Sar(K), K = min(1, ...,
(
J

P

)
− 1) : Sar(V̂Sar(K)) < ξn,J−|Î|−P} (3.6)

The method has oracle properties as stated in Theorem 3.1 and Theorem 3.2. Here,
we formally establish the theoretical results for the general case with an arbitrary
number of regressors, P ≥ 1. See Appendix 3.A.4 for proofs of all theorems.
Suppose Algorithm 3.1 decides whether to merge two of the three clusters Sj, Sk
and Sl, where all the IV combinations associated with the just-identified estimators
in Sj and Sk are from the same true cluster S0q. For Sl, however, it contains at
least one estimator such that the corresponding IV combination is from a family
other than Fq. The following Lemma establishes asymptotically that Algorithm
3.1 merges Sj and Sk.

Lemma 3.1. Let Sj and Sk be two clusters such that any just-identified estimator
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β̂[j] that is contained in Sj and Sk satisfies [j] ∈ Fq. Let Sl be a cluster such that
∃β̂[l] : β̂[l] ∈ Sl and [l] ∈ Fr with r ̸= q. Under assumptions 3.1.a, 3.2, 3.3, 3.4,
3.5, 3.6.a in Algorithm 3.1, if merging two of Sj, Sk and Sl, then Sj and Sk are
merged with probability converging to 1.

In Algorithm 3.1, we start from the number of clusters K =
(
J
P

)
. For each step

onward, according to Step 3 in Algorithm 3.1, there would be two clusters merging
with each other and forming a new cluster. Based on Lemma 3.1, along the
path of Algorithm 3.1, members of different families will not be merged with each
other until all the members from the same family have been merged into one
family. If for each family, all the just-identified estimators associated with the IV
combinations in the family have been merged into the same cluster, then we know
that the total number of clusters is K = Q. This implies that when the number of
clusters is smaller than Q, then at least one cluster contains estimators that use
IV-combinations from different families. If the number of clusters is larger than
Q, then the estimated families are subsets of a family.

Corollary 3.1. Under assumptions 3.1.a, 3.2 to 3.5, and 3.6.a, in steps 3 and 4
of Algorithm 3.1:

When
(
J

P

)
≥ K ≥ Q, ∀k : limP (F̂k ⊆ Fq) = 1

To better understand why this is the case, consider the following analogy. There
are N guests (

(
J
P

)
just-identified estimates) which belong to Q families. These

N people live in a hotel, which has N rooms (clusters). Each day, one room
disappears, and one of the people needs to move into the room of some other
guest. The people in a family have closer ties, so the person whose room disappears
will move into the room of somebody from their own family. This goes on until
each family is living respectively in one crowded room. The hotel now continues
to shrink. Only now are people from different families merged together into the
same rooms. The largest family can be detected when all people from the same
family have been merged into one room, but people from other families have not
been merged into one room completely or have just been all merged into one room
respectively).
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In Algorithm 3.1, the number of clusters starts with K =
(
J
P

)
and ends with

K = 1. For each step in-between, the number of clusters decreases by 1, hence
there must be a step where K = Q. Based on Lemma 3.1 and Corollary 3.1,
estimators from different families are merged only when all elements of their own
family have been completely merged to their clusters. This implies that when
K = Q, there would be a cluster such that all the just-identified estimators in this
cluster are estimated by all the valid instruments. Therefore, the path generated
by Algorithm 3.1 contains the true family with probability going to 1 as there
must be one step such that K = Q.

Corollary 3.2. When K = Q, limP (F̂k = Fq) = 1 ∀k, q.

The theoretical results above establish that the selection path generated by Al-
gorithm 3.1 covers the family which uses only valid IVs, F0. In Appendix 3.A.4
we show that by Algorithm 3.2, we can locate this F0 and select the valid instru-
ments consistently. This consistent selection property is summarized in Theorem
3.1 which holds for P ≥ 1 under Assumption 3.1 (3.1.a) to Assumption 3.6 (3.6.a).
These assumptions must also hold for Theorem 3.2 to hold.

3.4.2 The Weak Instruments Problem

In previous sections, we assumed that all the candidate instruments (or all the(
J
P

)
IV combinations when P > 1) are relevant for the endogenous variables by

Assumption 3.1 and Assumption 3.1.a. However, in practice, these assumptions
might not be satisfied in the sense that some of the candidate instruments are only
weakly correlated with the endogenous variables. We now relax these assumptions
and allow for individually weak instruments among the candidates. To be specific,
we model the weak instruments as local to zero following Staiger and Stock (1997),
i.e. an instrument Zj is defined as weak if γj = C/

√
n, where C is a fixed scalar

and C ̸= 0. For consistent IV selection, we maintain the plurality assumption 3.6
for strong and valid instruments as in Guo et al. (2018): The group formed by all
the strong and valid instruments is the largest group. Note that the largest group
now also needs to be strong, while IVs in other groups can be weak.2

2The equivalent holds for the largest family when there are multiple regressors.
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Inherently, our method can rule out weak and invalid instruments. This is
because, for these instruments, under Model 3.1 and 3.2, it can be shown that
their just-identified estimators tend to infinity.3 Therefore, they can be separated
from the just-identified estimators of the strong and valid instruments by the
algorithm as the latter converge to the true value of the causal effect.

As for weak valid instruments, where the Wald ratio estimator is strongly bi-
ased, they are dropped from the set of selected valid instruments by the algorithm,
because they do not pass the Sargan test, even if they cluster with the strong and
valid IVs. Unlike the HT method, which uses first-stage hard thresholding and se-
lects all weak valid instruments as invalid, our method is more flexible and instead
uses the algorithm to decide which of the weak valid instruments that should be
classified as invalid.

This mechanism has two advantages for valid weak instruments selection. First,
compare with the HT method which drops all such instruments. Our method can
avoid loss of information as the individually weak instruments can be informative
all together. Second, it can limit the impact of including the selected weak instru-
ments on IV estimation. By the algorithm, it can be seen that if the weak valid
instruments are classified as valid, then this indicates that their just-identified es-
timators are not biased too much from the true value. Also, Windmeijer (2019)
shows that the 2SLS estimator is a weighted average of all the just-identified es-
timates. The weights for each IV-specific estimate increase with the strength of
each IV. By the plurality assumption, there are already strong valid instruments
for post-selection IV estimation. In this case, the bias in the 2SLS estimator of
including additional weak valid instruments would be small as their weights of
contribution to the 2SLS estimator are small.

