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ABSTRACT

In this thesis, inertance-integrated vibration suppression methods for multibody systems are
developed, and applied to the example case of railway pantograph systems.

With the introduction of the inerter, inertance-integrated vibration suppression methods
fundamentally extend the achievable capability of passive vibration suppression methods. How-
ever, the inerter and its applications that have been reported in the literature were restricted
in a 1-dimensional (1D) environment, i.e., the implications of the rotation of inerters have not
been considered. In this thesis, inerter models in a 2D or 3D environment and the application
to multibody systems are developed. Specifically, the centripetal acceleration, resulting from
rotation of the inerter, needs to be accounted for to find the second derivative of the inerter
length, which defines the generated force. With the inerter’s model in a 2D or 3D environment,
theoretical bases of inertance-integrated vibration suppression method for multibody systems
are developed.

To allow inerters to be applied to the application example of pantographs, accurate and
reliable pantograph multibody models are established initially. An existing pantograph model is
assessed and calibrated to fit with published experimental data. While a reasonable fit to the
reported response is achieved, a lack of detailed experimental data prevents further refinement.
To address this and establish an accurate and reliable pantograph multibody model, a pantograph
test rig is designed and constructed. Based on this test rig, a Brecknell Willis HSX pantograph is
tested and modelled. A multibody model of the tested pantograph is then developed and verified
using the experimentally measured data successfully.

Inertance-integrated suspension systems are investigated for both pantograph models with
the objective of reducing the maximum contact force standard deviation using the proposed
inertance-integrated vibration suppression method. It is found that 40% and 38% reductions of the
maximum contact force standard deviation for any speed within the operation range are possible
using novel suppression device configurations when compared to the existing pantographs,
respectively. It has been shown that the achieved improvements in both pantograph examples
are due to the fact that with the beneficial inertance-integrated suspension, the first resonance
frequency of the pantographs coincides with the natural frequency of the catenary and this
appears to regulate the pantograph-catenary contact force oscillation.
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INTRODUCTION

Vibration is exhibited by a wide range of systems [1]. Some vibration, for example, vibration

of tamping machines for civil engineering, can he useful. However, for more cases, vibration is

undesirable. Unwanted vibration widely exists in variable mechanical and civil systems, such

as automotives, railway vehicles and transportation infrastructures. Too strong vibration not

only leads to structure’s fatigue failure but also is harmful to human beings and environment.

For example, strong noise from the vibration between train’s pantograph and catenary system

at high speed impacts the environment along railways. The intensive vibration of a automotive

operating in a high speed can accelerate driver’s fatigue and lessen passengers’ ride comfort.

Therefore, to suppress these unwanted vibration effectively and efficiently is crucially important.

With better vibration suppression performance, it is possible to reduce the whole-life-circle cost

of the engineering systems, and enhance the service performance. Currently, with the trend of

’low carbon’ and ’sustainability’, more vibration issues attract wide attentions from both industry

and academic fields. Hence, the need of developing highly capable vibration suppression systems

becomes more pressing.

Passive, active and semi-active methods are three typical techniques for vibration suppression

in a wide range of engineering systems. Active (or semi-active) methods usually can achieve an

excellent vibration suppression performance. But they are usually with more complex equipments

and extra power supply, which leads to high cost. Meanwhile, more risks on system reliability

are brought with the inclusion of active actuator devices and measurement systems. Passive

methods are still the most widely adopted vibration suppression techniques because of their

simple equipments, high reliability, high durability and low cost. While capability of conventional

passive vibration suppression systems is limited because only spring and damper elements can

be used and normally a ‘trail and error’ approach is applied in design. Using a newly-introduced

passive mechanical element, named ‘inerter’, more mechanical configurations can be designed,
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which can potentially extend the vibration suppression capability of passive systems. Hence, this

thesis will focus on inertance-integrated passive vibration suppression technique.

The introduction of the inerter fundamentally expands the capacity and range of passive

vibration suppression methods. Since the concept of the inerter was proposed, many beneficial

mechanical configurations with inerters have been explored for a wide range of engineering

applications, such as, buildings, automotives, railway systems, wind turbines and suspension

bridges. However, the original inerter-based vibration suppression has been restricted that only

axial movement between two terminals of the inerter has been considered, thus it is only suitable

to model an inerter in one-dimensional (1D) environment. According to the original definition of

the inerter in reference [2], the uniaxial inerter force in a 1D environment can be modelled as

a force that is proportional to the relative acceleration between its two terminals. However, for

mechanisms and devices, such as robotic arms, excavator arms or railway pantographs, they may

operate in a 2-dimensional (2D) or 3-dimensional (3D) environment, where the motions include

both translation and rotation in general. This simple model is not generally applicable in a 2D

or 3D environment. In this work, a model of a uniaxial inerter in a 2D or 3D environment is

developed.

A multibody system discussed in this thesis is a system consisting of multiple bodies con-

strained with mechanical joints in a 2D or 3D environment rather than a lumped mass system

with multiple degrees of freedom. In the multibody system discussed, the geometric shape of each

component is considered, and multiple kinematic relationships between bodies can be defined us-

ing mechanical joints. Hence the multibody system discussed can model a real mechanical system

in a more practical way including more properties of the modelled system , such as component’s

geometric information, kinematic topology and even component flexibility, and simulate more

complex motions including rotation comparing to the lumped mass system where all components

are modelled as abstract points. With the accelerating trend of ’digitalisation’, multibody systems

are required in design, analysis or optimisation of mechanical systems in a more practical level.

Vibration suppression design is one of crucial topics. As introduced above, the introduction of the

inerter potentially enhances the capability of passive vibration suppression. However, most of

previous research on inertance-integrated vibration suppression focused on lumped mass models

where geometric shapes and rotations of components are not considered. Thus, in this thesis, the

methodology of intertance-integrated vibration suppression for multibody systems is developed.

Railway pantographs are used as examples of applications of the proposed intertance-

integrated vibration suppression methods. The pantograph is a key device to collect current from

catenary system to drive electric trains. However, its performance depends on reliable contact

between the pantograph head and the contact wire. According to statistics consolidated over

Europe, an average of over one million minutes of delay each year are linked to problems with

the pantograph-catenary interface [3]. Reliable power transmission is one of the key challenges

in ensuring efficient operation and one of the most critical factors that restrict the maximum
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commercial operating speed of high-speed trains [4]. As operating speed increases, the vibrations

of the pantograph-catenary system generally become stronger. Such vibrations deteriorate the

power transmission, leading to contact losses with consequent arcing and accelerated wear of

the contact components [5, 6]. Better pantograph-catenary contact dynamics is therefore critical

for improving the transport operation efficiency and system reliability in the design of the next

generation of trains and overhead system.

For the example study of pantographs, accurate and reliable pantograph multibody models

are established firstly. Thus, a multibody pantograph model is firstly established based on a

published model developed by Ambrósio et al. [7] and Vieira [8]. However, its responses can

not match with its experimental data well. Hence, the original pantograph model is improved

to better fit with experimental responses. Though the best efforts have been taken to fit the

pantograph model with corresponding experimental data, doubts still exist due to absence of the

original experimental data. Meanwhile, there is much scarce public information on pantograph

multibody model with all parameters available in detail. To obtain more detailed experimental

data and develop a more reliable model, a pantograph test rig is designed and conducted, and

a Brecknell Willis HSX pantograph is tested in detail in University of Bristol. With these

measured experimental data, a new HSX multibody pantograph model is developed and verified

experimentally. Then using the proposed inertance-integrated vibration suppression methods,

beneficial mechanical configurations of the base suspensions for these two different pantographs

are obtained, separately. In this work, the design focus on exploring the beneficial mechanical

configurations consisting of springs, dampers and inerters for the base suspension system of the

pantographs. Physical realization and detailed design for prototypes are nor included in this

work.

With the development of the inertance-integrated vibration suppression methods in a 2D or

3D environment and the pantographs’ case studies, this thesis expends the application of the

inerter to a more general environment and provides concept design results of applying inertance-

integrated vibration suppression onto pantograph suspensions as examples. The developed

inertance-integrated vibration suppression methods and obtained preliminary study results of its

application to pantographs can be extend to further exploration with more detail and practical

considerations.

Specifically, in this thesis, inertance-integrated vibration suppression methods for multi-

body systems are developed, and applied to the example case of railway pantograph systems.

Firstly, inerter models in a 2D or 3D environment and the application to multibody systems

are developed. Specifically, the centripetal acceleration, resulting from rotation of the inerter, is

discussed, particularly. Then, the proposed inerter model is applied to 2D pantograph models

for vibration suppression as case studies. Accurate and reliable pantograph multibody models

are established initially. An existing pantograph model is assessed and calibrated to fit with

published experimental data. While a reasonable fit to the reported response is achieved, a
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lack of detailed experimental data prevents further refinement. To address this and establish

an accurate and reliable pantograph multibody model, a pantograph test rig is designed and

constructed. Based on this test rig, a Brecknell Willis HSX pantograph is tested and modelled. A

multibody model of the tested pantograph is then developed and verified using the experimentally

measured data successfully. Finally, inertance-integrated suspension systems are investigated

for both pantograph models with the objective of reducing the maximum contact force standard

deviation using the proposed inertance-integrated vibration suppression method. It is found that

40% and 38% reductions of the maximum contact force standard deviation for any speed within

the operation range are possible using novel suppression device configurations compared to the

existing pantographs, respectively.
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2
LITERATURE REVIEW, RESEARCH MOTIVATION AND THESIS OUTLINE

In this chapter, a review of several notable vibration suppression techniques is firstly presented

briefly. Subsequently, the inertance-integrated vibration suppression in the context of passive

vibration suppression is highlighted. The research motivations along with objectives of this thesis

are then introduced briefly. Finally, the thesis outline is shown.

2.1 Vibration suppression techniques

Vibrations are defined as oscillations of an object or a set of objects relative to a reference

stationary frame or an equilibrium point [9]. Vibration occurs widely in engineering systems. For

some specific cases, vibration is desirable, for example, the vibration of a rammer machine. While

for more cases, vibrations are undesirable. Too much undesirable vibrations may decline the

working performances of systems, increase the undesirable dynamic loads, introduce unexpected

mechanical wear and even lead to fatigue failure of key components in an extreme case. Thus,

these unwanted vibrations are crucial to be reduced. The methods to design the vibration

suppression systems are decided by the performance requirements for specific applications.

Passive, active and semi-active methods are three typical suppression techniques applied in a

wide range of engineering systems. Each technique has individual advantages and shortages. In

this section, vibration suppression techniques are briefly introduced, and some notable application

examples in automotives, civil engineering systems and railway vehicles are reviewed.

2.1.1 Passive vibration suppression

Passive vibration suppression means no extra power or energy is supplied for vibration sup-

pression. One of the simplest passive vibration suppression methods is to design the physical
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parameters of a vibrating system, for example, choosing proper structure mass, stiffness and

damping. Parameter sensitivity analysis and optimisation for vibration suppression are usually

carried out. However, usually only safety factors were accounted for with static models for a

structure or machine’s initial design because of the complexity of dynamic models. As a result,

vibration suppression methods were added on after the initial design, because many negative

effects of vibrations were often not evident until the structures were in service [10].

Vibration caused by an eccentric or unbalanced mass in a rotating shaft or disc, such as

irregularities of manufacture or variations in sizes of bolts, nuts, rivets and welds, is common. If

the vibration caused by the unbalanced mass is not acceptable, it can be eliminated either by

removing the eccentric mass or by adding an equal mass in such a position that it cancels the effect

of the unbalance. Specifically, the amount and location of the eccentric mass need to be determined

experimentally. Usually, two types of balancing: static balancing and dynamic balancing are

applied [11–13]. Balancing procedures for both rigid or flexible shafts were discussed, and a

review of techniques for the high-speed balancing of flexible shafts were emphasized in [14].

Using a finite element method model, the flexible rotor unbalance response was investigated and

the unbalance masses and their corresponding angular positions were designed by optimization

in [15].

Passive energy dissipation is also a common vibration suppression approach. The supplemen-

tal energy dissipation devices generally operate on principles such as frictional sliding, yielding

of metals, phase transformation in metals, deformation of viscoelastic solids or fliuds and fliud

orificing. A large number of passive energy dissipation systems have been developed and applied

in structure anti-seismic performance enhancement. For example, friction dampers utilizing the

solid friction between two solid bodies sliding relative to each other provide the desired energy

dissipation. Generally, the generated forces of friction dampers are rectangular hysteretic loops

which are similar to the performance of Coulomb frictions. Several types of friction dampers have

been developed to improve the seismic response of structures [16–18]. Metallic yield dampers

are a kind devices to dissipate energy passively through inelastic deformation of metals. Many

metallic yield dampers utilize triangular or X-shape mild steel plates to generate uniform yielding

throughout the material to achieve passive energy dissipation. Steel yielding devices, such as

bending type of honeycomb, slit dampers and shear panel type, are used in Japan. Shape-memory

alloys have been investigated for effectiveness of dissipating energy input to a structure from an

earthquake [19]. These devices are beneficial for some particularly desirable features including

stable hysteretic performance, low-cycle fatigue property, high reliability, and insensitivity to

environmental temperature. Implementation of metallic devices in full-scale structures were

reported in New Zealand and Japan [20, 21]. Metallic dampers were applied to upgrade a Wells

Fargo Bank building, a two-story nonductile concrete frame structure constructed in 1967 and

subsequently damaged in the 1989 Loma Prieta earthquake in San Francisco, CA, to enhance its

anti-seismic performance [22]. Viscoelastic materials are usually copolymers which can dissipate
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energy by shear deformation. Viscoelastic (VE) dampers are used in structural anti-seismic appli-

cations. A typical VE damper is consists of VE layers bonded with steel plates. When structural

vibration induces relative motion between the outer steel flanges and the centre plates, energy

dissipation occurs with shear deformation of viscoelastic materials. Performance of structure with

VE dampers was investigated both analytically and experimentally, which showed significant

advances in anti-seismic applications [23, 24]. VE dampers were installed in a seismic retrofit

and upgrade project for both steel frame and concrete structures [25, 26].

Another common alternative approach is to use passive vibration isolation or absorber. A

vibration isolation system is to stop the vibration transmission between the target system and the

source of vibration. Normally, highly damped material, for example, rubber, is used between the

source of vibration and the target system [9]. Vibration absorption, on the other hand, refers to

using an additional device with configurations consisting of spring elements, damping elements,

mass to absorb the unwanted vibration [10]. A common vibration absorption device is the dynamic

vibration absorber (DVA) which is invented by Frahm in 1909 [27]. Its basic principle is to transfer

the kinetic energy of the vibrating structure to a specially designed single degree-of-freedom

(DOF) oscillator. The first DVA invented by Frahm [27] as a spring-mass system had no damping

element and was only applicable within a small range near its natural frequency [28]. Then

Ormondroyd and Den Hartog [29] introduced a viscous damper into the DVA, which extended

the frequency range. The damped DVA proposed by Den Hartog [30] is now known as Tuned

Mass Damper (TMD) where a spring and a viscous damper are arranged in parallel. TMDs

have been investigated to suppress structural vibrations, such as buildings [31–33], and flexible

structure [34]. More applications of TMDs in civil engineering are reviewed in [35]. Furthermore,

nonlinear TMDs were assessed in [36, 37]. Shock absorbers, such as hydraulic shock absorbers (

or pneumatic shock absorbers), are notable devices for vibration absorption. For a shock absorber,

its relative movement between its terminals, i.e.,kinetic energy between its terminals, is designed

to be converted into heat, i.e., thermal energy, by forcing the liquid (or gas) in a shock absorber’s

chamber to flow through designed restricted outlets, such as orifices, which generate hydraulic

(or pneumatic) resistance. Shock absorbers are common used in suspension systems, such as

the vehicles or aircraft landing gear systems. For example, a nonlinear shock absorber model

with clear physical meanings for each parameters for an automotive was proposed, relating the

model parameters directly to the car’s handling and comfort performance [38]. A new numerical

railway vehicle’s shock absorber model with parameters having physical meanings was developed,

which could be used to accelerate the design of railway vehicle suspensions [39]. A passive oleo-

pneumatic shock absorber was used in an aircraft landing gear system to achieve satisfactory

energy dissipation and rebound control [40].
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2.1.2 Active vibration suppression

Active method is another notable way to suppress vibrations. Compared with passive suppression

method, active forces supplied by controlled actuator are used to suppress the vibration. Hence,

extra power supply to the system for vibration suppression is required. The active force is decided

by a control law in real time with respect to the current states of the system measured by a sensor

network. With a carefully designed control law, considering a wide range operation conditions,

the performances of active method outperforms passive method. However, with more complex

equipments and extra power supply, the cost of active method is higher relative to the passive

method. Meanwhile, more risks on system reliability are brought with the inclusion of active

actuator device and measurement system. In addition, the injection of active power leads to a

risk of instability [10]. Therefore, active vibration suppression technique is not applied widely

in practical engineering. Active vibration suppression method has drawn many researchers’

attention in resent years. Different active vibration suppression designs have been explored in

a wide range of applications, for example, tall buildings [41, 42], vehicle suspensions [43, 44],

engine mounts [45].

2.1.3 Semi-active vibration suppression

Semi-active vibration suppressions incorporate adjustable passive devices, for example, electro-

rheological (ER) fluid dampers and magnetorheological (MR) fluid damper, whose parameters

can be tuned according to system’s states with only a small energy input for a control purpose.

Semi-active vibration suppression takes the advantages of both passive and active vibration

suppressions, which are benefit from the simple system and high reliability of passive device, and

the versatility and adaptability of fully active control [46]. As semi-active vibration suppression

does not require external power to generate active forces, no actuators are needed. Hence,

the system complexity is significantly reduced. In addition, they facilitate the system stability

because the all vibration control efforts are resulted from the tunable passive devices [47]. But a

measurement system is still required in a semi-active vibration suppression system. The semi-

active vibration suppression was firstly proposed by Karnopp et al. in automotive suspension

with ’skyhook’ damper system which gained a similar performance improvement as active control

[48]. Then semi-active vibration suppressions drawn many researchers’ attention and have

been studies in many engineering applications. For example, Tanifuji et al. [49] introduced the

semi-active vibration suppression in a rail vehicle suspension using mechatronics systems.

After all, although better performance enhancement may be achieved by active or semi-active

vibration suppressions, passive vibration suppressions do have some advantages, especially in

the application of rail pantograph-catenary vibration suppressions. This is because the nominal

voltage of a pantograph-catenary system for high-speed trains is AC 25 kV. It is a challenge to

ensure the electric sensors of the active or semi-active vibration suppression work reliably in

the environment with extremely high voltage. While the passive devices can work well even in
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this high-voltage environment. Passive systems benefit not only from simpler hardware, high

reliability, no extra energy required and unconditional stability, but also better robust survivabil-

ity in extreme environment. With the introduction of the inerter, which achieves a full analogy

between mechanical network and electric network, more candidate mechanical configurations can

be designed, which can potentially extend the vibration suppression capability of passive systems.

Hence, this thesis will focus on inertance-integrated passive vibration suppression method.

2.2 Inertance-integrated vibration suppression technology

The key component for inertance-integrated vibration suppression is an element called ’inerter’,

which is firstly introduced by Smith [2]. Recently, passive inertance-integrated vibration sup-

pression method has been explored in a wide range of engineering systems and significant

performance benefits have been observed. In this section, the concept of the inerter is firstly

recalled. Then the complete analogy among mechanical, electrical and hydraulic domains are

shown. Lastly, typical approaches for passive vibration absorber design are reviewed.

2.2.1 Concept of inerter

The inerter is a relatively new ideal mechanical two-terminal passive element which was firstly

introduced by Smith [2]. A full analogy between mechanical and electrical networks can be

achieved due to the introduction of inerter. In the electrical-mechanical force-current analogy,

introduced by Firestone [50], the force F and velocity difference ∆v are analogous to electrical

current i and voltage V , respectively. Using the force-current analogy, an inductor and resistor in

electrical domain can be respectively analogous to a spring and damper in mechanical domain.

However, a electrical capacitor cannot be fully mapped to a mechanical mass due to that, according

to the Newton’s second law, the inertial force of a mass is always relative to the earth. If a mass

is modelled as a two-terminal mechanical element, its one terminal has to be fixed to the earth.

Hence in the electrical-mechanical force-current analogy, the mass can only be analogous to the

capacitor whose one terminal is constrained to link with electrical ground. The analogy with one

terminal of the capacitor limited to the ground is obviously incomplete. To be fully analogous to a

electrical capacitor, an ideal inerter was proposed. The property of this ideal inerter is that its

generated force is proportional to the relative acceleration between its terminals [2] as

F = b(v̇1 − v̇2), (2.1)

where b is called ’inertance’ with unit as mass and v̇1 − v̇2 is the relative acceleration. This

completes the aforementioned electrical-mechanical analogy that an electrical capacitor can be

fully analogous to a mechanical two-terminal inerter with neither terminal fixed to the ground.

With the introduction of the inerter, using the complete electrical-mechanical analogy, any

one-port positive-real impedance can be synthesised according to classical electrical network
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synthesis theory [2]. And more mechanical layouts can be constructed, which enhances the

potential capability for passive vibration suppression.

2.2.2 A mechanical-electrical-hydraulic analogy

It will be benefit if the well-developed electrical circuit theory can migrate to other fields, such

as mechanical and hydraulic systems. This can be achieved using the analogy between the

electrical and other systems. For vibration suppression design, it is more common to use the

force-current analogy rather than other diverse analogies. In the force-current analogy, through-

and across-variables are two key concepts. A through-variable is defined as the variable that has

the same value at both terminals of the element [51], for example, force (or torque) in mechanical

system and current in electrical system. And an across-variable represents the relative property

across the element [51], for example,velocity (translational or angular) difference in mechanical

system and voltage in electrical system.