In comparison, the CIM can be problematic in the presence of weak instruments
as it tends to select weak invalid instruments as valid, causing bias of the post-
selection estimator. This is because the confidence intervals of the weak invalid
instruments tend to have large ranges. Thus, most of them will be overlapping

3Consider P = 1. Let Zj be a weak and invalid instrument, i.e. γj = C/
√

n and αj ̸= 0.
Following Appendix A.5 in Windmeijer et al. (2021), for the just-identified estimator of Zj ,
denoted by β̂j , we have plim(β̂j) = plim(βj) = plim(β + αj

γj
) = β + plim(

√
n

αj

C ) with αj ̸= 0.
Therefore β̂j → ∞ as n → ∞.
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with all other confidence intervals, and the resulting largest group (which would be
the selected set of valid instruments) will always contain some of the weak invalid
instruments. As for the HT method, except for the disadvantage that there can be
a potential loss of information by dropping all the weak valid instruments, it is also
not clear how it chooses the optimal value of the threshold for any given sample,
as noted in Windmeijer et al. (2021). In Section 3.5.2, we provide a detailed
comparison via Monte Carlo experiments.

To summarize, our method can select all invalid instruments as invalid regard-
less of their strength, which is the key for consistent estimation of the causal effect.
It treats weak valid instruments in a flexible way to avoid information loss and at
the same time limits the bias-inducing effect of including weak instruments in the
IV estimation.

3.4.3 Heterogeneous Treatment Effects

The instrumental variable estimator also has a local average treatment effect
(LATE) interpretation, as it estimates the average treatment effect of a sub-
population, whose treatment can be changed by the instrument (Imbens and An-
grist, 1994). Hence, LATEs will naturally vary with the instruments. For example,
an increase in minimum school-leaving age versus proximity to school will see dif-
ferent populations increase their schooling. In this section, we show such a setting
and argue that our method can retrieve the largest group associated with a given
LATE, or the whole set of different LATEs.

For simplicity, we look at a setting with a binary treatment di, a binary instru-
ment zi, and potential outcomes y1i and y0i. The outcome and the treatment can
be written as

yi = y0i(1 − di) + y1idi

di = d0i(1 − zi) + d1izi

Assumption 3.7. Independence {y0i, y1i, d0i, d1i} ⊥⊥ zi

Assumption 3.8. First Stage P (di = 1|zi = 1) ̸= P (di = 1|zi = 0)
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Assumption 3.9. Monotonicity d1i > d0i

If the last three assumptions are fulfilled, Imbens and Angrist (1994) show that
the IV estimand is the average treatment effect of compliers:

E(yi|zi = 1) − E(yi|zi = 0)
E(di|zi = 1) − E(di|zi = 0) = E(y1i − y0i|d1i > d0i) (3.7)

In the following, we show a setting in which the LATEs are dependent on a poten-
tially unobserved variable u. For this, we make use of the setting in Angrist and
Fernandez-Val (2010). The treatment is determined by the following latent-index
assignment mechanism

di = 1(hz(ui, zi) > ηi) (3.8)

where hz(ui, 1) ≥ hz(ui, 0) and the potential outcomes depend on the variable u:

y0i = g0(ui) + ϵ0i

y1i = g1(ui) + ϵ1i

where the errors are E(ϵi|ui, zi) = 0. Angrist and Fernandez-Val (2010) then
assume

Assumption 3.10. Conditional Effect Ignorability: E(y1i−y0i|dz1i, dz0i, ui) = E(y1i−
y0i|ui)

Angrist and Fernandez-Val (2010) then show that under this assumption the LATE
can be written as a function of u:

βj = E(y1i − y0i|u, d1i > d0i) = g1(ui) − g0(ui) (3.9)

We are interested in a setting where the by-IV treatment effects form groups:

Gq = {j : βj = q} (3.10)

This might be the case, when different compliant populations have the same u or
different u lead to the same βj. Keep in mind that the number of groups is Q.
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Note that Lemma 3.1 and Corollaries 3.1 and 3.2 also hold in the heteroge-
neous effects setting. In this case, the algorithm can find groups of heterogeneous
treatment effects. Now, Algorithms 3.1 and 3.2 are altered. Instead of Steps 4 and
5 in Algorithm 3.1, which select the largest cluster and run post-selection 2SLS,
we still do the downward testing procedure, but now do the Sargan-test for all
clusters and stop at the step where none of the Sargan-tests reject. Finally, all
cluster centers are reported.
In the same way as before:

Theorem 3.3. Consistent selection of LATE groups
Let ξn be the critical value for the Sargan test in Algorithm 3.2. Under Assumptions
3.7 - 3.10 and Lemma 3.1, for ξn → ∞ and ξn = o(n),

lim(Ĝk = Gq) = 1 ∀k, q.

The proof is in the Appendix. This theorem states that we can retrieve all hetero-
geneous treatment effect groups, when the heterogeneity is structured in groups.
The difference to the setting with invalid IVs is that in the LATE-setting not only
the largest cluster contains valuable information, but also the smaller clusters
contain coefficient estimates obtained with valid instruments.

3.4.4 Different Proximity Measures

In Algorithm 3.1 we have made use of the Euclidean distance to assess the prox-
imity of the clusters. One might be worried that the results are sensible to the
choice of proximity measure. However, in practice this choice does not seem to
play a big role.

Especially in settings with multiple regressors, there might be better choices
to assess proximity. Aggarwal et al. (2001) discuss that the difference between the
maximum and minimum distances to a given point becomes zero as the number
of dimensions increases. This problem is exacerbated for higher-order norms, that
is with || · ||k-norms, where k is large. Therefore, in high dimensions, Aggarwal
et al. (2001) suggest to rely on the Manhattan distance instead of the Euclidean
distance. Going further than this, fractional norms of the shape

D∑
d=1

[(xd1 − xd2)f ]1/f
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are introduced. It is shown that these fractional distance metrics preserve the
contrast better than integral distance metrics.

Therefore, we also allow to use alternative distances in Algorithm 3.1. We
consider the Manhattan and the Minkowski distance, which is similar to the frac-
tional distance as proposed in Aggarwal et al. (2001), with the difference that the
absolute value of the distances is taken.

Furthermore, Algorithm 3.1 computes the weighted Euclidean norm to evalu-
ate the distance between clusters. The choice of linkage and distance definition is
associated with a specific choice of the objective function, as discussed in Ward
(1963). The latter aims to minimize the sum of within-cluster variation. In com-
plete linkage, the two most distant elements of two clusters define the distance
between the clusters. Alternative ways to assess proximity would be to use the
medians or centroids of each cluster. We allow for alternative distance definitions
and linkage methods in the R-package we provide.

In additional simulations, we considered these variants of the agglomerative
hierarchical clustering algorithm, and the results are very similar to those obtained
by using the Euclidean distance and the Ward-linkage function. The results of
these simulations are available on request.

3.5 Monte Carlo Simulations

3.5.1 All Candidate Instruments are Strong

We conduct Monte Carlo simulations to illustrate the performance of our AHC
method, and compare with that of the existing Confidence Interval Method and
the Two-Stage Hard Thresholding Method in situations where Assumption 3.1 and
Assumption 3.1.a are satisfied. In this set of simulations, we find that our method
works as well as the CIM in terms of bias and it outperforms HT in small-sample
settings. When there are multiple regressors, the summed bias is very close to the
oracle bias and is only a fraction of the bias of the naive estimator.

We follow closely the setting in Windmeijer et al. (2021): There are 21 candi-
date instruments, 12 of which are invalid, while 9 are valid with α = cα (ι′

6, 0.5ι′
6, 0′

9)
′

where 0r is an r×1 vector of zeros and ιr is an r×1 vector of ones. The first-stage
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parameters are given by γ = cγ × ι21. We set cα = 1 and cγ = 0.4. The true β is
0 and zi ∼ N(0,Σz) with Σz,jk = 0.5|j−k|. Errors are generated from

 ui

εi

 ∼ N

0,
 1 0.25

0.25 1

 .

The IV selection and estimation results are presented in Table 3.1 for sample sizes
N = 500, 1000, 2000 for 1, 000 Monte Carlo replications. We report the median
absolute error (column “MAE”) and the standard deviation (column “SD”) of
the IV estimators, and the coverage rate of the 95% confidence intervals (column
“Coverage”). For the IV selection results, we report three statistics: The number
of selected invalid instruments (column “# invalid”), the frequency of selecting all
invalid instruments as invalid (column “p allinv”), and the frequency of selecting
the oracle model (column “p oracle”).

For N = 500, the oracle 2SLS estimator (row “oracle”), which uses only the
valid IVs and controls for the truly invalid ones, has the lowest MAE at 0.016, and
the coverage rate of the 95 % confidence interval is 0.929. The naive 2SLS estimator
(row “naive”), which treats all candidates instruments as valid irrespective of their
validity, has a much larger median absolute error of about 1.056, and its 95 %
confidence interval never covers the true value. As expected, even when increasing
the sample size to 2000, this does not change. When using the HT method (row
“HT”) with 500 observations, the MAE is even larger than that of the naive 2SLS
estimator, the method never chooses the oracle model, and none of the confidence
intervals cover the true value. This is in line with the IV selection results; both
the frequency of including all invalid instruments as invalid, and the frequency
of selecting the oracle model, are 0. When using CIM (row “CIM”), the MAE
is already low with sample size N = 500, the number of IVs chosen as invalid is
close to 12, the frequency with which the oracle model is selected is at 0.966, and
the coverage rate is 0.906. The results are very similar for our AHC method (row
“AHC”). When increasing the sample size, the performance improves for all three
selection methods. For CIM and AHC, the MAE is equal to that of the oracle
estimator both at N = 1000 and N = 2000, and the probabilities of selecting the
oracle model are close to one. For HT this probability is lower, which shows that
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Table 3.1: Simulation Results with One Regressor

MAE SD # invalid p allinv Coverage p oracle
N=500
oracle 0.016 0.025 12 1 0.929 1
naive 1.056 0.049 0 0 0 0
HT 1.165 0.127 12.696 0 0 0
CIM 0.017 0.267 12.023 0.987 0.906 0.966
AHC 0.016 0.179 12.049 0.989 0.912 0.983

N=1000
oracle 0.012 0.017 12 1 0.953 1
naive 1.058 0.034 0 0 0 0
HT 1.374 0.114 18.205 0 0.001 0
CIM 0.012 0.017 12.015 1 0.948 0.986
AHC 0.012 0.135 12.052 0.991 0.936 0.980

N=2000
oracle 0.008 0.012 12 1 0.943 1
naive 1.059 0.025 0 0 0 0
HT 0.010 0.384 12.679 0.885 0.864 0.708
CIM 0.008 0.012 12.013 1 0.938 0.988
AHC 0.008 0.160 12.039 0.993 0.931 0.984

This table reports median absolute error standard deviation, number of
IVs selected as invalid, frequency with which all invalid IVs have been
selected as invalid, coverage rate of the 95 % confidence interval and
frequency with which oracle model has been selected. The true coefficient
is β = 0. WLHB setting and invalid weaker setting are described in the
text. 1000 repetitions per setting.

CIM and AHC have better finite sample performance.
We also inspect the performance of our method when there are multiple endoge-

nous regressors. The existing selection methods do not allow for such an extension.
Again, we draw 21 IVs with α = cα (ι′

6, 0.5ι′
6, 0′

9)
′. The first-stage parameters are

drawn from uniform distributions as γ1 = unif(1, 2), γ2 = unif(3, 4), and, when
there is a third endogenous regressor, γ3 = unif(5, 6). The rest of the parameters
are the same as the earlier simulation design. In this setting, we estimate β = 0

for m = 1, 000 replications. We report the results in Table 3.2. It can be seen
that the performance of our method approaches that of the oracle estimator as
the sample size grows large. Although, when the number of endogenous variables
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Table 3.2: Simulation Results with More Than One Regressor

MAE SD # invalid p allinv Coverage p oracle
P=2

N=500
Oracle 0.049 0.085 12 1 0.965 1
Naive 0.597 0.377 0 0 0.032 0
AC 0.080 0.583 12.215 0.930 0.879 0.750