For passive vibration suppression, hydraulic (or pneumatic) devices, such as hydraulic damper,

are commonly and widely used. The hydraulic (or pneumatic) device usually is a cylinder with a

movable piston with flowing fluid (or compressed gas) inside. The flow of the fluid (or compressed

gas) leads to pressure change ∆P deciding the mechanical force F between the terminals and

flow rate Υ which is proportional to mechanical relative velocity ∆v. Using this relationship, hy-

draulic systems can be mapped to mechanical systems. The analogy among electrical-mechanical-

hydraulic system is shown in Table 2.1 where their admittances Y (s) are demonstrated for each

basic element in electrical, mechanical and hydraulic systems.

Using the mechanical-electrical-hydraulic analogy, a system consisting of interdisciplinary

domains can be linearised and presented by a unifying physical system, such as electrical circuit

network. Then the well-developed analysis and synthesis theory for electrical network can be

applied to investigation and design of systems including other domains systematically.

2.2.3 Passive vibration suppression design approaches

It has shown that with the introduction of the inerter in Subsection 2.2.1, the electrical-

mechanical force-current analogy completes. Moreover, the range of passive vibration suppression

candidate layouts can be fundamentally expended, resulting in a far greater potential capability

achieved by passive vibration suppression. To identify the beneficial passive vibration suppression

configurations, there are two key steps: one is to select appropriate candidate layouts, and two is

to tune their parameters to optimise the performance via either an analytical method or optimi-

sation algorithms. Note that the term layout or network means the topology of springs, dampers

and inerters. And configuration means a layout with selected parameters. There are three ways

to design a optimal configuration for passive vibration suppression: the structure-based approach,

the immittance-based approach, and the structure-immitance approach. All of these approaches

are briefly reviewed in this subsection.
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Table 2.1: A mechanical-electrical-hydraulic analogy based on [50].

Electrical Mechanical Hydraulic

Y (s)= ĩ
Ũ

= ĩ

Ũ2 −Ũ1
Y (s)= F̃

∆̃v
= F̃

ṽ2 − ṽ1
Y (s)= ∆̃P

Q̃
= P̃2 − P̃1

Q̃

Structure-based approach

Structure-based approach is the most simple one among these three approaches. For structure-

based approach, the layouts, i.e., topological arrangements of springs, dampers and inerters,

are predetermined. The values of each element in the proposed layout are determined through

optimising the cost function which presents the performance criteria to design along with some

specific constraints.

The candidate layouts for a specific case study is usually selected based on experience,

previous examples, or just ’try-and-error’ method. This leads to that a large number of layouts are

required to be investigated to obtained a satisfactory configuration. For example, four common

inerter-based layouts with three elements are shown as examples in Figure 2.1. Layout (a) is

a mechanical topology of paralleled spring-damper-inerter, known as inerter-based isolation

system (IIS) [52, 53]. In [54], in the analysis of a single-degree-of-freedom (SDOF) system with

the inerter-based isolation system, the functionality of the inerter-based isolation system was

clarified and a design strategy of the inerter-based isolation system was developed. In [55], layout

(a) was investigated for application to building suspension, and a 55% reduction of the building’s

vibration resulting from earthquake was achieved. In [56], layout (a) installed between two

adjacent structures in soil was analysed, which indicated that its effectiveness for displacement

reduction was weakened and a larger inner deformation of the inerter system was required to

meet the demand for energy dissipation.

Layout (b) represents a layout with a series inerter which is emerged from the tuned mass

damper (TMD) concept, called the tuned inerter damper (TID) proposed in [57], where the mass

of a TMD is replaced with an inerter. An excellent vibration suppression performance using
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Figure 2.1: Example layouts with 3 elements (spring, damper and inerter labelled as k, c and b
respectively).

TID, located on braces between adjacent storeys for a multi-story building, has been shown in

[57]. Response variation patterns of SDOF structure with TID was analysed in [58], in which

a depressions was represented in the geomorphology of the contour plots of the dimensionless

root-mean-square displacement responses, implying that the parameter set for optimal control

can always be found. Meanwhile, it was shown that the optimal values of spring and damper are

positively correlated with the value of the inerter.

Layout (c) consists of an inerter and a damper in parallel and then in series with a spring,

known as tuned viscous mass damper (TVMD) which was proposed by Ikago [59] for isolation

systems of buildings. The TVMD was a typical damping enhancement system, where energy

dissipation is achieved by the amplified relative displacement between the inerter element [60].

The inerter element is characterized by negative stiffness in the view of the force-displacement

relationship [53, 61, 62]. Both negative stiffness of the inerter element and positive stiffness

of the spring element in series can be beneficial to absorb vibration energy. Meanwhile, the

interactive actions between the inerter and the serial spring can amplify the deformation of the

inner damper, leading to more efficient vibration energy dissipation [63].

Layout (d) presents a mechanical topology consisting an inerter and damper in series and

paralleled with a spring. The performance benefits of building suspension design with inerters

for three building models (the rigid-body model, flexible beam model and portal frame model)

were analyses and a 58% improvement achieved for seismic performance in [55].

The structure-based approach has the advantages that the candidate layouts are with lowest

complexity and each individual parameter can be optimised and constrained directly. However,

the structure-based approach may not be able to find configurations which satisfy the demand

for some specific case studies. This is because of limited number of the candidate layouts, i.e.,

the potential beneficial layouts may be not be included. On the contrary, the immittance-based

approach introduced below can investigate a wider range of candidate layouts using network

synthesis methods.
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Immittance-based approach

The immittance-based approach is fundamentally different from the structure-based approach.

The immittance function of a two-terminal device is defined as a ratio between terminal’s force

and relative velocity in Laplace domain as

Y (s)= F̃
ṽ

(2.2)

where F is the force between device’s two terminals, v denotes the relative velocity between

two terminals, and s is a complex variable. Note that the overhead notation ∼ represents

variables in Laplace domain. According to the theorem introduced in [64], any positive-real

immittance function can be constructed in a electrical circuit consisting of resistors, inductors

and capacitors. Note that the positive-real function is a complex function which has a positive

real part in the right half of complex plane and takes on real values on the real axis [65]. Using

the force-current analogy introduced in Subsection 2.2.2, this theorem which was well-developed

in electrical domain can be extended to mechanical domain. For immittance-based approach, the

predetermined-order positive-real immittance functions is first established as complex functions

in a form as

Y (s)=
∑n

i=0 aisi∑m
j=0 b js j (2.3)

with ai, b j are coefficients to optimise for the specific system performance. Then the optimal

immittance functions are synthesised to equivalent configurations using network-synthesis theory

[66, 67]. The predetermined order of the numerator and denominator decides the complexity of

the immittance function. The benefits achieved using the function with low complexity, i.e., first

or second order, were studied in [68, 69]. Whilst the immittance functions with low complexity

usually generate simpler configurations, synthesised higher-order immittances have shown that

better system performance can be achieved in [70, 71]. More research on the immittance-based

approach, considering bi-quadratic (second-order) immittance function, are detailed in [72, 73].

Comparing with the structure-based approach, a large number of candidate layouts can

be covered potentially by exploring a wide range of positive-real immittance functions using

the immittance-based approach. However, for immittance-based approach, the topology and

complexity of generated configurations and the types of elements can not be predetermined. For

some tricky immittance functions, a large number of elements are required to realise them with

Bott-Duffin realisations [64]. The configurations with large number of elements will lead to much

difficulty in terms of device physical realisation, space and weight limit.

Structure-immittance approach

As discussed in previous subsections, both structure-based and immittance-based approaches

have their individual advantages as well as inherent limitations. The structure-immittance

approach first introduced in [74] integrates advantages of these two approaches while avoid
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their limitations. The advantage of structure-immittance approach is that the number and

types of elements and the topologies of configurations can be predetermined using a immittance

function covering all potential networks. In structural immittance approach, the number and

type of elements were firstly decided. Then a procedure to establish a structural immittance

was introduced using generic sub-networks connected within series-parallel networks [74]. The

applications of the techniques have been carried out in vibration suppression of a wind turbine

[75] and bridge [76]. Specifically, the technique was applied to vehicle suspension design as a

preliminary study before the work of this thesis and the obtained results were published in

following journal paper.

Publications resulting from above work

S.Y. Zhang, M. Zhu, Y. Li, J.Z. Jiang, R. Ficca, M. Czechowicz, R. Neilson, S.A. Neild & G.

Herrmann, "Ride comfort enhancement for passenger vehicles using the structure-immittance

approach." Vehicle System Dynamics, vol. 59.4, pp.504-525, 2021.

2.3 Applications of inertance-integrated vibration suppression

Since the concept of inerter was proposed by Smith [2] in 2002, the inerter-based vibration

suppression systems have been explored in a wide range of engineering systems. In this section,

examples in automotives, civil engineering systems and railway systems are briefly introduced.

2.3.1 Automotives

The inerter was initially used in F1 racing by Mclaren since 2005. A configuration consisting of an

inerter in parallel with a spring and a damper (see Figure 2.1(a)) was applied [77] in McLaren’s

vehicle’s suspension, which helped to improve their vehicle’s handling and grip performance,

and due to this helped McLaren Racing achieve victory at the 2005 Spanish Grand Prix [78].

McLaren called the inerter ’J-damper’ as a decoy name to avoid the inerter’s secret being revealed

to competitors, while until 2008, the hidden advantage of the inerter was finally being revealed

[79].

Apart from Formula One, research of inerter-based suspensions for automotives attracted

much attention in the open literature. Smith and Wang [80] investigated several different simple

inerter-based suspension struts for a car, considering variable performance measures, such as,

ride comfort and dynamic tyre load. In this work, with a configuration consisting of a series

inerter-damper in paralleled with a spring (see Figure 2.1(d)), car’s ride comfort could be improved

by at least 10%. Moreover, considering both ride comfort and tyre dynamic load, a multi-objective

optimisation was also investigated. Papageorgiou et al. [70] and Scheibe et al. [81] consolidated the

preceding obtained results using matrix inequalities and analytical global optimisation algorithm

respectively. In [70], a procedure which allow any positive-real admittance to be optimised was
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proposed and better performance improvements for vehicles were obtained allowing high-order

immittances. In [81], an analytical global optimisation algorithm for enhancing ride comfort

and tyre grip performance was derived, and its results proved that the global minima was

obtained in the optimisation of [80]. Hu et al. [82] discussed the trade-off between different

vehicle performance criteria and indicated that suspension deflection significantly restricted the

performance improvement of tyre grip and ride comfort in the optimisation of inerter-based vehicle

suspensions. A novel mechatronic strut including a ball-screw inerter was investigated for the

performance enhancement of a vehicle suspension [69]. In [83] and [84], the optimal inerter-base

vehicle suspensions were evaluated using the measured road profile and test bench respectively.

The performance of the inerter-based struts were also evaluated experimentally in [70, 80, 81].

The nonlinear properties inside a ball-screw inerter prototype and a fluid-based inerter device

were investigated and their effects on the designed inerter-based vehicle suspensions were

analysed in [85] and [86], respectively.

2.3.2 Civil engineering systems

The research of building vibration suppression using inerter attracts many researchers’ interest

in decades. The effectiveness of inerter-based building suspension has been shown in reducing

vibrations from earthquakes and traffic [55]. In [87], the significant vibration suppression perfor-

mance improvement was demonstrated using the inerter with a multi-layer design for buildings.

The inertial dampers effectively reduced the maximum absolute horizontal acceleration of a

12-story building subjected to three different representative recorded ground motions in [88].

Furthermore, the effect of the allocation of inertial dampers in a multi-story build was investi-

gated in this work. The tuned viscous mass damper (TVMD) introduced in [59] used a ball-screw

mechanism, working as a mass amplifier, which was the key component for realizing the pro-

posed optimal seismic control for the linear structural systems. The TVMD concept was further

investigated in [89] and a seismic response estimation method was proposed to understand the

seismic response characteristics of a building with TVMD. The tuned inerter danper (TID) was

introduced in [57], which was an alternative technique to the conventional TMD proposed by Den

Hartog [30]. The analysis has shown that positioning TID between the first and ground floors

achieved best performance for vibration suppression. This can reduces the structural load from

the vibration suppression device comparing with TMD placed at the top of the buildings. And

the TID can achieve a higher inertance-to-mass ratio without significantly changing the device

physical mass using gears, which is an advantage comparing with TMD requiring very heavy

masses. The applications of tuned-mass-damper-inerter (TMDI), which includes a mass as well

as an inerter, in tall buildings were studied in [90–94].
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2.3.3 Railway vehicles

There was a number of research on applying inerter to railway vehicle suspension systems. Wang

et al. [71] explored the potential performance benefits of train suspension systems employing

inerter-based mechanical configuration, which is the first significant contribution in this topic. In

this work, predetermined simple suspension layouts were firstly optimised to enhance the perfor-

mance of train suspension systems, and linear matrix inequality approaches were further applied

to identify beneficial inerter-based railway suspensions. The impact of inerter nonlinearities was

assessed in the experimental testing, illustrating that the improved performance was lessened

due to inerter’s nonlinearities, however, inerter-based vehicle suspensions were still beneficial.

In [95], inerter-based vehicle suspensions were reported to be effective in improving the lateral

stability of trains. A further investigation on trains’ stability and passenger comfort was carried

out using a full-train model in [96], showing the effectiveness of inerter-base suspensions for

enhancing trains’ stability and ride comfort again. Jiang et al. [97, 98] investigated the possibility

of improving the ride comfort in lateral and vertical directions with inerter-based suspensions.

This section reviews some notable application examples of inerter, showing that there is

great potential to improve vibration suppression performance using inerter in a wide range of

engineering systems, such as, automotives, civil engineering system and railway vehicles.

2.4 Pantograph-catenary systems

In the preceding section, the applications of the inerter in automotives, civil engineering systems

and railway vehicles have been briefly reviewed. Pantograph-catenary systems are used as

application examples of the proposed inertance-integrated vibration suppression method in this

thesis. A brief review of pantograph-catenary systems are shown in this section.

The pantograph-catenary system is one of the most practical and reliable ways for electrical

locomotives and trains, especially high-speed electric multiple units (EMU), to collect current

from the power supply system. With the increasing trend demand for electrification driven by

the need for greener and lower-carbon transportation all around the world, performances of

pantograph-catenary systems have attracted increased attention. At increased operating speeds,

stronger fluctuations of the contact force between catenary and pantographs are observed. This

leads to a significant challenge of ensuring reliable current collection and operational efficiency.

Moreover, too strong fluctuation of the contact force will also lead to arcing which can accelerate

the wear and fail of the contact surface of both pantographs and contact wires. Hence, the

dynamics of pantograph-catenary system has been a key factor which limits the commercial

operating speed and ensures the reliability of high-speed train systems.

To study the pantograph-catenary interaction, Wu and Brennan [99] simplified the pantograph-

catenary system as a time-varying single DOF lumped mass model and investigated the basic

analytical dynamic performance. Pisano and Usai [100] used a simplified time-varying 1DOF
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lumped mass catenary model coupled with a 2DOF lumped mass pantograph model. A three-

dimensional pantograph-catenary model was also developed by Ambrósio et al. using a cate-

nary model based on finite element method (FEM) [101], and a multibody pantograph model

[7, 102, 103]. Meanwhile, a co-simulation procedure which integrated a FEM catenary model and

multibody pantograph model was proposed in [104, 105]. The nonlinear catenary models based

on absolute nodal coordinate formulation (ANCF) were also established by Seo et al. [106] and

Tur et al. [107], as well as Song et al. [108] who built a nonlinear catenary model using analytical

expressions of cable and truss elements. The hardware-in-the-loop hybrid simulation was used

to investigate the pantograph-catenary performance by Schirrer et al. [109] and Facchinetti

et al. [110]. Other authors also devoted their attention to studying how pantograph-catenary

performance was affected by service conditions such as contact wire irregularities [111–113],

aerodynamic loads [114–116], wear [117, 118], multiple pantographs operations [119, 120] and

track irregularities [121]. The effect of train excitations on the pantograph-catenary dynamics

was also evaluated in [122, 123]. However, previous work has mainly focused on the modelling

and simulation of the catenary system and interaction between the catenary and lumped mass

pantographs.

Work on parameter sensitivity analysis and optimisation for the pantograph-catenary system

was also carried out. For example, Park et al. [124] and Kim et al. [125] each investigated the

parameter sensitivity of a FEM catenary coupled with a 3DOF lumped mass pantograph model

and optimised the key design parameters. Zhou et al. [126] studied the influence of design

parameters of a pantograph, such as stiffness, damping, contact wire tension and static lifted

force, based on a FEM catenary model and a simplified lumped mass pantograph model. Lee et

al. [127] included the pre-sag of contact and messenger wire due to gravity into the parameter

sensitivity analysis and optimised the pantograph design for a high-speed train with differential

evolutionary algorithms. Ambrósio et al. [102] minimised the standard deviation of the contact

force with a 3DOF lumped mass pantograph model. However, lumped mass models of pantographs

were used in above work. Although the lumped mass models captured the pantograph head

behaviour well, the model parameters do not link conveniently to the physical characteristics

of the pantograph. This means that, with this type of model, it is a challenge to know how the

vibration suppression elements of the pantograph system might be altered to improve the overall

system performance. Hence, developing accurate multibody pantograph models is important. But

there was much scarce public information on pantograph multibody model with all parameters

available in detail. A multi-body pantograph model was developed by Ambrósio et al. [7, 114] and

Vieira [8] with parameters specified in detail. Pappalardo et al. [128] established a pantograph

multibody model based on the Udwadia–Kalaba equations. But these models rarely have been

verified with the experimental responses. Developing a accurate multibody pantograph model

which can be experimentally verified is important for more practical studies of the pantograph-

catenary interaction performance and designing next generation pantograph using advanced
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digital simulation tool.

The vibration suppression techniques used in pantograph-catenary system are also reviewed

briefly in the following. The hydraulic or pneumatic damper was applied in railway pantographs

to suppress the vibration of interaction between a pantograph and catenary. An innovative

pneumatic device for head suspension with nonlinear stiffness was designed using a multibody

and finite element co-simulation tools [129]. An innovative damping dropper was proposed to

suppress the vibration of a catenary [4]. However, most designs were limited by one damper

and spring element, and the performance improvement was limited due to the fact much more

complex candidate networks were not be explored in these studies.

Active vibration suppressions have also been proposed for railway pantograph-catenary

systems. Both classical control methods, such as, PID control, and modern control methods

were applied to pantograph-catenary contact force control. For example, contact force ware

regulated using a PI regulator with contact force feedback [100, 130], and PID adoption [131, 132].

For modern control techniques, examples for pantograph-catenary contact force control were

shown in literature, for example, sliding mode control [100] and fuzzy logic [133, 134]. All above

mentioned active control strategies require either to measure the contact force directly (using

specific sensors) or an estimation of this quantity, for example, an extend Kalman filter [135, 136].

Optimal control were used to modify the dynamic behaviour of the pantograph without knowledge

of contact force [137–139]. Significant performance improvements have been shown using active

control. Meanwhile, semi-active methods were also applied in pantograph-catenary systems.

Khan [140] designed a hybrid semi-active controller to regulate the pantograph-catenary contact

force. Performance of a semi-active suppression applied to high-speed pantograph was compared

with pure passive and active ones in [141, 142], which showed benefit in low external energy,

easy realization and unconditional stability of the system. However, apart from active methods’

general shortages, i.e., the high cost due to the complex hardware and risks of low reliability,

measurement systems are usually required for active control. And this is a big challenge for active

(or semi-active) vibration suppression methods to be applied in pantograph-catenary systems

because the voltage of pantograph-catenary systems is extremely high (25 kV AC) and most

sensors cannot work in such high-voltage environment. Hence, the inertance-integrated passive

vibration suppression methods is applied to pantographs to enhance their dynamic performance

as examples in this thesis.

2.5 Research motivations and objectives

In Section 2.1, three vibration suppression methods, i.e., passive, active and semi-active methods,

are introduced to suppress undesired vibrations of engineering structures. According to the

reviewed literature, active and semi-active methods were extensively investigated and remarkable

performance for vibration suppressions in a wide range of engineering systems has been reported.
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But some disadvantages exist for active and semi-active methods. Passive vibration suppression

methods are still widely used because of their advantages, such as, high reliability, simple

structure and low cost. Moreover, with the introduction of the inerter, the achievable vibration

suppression capacity of intertance-integrated passive mechanical configurations is fundamentally

enhanced. Additionally, for some extreme environment, such as with high voltage, strong magnetic

field and high radiation, most electric elements are vulnerable, and passive method still shows

some irreplaceable advantages. Thus, this thesis focuses on inertance-integrated passive vibration

suppression design.

Traditionally, the conventional passive vibration suppression systems are designed depending

on experience or trial-and-error approaches with simple structure consisting of springs and

dampers. The limited number of candidate layouts and lowly-efficient design approach restrict

the performance of passive vibration suppression system. To achieve more capable vibration

suppression performance, it is necessary to explore inertance-integrated configurations, and

apply more efficient design approach, implementing simulation-based digital tool. This is the

first motivation of this thesis.

Meanwhile, as the examples introduced in Section 2.3, inerter-based passive vibration sup-

pression systems have shown great potential in a wide range of engineering applications. However,

the inerters used in these examples are restricted to operate in 1-dimensional (1D) environment,

i.e., the implications of the rotation of inerters have not been considered. This restriction may be

acceptable for the cases reviewed in Section 2.3. But for some mechanical systems operating in a

2D or 3D environment, like some multi-bar mechanisms, such as, robotic arms, excavator arms

and railway pantographs, with large rotational movement, this restriction is unacceptable. Thus,

a more general inerter model which is applicable in a 2D and 3D environment is needed. In this

thesis, inertance-integrated vibration suppression methods in a general 2D and 3D environment

is developed.