N=1000
Oracle 0.044 0.068 12 1 0.952 1
Naive 0.658 0.272 0 0 0 0
AC 0.055 0.343 12.202 0.982 0.919 0.827

N=5000
Oracle 0.021 0.033 12 1 0.949 1
Naive 0.755 0.138 0 0 0 0
AC 0.024 0.037 12.109 1 0.938 0.909
P=3

N=500
Oracle 0.063 0.099 12 1 0.952 1
Naive 0.880 0.372 0 0 0.002 0
AC 0.121 0.804 12.190 0.794 0.725 0.520

N=1000
Oracle 0.050 0.078 12 1 0.934 1
Naive 0.915 0.279 0 0 0 0
AC 0.073 0.416 12.367 0.948 0.844 0.696

N=5000
Oracle 0.037 0.058 12 1 0.919 1
Naive 0.941 0.211 0 0 0 0
AC 0.049 0.307 12.261 0.976 0.853 0.797

This table reports median absolute error, standard deviation, number of
IVs selected as invalid, frequency with which all invalid IVs have been
selected as invalid, coverage rate of the 95 % confidence interval and
frequency with which oracle model has been selected. For the first two,
means over the statistic for each regressor are taken. The true coefficient
is β = 0. Settings are described in the text. 1000 repetitions per setting.
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increases from 1 to 3, it needs a larger sample size to achieve oracle selection.

3.5.2 Some Weak Instruments Among the Candidate In-
struments

Next, we investigate the performance of the previously mentioned methods when
Assumption 3.1 and Assumption 3.1.a are violated, i.e there are weak instruments
among the candidates. Overall, we find that our AHC method outperforms the
CIM, and in the case where the largest group does not consist of strong and valid
IVs, also the HT. Moreover, with two endogenous regressors, AHC is still very
close to oracle performance.

For individually weak instruments, we consider the local to zero setup and
we set their first stage parameters as γj = C/

√
n with C = 0.1. First, consider

the same setting as in Section 3.5.1 with one endogenous variable, but with the
following variations:

• Design 1: All the 12 invalid instruments are irrelevant, and all the 9 valid
instruments are relevant: γ = cγ (ι′

12C/
√
n, ι′

9)
′.

• Design 2: All the 12 invalid instruments are irrelevant, and almost half of
the valid instruments are irrelevant (4 out of 9): γ = cγ (ι′

16C/
√
n, ι′

5)
′.

• Design 3: Both the valid and invalid instruments are mixtures of irrelevant
and relevant instruments.

– a). Relevant and valid instruments still form the largest group:
γ = cγ (ι′

6, ι′
7C/

√
n, ι′

8)
′.

– b). Relevant and valid instruments do not form the (strictly) largest
group:
γ = cγ (ι′

6, ι′
9C/

√
n, ι′

6)
′.

All the other parameters are the same as in Section 3.5.1. We focus on the large
sample performance in the presence of weak instruments, and we fix the sample
size to N = 2000. The simulation results are calculated based on 1, 000 Monte
Carlo replications. We present the results in Table 3.3, where MAE, # invalid
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and p allinv are defined in the same way as in Section 3.5.1. Here we also report
three new IV selection statistics: the frequency of selecting all valid and strong
instruments as valid (column “strongvalid”), the frequency of selecting all weak
invalid instruments as invalid (column “weakin”), and the frequency of selecting
all weak valid instruments as invalid (column “weakva”). In these designs, we let
the oracle models include only the strong and valid instruments as valid. Our
primary focus is the selection of the invalid instruments. It is crucial that all
the invalid instruments (whether strong or weak) are selected as invalid, because
including any invalid instruments in IV estimation can cause severe bias.

In Table 3.3, we can see that, in the presence of weak instruments, the CI
method can be problematic; the frequencies of selecting all invalid instruments as
invalid are low in all settings (lowest at 0.024 in Design 1 and highest at 0.351
in Design 3a). This means that the CI method almost always includes invalid in-
struments as valid. Consequently, the MAE of the post-selection estimator is very
large (and much larger than those of the oracle, and the HT and AHC methods).

The HT method performs well in almost all designs. It selects all weak instru-
ments (both valid and invalid) as invalid with probability almost equal to 1. Also,
it has high frequencies of selecting all strong and valid instruments as valid. It can
be seen that if the strong and valid instruments form the largest group, then the
voting mechanism of the HT method can select the oracle model.

In line with the selection performance, the MAEs of HT are identical to those of
the oracle models. In Design 3b, however, the plurality rule does not hold anymore;
there is a tie between the group of strong and valid instruments, and strong and
invalid instruments. In this situation, the voting mechanism does not perform
well, and we see that p allinv is only at 0.053. This results in a significantly larger
MAE than the oracle model.

In general, the AHC performs well and it has similar MAE as the oracle model
in all settings. For Design 1, 2 and 3a, it guarantees that all the invalid instruments
are selected as invalid with p allinv and weakin close to 1. In terms of valid instru-
ments, all the strong valid instruments are included as valid with high frequencies
(strongvalid close to 1). For weak valid instruments, some of them are selected as
valid. This is because the just-identified estimators of the weak valid instruments
may not be too far away from those of the strong and valid instruments, and,
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Table 3.3: Some Weak Instruments with One Regressor

MAE # invalid p allinv strongvalid weakin weakva
Design 1

oracle 0.008 12 1 1 1 -
HT 0.008 12.000 1 1 1 -
CIM 35.112 13.289 0.024 0 0.024 -
AHC 0.008 12.028 1 0.988 1 -

Design 2
oracle 0.013 16 1 1 1 1
HT 0.013 15.951 1 1 1 0.952
CIM 33.646 12.806 0.027 0 0.027 0.527
AHC 0.012 12.445 0.999 0.997 0.999 0.002

Design 3a
oracle 0.008 13 1 1 1 1
HT 0.008 13.164 1 0.842 1 0.984
CIM 14.497 16.772 0.351 0.002 0.467 0.691
AHC 0.008 12.323 0.998 0.992 1 0.306

Design 3b
oracle 0.011 15 1 1 1 1
HT 0.929 10.511 0.053 0.870 0.999 0.961
CIM 13.636 16.500 0.277 0.008 0.462 0.421
AHC 0.013 12.766 0.847 0.847 1 0.002

This table reports median absolute error, number of IVs selected as in-
valid, frequency of all invalid IVs selected as invalid, frequency of all valid
and strong instruments selected as valid, frequency of all weak invalid
instruments selected as invalid, and frequency of all weak valid instru-
ments as invalid. 1000 repetitions per setting.
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Design 1 Design 2 Design 3
IV γ1 γ2 α IV γ1 γ2 α IV γ1 γ2 α

z1 1 C/
√
n 0 z1 1 C/

√
n 1 z1 1 C/

√
n 0

z2 2 C/
√
n 0 z2 2 C/

√
n 1 z2 2 C/

√
n 0

z3 3 C/
√
n 0 z3 3 C/

√
n 1 z3 3 C/

√
n 1

z4 4 C/
√
n 0 z4 4 C/

√
n 0 z4 C/

√
n C/

√
n 1

z5 C/
√
n unif(1, 2) 0 z5 C/

√
n unif(1, 2) 0 z5 C/

√
n C/

√
n 1

z6 C/
√
n unif(1, 2) 0 z6 C/

√
n unif(1, 2) 0 z6 C/

√
n C/

√
n 0

z7 C/
√
n unif(1, 2) 0 z7 C/

√
n unif(1, 2) 0 z7 C/

√
n unif(3, 4) 1

z8 C/
√
n unif(1, 2) 0 z8 C/

√
n unif(1, 2) 1 z8 C/

√
n unif(3, 4) 0

z9 C/
√
n unif(1, 2) 0 z9 C/

√
n unif(1, 2) 1 z9 C/

√
n unif(3, 4) 0

Table 3.4: Weak IV Simulation Designs with Two Endogenous Regressors

thus, in some cases they are not totally separated by the algorithm. This is not a
major concern as, for weak valid instruments, the algorithm would only keep those
whose Wald ratio estimators are not severely distorted. Hence, the effect of the
selected weak instruments on the resulting post-selection IV estimator is limited
(the MAEs of AHC are very close to those of the oracle models). It is notable,
that in Design 3b where there are two largest groups, AHC outperforms HT with
a frequency of 0.847 of including all the invalid instruments as invalid. Moreover,
AHC can, alternatively, report both groups.

We also investigate the large-sample performance of AHC in the presence of
weak IVs with two endogenous variables, and we fix the sample size at N = 5000.
The simulations are conducted in four designs with 9 candidate instruments, see
Table 3.4. In Design 1, each instrument is valid but only strong for one endogenous
variable, respectively, which violates Assumption 3.1.a. We are interested to see
if the AHC method can include all the instruments as valid. In Design 2, all the
candidate instruments are strong for only one treatment variable, but some of
them are invalid. In Design 3, we make some of the instruments weak for both
variables, and use a mix of valid and invalid instruments. Table 3.5 presents the
results. In all designs, AHC achieves selection results close to the oracle model,
and hence also has similar MAEs. This shows that, even in settings where the
usual 2SLS estimator would fail because the first-stage coefficient matrix is near
rank-reduced, we can still obtain useful estimates. This is because some of the
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Table 3.5: Some Weak Instruments with Two Endogenous Regressors

MAE # invalid p allinv strongvalid weakin weakva
Design 1

oracle 0.003 0 1 1 - -
AHC 0.003 0.018 1 0.991 - -

Design 2
oracle 0.006 5 1 1 - -
AHC 0.006 5.006 0.867 0.867 - -

Design 3
oracle 0.007 5 1 1 1 1
AHC 0.007 4.215 0.929 0.904 0.997 0.122

This table reports median absolute error, number of IVs selected as in-
valid, frequency of all invalid IVs selected as invalid, frequency of all valid
and strong instruments selected as valid, frequency of all weak invalid
instruments selected as invalid, and frequency of all weak valid instru-
ments as invalid. 1000 repetitions per setting.

just-identified estimates use combinations of IVs that are strong, which can provide
sufficient information for selecting valid instruments, and, thus, also for delivering
consistent estimates.

3.6 Application: Effect of Immigration on Wages

In this section, we apply our method to the estimation of the effects of immigration
on wages in the US. We first describe the setting and then discuss the results.

Many recent studies have tried to estimate the causal effects of immigration on
labor market outcomes.4 Most papers in the literature only estimate the contem-
poraneous effects of immigration on labor market outcomes. Jaeger et al. (2020)
point out that there might be long-term adjustments that affect wages in the long
run, for example, because local workers and firms react to the inflow of migrants
in the long-term. This calls for including lagged immigration into the regression
equation.

4An overview of the literature can be found in Dustmann et al. (2016).
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To illustrate our method, we estimate the following linear model:

∆ylt = βshort∆immil,t + βlong∆immil,t−10 + ψt + εlt, (3.11)

as in Basso and Peri (2015).
There are three years t ∈ {1990, 2000, 2010} and 722 commuting zones l. The

dependent variable ∆ylt is the change in log weekly wages of high-skilled work-
ers. The independent variables are ∆immil,t, denoting the current change of
immigrants in employment, and ∆immil,t−10, denoting the same change ten years
ago (note the lagged time subscript). The coefficients of interest are the short-
term (contemporaneous) effect βshort and the long-term effect βlong. Decade fixed-
effects are captured by ψt, and εlt is the error term. Commuting-zone fixed effects
are eliminated through first-differencing as is standard with panel data (see e.g.
Wooldridge, 2010, p. 315). This regression is canonical in migration economics.
We use data from the Census Integrated Public Use Micro Samples (IPUMS) and
the American Community Survey (Ruggles et al., 2015).

The key econometric challenge is that migrants select where to live endoge-
nously. For example, migrants might choose where to live based on economic
conditions in a region. This creates a bias in the estimates. A much-used esti-
mation strategy to address this issue is to use historical settlement patterns of
migrants from many countries of origin as instruments. When earlier migrants
attract migrants at later points in time, the instruments are relevant. This identi-
fication strategy dates back to Altonji and Card (1991). The papers that use this
type of instrument in this context are numerous (Jaeger et al., 2020).