Additionally, with the increased trend of digitalization, developing reliable, efficient and

accurate digital tools (e.g., numerical models) for digital design and testing has attracted more

and more attention. An engineering system usually consists of multiple components with dif-

ferent geometric properties, kinematic relationships and multiple domains, such as mechanical,

hydraulic, pneumatic, thermal or electrical domains. Hence, in this thesis, multibody model

including each component’s property, such as geometric and kinematic information are estab-

lished. Meanwhile, multiple-domain components are analogy to equivalent mechanical model

uniformly. Experimentally identified and verified models are developed using analogy, simplifi-

cation and approximation, which significantly guarantee model’s accuracy with the minimum

model complexity.

With the aforementioned motivations, three objectives in this thesis are introduced in the

following. The first one is to develop inertance-integrated vibration suppression method in a

general 2D and 3D environment. The second objective is to develop numerical model with enough
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accuracy and minimum model complexity for the application of proposed inertance-integrated

vibration suppression method. The third objective is to identify beneficial inertance-integrated

vibration suppression systems for pantographs to enhance their relevant dynamic performance

as examples.

2.6 Thesis overview

With all research motivations and objectives introduced in the preceding section. This thesis is

organised as bellow.

In Chapter 3, a model of a uniaxial inerter in a 2D or 3D environment and a methodology of

applying a uniaxial inerter in a multibody system are developed. Furthermore, the effect of the

centripetal acceleration correction term and the method of implementing a uniaxial inerter in a

2D multibody system are demonstrated in two examples. Specifically, the concept of a uniaxial

inerter within a 2D or 3D environment is firstly introduced, initially in a 2D polar coordinate

system, in Section 3.2. Subsequently, a model of the uniaxial inerter in a 2D or 3D environment

is derived in general vector form, and its expressions in Cartesian and spherical coordinates are

presented for ease use. A 2D inerter-included model is then shown as an example to demonstrate

the effect of the centripetal acceleration correction on the inerter force and the system response.

Then in Section 3.3, the method of using a uniaxial inerter in a multibody system is introduced.

The proposed modelling methodology is then demonstrated using an inerter-included two-bar

mechanism as an example, and the effect of the centripetal acceleration correction term on the

system responses is shown.

Then the developed inertance-integrated passive vibration suppression method in a 2D or 3D

environment is applied to suspension design for pantographs as examples. Before that, accurate

and reliable pantograph multibody models are established firstly in Chapter 4. With a brief

introduction of the typical method of multibody dynamic analysis for pantographs, a simplified

multibody pantograph model based on a pantograph multibody model developed by Ambrósio

et al. [7] and Vieira [8] is established. However, obvious discrepancies relative to experimental

data are observed for the original model. The model is then improved through the calibration

of the pantograph head suspension’ parameters and the introduction of both non-ideal joint

and flexibility effects to better fit with the experimental data. With all these efforts given, the

improved model can match well with its corresponding experimental responses.

Although best efforts have been taken in Chapter 4, doubts on the model’s accuracy and

reliability still exist due to absence of the original detailed experimental data. Meanwhile, there

was much scarce public information on pantograph multibody model with all parameters available

in detail. To establish an accurate and reliable pantograph multibody model, a Brecknell Willis

HSX pantograph is tested and modelled in Chapter 5 and 6.

A base pneumatic actuator, as a key subsystem of HSX pantographs, is with function to
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raise and lower a pantograph head and suppress vibration. But there is rare public information

on properties and models of the base pneumatic actuator. Investigation of the base pneumatic

actuator is essential preliminary work to develop the whole pantograph multibody model. Thus,

in order to understand the dynamic properties of base pneumatic actuator better and develop a

appropriate model, the base pneumatic actuator is tested and modelled separately in Chapter 5

as a preliminary work before the whole pantograph test. Specifically, in Chapter 5,the network

presentation of the base pneumatic actuator in pneumatic domain is firstly introduced. Then a

equivalent mechanical network for the base pneumatic actuator is derived from it according to

mechanical-hydraulic analogy (see Table 2.1). Using experimental data based on the test rig for

the pneumatic actuator in Bristol Structures Lab, the proposed equivalent mechanical model for

the pneumatic actuator is identified. It is shown that both the force-velocity admittance function

of dynamic force in Bode plot and the strut force time-history responses of the identified model

can fit well with the experimental data. Lastly, due to the requirement of efficient simulation

speed in the model identification in Chapter 6, a simplified linear model without the friction force

term for the base pneumatic actuator is proposed which will be used in developing a multibody

HSX pantograph model in Chapter 6.

In Chapter 6, a pantograph test rig is designed and constructed for the whole pantograph

static and dynamic tests firstly. It has been shown that the designed test rig frame’s fundamental

frequency is significantly larger than the maximum frequency of excitations, which is aimed to

avoid the resonance due to the test rig itself. Then the designed input, multi-sensor measurement

and data acquisition systems are introduced in detail. Using the designed pantograph test rig,

static and dynamic tests are carried out. In the static tests, a series of constant forces are

applied on the pantograph head and the stiffness of head suspension and equivalent bending

stiffnesses of arms are investigated. In the dynamic tests, a series of sinusoidal displacement

excitations with constant velocity amplitudes are applied on the pantograph head. With the

measured experimental data, frequency response functions (FRFs) of selected measurement

points are obtained. Using the experimentally measured properties and FRFs, a new HSX

multibody pantograph model is identified and verified. Consequently, this experimentally verified

HSX pantograph multibody model is developed successfully and ready to be used in the following

suspension design.

In Chapter 7, beneficial mechanical configurations for base suspension systems of both

developed pantographs are investigated using the proposed inertance-integrated passive vibration

suppression method with the objective of reducing the contact force standard deviation, separately.

For the calibrated existing pantograph, the results show that the configuration with one inerter

provides the best performance among other candidate layouts and contends a 40% reduction of

the maximum standard deviation of the contact force over the whole operating speed range in

the numerical modelling scenario analysed. For the new developed HSX pantograph, beneficial

inertance-integrated mechanical configurations for the base vibration suppression system are
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also designed similarly. Meanwhile, in this case study, the uncertainty of catenary’s natural

frequency is considered. For the HSX pantograph, the configuration with a spring and an inerter

in parallel shows the best performance improvement, achieving a 38% reduction of the maximum

contact force standard deviation for any speed within operational range. It has been shown

that the achieved improvements in both pantograph examples are due to the fact that with

the beneficial inertance-integrated suspension systems, the first resonance frequencies of the

pantograph systems coincide with the natural frequency of the catenary system and this appears

to regulate the pantograph-catenary contact force oscillation.

Finally, in Chapter 8, the conclusions of this thesis are summarised, and some potential

future work is listed.
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3
INERTANCE-INTEGRATED VIBRATION SUPPRESSION IN A 2D OR 3D

ENVIRONMENT

With the introduction of the inerter, inertance-integrated passive vibration suppression methods

fundamentally extend the achievable capability of passive vibration suppression methods. The

inerter completes the force-current analogy between mechanical and electrical components,

providing the mechanical equivalent to the capacitor. As such, it is a two-terminal passive

element that, when implemented ideally, is normally said to generate a force proportional to the

relative acceleration between its two terminals. However, this is applicable only if the inerter

does not rotate, so the only relative motion between the device’s terminals is axial. In many

applications, this restriction is acceptable, such as in car suspension systems. However, in this

work, it is shown that the relationship between the terminal accelerations and the generated force

is more complex if the inerter is used in a 2-dimensional (2D) or 3-dimensional (3D) environment,

such as within a multi-bar mechanism (e.g., robotic arm or railway pantograph). Specifically, the

inerter force is not given by simply the relative acceleration between the two terminals. The

centripetal acceleration, resulting from rotation of the inerter, needs to be accounted for to find

the second derivative of the inerter length, which defines the generated force. Two case studies

are presented to demonstrate the effects of this normally neglected centripetal acceleration term.

It is shown that when an inerter is operating in a 2D or 3D environment, significant errors

may occur in evaluating the inerter force, and due to this the system response, if the centripetal

acceleration term is neglected. Equations are provided for both modelling the inerter in different

coordinate systems and for incorporating the inerter in 2D and 3D multibody systems.
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3.1 Introduction

In 2002, Smith [2] introduced a new two-terminal ideal passive mechanical element, termed

the inerter, with the property that the force FI at its two terminals is proportional to the

relative acceleration between them (when the inerter does not rotate). The introduction of the

inerter achieves a full analogy between mechanical and electrical networks in which force (or

velocity) corresponds to current (or voltage) and a fixed point in an inertial reference frame

corresponds to electrical ground. In this analogy, a spring (or damper or inerter) corresponds to

an inductor (or resistor or capacitor, respectively). Since the concept of the inerter was proposed,

many beneficial mechanical configurations with inerters have been explored for a wide range of

engineering applications. In particular, an inerter-based device, called the ’J-damper’ as a decoy

name to keep the technology secret from competitors, was developed by Cambridge University

and helped McLaren Racing achieve victory at the 2005 Spanish Grand Prix [78]. A seismic

control device, the tuned viscous mass damper (TVMD), has been investigated in structural

systems [59, 89] and the soil–structure interaction of a structure with an inerter system has

been studied [143]. Furthermore, beneficial inerter-based absorbers have been identified for a

wide range of mechanical structures, such as buildings [57, 68], cables [144, 145], automotive

vehicles[80, 84, 146], railway vehicles [71, 97], aircraft landing gear [147] and offshore wind

turbines [75]. Apart from inerter-based passive vibration control, as in these cases, inerter-

combined active or semiactive vibration control has also drawn interest from researchers [148–

151]. However, the original model of the inerter has the constraint that only translational

movement along the element axis between two terminals of the inerter is permitted, thus it is

only suitable to model an inerter in one-dimensional (1D) environment. For other mechanisms

and devices, such as robotic arms, excavator arms or railway pantographs, they may operate

in a 2-dimensional (2D) or 3-dimensional (3D) environment, where the motions include both

translation and rotation in general. According to the original definition of the inerter in reference

[2], the uniaxial inerter force in a 1D environment can be modelled as a force that is proportional

to the relative acceleration between its two terminals. However, this simple model is not generally

applicable in a 2D or 3D environment. The general inerter force in a 2D or 3D environment should

be modelled as a force proportional to the second time derivative of the distance between its two

terminals. The difference between the simple inerter model and the general inerter model is that

the latter takes into account not only projection of the relative acceleration onto the element axis,

but also the centripetal acceleration term (which could be neglected intuitively).

In this chapter, a model of a uniaxial inerter in a 2D or 3D environment and the methodology

of applying a uniaxial inerter in a multibody system are developed. Furthermore, the effect of the

centripetal acceleration correction term and the method of implementing a uniaxial inerter in a

2D multibody system are demonstrated in two examples. The sections are arranged as follows.

In Section 3.2, the concept of a uniaxial inerter within a 2D or 3D environment is introduced,

initially in a 2D polar coordinate system. Subsequently, a model of a uniaxial inerter in a 2D
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or 3D environment is derived in general vector form, and its expressions in Cartesian and

Spherical coordinates are presented. A 2D inerter-included model is then shown as an example

to demonstrate the effect of the centripetal acceleration correction on the inerter force and the

system response. In Section 3.3, the method of using a uniaxial inerter in a multibody system is

introduced. The proposed modelling methodology is then demonstrated using an inerter-included

two-bar mechanism as an example, and the effect of the centripetal acceleration correction term

on the system responses is shown. The summaries are presented in Section 3.4. Sections 3.2 and

3.3 in this chapter are taken from Sections 2 and 3 in the following submitted paper.

Publications resulting from this work

M. Zhu, J.H.G. Macdonald, J.Z. Jiang, S.A. Neild, "Modelling a uniaxial inerter in a 2D or 3D

environment: implications of centripetal acceleration." Journal of Sound and Vibration, 2022.

(submitted)

3.2 Uniaxial inerter in a 2D or 3D environment

In this section, the concept of using a uniaxial inerter in a 2D or 3D environment is first

introduced, using a 2D polar coordinate system. It is shown that the centripetal acceleration

needs to be accounted for in modelling the inerter force when it rotates. Then the general models

of all three uniaxial mechanical elements – springs, dampers and inerters – are derived in a 3D

environment in general vector form, showing how inerters need to be treated differently. The

general model of the inerter in 2D or 3D is then expressed in Cartesian and spherical coordinates

for ease of use. Lastly, a simple 2D 1DOF inerter-included lumped mass system is used as an

example to demonstrate the effect of the centripetal acceleration correction on the inerter force

and the system response.

3.2.1 Concept of a uniaxial inerter in a 2D polar coordinate system

Uniaxial elements in this paper are defined as elements whose generated forces, i.e., the forces

that the elements apply at the terminals, are only aligned along their axis, i.e., the axis across

their two terminals. For example, a hydraulic damper can be modelled as a uniaxial element.

A two-terminal uniaxial element, symbolised as a square block, is established in 2D polar

coordinates in Figure 3.1, where one terminal of the uniaxial element is fixed to the pole, point

O, of the coordinate system. Without loss of generality, this symbol can represent a spring, a

damper or an inerter. In this polar coordinate system, the position of the free terminal of the

uniaxial element, point P, is determined by the radius ρ, i.e., a distance from the pole, and polar

angle θ, i.e., the angle from the polar axis X. The motion of the free terminal, point P, is given by

translation along the axis OP and rotation of the axis OP about point O.
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Figure 3.1: Two-terminal uniaxial element in 2D polar coordinates.

For a spring with stiffness k, the force is proportional to the change in distance between its

two terminals compared with its undeformed length ρ0. In this 2D polar coordinate system, if

tension forces are defined as positive, the spring force is given by

FS = k(ρ−ρ0) (3.1)

In this 2D polar coordinate system, the relative velocity between the element’s two terminals,

vP, is a superposition of the radial velocity ρ̇ along the element axis and the circumferential

velocity ρθ̇ orthogonal to the element axis, as shown in Figure 3.2. Note that the overhead ‘·’
denotes the time derivative. As the circumferential velocity ρθ̇ is orthogonal to the element axis,

it has no effect on the damper force. Hence, for a damper with damping coefficient c, the force is

proportional to the component of relative velocity between the element’s two terminals along its

axis. That is the damper force is given by

FD = cρ̇. (3.2)

The original inerter force, defined in [2] for a 1D environment, is proportional to the relative

acceleration between the inerter’s two terminals. In the 2D polar coordinate system, let the

Figure 3.2: Velocity of the free terminal, point P, in 2D polar coordinates.
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relative acceleration between the element’s two terminals, points O and P, be aP. Based on the

definition of the inerter in [2], if there is no rotation of the inerter, i.e., the movement is restricted

to be along the element axis, so θ̇ = 0, the formula for the inerter force is

FI_no_rotation = baa (3.3)

where b is the inertance and aa is the component of aP along the element axis (the only component

in this case).

However, this definition is not applicable to the case where θ̇ ̸= 0, i.e., when the element is

allowed to move in a 2D environment. This is because the relative acceleration between the

element’s two terminals, aP, consists of four components: the radial acceleration ρ̈ along the

element axis and the circumferential acceleration ρθ̈ orthogonal to the element axis, but also

the centripetal acceleration ace = ρθ̇2 along the element axis towards the pole, and the Coriolis

acceleration aco = 2ρ̇θ̇ orthogonal to element axis (see Figure 3.3). Obviously, the circumferential

acceleration ρθ̈ and the Coriolis acceleration aco have no effect on the inerter force, being

orthogonal to the element axis. In the component of acceleration along the element axis, aa =
ρ̈−ace, the centripetal acceleration ace also has no effect on the inerter force. This is because only

the second time derivative of the distance between the inerter’s two terminals, ρ̈, can generate an

inerter force. For example, imagine that an inerter makes pure rotation in a plane and the length

between its two terminals is kept as a constant – the inerter force is zero in this scenario as there

is no change in the distance between the two terminals. Hence, when the ineter force is modelled

in a 2D (or 3D) environment, the centripetal acceleration must be removed from the relative

acceleration between the terminals to find the inerter force. In this way, the correct inerter force

within this 2D polar coordinate system is

FI = b (aa − (−ace))= bρ̈. (3.4)

Figure 3.3: Acceleration of the free terminal, point P, in 2D polar coordinates.
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3.2.2 Model of uniaxial inerter in general vector form

In the previous subsection, the concept of the inerter force was introduced within a polar coor-

dinate system. The discussion shows that the centripetal acceleration has to be removed from

the relative acceleration between the two terminals to find the inerter force in a 2D (or 3D)

environment. In this subsection, models of uniaxial elements, including inerters, in a 3D (or 2D)

environment are derived in general vector form.

Let points Pi and P j be the two terminals of a uniaxial element as shown in Figure 3.4. Note

that the superscript of Pi (or P j) indicates the body to which the point is connected (as in Section

3.3). These two terminals are assumed to be connected by pinned-pinned joints but constraining

the rotational degree of freedom (DOF) about the PiP j axis. For point Pi (or P j), its absolute

position, velocity and acceleration with respect to the global coordinates X-Y-Z are denoted as

3-element vectors ri
P,ṙi

P and r̈i
P, respectively.

For a spring, the force along its axis can be expressed in this 3D environment as

FS = k
((

ri, j
P ·ri, j

P

) 1
2 −L0

)
(3.5)

where ri, j
P = r j

P −ri
P is the relative position vector from point Pi to point P j within the global

coordinates X-Y-Z, and L0 is the undeformed length between the uniaxial element’s terminals.

Note that, in Eq. (3.5), the physical meaning of (ri, j
P ·ri, j

P )
1
2 is the instantaneous distance between

uniaxial element’s terminals.

For a damper, by differentiating the distance between the uniaxial element’s terminals,

(ri, j
P ·ri, j

P )
1
2 , the damper force along its axis can be expressed in this 3D environment as

FD = c
((

ri, j
P ·ri, j

P

)− 1
2
(
ṙi, j

P ·ri, j
P

))
(3.6)

Figure 3.4: Two-terminal uniaxial element in a 3D environment.
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where ṙi, j
P = d

(
ri, j

P

)
dt . Note that Eq. (3.6) can be rewritten as

FD = c
(
ṙi, j

P · r̂i, j
P

)
(3.7)

where r̂i, j
P = ri, j

P(
ri, j

P ·ri, j
P

) 1
2

is the unit vector along PiP j and the physical meaning of ṙi, j
P · r̂i, j

P can be

understood as the projection of ṙi, j
P onto the element axis across the two terminals (see Figure

3.5).

For an inerter, based on the definition of inerter in a 1D environment, i.e., only movement

along its axis is allowed, FI_no_rotation is defined as

FI_no_rotation = b
(
r̈i, j

P · r̂i, j
P

)
(3.8)

where r̈i, j
P = d

(
ṙi, j

P

)
dt , and r̈i, j

P · r̂i, j
P is the projection of the relative acceleration between the two

terminals onto the element axis. Based on the discussion in Subsection 3.2.1, in a 3D environment,

the centripetal acceleration has to be taken into account in modelling the inerter force. FI in a

3D environment is defined as a force proportional to the second time derivative of the relative

distance between the inerter’s two terminals as

FI = b
d2

dt2

(
(ri, j

P ·ri, j
P )

1
2

)
= b

{
r̈i, j

P · r̂i, j
P + 1

(ri, j
P ·ri, j

P )
1
2

[
ṙi, j

P · ṙi, j
P −

(
ṙi, j

P · r̂i, j
P

)2
]}

(3.9)

In the curly braces of Eq. (3.9), the first term, r̈i, j
P · r̂i, j

P , is the projection of the relative accel-

eration onto the element axis across the two terminals (as in Eq. (3.8)), and the second term,
1

(ri, j
P ·ri, j

P )
1
2

[
ṙi, j

P · ṙi, j
P −

(
ṙi, j

P · r̂i, j
P

)2
]
, is the centripetal acceleration resulting from the rotation of

the element. Specifically, the physical meaning of ṙi, j
P · ṙi, j

P −
(
ṙi, j

P · r̂i, j
P

)2
is the square of the circum-

ferential velocity, which is denoted as | ṙi, j
P⊥ |2 (see Figure 3.5).

The uniaxial inerter force model in Eq. (3.9), expressed in terms of vectors, is a general model

which is valid in both 2D and 3D environments. This general inerter force model can be applied

to different types of models, for example multibody models or finite element models, and can be

expressed in different coordinate systems, as in the following subsection.

3.2.3 Inerter force in Cartesian and spherical coordinate systems

The general formula for the uniaxial inerter force, Eq. (3.9), can be applied in different 2D or 3D

coordinate systems. The expressions for Cartesian and spherical coordinates are presented in

this subsection.

In 3D Cartesian coordinates, defining the relative displacement vector between the inerter’s

two terminals, points P j and Pi, as ri, j
P = [x y z]T (where superscript ‘ T ’ indicates transpose),
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Figure 3.5: Diagram of the relative displacement, velocity and acceleration vectors between the
two terminals, points Pi and P j.

using Eq. (3.9) the inerter force can be expressed as

FI =
b√

x2 + y2 + z2

{
(ẍx+ ÿy+ z̈z)+ (

ẋ2 + ẏ2 + ż2)− (ẋx+ ẏy+ żz)2

x2 + y2 + z2

}
. (3.10)

In 2D Cartesian coordinates the same equation can be used, simply dropping the terms in z and

its derivatives.