We use all shares of foreign-born people (we call them migrants, analogously)
in working age from a certain origin country j at a base period t0 in region l. The
share is measured relative to their total number in the country and is denoted by
sjlt0 . We use origin-specific shares from 19 origin country groups and base years
1970 and 1980 as separate IVs and obtain L = 38 IVs. It is usually expected that
the reasons that attracted migrants in the past are quasi-random as compared
with current migration. Validity is typically defended on these grounds.
However, these previous settlement patterns might be invalid. Jaeger et al. (2020)
show that IV estimators that rely on this kind of exclusion restriction might be

125



inconsistent, first, because of correlation of the IVs with unobserved demand shocks
and, second, because of dynamic adjustment processes. Hence, none of these two
should play a role. However, it is plausible that some origin country groups did
not locate randomly in the past or have had direct effects on the wages. The
second challenge can be somewhat tackled by including lagged immigration as an
additional regressor. Of course, this will also be subject to the same endogeneity
problem as before, and, thus, should also be instrumented. To circumvent these
problems, we apply our estimator, which allows for direct effects of many migrant
settlement variables on wages by pre-selecting the valid instruments.

This approach is canonical and is also highly relevant in the current applied
economic literature. In a recent paper, Goldsmith-Pinkham et al. (2020) discuss a
class of IVs which are extensively used in labor economics.5 A sufficient condition
for this type of IVs to be valid is that all shares are valid. Therefore, the selection
method proposed here can also be used to improve the construction of this class
of instruments, as shown in Apfel (2021).

Results The results can be found in Table 3.6. The first column shows results for
ordinary least squares: The contemporaneous effect is 0.586, while the lagged effect
is lower and negative. When using all shares as valid IVs, both effects are higher
in absolute terms but only the contemporaneous effect is marginally statistically
significant. The Hansen-Sargan test for this model gives a p-value of 0.0126, which
is lower than the proposed significance level of 0.1/log(n).

When using AHC with this significance level in the downward testing proce-
dure, two origin country shares are selected as invalid: The shares of Mexicans in
the US in 1970 and 1980. The coefficient estimates of the short- and long-term
effects increase considerably in absolute terms. Now, both coefficient estimates
are clearly statistically significant. This indicates that the use of AHC indeed
makes a big difference. Moreover, the p-value of the Sargan test is pushed over
the threshold of 0.013, used in the testing procedure.

The two IVs that are selected are similar a priori in that they are shares from
the same origin country. These shares are likely to be invalid, because Mexican

5These so-called shift-share IVs combine the previous settlement shares, which we use in this
application, with aggregate-level shocks, so-called shifts.
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Table 3.6: Impact of Immigration on High-Skilled Wages

OLS 2SLS 2SLS AHC
∆immilt 0.586 0.877 1.522

(0.0935) (0.460) (0.292)
∆immilt−10 -0.197 -0.249 -0.771

(0.0814) (0.321) (0.246)
Nr inv 0 2
P-value .0126 .0447
N = 2166 (722 CZ × 3), L = 38. Stan-
dard errors in parentheses. Observations
weighted by beginning-of-period popula-
tion. Significance level in testing pro-
cedure: 0.013. “Nr inv” stands for the
number of IVs selected as invalid.

migrants were attracted to border regions, such as Texas and California, by the
good economic conditions in those states, both in the base year and in later periods.
California’s economy has a large agricultural sector, and both states are among the
wealthiest in the US. It is therefore likely that wages, or unobserved productivity
shocks that have driven the initial settlement, are correlated over time, thereby
invalidating the initial shares. Moreover, in their application Goldsmith-Pinkham
et al. (2020) find that Mexico has the highest sensitivity-to-misspecification weight,
that is, the overall bias will be most sensible to any invalidity stemming from
the Mexican share. This application has shown that our method can make a
substantial difference in practical terms, because it can help researchers identify
IVs which violate the exclusion restriction.

3.7 Conclusion

We have proposed a novel method to select valid instruments. This method can
be particularly helpful in cases where there are many candidate instruments and
the tests of overidentifying restrictions reject. The method is applied to the es-
timation of the effect of immigration on wages in the US. The method can also
be easily applied to any other setting in which there are many candidate instru-
ments. Another suitable example is Mendelian Randomization, which is the use
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of instrumental variables in epidemiology.
The advantages of our method are that it extends to the setting with multiple

endogenous regressors, and that it can also deal effectively with the problem of
weak instruments. In fact, one might also use our method directly to select strong
IVs. We also discuss a setting with heterogeneous treatment effects. It would be
worth investigating how to retrieve causal effects when there are richer forms of
heterogeneity. Another way to improve the method would be to account for the
variance of each just-identified estimator in the selection algorithm, and to apply
it in nonlinear models. We leave these as directions for future research.
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3.A Appendix
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3.A.1 Illustration of the IV Selection Procedure for P = 2

In figure 3.A.1, the procedure is illustrated. Here, we have a situation with four
IVs and two endogenous regressors. Instrument No. 1 is invalid, because it is
directly correlated with the outcome, while the remaining three IVs (2, 3, 4) are
related with the outcome only through the endogenous regressors and are hence
valid.

In the first graph on the top left, we have plotted each just-identified estimate.
The horizontal and vertical axes represent coefficient estimates of the effects of the
first (β1) and second regressor (β2), respectively. Each point has been estimated
with two IVs, in this case with IV pairs 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4, because
there are four candidate IVs.

In the initial Step (0), each just-identified estimate has its own cluster. In step
1, we join the estimates which are closest in terms of their Euclidean distance, e.g.
those estimated with pairs 2-3 and 2-4. These two estimates now form one cluster
and we only have five clusters. We re-estimate the distances to this new cluster
and continue with this procedure, until there is only one cluster left in the bottom
right graph. We evaluate the Sargan test at each step, using the IVs which are
involved in the estimation of the largest group at each step. When the p-value is
larger than a certain threshold, say 0.05, we stop the procedure. Ideally this will
be the case at step 2 or 3 of the algorithm, because here the largest cluster (in
orange) is formed only by valid IVs (2,3 and 4). If this is the case, only the valid
IVs are selected as valid.
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Figure 3.A.1: Illustration of the Algorithm with Two Regressors
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3.A.2 Properties of just-identified estimates when P ≥ 1