The spherical coordinate system (ρ,θ,ϕ) is another common coordinate system for a 3D

environment, as shown in Figure 3.6. In these spherical coordinates, using Eq. (3.9), with the

inerter terminals at points O and P, the inerter force can be expressed simply as

FI = bρ̈ (3.11)

i.e. the same as for 2D polar coordinates, as in Eq. (3.4).

3.2.4 Example: 2D 1DOF inerter-included lumped mass system

The model of a uniaxial inerter in a 2D or 3D environment was introduced in the previous

subsections. In this subsection, a simple 2D 1DOF inerter-included lumped mass system is

Figure 3.6: Diagram of the spherical coordinate system.

30



3.2. UNIAXIAL INERTER IN A 2D OR 3D ENVIRONMENT

developed as an example to demonstrate the effect of the centripetal acceleration correction term

on the inerter force and response of the system.

A 1DOF inerter-included lumped mass system in a 2D environment in the horizontal plane

is defined as shown in Figure 3.7. The lumped mass, m, is constrained to travel only in the Y

direction. A uniaxial spring and a uniaxial inerter, in parallel, link the mass and the origin of the

system, point O, with a revolute joint. Friction and damping are neglected. The offset of the line

of motion of the mass from the origin, point O, in the X direction, is La. The static equilibrium

position of the mass in the Y direction is Lb, that is, the undeformed length of the spring is

L0 =
√

L2
a +L2

b . The position of the mass in the XY coordinate system can be expressed as a

vector r=
[

La

y

]
. If the initial position of the mass in the Y direction is set to be y0 (y0 ̸= Lb), when

released the mass will oscillate about the equilibrium position in the Y direction. Using Eq. (3.10),

the inerter force can be expressed as

FI =
by√

L2
a + y2

ÿ+ bL2
a(√

L2
a + y2

)3 ẏ2. (3.12)

Note that the second term on the right-hand side of Eq. (3.12),
bL2

a(√
L2

a + y2
)3 ẏ2, is the centripetal

acceleration correction term. Meanwhile, using Eq. (3.1) or Eq. (3.5), the spring force in this

example is FS = k
(√

L2
a + y2 −L0

)
. Thus, the equation of motion of this 1DOF inerter-included

lumped mass system is

mÿ=−

 by√
L2

a + y2
ÿ+ bL2

a(√
L2

a + y2
)3 ẏ2 +k

(√
L2

a + y2 −L0

) y√
L2

a + y2
(3.13)

Figure 3.7: Example 1DOF inerter-included lumped mass system.
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which can be rewritten as

(
m+ by2(

L2
a + y2

))
ÿ+ bL2

a yẏ2(
L2

a + y2
)2 +

k
(√

L2
a + y2 −L0

)
y√

L2
a + y2

= 0. (3.14)

The second term, involving ẏ2, is the centripetal acceleration correction term.

As an example, for a given set of parameter values, m=5 kg, b=100 kg, k=10,000 Nm−1,

La=1 m and Lb=1 m and initial position y0=1.5 m, the numerical time-history responses, with

and without the inclusion of the centripetal acceleration correction term, are shown in Figure

3.8(a). It can be observed that the correction term affects both the magnitude and frequency

of the response. With the correction term the magnitude of the oscillations is larger and the

fundamental frequency is lower, than the case where the term is neglected. Also, defining the

mean position offset relative to the equilibrium position as ∆ ȳ = ȳ−Lb where ȳ is the mean

value of y, it can be observed that there is a negative mean position offset when the correction is

included, in contrast with a small positive mean offset if it is neglected. This can be explained

as follows: considering only the mean value and fundamental harmonic of the response, it can

be approximated as y ≈ ȳ+ A cos(ωt), where A is the amplitude and ω the angular frequency

of the fluctuating component. The centripetal correction term in the inerter force (Eq. (3.13)),

involving ẏ2 = A2ω2

2
{1−cos(2ωt)}, leads to a constant term proportional to A2 in the equation of

motion, which causes a negative mean offset of the displacement relative to the static equilibrium

Figure 3.8: Numerical time histories of (a) displacement responses relative to the equilibrium
position (with the correction included, there is a mean displacement offset as indicated by the
blue double-headed arrow) and (b) inerter forces, with and without the centripetal acceleration
correction term. The dashed lines show the corresponding mean values.
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position. The inerter forces with and without the centripetal acceleration correction term are

also compared in Figure 3.8(b). The amplitude of the fluctuating component of the inerter

force including the centripetal acceleration correction term is larger and its frequency is lower

than without the correction term. Meanwhile, the mean inerter force including the centripetal

acceleration correction term is smaller than without the correction term.

To explore the behaviour of the example system more broadly, numerical time-history re-

sponses of Eq. (3.14) were obtained using a series of different initial positions, with and without

the inclusion of the centripetal acceleration correction term. For each initial position, the periodic

response can be decomposed into a Fourier series. The amplitude and frequency of the funda-

mental harmonic, and the mean position offset in relation to the initial position, are shown in

Figure 3.9. For the response with the centripetal acceleration correction term, the fundamental

frequency decreases from the natural frequency (1.518 Hz) as the initial position increases,

while the mean position offset also decreases. (The natural frequency is found by linearising the

equation of motion, Eq. (3.14), as shown in Appendix A.1). However, if the centripetal acceleration

correction term is neglected, the fundamental frequency and mean position offset both show

opposite trends (i.e., both increase) with increasing initial position (Figure 3.9(b&c)). It is noted

that the responses of the models with and without centripetal acceleration correction term in

the inerter force match quite well if the initial positions are near the equilibrium position, i.e.,

the rotation of the inerter is not significant, see Figure 3.9. In this case, the motion between

two terminals of the inerter can be approximated as a 1D axial motion, and so the effect of the

centripetal acceleration correction can be negligible.

This example has demonstrated the importance of correctly modelling the inerter force in

Figure 3.9: Comparison of responses between the models with and without the centripetal
acceleration correction term in the inerter force, for different initial positions: (a) amplitude of
fundamental harmonic, (b) fundamental frequency and (c) mean position offset.
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a 2D (or 3D) environment. If the centripetal acceleration correction term is neglected, as the

response departs from the very low amplitude linearised behaviour, the calculated amplitude,

frequency and mean position offset of the system depart significantly from the correct response,

and indeed the trends of the frequency and mean position are in the opposite direction. Therefore,

the correction term must be included when using a uniaxial inerter in a 2D or 3D environment if

the inerter’s rotation is significant.

3.3 Uniaxial inerter in a multibody system

The general equations for a uniaxial inerter in a 2D or 3D environment have been derived in

Section 3.2. However, when using an inerter in a multibody system, the point where a terminal

is connected to a body does not necessarily correspond to the body’s reference point. In order to

incorporate the inerter in a multibody system, the inerter force needs to be expressed in terms

of the generalised coordinates of the bodies to which it is connected, where, for a rigid body, the

generalised coordinates are the coordinates of the body reference point and the orientation of

the body. In this section, the force of the uniaxial inerter is expressed in the multibody system

framework, and the methodology for implementing it in a multibody model is discussed in detail.

3.3.1 Inerter force in the framework of a 2D multibody system

In a 2D multibody system, motions of each rigid body are described using three coordinates,

i.e., two coordinates describing the translational motions of the reference point Oi of body i,

Ri = [
xi yi]T, and one coordinate defining its orientation, θi. Hence, the generalised coordinates

of body i can be denoted as a 3-element vector qi =
[
RiT

θi
]T

. Assume that the two terminals of

a uniaxial inerter are point Pi and point P j, which are respectively located on body i and body

j, as shown in Figure 3.10. Note that the terminal point Pi (or P j) does not generally coincide

with the body’s reference point Oi (or O j). The local positions of points Pi and P j with respect

to the bodies’ local coordinate frames X̄i-Ȳi and X̄ j-Ȳ j are ūi
P = [

x̄i
P ȳi

P

]T and ū j
P =

[
x̄ j

P ȳ j
P

]T
.

Note that the overbar in X̄i, Ȳi (or X̄ j, Ȳ j) indicates local coordinates. In this work, as all bodies

are considered rigid, ūi
P and ū j

P are constant vectors. In this 2D multibody system, the relative

position, velocity and acceleration vectors between the two terminals of the inerter can be written

as [152, pp. 107-110]

ri, j
P =

(
R j +A jū j

P

)
−

(
Ri +Aiūi

P

)
, (3.15)

ṙi, j
P =

(
Ṙ j + θ̇ jA j

θ
ū j

P

)
−

(
Ṙi + θ̇iAi

θūi
P

)
, (3.16)

r̈i, j
P =

(
R̈ j + θ̈ jA j

θ
ū j

P − (θ̇ j)2A jū j
P

)
−

(
R̈i + θ̈iAi

θūi
P − (θ̇i)2Aiūi

P

)
, (3.17)

34
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Figure 3.10: A uniaxial inerter with its two terminals Pi and P j respectively on body i and body j
in a 2D multibody system.

where the 2D transformation matrix Ai =
[

cosθi −sinθi

sinθi cosθi

]
and Ai

θ
= dAi

dθi =
[
−sinθi −cosθi

cosθi −sinθi

]
,

and similarly for A j and A j
θ
. Eqs. (3.16&3.17) can be rewritten in compact matrix form as

ṙi, j
P =Hi, jq̇i, j, (3.18)

r̈i, j
P =Hi, jq̈i, j +ai, j

n , (3.19)

where Hi, j =
[
−I2×2 −Ai

θ
ūi

P I2×2 A j
θ
ū j

P

]
, ai, j

n = (θ̇i)2Aiūi
P−(θ̇ j)2A jū j

P, q̇i, j =
[
ṘT

i θ̇i ṘT
j θ̇ j

]T
,

q̈i, j =
[
R̈T

i θ̈i R̈T
j θ̈ j

]T
and I2×2 is the 2×2 identity matrix (similarly I3×3 is the 3×3 identity

matrix in Subsection 3.3.2). Substituting Eqs. (3.18&3.19) into Eq. (3.9) yields the equation for

the uniaxial inerter force expressed in terms of the generalised coordinates of the 2D multibody

system, as

FI = b

{[
(Hi, jq̈i, j +ai, j

n ) · r̂i, j
P

]
+ 1

(ri, j
P ·ri, j

P )
1
2

[
(Hi, jq̇i, j) · (Hi, jq̇i, j)−

(
(Hi, jq̇i, j) · r̂i, j

P

)2
]}

. (3.20)

Similarly to Eq. (3.9), the first term in the curly braces of Eq. (3.20), (Hi, jq̈i, j +ai, j
n ) · r̂i, j

P ,

corresponds to the projection of the relative acceleration between the terminals onto the element

axis, and the second term in the curly braces,
1

(ri, j
P ·ri, j

P )
1
2

[
(Hi, jq̇i, j) · (Hi, jq̇i, j)−

(
(Hi, jq̇i, j) · r̂i, j

P

)2
]
,

corresponds to the term due to the centripetal acceleration.

3.3.2 Inerter force in the framework of a 3D multibody system

The equation of the uniaxial inerter force expressed in terms of the generalised coordinates

of a 2D multibody system has been derived in Eq. (3.20). This equation is also valid for a 3D
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multibody system. Compared with the 2D environment, the only difference is that the vectors

and matrices used in Eq. (3.20), i.e., qi, j, Hi, j, ai, j
n and ri, j

P , have different expressions for a 3D

multibody system.

In a 3D multibody system, motions of a rigid body are described using six coordinates,

i.e., three coordinates describing the translational motions of the body and three coordinates

defining the body’s orientation. The translational motions of body i can be defined using the

position of a reference point fixed on the body, which can be denoted using three-dimensional

Cartesian coordinates Ri = [
xi yi zi]T. In this work, Euler angles θi = [

φi θi ψi]T are used

to describe the body’s orientation. Initially, the body’s local coordinate system, X̄i-Ȳi-Z̄i, coincides

with the global coordinate system X-Y-Z. φi, θi and ψi represent three successive rotations which

are performed about the current Z̄i axis, X̄i axis and Z̄i axis in turn. Hence, the generalised

coordinates of body i in this 3D multibody system can be represented by a 6-element vector

qi =
[

Ri

θi

]
.

As in Subsection 3.3.1, let a uniaxial inerter be installed between point Pi on body i and point

P j on body j. The local positions of points Pi and P j with respect to the bodies’ local coordinate

frames X̄i-Ȳi-Z̄i and X̄ j-Ȳ j-Z̄ j are ūi
P and ū j

P. In a 3D multibody system, Eq. (3.15) is still valid

but the transformation matrix for body i, Ai, (and similarly for body j throughout this subsection)

is a function of the Euler angles and its formulation in detail is shown in Appendix A.2. Note

that Aiūi
P can be denoted as ui

P, representing the local position vector of point Pi relative to

reference point Oi, expressed in global coordinates. For the velocity and acceleration vectors, i.e.,

Eqs. (3.18&3.19), they are still valid but with modified qi, j, Hi, j and ai, j
n for the 3D multibody

system. The generalised coordinates of the body i and j where the inerter is connected in this 3D

multibody system is modified as

qi, j =


Ri

θi

R j

θ j

 (3.21)

The modified matrix Hi, j in the 3D multibody system is [152, pp. 397-398]

Hi, j =
[
−I3×3 ui

PGi I3×3 −u j
PG j

]
(3.22)

where

Gi =


0 cosφi sinθi sinφi

0 sinφi −sinθi cosφi

1 0 cosθi

 (3.23)

and the underbar denotes the skew-symmetric matrix of the corresponding vector. For example,
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the skew-symmetric matrix of the vector ui
P = [

xi
P yi

P zi
P

]T is

ui
P =


0 −zi

P yi
P

zi
P 0 −xi

P
−yi

P xi
P 0

 (3.24)

For the 3D multibody system, ai, j
n also needs to be modified as [152, pp. 398]

ai, j
n =

(
(G jθ̇ j) (G jθ̇ j)u j

P −u j
PĠ j

θ̇ j
)
−

(
(Giθ̇i) (Giθ̇i)ui

P −ui
PĠi

θ̇i
)
. (3.25)

With the modified ri, j
P , qi, j, Hi, j and ai, j

n for the 3D multibody system, as in Eqs. (3.15, 3.21,

3.22&3.25), the force of the uniaxial inerter, expressed in terms of the generalised coordinates of

the 3D multibody system, can be obtained using Eq. (3.20).

3.3.3 Implementation of a uniaxial inerter in a multibody model

The equation for the uniaxial inerter force expressed in terms of generalised coordinates of 2D or

3D multibody systems has been derived in Subsections 3.3.1 and 3.3.2. In this subsection, the

methodology of implementing the uniaxial inerter in a multibody system is introduced.

In a centroidal coordinate system where the origin of each body’s local coordinate frame is

rigidly attached to its centre of mass, the equations of motion for a multibody system can be

written as [152, pp. 430] [
M CT

q

Cq 0

][
q̈s

λs

]
=

[
Qe

Qd

]
. (3.26)

where M is the system mass matrix, Cq is the Jacobian matrix of constraint, qs is the system

generalised coordinate vector, Qe is the generalised external force vector, λs is the vector of

Lagrange multipliers which are used to calculate the reaction forces resulting from the constraints

and Qd is a vector that absorbs terms that are quadratic in the velocities of the second-time

differentiation of the constraint equation Cq(qs, t) = 0 [152, pp. 428]. Assume that this model

includes nb bodies with e DOFs for each (e=6 for a 3D model and e=3 for a 2D model) and total

nc constrained DOFs due to the mechanical joints. The definitions and formulations of the above

matrixes and vectors are standard and can be found in textbooks on multibody system modelling,

e.g., [152, 153].

An inerter can be added to the multibody system by applying two equal and opposite external

forces to the relevant bodies. These forces need to be implemented into the original equations of

motion (Eq. (3.26)) in the form of the resulting generalised external force vector associated with

the generalised coordinates of body i and body j on which the inerter force acts, Qi, j
I , as

[
M CT

q

Cq 0

][
q̈s

λs

]
=

[
Qe +Li, jQi, j

I
Qd

]
. (3.27)
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where Li, j is the incidence matrix of the inerter indicating the connection topology between the

original multibody system and the inerter. The incidence matrix Li, j is comprised of two columns,

each column consisting of nb e× e blocks. Apart from two e× e identity matrices located at the

ith row 1st column and jth row 2nd column corresponding to body i and body j connected to the

two terminals of the inerter, the remaining blocks in Li, j are filled with e×e null matrices, giving

Li, j =



01
e×e 01

e×e
...

...

Ii
e×e 0i

e×e
...

...

0 j
e×e I j

e×e
...

...

0nb
e×e 0nb

e×e


(i, j ∈ {1, . . .nb}and i ̸= j). (3.28)

The generalised external force vector of FI associated with the generalised coordinates of

body i and body j in the multibody system [152, pp. 243] is

Qi, j
I =−FIHi, jT

r̂i, j
P . (3.29)

Substituting the equation for the inerter force, i.e., Eq. (3.20), into Eq. (3.29), the full generalised

external force vector of the uniaxial inerter can be written as

Qi, j
I =−bHi, jT

r̂i, j
P

{[
(Hi, jq̈i, j +ai, j

n ) · r̂i, j
P

]
+ 1

(ri, j
P ·ri, j

P )
1
2

[
(Hi, jq̇i, j) · (Hi, jq̇i, j)−

(
(Hi, jq̇i, j) · r̂i, j

P

)2
]}

(3.30)

Eq. (3.30) can be rewritten in compact format as

Qi, j
I =−bHi, jT

r̂i, j
P r̂i, jT

P Hi, jq̈i, j +Qi, j
Iv (3.31)

where Qi, j
Iv = −bHi, jT

r̂i, j
P r̂i, jT

P ai, j
n − b(ri, j

P · ri, j
P )−

1
2 Hi, jT

r̂i, j
P

[
(Hi, jq̇i, j) · (Hi, jq̇i, j)−

(
(Hi, jq̇i, j) · r̂i, j

P

)2
]

which absorbs the terms related to the relative velocities. Hence, substituting Eq. (3.31) into Eq.

(3.27), the full multibody model, including the added uniaxial inerter is[
M CT

q

Cq 0

][
q̈s

λs

]
=

Qe +Li, j
(
−bHi, jT

r̂i, j
P r̂i, jT

P Hi, jq̈i, j +Qi, j
Iv

)
Qd

 . (3.32)

This matrix equation represents a set of differential-algebraic equations. For normal differential-

algebraic equations of a multibody system without an inerter, numerical solutions can be obtained

using direct time integration. However, including the inerter into the system, the Qi, j
I in the

right-hand side of Eq. (3.27) or (3.32) is a function of the current accelerations of the generalised

coordinates, q̈i, j, which makes Eq. (3.32) implicit. For implicit equations, direct time integration

cannot be used to obtain numerical solutions. Although some integration algorithms, for example
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the predictor-corrector method [154], can be applied to solve implicit equations numerically, they

can be much more complicated and time-consuming. Moreover, it is inevitable that numerical

errors will be introduced by using an implicit integration algorithms. In order to use a direct

time integration method to solve the multibody system of equations including an inerters, a

modification of Eq. (3.32) is introduced in the following.

The generalised inerter force vector Qi, j
I consists of two parts, as in Eq. (3.31), i.e., the term

involving the acceleration of the generalised coordinates, −bHi, jT
r̂i, j

P r̂i, jT

P Hi, jq̈i, j, and the term

that absorbs the velocities of the generalised coordinates, Qi, j
Iv . Noting that q̈i, j = Li, jT

q̈s, the

acceleration term can be moved to the left-hand side of Eq. (3.32) and be combined with the

system mass matrix M, giving[
M+MI CT

q

Cq 0

][
q̈s

λs

]
=

[
Qe +QIv

Qd

]
. (3.33)

where MI = bLi, jHi, jT
r̂i, j

P r̂i, jT

P Hi, jLi, jT
and QIv =Li, jQi, j

Iv

In this way, the right-hand side of Eq. (3.33) is a function of the positions and velocities of the

generalised coordinates, i.e., qs and q̇s, but not of any accelerations, which makes it suitable for

the use of direct time integration to obtain numerical solutions.

3.3.4 Example: 2D inerter-included two-bar mechanism system

The method of implementing a uniaxial inerter in a multibody system has been introduced in

previous subsections. In this subsection, a 2D inerter-included two-bar mechanism is used as an

example, and the effect of the centripetal acceleration correction term on the system response is

demonstrated.

The example 2D inerter-included two-bar mechanism, in the horizontal plane, is defined as

shown in Figure 3.11. Body 1 and body 2 have masses of M1 and M2 and rotational inertias of J1

and J2, respectively. Both bodies are 1 m long. One end of body 1 is constrained by a revolute

joint with the ground at point A, via a rotational spring kr, with 45 degrees undeformed reference

angle relative to the X axis positive direction. The other end of body 1 is linked with one end of

body 2 by a revolute joint at point B. A spring, a damper and an inerter, labelled by k, c and b,

are connected in parallel between points D and E, located on body 1 and body 2 respectively. With

the spring undeformed, the initial orientation of body 2 relative to the X axis positive direction is

135 degrees. Friction forces are neglected. An excitation force Fa is applied on the top of body 2,

point C. In this example, the excitation force is set to be a sine wave with an amplitude of 8 N at

1 Hz, i.e., Fa = 8sin(2πt) N, with t in s.

For this 2D model, the origin of the global X-Y coordinate system is selected as point A. Local

coordinate frames X̄1-Ȳ1 and X̄2-Ȳ2 are established for body 1 and body 2 respectively, with the

origins at their centres of mass, i.e., O1 and O1, and the X̄1 and X̄2 axes oriented along the bodies’

lengths, as shown in Figure 3.11. Other data of the model are given in detail in Appendix A.3.
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Figure 3.11: Example 2D inerter-included two-bar mechanism.

In the equation of motion, Eq. (3.33), for this example, q̈s =
[

q̈1

q̈2

]
and λs = [λ1 λ2 λ3 λ4]T,

corresponding to the 4 DOFs constrained by revolute joints A and B. Matrix MI and vector QIv,

which are introduced by the uniaxial inerter, can be obtained following the method explained

in Subsection 3.3. The remaining matrices and vectors in Eq. (3.33), M, Cq, Qe and Qd, can be

found using the standard multibody modelling method [152, 153].

Using direct time integration, the steady-state displacement, relative to the equilibrium

position, of point C in the Y direction is shown in Figure 3.12, with and without inclusion of the

centripetal correction term. It can be observed that the peak-peak response of the model without

the centripetal acceleration correction is 140 mm, compared with 162 mm for the model including

the centripetal acceleration correction. Meanwhile, the mean displacement offset, is increased

from 23 mm to 72 mm for the model without the centripetal acceleration correction compared

with that of the model including the centripetal acceleration correction.

3.4 Summary and discussion

In this paper, we consider the implications of using an idealised uniaxial inerter in a 2D or 3D

environment. Specifically, the equations for modelling a uniaxial inerter in these environments

and the methodology of its implementation in a multibody system are developed. Firstly, the

concept of a uniaxial inerter in a 2D polar coordinate system is discussed, then the model of

an inerter is derived in general vector form in a 2D or 3D environment. It is shown that the

centripetal acceleration due to rotation has to be accounted for in modelling the uniaxial inerter in

a 2D or 3D environment. Expressions for the inerter force in Cartesian and spherical coordinates

are also provided for ease of use. A simple 2D 1DOF inerter-included lumped mass system is
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Figure 3.12: Comparison of the displacements, relative to the equilibrium position, of point C
in the Y direction, between the models with and without the centripetal correction term for the
example two-bar mechanism (dashed lines show the corresponding mean values).

analysed as an example to show that the centripetal acceleration correction term affects the

system response oscillation amplitude, the fundamental frequency of free vibrations and the

mean position offset. If the centripetal acceleration correction term in the inerter force is omitted,

significant errors can occur in evaluating the inerter forces and system responses when operating

in a 2D or 3D environment. A methodology for applying the uniaxial inerter to a multibody

system is also introduced. Then, using an example of a two-bar mechanism containing an inerter,

it is shown that the effect of the centripetal acceleration correction term can again be significant.

It is noted that, in line with much of the literature, we treat the inerter as idealised. When the

device is implemented physically, in addition to the centripetal acceleration effects highlighted

here, further device-dependent considerations may need to be addressed, including mass moment

of inertia and possibly gyroscopic effects, as well as friction and compliance.

The inerter model in a 2D or 3D environment and the method of its application to multibody

systems proposed in this chapter are applied onto design of mechanical configurations for base

suspensions of pantographs as examples in Chapter 7. Before Chapter 7, accurate multibody

pantograph models are developed firstly using existing model in Chapter 4 and measured

experimental data in Chapter 5 and 6.

41





C
H

A
P

T
E

R

4
DEVELOPMENT OF A MULTIBODY PANTOGRAPH MODEL

In the preceding chapter, a model of the inerter in a 2D or 3D environment, where the inerter

allows rotational movements, is derived. It is shown that a centripetal acceleration needs to

be accounted for when the inerter rotates. Meanwhile, the method of applying the inerter to

a 2D or 3D multibody model is also developed in detail. These are the theoretical bases for

the inertance-integrated vibration suppression method discussed in this thesis. The proposed

inertance-integrated vibration suppression method is then applied to suspension design for

railway pantographs as a case study. The aim of the case study is to enhance the pantograph-

catenary contact performance using the proposed inertance-integrated vibration suppression

method. Before that, a suitable pantograph model needs to be developed as a baseline firstly.

In this chapter, typical mutibody modelling and simulation methods which can be applied

to pantograph systems are first introduced briefly. Then a simplified pantograph multibody

model based on the exsiting pantograph model is established and refined to better fit with

its corresponding experimental responses. Sections 4.3 and 4.4 in this chapter are taken from

Sections 2 and 3 in the following published paper.

Publications resulting from this work

M. Zhu, S.Y. Zhang, J.Z. Jiang, J. Macdonald, S. Neild, P. Antunes, J. Pombo, S. Cullingford, M.

Askill & S. Fielder, "Enhancing pantograph-catenary dynamic performance using an inertance-

integrated damping system." Vehicle System Dynamics, pp. 1-24, 2021.
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4.1 Introduction

Pantographs are devices mounted on electric trains’ roofs to collect power from catenary systems

along railways. Current is transmitted from contact wires to electric trains via contact between

pantograph head strips and contact wires. Reliable current collection depends on high-quality

contact between them. There are different pantographs used all around the world currently. Some

example are depicted in Figure 4.1. Most of pantographs are of the scissors type as shown in

Figure 4.1 except the pantograph applied in Sinkansen 500 which is of the telescopic type [6]. In

this thesis we focus on the scissors type pantographs. A pantograph usually need to achieve four-

level functions: raise the pantograph head to touch with contact wire, suppress the vibrations due

to spans with frequencies of 1-2 Hz generally, suppress the vibrations due to droppers which is

generally up to 10 Hz, and suppress the vibrations resulted from flexible deformation and friction

at contact point which can be up to 100 Hz but with low amplitude [5]. Typically, the pantograph

head and its suspension (see Figure 4.1(d)) is with function to suppress the vibrations in a range

of high frequencies while the pantograph frame together with the base suspension (see Figure

4.1(d)) is to suppress the low-frequency vibrations. In this chapter, a pantograph multibody mode

is established based on a published model. But discrepancies are observed for this original model

compared with its experimental responses. Hence, this model is refined to be better fitted with

its corresponding experimental responses firstly in this chapter. However, although best efforts

have been taken, doubts still exist in accuracy and reliability of the model due to absence of the

original experimental data. To resolve the doubts, a Brecknell Willis HSX pantograph are tested

and modelled in Chapter 5 and 6. Finally, mechanical configurations of the base suspensions

for both developed pantographs are designed using the proposed inertance-integrated vibration

methods to enhance pantograph-catenary contact performance as discussed in Chapter 7.

4.2 Multibody dynamic analysis for pantographs

In this section, typical basic modelling and simulation methods of a constrained multibody

system are briefly recalled. Developed pantograph models and numerical simulation analyse

in the following sections and chapters are all based on these. Note that they are all standard

methods in textbooks. Here I just recall them briefly as background for readers. For more detailed

information, please read relevant text books, e.g., [156, 157].

A typical multibody model, for example, a multibody pantograph model shown in Figure

4.2, is a assemblage of rigid bodies constrained by kinematic mechanical joints. The mechanical

joints are used to identify the transmit of motion between bodies in a certain fashion [156].

Meanwhile, specific external forces including forces resulting from springs, dampers, actuators or

other external applied forces, such as friction forces, contact forces, impact forces, gravitational

forces, and so on, are applied on individual component. The states of the multibody system can

be described by a n-element Cartesian coordinate vector q, called generalised coordinates of the
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(a) (b)

(c) (d)

Figure 4.1: Pantographs used in high-speed railway trains: (a) CONTACT ATR95 [6]; (b) Stemman
DSA380 [6]; (c) Brecknell Willis HSX [155]; (d) Faiveley CX [6].

Figure 4.2: Typical multibody pantograph model.
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system. The mechanical holonomic constraint equations with m DOFs constrained of the system

can be written in a compact form as

C(q, t)= 0 (4.1)

where t is time. Differentiating Eq. (4.1) one and twice to time yields the velocity constraint

equations

Cqq̇=−Ct (4.2)

and acceleration constraint equations

Cqq̈=Qd (4.3)

where Cq = ∂C
∂q is the Jacobian matrix of the constraint equations, Ct = ∂C

∂t is the partial derivative

of C with respect to time, and Qd is a vector given by

Qd =−Ctt −
(
Cqq̇

)
q q̇−2Cqtq̇ (4.4)

where Ctt = ∂2C
∂t2 ,Cqt = ∂

∂t

(
∂C
∂q

)
.

According to Newton’s second law, equations of motion for a constrained rigid multibody

system can be expressed as [156]

Mq̈=Qe +Qc (4.5)

where M is the mass matrix of the system, Qe is the generalized external force vector and Qc is

the constraint forces vector, which contains the reaction forces and moments resulting from the

constraints. According to [156], Qc can be written as

Qc =−CT
qλ (4.6)

where λ is the Lagrange multiplier vector corresponding to the constraints defined in Eq. (4.1).

Substitution of Eq.(4.6) in Eq.(4.5) yields

Mq̈+CT
qλ=Qe. (4.7)

Incorporating the constraint equations, Eq. (4.3), with system’s equations of motion, Eq. (4.7),

a typical multibody system expressed in a form of differential-algebraic equations can be written

as [
M CT

q

Cq 0

][
q̈
λ

]
=

[
Qe

Qd

]
. (4.8)

However, in the differential-algebraic equations of motion, i.e., Eq. (4.8), the constraint

equations of position and velocity, i.e., Eq. (4.1) and (4.2), are not included. Consequently, the

constraints can not be satisfied after a long-time simulation due to the accumulation of numerical

errors in integration process. Thus, in order to keep the constraints violation under control,

the Baumgarte constraint stabilization method [158] is applied in our work. Recall that the

second-time derivative of the constraint equations can be written as

C̈=Cqq̈−Qd = 0. (4.9)
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As we known that the preceding equation, i.e., Eq. (4.9), has an unstable solution, i.e., an

exponential growth. In Baumgarte’s constraint stabilization method, the Eq. (4.9) is modified

with additional position and velocity constraint terms as

C̈+2αĊ+β2C= 0 (4.10)

where Ċ=Cqq̇+Ct and β ̸= 0. Eq. (4.10) forms a closed-loop system where the terms 2αĊ and

β2C work as feedbacks of violations of position and velocity constraints. Substituting Eq. (4.9)

into Eq. (4.10) leads to

Cqq̈=Qd −2αĊ−β2C. (4.11)

Substituting Eq. (4.11) into Eq. (4.8), the equations of motion for the multibody system with

Baumgarte’s constraint stabilization method can be modified as[
M CT

q

Cq 0

][
q̈
Qd

]
=

[
Qe

Qd −2αĊ−β2C

]
. (4.12)

Following the parameter selection process in reference [159], α and β can generally be selected

as α=β= 5 to keep system’s converge without oscillation.The framework of a multibody system

with Baumgarte’s constraint stabilization method, i.e., Eq. (4.12) is used to build the multibody

pantograph model in the following work.

In each time step of integration process, the acceleration vector, q̈, and velocities vector, q̇,

are integrated by specific integration procedure to obtain the system’s states (velocities and

positions) in the following time step. The time integration process is carried on repeatedly to

the end of simulation time as the flowchart shown in Figure 4.3. The integration process in this

work is performed using ode15s solver in MATLAB® which is a variable step and variable order

integration algorithm.

Figure 4.3: Flowchart of a numerical simulation of a multibody model with time step h, based on
[8].
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4.3 Development and assessment of a pantograph model

In this thesis, the proposed inertanc-integrated vibration suppression method is applied to base

suspension design for pantographs to enhance the pantograph-catenary contact performance.

In practice, pantograph-catenary contact force standard deviation is a key index of their con-

tact performance. A lower contact force standard deviation, i.e., more stable contact between

pantograph-catenary interface, is preferred. With a lower contact force standard deviation,

not only arcing but also wear between contact wire and pantograph contact strips can be re-

duced, which can both enhance the reliability and reduce the cost for the whole-life circle of

pantograph-catenary systems. Hence, in this work, contact force standard deviation between

pantograph-catenary interface is used as the assessment performance to be optimised in this

work.

The basic modelling and simulation methods of a typical multibody system are recalled in

the preceding section. With the aim of applying the proposed inertance-integrated vibration

suppression method to pantographs as case study, appropriate pantograph models should be

first established. The preceding modelling and simulation methods of a typical multibody system

recalled are used to develop multibody models and take dynamic analysis of pantographs in this

section. Note that published multibody pantograph models with all parameters available are

scarce. A published multibody pantograph model with all parameters accessible was developed

by Ambrósio et al. [7]. Some experimental dataset of this pantograph model was also offered in

[8]. Hence, in this section, a simplified multibody pantograph model based on the model taken

from [7, 8] is established. However, discrepancies between its responses and the corresponding

experimental data are observed obviously both in amplitudes and phases. The sources of the

observed discrepancies are then analysed based on the mode shape analysis. And the original

model is improved to better fit with the experimental data. The refined pantograph model will be

used as a base line for base suspension design using the proposed inertanc-integrated vibration

suppression methods later.

4.3.1 A multibody pantograph model and comparison with experimental data

A realistic 3D pantograph multibody model was developed by Ambrósio et al. [7]. In [8], the

parameters of this pantograph multibody model were optimised to fit its response better with

the experimental data. Note that because the pantographs’ case studies are first conceptual

studies to investigate the benefits of the inertance-integrated vibration suppression systems on

pantographs and more advanced and detailed analyses will follow after the benefits are presented,

a simplified pantograph model is considered in this work. It should also be noted that the main

interest of pantographs’ case studies is the contact forces between the pantograph and catenary,

which occur in the vertical direction. Therefore, the 3D multibody model in the reference can be

reduced to a 2D multibody model, which consists of 7 rigid bodies as shown in Figure 4.4, along
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Figure 4.4: Diagram of the simplified multibody pantograph model, excitation and measurement
points.

with an actuator as used in the experiments [8]. In [7, 8], the local 3D coordinates are denoted as

[ξi,ηi,ζi] where the superscript indicates the name of the body. In this work, the 2D coordinates,

[ξi,ζi], which form the vertical plane, are abstracted from the original 3D coordinates in [7, 8] to

establish the simplified multibody pantograph model here. The basic equations of motion of the

model are explained in Section 4.2. All the parameter values of the original model are detailed in

[7, 8]. In this work, rotation of the head is constrained and the head links to the stability arm

by a prismatic joint which permits only vertical translational motion with respect to the top of

the stability arm. The base suspension between point b and point d, modelled by spring k1 and

damper c1 in parallel, and the head suspension between the head and the top of the stability

arm, modelled by spring k2 and damper c2 in parallel, are applied in the pantograph system for

vibration suppression, see Figure 4.4. A static actuator force fa=10 kN is applied between point c

and point d to provide the uplift force to the pantograph, see Figure 4.4.

A series of physical dynamic tests of the pantograph were carried out [110, 160]. A sequence

of sinusoidal displacement excitations with 1 mm amplitude from 0 Hz to 20 Hz were applied on

the head via the actuator shown in Figure 4.4. In [8], the frequency response functions (FRFs) of

the measurement points are defined as

FRFi( f )= fft(ai(t), f )
fft(pc(t), f )

, i ∈ {P,E,B}, f ∈ (0Hz,20Hz] (4.13)

where ai(t) and pc(t) are the vertical acceleration of the measurement point i (as shown in

Figure 4.4, pantograph head, top of the upper arm, and top of the lower arm) and the contact

force applied on the pantograph head at each individual excitation frequency f , respectively,
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and fft(·) is the Fourier transform at each corresponding individual excitation frequency f . The

experimental FRF data is available in [8] and is shown as the solid lines in Figure 4.5. The same

excitations have also been applied to the original numerical model in [7, 8], with the three FRF

curves also included in Figure 4.5. Note that it has been checked that the developed 2D model has

a very similar response compared with the original 3D model for all three measurement points.

It is clear from Figure 4.5 that some discrepancies exist between simulation and experimental

curves. Firstly, the frequencies of the first peaks (indicated with number 1) in the model are

too low, while their amplitudes are too high, relative to the corresponding experimental peaks.

Secondly, the amplitudes of the second peaks (indicated with number 2), are much higher for

the original numerical model than for the experiments. Thirdly, there are peaks around 11 Hz

(indicated with number 3) in the experimental data, which are not predicted using the original

numerical model. There are also discrepancies in terms of the predicted phase when compared

with the experimental data (Figure 4.5(b)). It is noted that the phases of the FRFs for the upper

and lower arms are identical for the original model. This is because they belong to one linkage

mechanism (formed by 4-bar mechanisms ABCD and BEFG, respectively, with BG in common),

which hence share the same degree of freedom.

4.3.2 Analysis of the sources for the observed discrepancies

Basic mode shape analysis is considered here to find out the sources for the observed discrepancies.

The original multibody model consists of 7 rigid bodies and has 2 DOFs in total. These are the

head’s relative vertical motion with respect to the top of the stability arm and the motion of the

pantograph frame which is a mechanism with only 1 DOF. This explains why only two resonances

are observed in the response spectra of the original numerical model (Figure 4.5). Considering

the experimental FRFs, first resonance exhibits almost the same amplitudes of response for the

head and top of the upper arm, with the lower arm response being about half of this, which

is determined by the pantograph frame kinematics. Also, all three measurement points keep

in-phase with each other in the frequency range of the first peak. These observations indicate that

the first mode is dominated by pantograph frame mechanism motion with little contribution from

the head. For the second peak of the experimental FRFs, the amplitudes of the top point of the

upper arm and the lower arm are similar, while the amplitude of the head motion is significantly

larger. For the phases, the head is almost in anti-phase with the other two measurement points.

These observations of the second peak mean that this mode is dominated by the motion between

the head and the top point of the upper arm. The mode shapes of the first two modes are sketched

in Figure 4.6.

The above mode shape analysis suggests that, for the original numerical multibody model,

the reason why the frequencies of the first peaks are significantly lower while their amplitudes

are higher than the corresponding experimental ones is that the stiffness and damping of the

pantograph frame mechanism are both underestimated. We hypothesise that this may be due to

50



4.3. DEVELOPMENT AND ASSESSMENT OF A PANTOGRAPH MODEL

Figure 4.5: Comparison of the FRF, (a) amplitudes and (b) phases, between the original numerical
multibody model and the experimental data taken from [8].

assuming that the arm joints are ideal, exhibiting no damping or stiffness [161]. Similarly, it is

suggested that the higher amplitudes of the original numerical model’s second peaks compared

with the experimental ones, especially for the pantograph head, are because the damping of

the head suspension is underestimated. In addition to the first two rigid body modes in the

experimental FRFs, there are additional peaks around 11 Hz. This indicates that an additional

DOF is needed in the numerical model, which could arise from a flexibility effect [103]. The phase

gap of around 180 degrees, i.e., anti-phase, between the top of the upper arm and lower arm for

high frequencies in the experimental FRFs in Figure 4.5(b), also indicate there is a flexibility

effect.
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Figure 4.6: Sketches of the first two mode shapes of the pantograph.

4.4 Improvement of the existing multi-body pantograph model

Based on the analysis in Subsection 4.3.2 , in this section, the pantograph model is improved to

better match the experimental data, to give a reference model to use for optimisation of the base

suspension system in Chapter 7. Firstly, parameter values of the head suspension are identified

using the experimental FRF data. Then a non-ideal joint is introduced, using a rotational spring

and damper in parallel at joint B. Additional DOFs are also added to approximately model the

flexibility of the arms.

4.4.1 Identification of the head suspension parameters

Using the experimental FRFs, the head suspension parameters are identified in this subsection.

A subsystem of the pantograph in Figure 4.4, consisting of the pantograph head, suspension k2,

c2, and the top of stability arm is presented in Figure 4.7.

The equation of motion of the head is

mH ẍH(t)+ (ẋH(t)− ẋE(t)) c2 + (xH(t)− xE(t))k2 + pc(t)= 0 (4.14)

where mH is the mass of the head, xH(t) and xE(t) are the time history of displacements of the

Figure 4.7: The simplified model of the head suspension system.
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head and the top of the upper arm, respectively. Eq.(4.14) can be transferred to the Fourier

domain as
mH XH(s)s2

Pc(s)
+

(
XH(s)s
Pc(s)

− XE(s)s
Pc(s)

)
c2 +

(
XH(s)
Pc(s)

− XE(s)
Pc(s)

)
k2 +1= 0 (4.15)

where XH(s), XE(s) and Pc(s) are the displacements of the head and the top of the upper arm

and the contact force in the Fourier domain and s = 2π f j, j=p−1 . According to the definition of

the FRF, FRFH and FRFE can be rewritten as complex numbers as

FRFH( f )= XH(s)s2

Pc(s)
= aH( f )+bH( f )j (4.16)

FRFE( f )= XE(s)s2

Pc(s)
= aE( f )+bE( f )j (4.17)

where aH = AH cos(θH), bH = AH sin(θH), aE = AE cos(θE), bE = AE sin(θE). The amplitudes, i.e.,

AH , AE, and phases, i.e., θH , θE, of the experimental FRFs of the head and top of the upper arm

are plotted in Figure 4.5, respectively. Substituting Eq. (4.16) and Eq. (4.17) into Eq. (4.15), we

can get

mH(aH +bH j)+
(

bH −aH j
2π f

− bE −aEj
2π f

)
c2 +

(
−aH +bH j

(2π f )2 + aE +bEj
(2π f )2

)
k2 +1= 0. (4.18)

Splitting Eq. (4.18) into its real and imaginary parts gives
real(c2,k2)= mHaH + bH −bE

2π f
c2 + −aH +aE

(2π f )2 k2 +1= 0

img(c2,k2)= mH bH + −aH +aE

2π f
c2 + −bH +bE

(2π f )2 k2 = 0
(4.19)

Assuming mH is known accurately, the values of c2 and k2 for each individual frequency at which

the FRFs are defined, can be obtained by solving Eq. (4.19). The results are shown in Figure 4.8.