There are
(
J
P

)
just-identified models. We write the corresponding just-identified

estimators for β and α analogously to the proof of Proposition A.5 in Windmeijer
et al. (2021) for the case P = 1. First, for an arbitrary [j], partition the matrix
Z = (Z1 Z2), where Z1 is a n×P matrix containing the [j]-th columns of Z, and
Z2 is a n× (J −P ) matrix containing the remaining columns of Z. γ = (γ ′

1 γ ′
2)′

is the equivalent partition of the matrix of first-stage coefficients. Z∗ = [D̂ Z2],
then Z∗ = ZĤ, with

Ĥ =
 γ̂1 0

γ̂2 IJ−P

 ; Ĥ−1 =
 γ̂−1

1 0
−γ̂2γ̂

−1
1 IJ−P


The just-identified 2SLS estimators using Z[j] as instruments and controlling for
the remaining instruments can be written as

(β̂[j] α̂′
[j])′ = (Z∗′Z∗)−1Z∗′y = Ĥ−1(Z′Z)−1Z′y = Ĥ−1Γ̂

Then we have β̂[j] = γ̂−1
1 Γ̂1. It follows from Γ = γβ+α that γ−1

1 Γ1 = β+γ−1
1 α1.

Therefore,
plim(β̂[j]) = plim(γ̂−1

1 Γ̂1) = γ−1
1 Γ1 = β + γ−1

1 α1

We denote the
(
J
P

)
P × 1-dimensional inconsistency terms as plim(β̂[j] − β) =

γ−1
[j] α[j] = q.

3.A.3 F0 consists of valid IVs only
Next, we show that the family with q = 0 is composed of valid IVs with α1 = 0,
only. Let γ, Z and α be partitioned the same way as in Appendix 3.A.2.

Remark 3.1. α1 = 0 is necessary and sufficient for q = 0.

Proof: First prove sufficiency: Direct proof: Assume α1 = 0 holds. q =
γ−1

1 α1 = 0 follows directly.
Second, prove necessity: Proof by contraposition: Assume α1 ̸= 0, then γ−1

1 α1 ̸=
0. The latter inequality holds, because otherwise the columns of γ−1

1 are linearly
dependent, and γ−1

1 is not invertible and hence (γ−1
1 )−1 = γ1 does not exist, which

it clearly does, by Assumption 1.a.
This also implies that F0 consists of valid IVs only and all combinations [j] :
γ−1

1 α1 = 0 are elements of F0. Hence, the following remark directly follows:
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Remark 3.2. |F0| =
(
g
P

)
.

3.A.4 Proofs of the Oracle Properties
This section gives proofs for Lemma 3.1 and Theorems 3.1 and 3.3. All proofs
apply for the general case that P ≥ 1.

Proof of Lemma 3.1

The proof is structured as follows:

1. We note that the means of clusters which are formed by members from the
same family converge to the same value as each estimator does in the cluster.

2. Merging two clusters which are associated only with elements from the same
family is equivalent to the two clusters having minimal distance.

3. We show that clusters which are associated with members from the same
family have distance zero and clusters which are associated with elements
from different families have non-zero distance, with probability going to one.

Proof. Part 1 : Consider

[j], [k] ∈ Fq , q ∈ RP

[l] ∈ Fr , r ∈ RP , r ̸= q

Under Assumptions 3.1 (3.1.a) - 3.5:

plim(β̂[j]) = plim(β̂[k]) = q

plim(β̂[l]) = r
(3.A.1)

Let Sj and Sk be clusters associated with elements from the same family: Sj,
Sk ⊂ S0q and Sl ⊂ S0r.

plim S̄j =

∑
β̂[j]∈Sj

β̂[j]

|Sj|
= |Sj|q

|Sj|
where Sj ⊂ S0q (3.A.2)
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and hence
plim(S̄j) = q.

Part 2: Consider the case where the Algorithm decides whether to merge two
clusters, Sj and Sk, containing estimators using combinations from the same family,
or to merge two clusters from different underlying partitions, Sj and Sl. The two
clusters which are closest in terms of their weighted Euclidean distance are merged
first. Hence, we need to consider the distances between Sj and Sk, Sj and Sl, as
well as Sk and Sl.

Sj is merged with a cluster with elements of its own S0q iff |Sj ||Sk|
|Sj |+|Sk| ||S̄j−S̄k||2 <

|Sj ||Sl|
|Sj |+|Sl|

||S̄j − S̄l||2. The following two are hence equivalent

limP (Sj ∪ Sk = Sjk ⊆ S0q) = 1

⇔ limP ( |Sj||Sk|
|Sj| + |Sk|

||S̄j − S̄k||2 <
|Sj||Sl|

|Sj| + |Sl|
||S̄j − S̄l||2) = 1 (3.A.3)

where Sjk is the new merged cluster.
Part 3 : We want to prove equation (3.A.3) in the following. We can then prove

limP ( |Sj ||Sk|
|Sj |+|Sk| ||S̄k − S̄j||2 < |Sk||Sl|

|Sk|+|Sl|
||S̄k − S̄l||2) = 1 by changing the subscripts.

First, define a = |Sj ||Sk|
|Sj |+|Sk| ||S̄j −S̄k||2 , b = |Sj ||Sl|

|Sj |+|Sl|
||S̄j −S̄l||2 and c = |Sj ||Sl|

|Sj |+|Sl|
(q−

r)′(q − r).
Under (3.A.2)

plim(a) = 0

plim(b) = c

To show: lim
n→∞

P (a < b) = 1.
Proof by contradiction: Show that lim

n→∞
P (b < a) ̸= 0 leads to a contradic-

tion. Let lim imply lim
n→∞

in the following. By the definitions of convergence in
probability, it follows that

lim P (a < ε) = 1 (3.A.4)

and
lim P (|b− c| < ε) = 1. (3.A.5)

for any ε. Therefore, lim P (a < b) ̸= 0 and lim P (a < ε) = 1 imply lim P (b <
ε) ̸= 0.

Now, consider ε < 1
2c.
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Then,
lim P (b < 1

2c) ̸= 0 (3.A.6)

Because of the absolute value b− c, consider two cases, b < c and b > c. If b < c:
lim P (c − b < 1

2c) = 1 ⇔ lim P (c − b > 1
2c) = 0. ⇒ lim P (b < 1

2c) = 0, a
contradiction with (3.A.6). If b ≥ c: a < ε < 1

2c < c ≤ b and hence lim P (a <
b) = 1 ⇔ lim P (b ≤ a) = 0, again a contradiction.