It is observed that the values of both c2 and k2 oscillate dramatically between 0 Hz and 4 Hz. This

is because the displacement excitation had the same amplitude of 1 mm (see subsection 4.3.1) for

all frequency values, which leads to the contact force being too small at low frequencies compared

with the noise in the measurement data. To avoid the effect of the noise, the experimental data for

frequencies from 4 Hz to 20 Hz, over which the values of c2 and k2 are quite stable, are applied

to find the constant values of c2 and k2 that minimise the square error function

err1(c2,k2)=∑
f

(
(real(c2,k2))2 + (img(c2,k2))2)

, f ∈ [4Hz,20Hz]. (4.20)

The MATLAB® command patternsearch (Generalized pattern search method [162] is

applied to minimise err1 using the original values (c2_original = 26 Ns/m and k2_original = 7.20

kN/m [8]) as initial estimates. The values that minimise err1 are c2 = 65 Ns/m and k2 = 7.20

kN/m. It is noted that the identified value of c2 is 2.5 times the default damping value while k2

is the same as the default one, which is consistent with the analysis in subsection 4.3.2. After

modifying c2, the FRFs of the numerical pantograph model are shown as pink dashed lines
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Figure 4.8: Values of c2 and k2 for each individual frequency from the experimental data by
solving Eq. (4.19).

in Figure 4.9. The amplitudes of the second peaks for the head and the upper arm, in Figure

4.9(a)&(c), now match with the experimental data curves. The amplitude for the lower arm, in

Figure 4.9(e), is now a little lower than that observed experimentally, but it is considered less

important for the pantograph-catenary interaction than the amplitude for the head, where the

contact takes place. The discrepancies between the model and experimental FRFs for the first

and third peaks and in the phases are now addressed in the following subsection.

4.4.2 Identification of the joint friction and arms’ flexibility effect

In subsection 4.3.2, the discussion of the mode analysis indicated that the stiffness and damping

of the pantograph frame mechanism were both underestimated and at least one additional DOF

is needed in the numerical model, which could arise from a flexibility effect. Therefore, the effect

of the joint friction and flexibility of the frame are considered here. The joint friction effect is

modelled using a rotational spring k f and damper c f in parallel at joint B, as shown in Figure

4.10. It should be noted that only a single spring and single damper need be introduced since

the rotations of all the joints in the pantograph frame are coupled in a mechanism. To capture

the higher frequency modes, additional DOFs are required, which are introduced by modelling

flexibility of the arms. This is achieved by introducing a rotational spring in each arm, ku and

kl , at point B and point A, respectively. The model parameters of rigid bodies resulting from

breaking arms can be updated according to their geometrical properties. In a sensitivity analysis,

it was found that the FRFs are insensitive to the lower arm bending stiffness kl (please see the

sensitivity analysis of kl in Appendix A.4), so for simplicity, its value was set to infinity. Hence,

only the bending stiffness of the upper arm ku is considered in this work, as shown in Figure

4.10. Its value was initially estimated from the arm’s physical properties. As shown in Appendix

A.5, assuming the upper arm is a circular-hollow steel beam with 65 mm outside diameter
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Figure 4.9: FRF amplitudes and phases of the (a)(b) head, (c)(d) top of the upper arm and (e)(f)
top of the lower arm.

and wall thickness 4 mm, its estimated bending stiffness is k̃u ≈120 kNm/rad. Considering the

uncertainty in the physical properties of the upper arm, its bending stiffness ku was optimised to

fit the experimental data using ku =αk̃u where α is a coefficient. The parameters k f , c f and α

identified simultaneously to minimise the total square FRF error between the present model and
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the experimental data, using the cost function

err2(k f , c f ,α)=∑
i

{∑
f

[
abs

(
FRFi(k f , c f ,α, f )

)− (
FRFE

i ( f )
)]2

}
, i ∈ {P, E, B}, f ∈ [0Hz,20Hz]

(4.21)

where FRFi(k f , c f , f ), and FRFE
i ( f ) are the FRFs of the measurement points i ∈ {P, E, B} for the

present model and the experimental data, respectively, and abs(·) is the modulus function. The

results for the best fit are k f = 6.46 kNm/rad, c f = 334 Nms/rad and α = 1.03, i.e., ku = 124

kNm/rad. Including these modifications to the model for the joint friction effect and flexibility

effect results in the FRFs shown as red-solid lines in Figure 4.9. The first peaks’ amplitude and

frequency match with the experimental data curves and the third peaks, around 11 Hz, are

captured, as well as the amplitudes of the second peaks remaining similar to what they were

after modifying c2 only. For phases, the low frequency of the red-solid lines in Figure 4.9(b),

(d)&(f) match accurately with the experimental data. Furthermore, the phase gap between the

top of the upper arm and top of the lower arm in high frequency has also been captured. It is

worth to mention that the discrepancies of the first peaks and the third peaks are modified by

the identification of the joint friction effect and the flexibility effect, respectively. After all these

calibration and validation, the proposed multibody model can describe accurately the dynamic

response with clear physical meaning. This modified multibody pantograph can now be used as a

default model to study the base suspension system design.

Figure 4.10: Diagram of the updated multibody pantograph model considering the joint friction
effect and upper arm’ flexibility.
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4.5 Summary and discussion

In this chapter, a numerical method of multibody dynamic analysis for pantographs is firstly

introduced briefly. A typical constrained multibody model with Baumgarte’s constraint stabiliza-

tion method is established. Then, a multibody pantograph model with clear physical meaning is

developed using the proposed modelling method based on a published model. Some discrepancies

are observed in terms of the FRFs compared with experimental data. Basic mode shapes of the

pantograph are investigated using the experimental FRF data, which indicates characteristics of

the internal reaction between each physical component of the pantograph and reveals the sources

of the observed discrepancies. To better match the experimental data, the head suspension

damping is updated and additional model details are introduced in the model to allow for the joint

friction and flexibility of the pantograph upper arm. A methodology to identify the pantograph

parameters with practical physical meaning, using optimization methods, is proposed. After the

calibration, the modified model can match the experimental data accurately and is used as the

default model for the design of an improved base suspension system in Chapter 7.

However, though best effort has been taken to improve the existing pantograph model, doubts

of the model’s accuracy and reliability still exist due to absence of the original experimental data

in detail. Thus, a detailed tests for pantographs are carried out in University of Bristol for further

modelling and analysis in Chapters 5 and 6.
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5
EXPERIMENTAL TEST AND MODELLING OF BASE PNEUMATIC

ACTUATOR OF HSX PANTOGRAPH

5.1 Introduction

A multibody pantograph model taken from [7, 8] has been developed and improved to better fit

with the corresponding experimental responses in preceding Chapter 4. Although with best effort,

the discrepancies have been modified and the model has been improved to match well with the

experimental data in Chapter 4, doubts of the model’s accuracy and reliability still exist due to

absence of the original experimental date. Meanwhile, there was much scarce public information

on pantograph multibody model with all parameters available in detail. Hence, a pantograph

test rig is constructed and tests for a Brecknell Willis HSX pantograph are carried out in the

Structures Lab of University of Bristol. Detailed experimental data is obtained both in static and

dynamic tests for the pantograph. Based on these measured data, a new experimentally verified

multibody pantograph model is developed. Futhermore, this pantograph test rig is beneficial

for further development of the vibration suppression device of pantographs at University of

Bristol. Further tests, for example, hardware-in-the-loop or hybrid tests, can be carried out for

development and validation of the device prototype.

A base pneumatic actuator, as a key subsystem for HSX pantographs shown in Figure 5.1,

is with function to raise and lower a pantograph head and suppress vibration. However, public

information on properties and models of the base pneumatic actuator is also rare. Investigation

of the base pneumatic actuator is essential preliminary work to develop the whole pantograph

multibody model. Thus, in order to understand the dynamic properties of base pneumatic actuator

better and develop a appropriate model, the base pneumatic actuator is tested and modelled

separately in this chapter as a preliminary work before the whole pantograph test. Then whole
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(a)

(b)

Figure 5.1: Brecknell Willis HSX pantograph’s (a) 3D model [163] and (b) simplified schematic
diagram of the pantograph mechanism.

pantograph tests are carried out in Chapter 6. With the obtained pneumatic actuator’s model

in Chapter 5 and experimental data of the whole pantograph tests in Chapter 6, a multibody

pantograph model for the HSX pantograph is then developed and verified in Chapter 6.
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5.2 Test rig design for base pneumatic actuator test

A base pneumatic actuator which provides a static force to lift the pantograph head and apply

the contact force to the catenary as well as some stiffness and damping for the pantograph

mechanism consists of a single-chamber cylinder connected with the fixed terminal, a piston

inside the cylinder connected with the movable terminal, the compressed air inlet and outlet,

and some other accessories as shown in Figure 5.2. The diagram of the the pneumatic system of

the base actuator is shown in Figure 5.3. For the inlet side, the compressed air (with nominal

pressure larger than 6.5 bar) first goes through an accurate regulator which is designed to

keep the pressure of compressed air supplied for the inlet stable. When the compressed air is

supplied into the left chamber, the piston moves right. The right-hand side chamber links with

the atmosphere through an exhaust. For the outlet side, an exhaust accumulator is used to

compensate the volume of piston rod. Orifices exist in the piston, which are designed to generate

damping effect for the aim of vibration suppression.

The aim of tests for the base pneumatic actuator is to investigate the properties of base

pneumatic actuator and establish appropriate models which can describe the behaviour of

base pneumatic actuator well. In the tests, the base pneumatic actuator is detached from the

pantograph mechanism and its cylinder wall is fixed by a customised frame with the axial line

coinciding with that of hydraulic actuator. For the detached pneumatic actuator, the compressed

air is still supplied using the original pneumatic control system attached with pantograph’s base

frame, which makes the measured properties are as similar as possible with the case that the

base pneumatic actuator works in the pantograph. In order to use the original pneumatic control

system to supply compressed air to the detached pneumatic actuator and considering the length

limitation of the original pipes, the pantograph frame is supported over the ground about 50 cm,

Figure 5.2: The base pneumatic actuator of the HSX pantograph.
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Figure 5.3: The pneumatic system of the base pneumatic actuator based on the the pneumatic
actuator’s manual [164].

and the detached pneumatic actuator is set up under the lifted pantograph frame. Meanwhile,

a hydraulic actuator (INSTRON PL25 kN) is used to supply displacement excitations to the

movable terminal of the pneumatic actuator, please see Figure 5.4 for the diagram of the base

pneumatic actuator test. The terminal displacement is measured with sensors integrated in the

hydraulic system, and the strut force of the pneumatic actuator’s movable terminal is measured

with the INSTRON load cell installed between the hydraulic actuator’s terminal and pneumatic

actuator’s movable terminal. The data acquisition system with 1000 Hz sampling frequency

integrated in INSTRON hydraulic actuator system is used. The tests for base pneumatic actuator

includes friction force test, damping test and sinusoidal displacement excitation test, which are

aimed to investigate the friction force between the piston and cylinder wall, the damping property

and the dynamic properties of the pneumatic actuator, respectively.

5.3 Network presentation of the pneumatic actuator

The basic structure of the base pneumatic actuator and designed test rig are introduced briefly in

the preceding section. In this section, a mechanical network for the base pneumatic actuator is

derived theoretically using the network synthesis method.

5.3.1 Static state

In a static state, i.e., the movable terminal is fixed at given positions, with the supply of com-

pressed air, a static force is generated between two terminals due to the pressure difference

between two sides of the piston. Due to orifices at the piston, the compressed air in the left

chamber is flowing through the orifices to the right chamber which links with atmosphere via an
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Figure 5.4: The diagram of the test rig of the pneumatic actuator test.

exhaust, see Figure 5.4. In the static state, the balance is achieved between the air flow into and

out the chambers, thus, the air in the two chambers reach a quasi-static condition. For the left

chamber, though the air is flowing into and out of it from the inlet and via the orifice, respectively,

the pressure in the left chamber is kept stable. Similarly,the pressure in the right chamber for

this quasi-static condition is kept stable too. Assuming that the pressure inside both chambers is

homogeneously distributed, let’s denote the pressure in left and right chambers as pe and p0 for

this quasi-static condition. The static force between two terminals is a constant force defined as

Fc = (pe − p0)Ap (5.1)

where Ap is the effective area of the piston.

5.3.2 Dynamic state

In a dynamic state, i.e., the movable terminal is excited with a sinusoidal displacement, apart

from the constant force, a extra dynamic force Fd needs to be considered. Relative to the static

state, extra air volume flow rates are generated due to the dynamic movement of the piston, and

this leads to a dynamic pressure change in the left chamber. Let the pressure in the left chamber

be p1 in this dynamic state. And assume that the pressure in the right chamber is kept p0 due to

the exhaust connected with atmosphere. Hence, only the dynamic pressure change in the left

chamber needs to be considered. Relative to the static state, the extra dynamic pressure change

∆p is

∆p = p1 − pe. (5.2)

This leads to a dynamic force between actuator’s two terminals as

Fd =∆pAp. (5.3)
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Due to the regulator in the pneumatic control network, the pressure in the inlet can be

regarded as a constant. Relative to the static state, extra air volume flow rate through the orifices

is Υor. Meanwhile, extra air volume flow rate out of the left chamber to accumulator is denoted as

Υa. Except for these flows observed explicitly, the compressibility effect of the air in the chambers

also leads to an implicit volume flow rate, Υc. Based on the schematic shown in Figure 5.3, and

the above analysis of branch’s flow rates, the hydraulic network of the pneumatic actuator can be

constructed as shown in Figure 5.5. The total flow rate Υ of the pneumatic actuator is a summary

of each individual flow rate analysed as

Υ=Υor +Υa +Υc. (5.4)

With the total volume flow rate, Υ, the relative velocity of piston, ∆v, can be written as

∆v = Υ

Ap
. (5.5)

Using Eq. (5.3) and (5.5), dividing Fd by ∆v, we have

Fd

∆v
=

A2
p∆p

Υ
. (5.6)

With a assumption that the pressure change in the chamber is linear with flow rates, both

hydraulic and mechanical models with linear lumped parameters can be established. Hydraulic

resistance resulting from the orifices in the piston is denoted as Ror, which is decided by the gas

properties and actuator’s geometric size [165]. Similar to [166], the extra pressure change (∆p)

between pneumatic actuator’s terminals can be written as extra volume flow rate through the

orifice as

∆p = RorΥor (5.7)

Hence, we have

Υor = 1
Ror

∆p (5.8)

Meanwhile, the extra volume flow rate due to the compressibility of compressed air and through

accumulator can be modelled as pneumatic compliance and written as [167]

Υa = Ca∆ṗ (5.9)

Figure 5.5: The diagram of the pneumatic actuator’s hydraulic network.
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and

Υc = Cc∆ṗ (5.10)

where Ca, Cc are effective pneumatic compliance in cylinder and accumulator which are also

dependent on the properties of compressed gas and component dimension [166]. Substituting Eq.

(5.8), (5.9)&(5.10) into Eq. (5.4) yields

Υ= 1
Ror

∆p+Ca∆ṗ+Cc∆ṗ. (5.11)

Transferring Eq . (5.11) to Laplace domain yields

Υ̃=
(

1
Ror

+Cas+Ccs
)
∆p̃ (5.12)

where the overhead tilde indicate the variables in Laplace domain and s = 2π f j, j=p−1 and f is

the frequency in Hz. And transferring Eq. (5.6) into Laplace domain yields

F̃d

∆ṽ
=

A2
p∆p̃

Υ̃
. (5.13)

Substituting Eq. (5.12) into Eq. (5.13) yields the admittance of the dynamic force (force-velocity

property) as
F̃d

∆ṽ
= 1

1
Ror A2

p
+ Ca

A2
p

s+ Cc

A2
p

s
. (5.14)

Denoting c1 = Ror A2
p, ka =

A2
p

Ca
and kc =

A2
p

Cc
, the admittance of the dynamic force, Eq. (5.14), can

be rewritten as
F̃d

∆ṽ
= 1

(c1)−1 + (ka)−1s+ (kc)−1s
. (5.15)

where c1, ka and kc are equivalent mechanical components with corresponding to hydraulic

variables in Figure 5.5. Applying relevant network synthesis techniques to Eq. (5.15) (e.g., [168]),

the hydraulic network shown in Figure 5.5 is analogized to a mechanical network shown in

Figure 5.6, with each hydraulic variable modelled as its corresponding mechanical counterpart.

Combining the spring ka and kc in series into one spring k1 = 1
(ka)−1 + (kc)−1 , the equivalent

mechanical network of dynamic force for the pneumatic actuator can be simplified as shown in

Figure 5.7 where the damper c1 and stiffness k1 indicate the general damping and compliance

properties of dynamic force for the pneumatic actuator. According to the preceding analysis, it

can be shown that the dynamic damping c1 is resulted from the orifices, and the stiffness in

series k1 is resulted from the compressibility of the compressed air and gas-filled accumulator.

Consequently, with the dynamic force of the pneumatic actuator modelled as a damper and

spring in series, the force-velocity admittance of dynamic force for the pneumatic actuator can be

simplified as

Y (s)= F̃d

∆ṽ
= 1

(c1)−1 + (k1)−1s
. (5.16)
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Figure 5.6: The equivalent mechanical network of dynamic force for the pneumatic actuator.

Figure 5.7: The equivalent simplified mechanical network of dynamic force for the pneumatic
actuator.

Apart from the dynamic force, the friction force F f between the piston and cylinder wall

and inertial force of the piston are also included in the full pneumatic actuator’s equivalent

mechanical model. Thus, the full equivalent mechanical network of the pneumatic actuator is

drawn as Figure 5.8

5.4 Model identification of the base pneumatic actuator

The equivalent mechanical network (Figure 5.8) has been established in the preceding section.

The constant force, friction force, dynamic force and inertial force compose the full mechanical

network of the pneumatic actuator, where the dynamic force is modelled as a damper and spring

in series. In this section, the parameters for the proposed mechanical network of the pneumatic

actuator are identified using the measured data from the designed test rig in Section 5.2.

Figure 5.8: The full equivalent mechanical network of the pneumatic actuator.
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5.4.1 Identifying friction and damping effect

In this subsection, the damping effect of the pneumatic actuator is experimentally tested and then

identified. A series of displacement-controlled triangular excitations with displacement rang from

-65 mm to 65 mm are used to excite the movable terminal of the pneumatic actuator, producing

the constant strut velocities from 0.5 mm/s to 10 mm/s. And the corresponding terminal’s strut

forces and piston’s displacements are recorded.

Applying a constant velocity ∆vc to the movable terminal of the pneumatic actuator, according

to the final value theorem [169] and using Eq. (5.16), the steady-state response of dynamic force

for the pneumatic actuator can be expressed as

lim
t→∞Fd(t)= lim

s→0

(
sF̃d(s)

)= lim
s→0

(
s

1
(c1)−1 + (k1)−1s

∆ṽc

s

)
= c1∆ṽc (5.17)

where the Laplace transfer of the constant velocity ∆vc is
∆ṽc

s
. Eq. (5.17) shows that the stiffness

in series, k1, has no effect to the steady-state response excited with constant velocity, and only

the damping property will be captured. Since the friction force exists between the piston and

cylinder wall, an additional friction force should also be considered. Meanwhile, the inertial force

of the piston can be neglected with constant velocity. Hence, the equivalent mechanical network

for the constant velocity tests can be shown as Figure 5.9

The time histories of measured excited displacement and strut force for constant velocities

0.5 mm/s and 2.5 mm/s are shown as examples in Figure 5.10. For a specific constant velocity,

the data points of strut force marked red, corresponding to the displacement range between -40

mm to 40 mm, are considered to be steady-state and captured. Their mean values of forward and

backward directions are obtained, respectively, which are considered as the measured static strut

force of this specific constant velocity.

For the whole velocity range measured, the experimentally measured mean strut force (Unit:

N) against a series of constant velocities excited, vc, (Unit: mm/s) is shown in Figure 5.11. The

forward and backward directions are fitted with linear equations as

F f = 9.27vc +5512 (5.18)

Figure 5.9: The equivalent mechanical network of the pneumatic actuator during constant velocity
test.
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Figure 5.10: The time histories of measured excited displacement and strut force of (a) 0.5 mm/s
and (b) 2.5 mm/s.

and

Fb = 11.60vc +5407, (5.19)

respectively. It can be observed that a force step at 0 mm/s between the forward and backward

direction exists. Assuming that the sliding friction force is the same in forward and backward

direction, a half of this force step is modelled as the sliding friction force for the pneumatic

actuator as

Fr = 5512−5407
2

= 53. (5.20)

And the mean value of the two forces at 0 mm/s is modelled as the constant actuator force (Unit:

N)

Fc = 5512+5407
2

= 5460. (5.21)
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Figure 5.11: The experimental measured strut force against constant velocity excited for the
pneumatic actuator.

Differentiating Eq. (5.18) and (5.19) with respect of velocity, linearised damping coefficients

c f = 9.27 kNs/m and cb = 11.6 kNs/m for forward and backward direction can be obtained. It is

noted that the difference of the linearised damping coefficients between forward and backward

motion may be resulted from frictional forces with a magnitude that is direction-dependent. In

this work, the motion of the pneumatic actuator’s piston is oscillation with a tiny amplitude

in practice. Hence, their mean value is modelled as a simplification for the linearised damping

coefficient, that is, the simplified linearised damping coefficient of the pneumatic actuator is

(Unit: kNs/m)

c1 =
c f + cb

2
= 10.44. (5.22)

5.4.2 Dynamic model identification

With the identifications of constant force, friction force and linearised damping coefficient in

the preceding subsection, the only parameter needed to be identified is the equivalent effective

stiffness, k1, in the proposed model. Following the method in [170], the value of the equivalent

effective stiffness, k1, is evaluated in the dynamic tests with sinusoidal displacement excitations

in the following.

According to the mode shape analysis for the pantograph in Section 4.3, the base suspension

of the pantograph mainly affects the first mode (around 1∼2Hz). And the base pneumatic actuator

works in the pantograph dominantly within low frequency and small amplitude (less than 3 mm)

based on the measured relative displacement of piston in the whole pantograph tests shown
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Table 5.1: Identified values of equivalent effective stiffness for different excitation amplitudes of
pneumatic actuator

Amplitude (mm) 1 3

Identified effective stiffness (kN/m) 141 95

in Figure A.2 of Appendix A.6. Thus, two sinusoidal displacement-controlled excitations with 1

mm and 3 mm amplitudes covering frequency range 0.5 Hz up to 6 Hz are given to the movable

terminal of the pneumatic actuator.

With the measured relative displacement of the piston, differentiating it to time twice yields

the acceleration of the piston, ap. Thus, with the measured strut force between the two terminals

of the pneumatic actuator, Fs, the obtained acceleration of the piston in the dynamic tests and

the identified properties, i.e., the constant force, Fc, and the sliding friction force, Fr, in static

tests 5.4.1, the dynamic force of each sampling frequency can be estimated as

Fd_E = Fs −Fc −Fr −mpap (5.23)

where mp=3.45 kg is the mass of the piston, estimated from the CAD model of the pantograph.

The value of effective stiffness k1 in pneumatic actuator’s dynamic force is identified by

fitting the theoretical force-velocity admittance, Y , defined in Eq. (5.16), with the corresponding

experimental admittance YE which is evaluated using measured dynamic force. Considering

noise usually exist in the measured data, the Correlation Method [171] which can be cumbersome

to determine the frequency response is used here to evaluate the experimental admittance, YE,

from the measured relative terminal velocity ∆v to the measured dynamic force Fd_E for each

tested sampling frequency f . Using the correlation method, the estimations of amplitude, GE, and

phase, φE, of the experimental force-velocity admittance can be obtained. Then the experimental

force-velocity admittance, YE, can be formed as

YE( f )=GE cos(φE)+ jGE sin(φE) (5.24)

where j is the imaginary unit. A cost function J is defined by qualifying the discrepancy between

the experimental and model admittance functions as

J =∑
f

|Y ( f )−YE( f ) |
|YE( f ) | , f ∈ {0.5 Hz,1.0 Hz,1.5 Hz, · · · ,6.0 Hz} (5.25)

where | · | is the modular function. The identified k1 values for different excitation amplitudes are

determined through minimising values of the cost function J, respectively. The global optimisation

method patternsearch, same as the rest of this work, is also used here. And the result are listed

in Table 5.1.

A significant difference between these two identified k1 values can be observed. This discrep-

ancy can be explained by the non-linearity resulted from the compressed air or other non-linear
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effects from the pneumatic actuator. It is also noted that with smaller excitation amplitude, the

equivalent effective stiffness in series is bigger. With the identified values of equivalent effective

stiffness, k1, for both excitations, the amplitude G, and phase, φ, of the theoretical admittance,

Y , are compared with the experimentally evaluated amplitude, GE, and phase, φE, shown as the

Bode plot in Figure 5.12. It can be seen that the identified models can accurately represent the

properties of the dynamic force of the tested pneumatic actuator over the interested frequencies.

Specifically, for the case with excitation amplitude of 1 mm, i.e., in Figure 5.12(a), the damping

property dominates the dynamic force within low frequency (less than 1 Hz) where G and φ

almost keep 20 dB and 0 degree, respectively . While for higher frequency (larger than 10 Hz), the

property of stiffness in series shows more significant with phase tending to 90 degrees gradually.

In Figure 5.12(a), for the extremely low frequency, 0.5 Hz, the experimental point shows a
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Figure 5.12: Bode magnitude and phase of the identified force-velocity admittance, Y , and
corresponding experimental evaluation,YE, in dynamic tests with amplitude (a) 1 mm, (b) 3 mm.
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considerable discrepancy relative to the model curve in the phase. This is due to that the dynamic

force measured is too small with 1 mm amplitude in low frequency relative to noise. Meanwhile,

in Figure 5.12(b), the phase of the identified model curve shows a small discrepancy relative

to the experimental data at 6 Hz. This is because the relative velocity of the piston is much

higher than 10 mm/s, which exceed the velocity range where the linearised damper value, c1, is

identified. The nonlinear effect may be need to be considered for too high piston speed, and this

is not included in this work.

Furthermore, the strut forces simulated using the identified model and measured in dynamic

tests for 1 mm and 3 mm amplitude displacement-controlled excitations in time domain are

compared in Figure 5.13 and 5.14. It can be observed that the time-domain responses of the

model for 1 mm and 3 mm amplitude sinusoidal displacement excitations can match well with

experimental data of each individual sampling frequency. The summary of identified values of

parameters for the proposed pneumatic actuator are listed in Table 5.2.

Table 5.2: Summary of identified parameters’ values for the proposed pneumatic actuator model
with different excitation amplitudes

Parameters mp (kg) c1 (kNs/m) Fc (N) Fr (N) k1 (kN/m)

1 mm amplitude excitation 3.45 10.44 5460 53 141
3 mm amplitude excitation 3.45 10.44 5460 53 95

5.4.3 Simplified linear model of the base pneumatic actuator

The properties of the pneumatic actuator is investigated and a detail model is developed in the

preceding subsections (see Figure 5.8). It is shown that both the admittance function in Bode plot

and time-history responses of the identified model can fit well with the experimental data.

To keep a linear model for the base pneumatic actuator, the full proposed model except the

friction force term, F f , shown in Figure 5.15, will be used as the model of the base pneumatic

actuator in the development of a multibody pantograph model for HSX pantograph in Chapter

6. This is because very many iterations will be carried out in identification of the multibody

pantograph model using optimisation algorithm. Hence fast simulation speed of the proposed

model is required. The discontinuity of friction force where the velocity is 0 can lead to a time-

consuming simulation. Thus, the friction force in the base pneumatic actuator will be replaced

equivalently as a pair of linear rotational spring and damper in parallel at joint B (see Figure

6.24) which will also be used to cover friction effect of all joints in pantograph frame in Chapter 6.

Considering that the measured amplitudes of relative displacement for the base pneumatic

actuator’s piston in whole pantograph test (see Figure A.2 in Appendix A.6) is about 1 mm,

the value of effective stiffness, k1, in the development of the multibody pantograph model in

Chapter 6 is selected as 141 kN/m. Note that as there is a angle between the axial line of the
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Figure 5.13: Comparison between measured strut forces and model responses with identified
effective stiffness from the dynamic tests in time domain for amplitude 1 mm of (a) 1 Hz, (b) 2
Hz, (c) 3 Hz, (d) 4 Hz, (e) 5 Hz and (f) 6 Hz.

base pneumatic actuator and horizontal plane when the base pneumatic actuator is install in the

pantograph, the constant force applied to the connection terminals of the pantograph is smaller

than the identified constant force here where the pneumatic actuator is tested horizontally. This

is because the mass of the pneumatic actuator needs to be balanced. Hence, the value of the
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Figure 5.14: Comparison between measured strut forces and model responses with identified
effective stiffness from the dynamic tests in time domain for amplitude 3 mm of (a) 1 Hz, (b) 2
Hz, (c) 3 Hz, (d) 4 Hz, (e) 5 Hz and (f) 6 Hz.

constant force used in the development of the multibody pantograph model in Chapter 6 will

be identified in the whole pantograph test (see Section 6.3.1). The values of parameters for the

simplified base pneumatic model used in Chapter 6 are shown in Table 5.3
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Table 5.3: Parameter values of simplified linear model of base pneumatic actuator used for
development of a mutibody HSX pantograph model in Chapter 6.

Parameters mp (kg) c1 (kNs/m) k1 (kN/m)

Values 3.45 10.44 141

Figure 5.15: The linear equivalent mechanical network of the pneumatic actuator without friction
force.

5.5 Summary and discussion

In this chapter, the base pneumatic actuator is tested and modelled as a subsystem of a panto-

graph separately. The network presentation in pneumatic domain is firstly introduced. Then a

equivalent mechanical network for the pneumatic actuator is derived from it. Using the test rig

for the pneumatic actuator developed in the Structures Lab of University of Bristol, the proposed

equivalent mechanical model for the pneumatic actuator is identified. It is shown that both the

force-velocity admittance of dynamic force in Bode plot and the strut force time-history responses

of the identified model can fit well with the experimental data. Lastly, due to the requirement

of efficient simulation speed in the model identification in Chapter 6, a simplified linear model

without the friction force term for the base pneumatic actuator is proposed which will be used in

developing the multibody HSX pantograph model in Chapter 6. Meanwhile, full understanding

of the inherent properties and the proposed accurate equivalent mechanical model for the base

pneumatic actuator are valuable for design and improvement of it.
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6
EXPERIMENTAL TEST AND MODEL DEVELOPMENT OF HSX

PANTOGRAPH

6.1 Introduction

The model of the inerter in a 2D or 3D environment and the method of applying the inerter to a 2D

or 3D multibody model have been developed in Chapter 3, which are the theoretical bases of the

inertance-integrated vibration suppression method discussed in this thesis. Then we aim to apply

the proposed inertance-integrated vibration suppression method to suspension design for railway

pantographs as case studies. Before that, a suitable pantograph model needs to be developed as a

baseline firstly. In Chapter 4, a simplified pantograph multibody model is established with its

accuracy enhanced to better fit with its corresponding experimental responses. However, doubts

of the model’s accuracy and reliability still exist due to absence of the original experimental date.

Meanwhile, public information on pantograph multibody model with all parameters available in

detail is scarce. Hence, a pantograph test rig in University of Bristol is constructed with aim to

test a real pantograph and develop a new reliable multibody model for the inertance-integrated

suspension development. Furthermore, with the pantograph test rig, it is beneficial for further

vibration suppression device’s development and tests in the field of railway pantographs in the

future. A Brecknell Willis HSX pantograph is tested based on the developed test rig in the

Structures Lab of University of Bristol. The base pneumatic actuator, a key subsystem of the

HSX pantograph, is tested and modelled separately in Chapter 5 as a preliminary work. The

dynamic properties of base pneumatic actuator are investigated and appropriate models are

developed. In particular, a simplified linear model of the base pneumatic actuator is developed

for the HSX pantograph’s multibody model development. In this chapter, the pantograph test rig

is designed in detail firstly. In particular, the pantograph test rig frame’s fundamental frequency
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is designed to be significantly larger than the maximum excitation frequency in the test to

avoid the effect of resonance from test rig itself. Then the system input system, including the

characteristics of the selected shaker and the input control system, is introduced. Subsequently,

to measure the responses of the pantograph accurately, a measurement system with multi-type

sensors and a strong data acquisition system is introduced. The properties and characteristics of

all sensors used in the tests are demonstrated in detail. Meanwhile, the relationship between

sensors’ readings and their practical values are provided. With the developed pantograph test rig,

both static and dynamic tests for the HSX pantograph are carried out. In the static tests, the

stiffness of the pantograph’s head suspension and equivalent bending stiffness of the pantograph’s

arms are evaluated. Frequency response functions of the selected measurement points at the

pantograph are obtained in dynamic tests. Based on these measured data, a new experimentally

verified multibody pantograph model is developed. This new developed model will be used for

base suspension design using proposed inertance-integrated vibration suppression methods in

Chapter 7.

6.2 Pantograph test rig design

In this section, the pantograph test rig is designed to conduct both static and dynamic tests.

Specifically, the frame of the test rig is designed with the requirement that its fundamental

frequency should be significantly larger than the maximum excitation frequency in the tests

to make sure no resonance will happen. Hence, mode shape analyses for the test rig frame are

carried out. Then the test input, multi-sensor measurement and data acquisition systems are

introduced in detailed.

6.2.1 Design of the test rig frame

The basic functions of the pantograph test rig are input implementation, system responses

measurement and experimental data acquisition. The test rig is the facility where input system

can be installed to offer predecided excitations vertically onto the pantograph’s head in a range of

designed heights. Note that only responses of the pantograph in vertical direction are interested

in this work. Meanwhile, the whole test rig should be stiff enough to avoid effects resulting from

structural deformation or additional vibration from the test rig itself. The general structure of

the designed test rig consists of six parts: the main frame, bracings, actuator frame, electrical

actuator, base mounts and test bed as shown in Figure 6.1. To avoid structural deformation

in the tests, a triangle steel structure are used in the designed test rig’s frame. The test rig’s

main frame is made of mild steel (S355) with 2720 mm height and 1400 mm width, and fixed on

the test bed with M20 bolts. Two bracings are designed to support the main frame on the side

where the actuator hangs, which construct triangle structures with the vertical main frame from

the side view. The electrical actuator is fixed centrally on a horizontal beam of the main frame
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6.2. PANTOGRAPH TEST RIG DESIGN

vertically via the actuator frame. The main frame consists of two vertical steel columns, three

horizontal steel beams and a steel cross-bracing assembled by bolts and nuts. The cross-bracing

is designed to enhance the stiffness of the whole frame. The horizontal beams are manufactured

by welding a parallel flange channel and a plate to form a box section. Three 200 mm height

base mounts constrained on the test bed rigidly are designed to install the pantograph. For the

detailed geometry and cross-section information of these components, see Appendix Table A.3.

Figure 6.1: Design of the pantograph test rig frame.

6.2.2 Modal analysis of the designed test rig frame

In order to avoid resonance vibration during pantograph dynamic tests, the fundamental fre-

quency of the designed test rig frame is required to be significantly larger than 15 Hz (the

maximum frequency that we will test). In this subsection, mode shape analyses of the designed

test rig frame are carried out using the software MIDAS GEN.

The full test rig frame including the electrical actuator is established in MIDAS GEN as

shown in Figure 6.2. With the assumption that the actuator’s mass is uniformly distributed, the

actuator is modelled as 8 lumped masses (each lumped mass is 1/8 of the total actuator’s mass)

located at installation points and constrained by a rigid link. The test rig frame is established
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Figure 6.2: Model of test rig frame in MIDAS.

according to the dimensions and properties in Table A.3. For the model established in MIDAS

GEN shown in Figure 6.2, all components are linked rigidly, and the frame stands on the ground

with rigid constraints. This is an ideal condition where the test rig frame are connected with

all ideal rigid connections. The first four mode shapes are analysed as shown in Figure 6.3. The

fundamental frequency is 43 Hz dominated by a lateral sway in x axis as shown in Figure 6.3(a),

which is significantly higher than the maximum value of the test excitation frequency (15 Hz).

The second and third natural frequencies are 55 Hz and 81 Hz, and dominated by vibration of

the main frame and the crossing along y axis. The fourth natural frequency is the vibration of

actuator and the frame connected, while its frequency is up to 93 Hz which is far higher than 15

Hz, the maximum value of the frequency range that we are interested.

The model established in MIDAS GEN above is an ideal situation where all joints are rigidly

connected. In practice, the non-ideal connections are inevitable with bolt-nut connection. The

other model in MIDAS GEN in which all joints are set to be pinned-pined, the worst situation, is

also established and analysed. The first four mode shapes of the model with all pinned-pinned

joints are shown in Figure 6.4. In this worst situation, the fundamental frequency of the test rig

frame is 23 Hz which is still significantly higher than the maximum excitation frequency that

we are interested (15 Hz). Above all the fundamental frequency of the designed test rig frame

is significantly higher than the maximum frequency in the test (15 Hz). The effect of resonance

vibration of the test frame can be avoided effectively.
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Figure 6.3: First four mode shapes of the test rig frame with all joints connected rigidly: (a) mode
1, 43 Hz, (b) mode 2, 55 Hz, (c) mode 3, 81 Hz, (d) mode 4, 93 Hz.
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Figure 6.4: First four mode shapes of the test rig frame with all joints connected pinned-pinned:
(a) mode 1, 23 Hz, (b) mode 2, 47 Hz, (c) mode 3, 71 Hz, (d) mode 4, 79 Hz.

6.2.3 Input system

In the test of the pantograph, the required maximum peak-peak displacement excitation and

excitation force are less than 150 mm and 300 N. APS 400 ELECTRO-SEIS Shaker, see Figure
82
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6.5, a electrical shaker, is selected as the actuator to offer the inputs for the pantograph system

in the tests. This electrical shaker benefits from its easy installation, small size and convenient

usage compared with traditional hydraulic systems.

Apart from the electrical shaker itself, the input system consists of power supply, function

generator and shaker controller as shown in Figure 6.6. The power supply, ISO-TECH IPS 3303

multiple output linear DC power supply, is used to power the input system. This DC power supply

has two independent output channels with voltage up to 30 V and current up to 3 A, 180 W

to 200 W output, overload and reverse polarity protection. The tracking mode switches allow

voltage/current to be output in parallel or series. In the tests, voltage output in series is selected.

The MAXON motor control ADS 50/5 is applied as shaker’s controller. In the tests, with the

current control mode, the controller’s output (the current supplied to the shaker) is controlled

to track the controller’s input (signal of the function generator). As the generated force of the

shake is proportionate to the current going through it, the generated force of the shaker can be

controlled to track the signal of the function generator proportionally.

Figure 6.5: APS 400 ELECTRO-SEIS Shaker installed in the test rig.

6.2.4 Multi-sensor measurement system

To explore the static and dynamic properties of the HSX pantograph, multiple sensors are used

to measure its different kinds of statements. In this subsection, the measurement system for

the pantograph is introduced. The properties and characteristics of all sensors used in the tests
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Figure 6.6: Configuration of the input system used in the test.

are demonstrated in detail. Meanwhile, the relationship between sensors’ readings and their

practical values are provided.

LVDT and laser displacement sensor

In the test, LVDTs and laser sensors are used to measure displacements. Two RDP LDC2000A

LVDTs are used to measure the electrical shaker’s excitation displacement (LVDT 1) and base

pneumatic actuator’s piston relative displacement (LVDT 2) as shown in Figure 6.7. The RDP

LDC2000A LVDT is DC (5V-18V) supplied with high accuracy (linearity error ±0.5% ) and

measurement range ±50 mm. Apart from LVDTs, there are also three laser sensors applied for

displacement measurement. Laser sensor 1 mounted on the pantograph head which is used

to measure the relative displacement between the head and the top point of the upper arm is

a ZX2-LD100 COMS type sensor with a integrated amplifier and measurement range 100±15

mm. Laser sensor 2 and laser sensor 3 (ZX1-LD300A81 and ZX1-LD600A81) fixed separately

by two metal holders are used to measure the height of B point (the top point of the lower arm)

and E point (the top point of the upper arm) based on test bed plane, see Figure 6.7. ZX1-LD

series laser sensors are a kind of COMS type sensors with current output. A 200 Ω constant

resistance is used for each laser sensor to transfer the current output to voltage output. The

measurement range of ZX1-LD300A81 (or ZX1-LD600A81) is 300±150 mm (or 600±400 mm)

where 300 mm (or 600 mm) is the middle point of the measurement range with reading 0. When

the measured distance is smaller than the middle point, the reading is positive, vice versa, the

reading is negative. Therefore, the measured displacements from sensor’s reference plane to the

measured point can be expressed as

l l_i = Lm_i − r l_i, i ∈ {1,2,3} (6.1)

where Lm_i and r l_i are the value of the middle point and the reading of laser sensor i. Specifically,

for laser sensor 1 (ZX2-LD100), its measured displacement (unit: mm) with reading r l_1 is

l l_1 = 100− r l_1. (6.2)

For Laser sensor 2 (ZX1-LD300A81), its measured displacement (unit: mm) with reading r l_2 is

l l_2 = 300− r l_2. (6.3)
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Figure 6.7: The diagram of sensors and measurement scheme for the pantograph tests.

And for Laser sensor 3 (ZX1-LD600A81), the measured displacement (unit: mm) with reading

r l_3 is

l l_3 = 600− r l_3 (6.4)

Considering the heights of the holders and using Eq. (6.3), (6.4), the relative heights from the

test bed plane to Points B and E are

hB = dh_2 +300− r l_2 (6.5)

and

hE = dh_3 +600− r l_3 (6.6)

where dh_2 and dh_3 are the heights between laser sensor 2 and 3’s reference planes and the test

bed plane.
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Sensors for angle measurement

Two kinds of sensors are used to measure angles in the tests. Inclinometers with a measurement

range ±90◦ (inclinometer 1 and inclinometer 2, see Figure 6.7) are used to measure the absolute

angles at the bottom points of the upper arm and lower arm. Let the reading of inclinometer 1

and 2 are denoted as r inc_1 and r inc_2. Note that these reading are 0 when the inclinometers are

horizontal and not accelerating. Based on the horizontal line, the reading of the inclinometer is

positive when it rotates anticlockwise. In the tests, the rotational angle of the axial line of the

upper arm relative to the x axis’s negative direction is denoted as αu, and the rotational angle of

the axial line of the lower arm relative to the x axis’s positive direction is denoted as αl . They

have the following relationships with inclinometers’ readings (unit: degrees)

αu =−r inc_1 +18.4, (6.7)

and

αl = r inc_2. (6.8)

Note that 18.4 (degrees) in Eq. (6.7) is the relative angle of the plane on which the inclinometer

1 installed relative to the axial line of the upper arm. Meanwhile, the rotary sensor (ELOBAU

424A17A090B, measurement range ±90◦) is installed at the joint B of the pantograph to measure

the relative angle between the upper arm and lower arm.