Proof of Theorem 3.1

Proof. The proof for Theorem 3.1 is structured as follows:

1. We show that asymptotically the selection path generated by Algorithm 3.1
contains F0, the family formed by all the valid instrumental variables.

2. We show that Algorithm 3.2 can recover F0 from the selection path from
Algorithm 3.1.

Part 1 follows from Corollary 3.2 directly.
Part 2 : Firstly, we establish the properties of the Sargan statistic. The following
two equations can be also found in Windmeijer et al. (2021) (p.10). Let I be the
true set of invalid instruments and V be the true set of valid instruments. The
oracle model is

y = Dβ + ZIαI + u = XIθI + u

with XI = [D ZI ] and θI = [β α′
I ]′, the Sargan test statistic is given by

S(θ̂I) = û(θ̂I)′ZI(Z′
IZI)−1Z′

Iû(θ̂I)
û(θ̂I)′û(θ̂I)/n

(3.A.7)

where û(θ̂) = y − XI θ̂I , with θ̂I the 2SLS estimator of θI .
Let Î be the estimated set of invalid instruments and V̂ be the estimated set of
valid instruments where Î = J \V̂ . Following Proposition 3.2 in Windmeijer et al.,
2021, the Sargan statistic has the following properties:
Property 3.3. Properties of the Sargan statistic

1. For all the
(

|V̂|
P

)
combinations of the instruments from V̂, if the IVs contained

in them belong to the same family, then: S(θ̂Î) d→ χ2
|J |−|Î|−P
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2. For all the
(

|V̂|
P

)
combinations of the instruments from V̂, if the IVs contained

in them belong to a mixture of families, then: S(θ̂Î) = Op(n).

With these properties we can show that the downward testing procedure de-
scribed in Algorithm 3.2 selects valid instruments consistently with ξn,J−|Î|−P →
∞ for n → ∞, and ξn,J−|Î|−P = o(n). Let the number of clusters formed in Al-
gorithm 3.1 at some certain step be K, e.g. at Step 1, K =

(
J
P

)
and at Step 2,

K =
(
J
P

)
− 1 etc. Let the true number of families be Q. Consider applying the

Sargan test to the model selected by the largest cluster at the each step under the
following scenarios:

1. 1 ≤ K < Q. For each of these steps, the largest cluster is either associated
with a mixture of different families, or with one family.

• Consider the case where the largest cluster is associated with a mixture
of different families. Then by Property 3.3 and ξn,J−|Î|−P = o(n), we
have

lim
n→∞

P (S(θ̂Î) < ξn,J−|Î|−P ) = 0.

In this case, asymptotically the Sargan test would be rejected and the
downward testing procedure moves to the next step.

• Consider the case where the largest cluster is associated with one fam-
ily. Then this family must be F0 as by Assumption 3.6.a, F0 is the
largest family among all Q families. Then following Property 3.3 and
ξn,J−|Î|−P → ∞ for the Sargan test we have

lim
n→∞

P (S(θ̂Î) < ξn,J−|Î|−P ) = 1. (3.A.8)

indicating that V would be selected as the set of valid instruments
asymptotically.

2. K = Q. By Corollary 3.2 we know that the K clusters are associated with
the Q families respectively, and by Assumption 3.6.a, the cluster associated
with F0 is the largest cluster. Then applying the Sargan test at this step
would be testing all the valid instruments, hence we also have Equation
(3.A.8) and Algorithm 3.2 selects V as the set of valid instruments.

To summarize, asymptotically, at steps 1 ≤ K < Q, Algorithm 3.2 only stops
when F0 forms the largest cluster and hence selects the oracle model, otherwise it
moves to step K = Q and selects the oracle model. Combine Part 1 and Part 2,
we prove Theorem 3.1.

136



Proof of Theorem 3.3

The proof of Theorem 3.3 works in the same way as the proof of Theorem 3.1.

Proof. The proof for Theorem 3.3 is structured as follows:

1. We note that asymptotically the selection path generated from Algorithm
3.1 contains all groups Gq.

2. We show that Algorithm 3.2 can recover all Gq from the selection path from
Algorithm 3.1.

Part 1 again follows directly from Corollary 3.2.
Part 2 : Firstly, we establish the properties of the Sargan statistic.
Property 3.4. Properties of the Sargan statistic

1. For all combinations of instruments from Ĝk, if their just-identified estima-
tors are associated with the same group, then: S(θ̂Ĝk

) d→ χ2
J−|Ĝk|−P

2. For all combinations of instruments from Ĝk, if their just-identified estima-
tors are associated with a mixture of groups, then: S(θ̂Ĝk

) = Op(n).

As before, ξn,J−|Î|−P → ∞ for n → ∞, and ξn,J−|Î|−P = o(n). Consider applying
the Sargan test to each cluster separately at the following steps under the following
scenarios:

1. 1 ≤ K < Q, i.e. the number of clusters is smaller than the number of groups.
For each of these steps, at least one cluster is associated with a mixture of
different groups.
When one cluster is created by a mixture of different groups, by Property
3.4, we have

lim
n→∞

P (S(θ̂Gq) < ξn,J−|Gq |−P ) = 0. (3.A.9)

In this case, asymptotically at least one of the the Sargan tests would be
rejected and the downward testing procedure moves to the next step.

2. K = Q. By Corollary 3.2 we know that the K clusters are formed by the Q
groups respectively and Ĝk = Gq for all q. Then for each of the K tests we
have

S(θ̂Ĝk
) = S(θ̂Gq). (3.A.10)

By Property 3.4 and ξn,J−|Gq |−P = o(n), we have

lim
n→∞

P (S(θ̂Gq) < ξn,J−|Î|−P ) = 1.
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In this case, Algorithm 3.2 stops.
Then applying the Sargan tests to each group at this step will be testing IVs
from the same group each time, hence we also have Equation (3.A.9).

To summarize, asymptotically, at steps 1 ≤ K < Q, Algorithm 3.2 does not stop;
then it moves to step K = Q and selects the oracle model.
Combine Part 1 and Part 2, we prove Theorem 3.1.
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