Sensors for acceleration measurement

PCB 333M07 accelerometers are used to measure the accelerations in the test. PCB 333M07

benefits from its low mass and high accuracy. Hence, the dynamic effect due to the sensor mass

can be negligible. PCB 333M07 is single axis ICP accelerometer with sensitivity 100 mV/g

(±5%), measurement rage ±50 g pk-pk and frequency range 0.5 to 3000 Hz. Note that the static

component consisting in measured signal of PCB 333M07 has been subtracted automatically,

i.e., the output of PCB 333M07 only contains dynamic component. In the pantograph tests, 8

accelerometers are used as shown in Figure 6.7. Accelerometer 1 is mounted on the middle of

actuator bar, measuring the acceleration of shaker’s input. Two accelerometers, accelerometer 2

and accelerometer 3, are mounted on the middle of each contact strip, measuring the accelerations

of the head. Two accelerometer units consisted of two orthogonal accelerometers are mounted

at the top points of the lower arm and upper arm, points B and E. Note that due to the space

limitation of point B, the accelerometer unit is not installed exactly at it but installed at an point

close to point B as much as possible. For the unit located at point E, accelerometers labelled as 4

and 5 measure the acceleration components orthogonal and along with the axial line of the upper

arm respectively. Similarly, for the unit located at point B, accelerometers labelled as 6 and 7

measure the acceleration components orthogonal and along with the axial line of the lower arm

respectively. Let readings of these accelerometers are denoted as ra_i, i ∈ {1, · · · ,8}.
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Sensors for force measurement

In the tests, two kinds of load cells with different measurement ranges are used. Load cell 1 and

load cell 2 installed between the actuator bar and excitation bar and located just above each

contact strip, see Figure 6.7, are PCM bi-directional S-type load cell: CTCA50K5. CTCA50K5

with capacity range 50×g N benefits from its low weight (0.3 kg), which can minimise the effect

of dynamics for the measured system. These two load cells are designed to measure the contact

force between the excitation bar and pantograph head. The other load cell, Load cell 615, with

Nickel plated alloy steel construction, is installed between the base pneumatic actuator terminal

and pantograph base frame, i.e., load cell 3 in Figure 6.7, which is designed to measure pneumatic

actuator’s applied force. This load cell benefits from its large capacity range (1000×g N) which

can fully cover the range of pneumatic actuator’s force.

Sensors for strain measurement

The bending effect of the arms will be investigated in the tests with measured strains of selected

measurement points. For each arm, two measurement positions around the ends of the upper arm

(or lower arm) where the cross-sections are regular geometries are selected as shown in Figure

6.8. For each selected measurement position, two strain gauges are stuck on and underneath the

arms, respectively. In this way, total 8 strain gauges (SG1, SG2, SG3, SG4, SG5, SG6, SG7 and

SG8) are stuck at the upper arm and lower arm with the configuration of these strain gauges

shown in Figure 6.7. For each strain gauge, the ratio between the stain gauges’ reading and

Figure 6.8: The configuration of the strain gauges located at the upper arm and lower arm, and
the cross-sections of each selected measurement point. The dimensions of selected cross-section
are: D1=73 mm, D3=63 mm, H5=84 mm, H7=98 mm, W5=89 mm, W7=104 mm, T=2 mm.
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actual stain measured is 10−6, that is, the measured strain value ϵi at measurement point i is

ϵi = 10−6rSG i , i ∈ {1, · · · ,8} (6.9)

where rSG i is the strain gauge i’s reading.

Data acquisition system

To record the measured data of sensors, a data acquisition system is required. In the tests, a data

acquisition system consisting of amplifiers, Micro-measurements System 7000 and PC, shown in

Figure 6.9, is used. The Micro-measurements System 7000 benefits from the compatibility of a

wide types of sensors by choosing the appropriate data acquisition card for up to 128 channels as

well as stable, accurate, low-noise signal conditioning. The system 7000 is with simultaneous

scan rates up to 2048 samples per second for all sensor inputs. In the tests, the scan rates of

all channels are selected to be 1000 samples per second. Apart from accelerometers, all other

sensors’ signals can be acquired directly by the system 7000. For accelerometers, their signals

firstly amplified. Then the amplified accelerometer signals are acquired by the system 7000.

The software, StrainSmart, which is designed to set up and control the system 7000 is installed

in a PC. Using the StrainSmart, the system 7000 can be set up, and the acquired data can be

exported. The data acquisition system used in the tests is shown in Figure 6.10 and the channels

information for each sensor is shown in detail in Appendix Table A.4.

Figure 6.9: The configuration of the data acquisition system.

6.3 Experimental analyses

In the previous section, the pantograph test rig is designed successfully. And the input, mea-

surement and data acquisition systems are introduced in detail. In this section, both static

and dynamic tests are carried out using developed pantograph test rig shown in Figure 6.11,

and the pantograph properties are identified using the experimental data. In the static tests, a

series of constant loads are loaded and unloaded on the pantograph head. Static properties of

the pantograph, for example, linearised stiffness of the head suspension system, and bending
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Figure 6.10: The data acquisition system in the tests.

effects of the arms, are investigated. In the dynamic tests, a series of sinusoidal displacement

excitations with constant velocity magnitudes are applied on the head. The frequency response

functions (FRFs) of selected measurement points are established using the experimental data in

the dynamic tests. Consequently, pantograph mulitbody models are built and identified using the

above obtained experimental frequency response functions.

6.3.1 Static tests

Before each test, a preparation process is carried out. In the preparation, all contact points and

mechanical joints of the pantograph are fully lubricated, and a 10 minutes warm-up of the whole

pantograph system is carried out. In the warm-up process, the pantograph is excited with a

sinusoidal displacement excitation on the head with amplitude 25 mm in 1 Hz. Through warm-up,

we try to make the pantograph’s condition similar with the practical working condition as much

as possible, and reduce the unexpected friction force as much as possible. In the following Section

6.3.2, similar preparation process is carried out for every test. Meanwhile, before tests, the

multi-sensor measurement system has been calibrated and verified. Specifically, the accelerations

of the excitation bar, head, top point of the upper arm and top point of the lower arm measured

by accelerators have been calibrated with the accelerations obtained by twice differentiating

corresponding displacements measured by LVDTs. The angles of the upper arm and lower arm

are measured using inclinometers and are calibrated using the relative angle between the upper

and lower arms measured by the rotational sensor at joint B.
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Figure 6.11: The developed pantograph test rig.

Identifying the linearised stiffness for the head suspension

In the static tests, the linearised stiffness of the pantograph head suspension, k2, see Figure 6.7,

is firstly identified. Tuning the DC output of the function generator, the electrical shaker can

supply a series specific constant forces applied on the pantograph head. The measured constant

load against relative displacement measured by Laser distance sensor 1 (see Figure 6.7) including

load and unload process is shown in Figure 6.12. Using a quadratic curve to fit the experimental

data, the relationship between the load (unit: N) and the relative displacements between the

head and top of the upper arm, x (unit: mm), is

load = 0.0593x2 +3.8657x+2.7424. (6.10)

Differentiating the load with respect to the relative displacement x yields the linearised stiffness

(unit: kN/m) of the pantograph head suspension at different relative displacements expressed as

kh = 0.1186x+3.8657. (6.11)
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Figure 6.12: Constant load against relative displacement between the head and the top point of
the upper arm, measured by Laser displacement sensor 1, in the static tests.

According to Eq. (6.11), the head linearised suspension stiffness is not a constant but a function

of the relative displacement between the head suspension. Note that the nominal contact force

of the pantograph is 70 N. Solving Eq. (6.10) with the given contact load (70 N), the solution of

relative displacement between the head and the top point of the upper arm is 14.3 mm. Then

substituting x = 14.3 mm into Eq. (6.11), the linearised stiffness for 70 N can be obtained as k2 =

5562 N/m. This value is regarded as the linearised stiffness of the pantograph multibody model.

It also can be observed that the half of vertical gap between curves of load and unload is about 4

N which can be understood as the friction force in the head suspension system.

Investigating the bending effects of the arms

The main spans of the upper arm, BE, and lower arm, AB (Figure 6.21(b)), of the pantograph can

be both modelled as flexible cantilever beams. For the upper arm, points B and E can be modelled

as the fixed point and free end respectively. Similarly, for the lower arm, points A and B can also

be modelled as the fixed point and free end of a cantilever beam respectively. A cantilever beam

fixed at point O with a transverse constant load F applied at the free end is shown in Figure

6.13(a). The cantilever flexible beam can be simplified as a rigid beam constrained by a revolute

joint and a equivalent rotational spring kr at O point shown in Figure 6.13(b). An angle θ of the

rigid beam can be generated when the load F is applied at the free end. The moment at the fixed

point O is MO = FL where L is the length of the beam. Using a small angle approximation, θ ≈ δ

L
where δ is the maximum vertical deflection of the free end , the equivalent rotational stiffness at
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Figure 6.13: Bending models of (a) a flexible cantilever beam and (b) a equivalent simplified
model with a rotational spring kr and a rigid beam.

the fixed point O can be evaluated as

kr = MO

θ
≈ MOL

δ
. (6.12)

To evaluate the equivalent rotational stiffness, the measured moments about the fixed points and

the bending deflections of the free ends of the cantilever beams are evaluated in the following.

With a static load applied at the pantograph head, the top points of the upper arm and lower

arm have deflections downward. These deflections are resulted from both rotations and bending

of the arms. Taking the upper arm, BE (Figure 6.21(b)), as an example, the deflection due to

arm’s bending can be obtained using the model shown in Figure 6.14. Using the heights of points

B and E measured by laser sensors, hB, hE, (see Eq. (6.5)&(6.6)), the height of point E relative to

point B is ∆hEB = hE −hB. Meanwhile, with inclinometers, the angle of axial line of the upper

arm at point B, αu, is available. After applying the static load on the head, the height of point E

relative to point B and the angle of axial line of the upper arm at point B are donated as ∆h
′
EB

and α
′
u. Then the deflection due to the upper arm’s bending can be approximated as

δEB ≈ ∆hEB −∆h
′
EB

cosαu
−LEB(αu −α

′
u) (6.13)

where LEB is the length between points E and B. In right-hand side of this equation,
∆hEB −∆h

′
EB

cosαu
is the total deflection in the direction perpendicular with EB, and LEB(αu −α′

u) is the deflection

due to the rotation of the arm with an assumption that the arm is rigid. Using the similar model

as Eq. (6.13), the deflection due to lower arm’s bending, δBA, can also be estimated.

For the evaluation of the measured bending moments about the fixed points, the upper arm,

a circular steel tube, BE, is also taken as an example. Four strain gauges labelled as SG1, SG2,

SG3 and SG4 are stuck on and underneath the upper arm surface at two selected positions

around points B and E where the cross-sections are regular geometries, see Figure 6.8(a), with

the measured strains denoted as ϵi, i ∈ {1,2,3,4}. For stress at any position along the beam, both

bending stress (red arrows in Figure 6.15) balancing the force component perpendicular with

the arm’s axis and constant compression stress (blue arrows in Figure 6.15) balancing the force
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component along with the arm’s axis exist. The bending stress changes linearly along the cross

section with maximum values at the outside layer of the beam and 0 at the neutral axis. Hence,

the maximum bending stress which occurs at the outsider layer of the tube is measured by

the strain gauges. The measured stress components resulting from the pure bending at the

cross-section for SG1 and SG3 are calculated as

σb1 = E
(ϵ1 −ϵ2)

2
(6.14)

and

σb3 = E
(ϵ3 −ϵ4)

2
(6.15)

where E = 210 MPa is the steel’s Young’s modulus. Meanwhile, the maximum bending stress

occurring at the extreme fibre of the circular tube can be calculated theoretically as

σbmax =
MbD
2Ic

(6.16)

where Mb is the bending moment applied, Ic is beam’s centroidal moment of inertia and D is the

tube’s diameter [172] (the detailed dimension information is shown in Figure 6.8). Substituting

the measured maximum stress (Eq. (6.14) and Eq. (6.15)) into Eq. (6.16) yields the bending

moments of the measurement points at the cross-section for SG1 and SG3 as

Mbi =
2σbi Ici

D i
, i ∈ {1,3} (6.17)

Figure 6.14: The model to calculate the deflection due to arm’s flexibility.

Figure 6.15: The diagram of the stresses of each cross section of the arms.

93



CHAPTER 6. EXPERIMENTAL TEST AND MODEL DEVELOPMENT OF HSX PANTOGRAPH

Then according to the bending moment diagram for a cantilever beam and the locations of SG1

and SG3 (Figure 6.8)), the bending moment at point B is obtained as

MbB = Mb1 +
(320+900)

900
(Mb1 −Mb3). (6.18)

Using the similar process, the bending moment about point A for the lower arm, MbA , can also

be evaluated. Consequently, with the measured bending deflections, δEB, δBA, and the bending

moments, MbB , MbA , the equivalent rotational stiffness kr of the upper arm and lower arm can

be evaluated via Eq. (6.12). The results are that the equivalent bending stiffness of the upper

arm and lower arm are 110 kNm/rad and 375 kNm/rad, respectively, as shown in Figure 6.16.

It can be observed from Figure 6.16 that the evaluated experimental data points are aligned

with the mean fitting values with much noise. The quite noisy result here may be resulted from

two reasons. The first reason is the limitation of resolution of the measurement system, i.e.,

the resolution limitation of laser displacement sensors, inclinometers and strain gauges used.

As the change of the relative height of E point to B point measured by the laser displacement

sensor, δEB, and the change of the arm’s angle measured by the inclinometer, αu, in Eq. (6.13),

are both extremely small, their accuracy is a challenge for the present experimental setup. The

second reason is that any non-linear effects resulted from the non-regular cross-section may

not be considered in the proposed linearised and simplified cantilever beam model. Both factors

may result in the unsatisfactory results shown in Figure 6.16. Meanwhile, it is evident that the

flexibility effect of the pantograph upper arm is affected not only the arm’s bending but also the

chains in the knee joint, see Figure 6.26. Hence, the bending stiffness identified here are not used

in the pantograph model. And these values are regarded as two reference values. Instead, the

flexibility effect of the arm is identified directly by model fitting with measured FRFs in Section

6.5.

6.3.2 Dynamic tests

In the dynamic test, following the principle of controlling variable, the mean velocity amplitude

of displacement excitations is set to be a constant. In this way, the denominator of velocity-

force admittance of the whole pantograph system for each frequency is a constant, which is

beneficial for the comparison of frequency responses. To fully excite the pantograph system

and avoid the effect of friction as much as possible, a set of achievable maximum displacement

excitation, i.e., Ed_2, with 0.06 m/s mean constant velocity amplitude is used. Meanwhile, a

smaller displacement excitation, i.e., Ed_1, with 0.05 m/s mean constant velocity amplitude is

also used for a comparison. The two sets of sinusoidal displacement excitations with the two

predecided mean constant velocity amplitudes, i.e., Ed_1 and Ed_2 , are summarised in Table 6.1.

With the predecided mean constant velocity amplitudes listed in Table 6.1, the amplitudes of

sinusoidal displacement excitations can be generated as

A i( f )=Vc/(2π f ), i ∈ {1,2}. (6.19)
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where f is the frequency (unit: Hz). Using the excitation amplitudes decided by Eq. (6.19), the

predecided target sinusoidal displacement excitations in time domain are

Ed_i(t)= A i sin(2π f t), i ∈ {1,2}. (6.20)

Table 6.1: Mean constant velocity amplitude of the excitations in dynamic test.

Excitation Mean constant velocity amplitude Vc (m/s)

Ed_1 0.05
Ed_2 0.06

By tuning the input signals for the shaker’s controller, a sinusoidal displacement excitation

over the interested frequency range (0.5 Hz- 15 Hz) with 0.1 Hz step is applied on the pantograph

head according to these predecided target excitations. The target excitation amplitudes, A1, A2

and the actual experimental excitation amplitudes, AE
1 , AE

2 , against frequency are shown in

Figure 6.17. It can be observed that the amplitudes of the experimental excitations follow the

predecided target values well. For the excitation of each frequency, measured data is recorded for

100 cycles. In order to reach the stable state of the pantograph system’s response, only last 50

cycles are used for further analysis.

In the tests, three measurement points: the centre of mass of the head, point P, the top point

of the upper arm, point E, and the top point of the lower arm, point B, see Figure 6.7, are selected

to evaluate the vertical frequency responses of the pantograph with upward direction as positive.

According to the configuration of accelerometers in Subsection 6.2.4. The acceleration of the head,

is measured by accelerometer 2 and 3, and their mean value is defined as the acceleration of the

Figure 6.16: The evaluation result of equivalent bending stiffnesses of (a) the upper arm, kru =
110 kNm/rad ,and (b) the lower arm, kr l = 375 kNm/rad.
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head as

aP = 0.5(ra_2 + ra_3) (6.21)

where ra_i is the reading of accelerometer i . According to Subsection 6.2.4, two accelerometer

units consisted of two orthogonal accelerometers are mounted at the top point of the upper arm,

points E, and top point of lower arm, point B. Note that, the accelerometer unit is not exactly

installed at point B, the joint point between upper and lower arms, due to the limited space at

point B. The accelerometer unit is installed at a possible point which is really close to point B

actually and the geometric discrepancy resulted from sensors’ installation for point B is neglected

in this work. The diagram of accelerometers to measure points B and E in detail is shown as

Figure 6.18. And the vertical accelerations of points B and E are obtained as

aB = ra_6 cos(αl)+ ra_7 sin(αl) (6.22)

and

aE = ra_4 cos(αu)+ ra_5 sin(αu). (6.23)

To measure the contact force applied on the pantograph head, load cell 1 and load cell 2 are

integrated between the actuator bar and excitation bar, see Figure 6.7. Let the reading of these

two load cells are r lc_1 and r lc_2 with unit N. Considering the gravity force and inertial force of

the excitation bar and load cell itself, the contact force applied on the pantograph head can be

obtained as

Fc = r lc_1 + r lc_2 + (mb +mlc)(aP + g) (6.24)
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Figure 6.17: The amplitudes of the sinusoidal displacement excitations in the pantograph dynamic
tests.
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where mb, mlc are mass of the excitation bar and a load cell, g the coefficient of gravity. Note

that for individual load cell 1 (or 2), a half of its mass is accounted for as a correction for the

contact force. Thus, a full mass is accounted for in Eq. (6.24) because two same load cells (the

load cell 1 and the load cell 2) are applied to measure the contact force.

For each specific excitation frequency f , the values of vertical frequency response functions

for selected measurement point, P, E, B, are defined as

FRFi( f )= fft(ai(t), f )
fft(pc(t), f )

, i ∈ {P, E, B}, f ∈ [0.5Hz,15Hz] (6.25)

where where ai(t) and pc(t) are the vertical acceleration of the measurement point i and the

contact force applied on the pantograph head, and fft means the component of the Fourier

transform at the excitation frequency f . The process of calculating FRF of the head, point P, as

an example, is shown in Figure 6.19. In Figure 6.19 (a), the amplitude of head’s FRF is shown

in grey-solid line. Take the point at 10 Hz as an example. An displacement excitation with

predecided amplitude is applied on the head, and its last 50 cycles in time domain is shown in

Figure 6.19(b). The corresponding vertical acceleration and contact force in time domain are

measured and shown in Figure 6.19(c)(d). The point of FRF at 10 Hz in Figure 6.19(a) is given

by the magnitude of the ratio between the components of Fourier transformed head vertical

acceleration and contact force at 10 Hz, see Eq. (6.25). Similarly, the phase can also be obtained

using the similar way. For other excitation frequencies, their FRF amplitude and phase values of

the selected measurement points can also be obtained.

With the two predecided displacement amplitudes, two groups of FRFs of the three selected

measurement points are obtained as shown in Figure 6.20. Comparing these two groups of FRFs,

they show that the behaviour of the target pantograph is much nonlinear. This is because if

the target system is totally linear, the outputs should be proportional to the inputs and the

FRFs should be the same. Comparing these two groups of FRFs, with a bigger excitation, Ed_2,

proportional to Ed_1, the response amplitudes of the selected measurement points in Figure 6.20

are not exactly same, especially for the FRFs amplitudes.

Figure 6.18: Diagram of the configuration of accelerometers to measure points B and E.
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6.4 Basic multibody model of the HSX pantograph

In this section, the general structure of the HSX pantograph is introduced firstly. Then a basic

multibody model of the pantograph is established using the modelling method introduced in

Section 4.2. In this model, all components are modelled as rigid bodies constrained with ideal

mechanical joints. The properties of each component and the kinematic configuration are based

on the pantograph’s CAD information provided by manufacturer, Brecknell Willis. For the base

pneumatic actuator of the pantograph, a simplified linear model from Chapter 5 is used in this

pantograph model. The head suspension is modelled as a paralleled spring-damper (see Figure

6.21(b)), where the stiffness, k2, has been identified in 6.3.1 static tests, the damping coefficient,

c2, is unknown and will be identified using the experimental data in Section 6.5.

6.4.1 General structure of the HSX pantograph

The HSX pantograph generally consists of four parts: the head unit, upper arm unit (the upper

arm, upper linkage and stability arm), lower arm unit (the lower arm and lower linkage) and

base unit as shown in Figure 6.21(a). Note that the upper linkage and lower linkage are located

inside the upper arm and lower arm, respectively. Hence, they can not be observed in Figure

6.21(a) obviously. The base unit, lower arm unit, upper arm unit and head unit link in series

using revolute joints successively, forming two four-bar mechanisms, see Figure 6.21(b). The head

is supported on the top of the stability arm with the head suspension. A pneumatic actuator

located between base and bottom point of the lower arm is with function to raise (or lower)

the pantograph frame and the head with supplied (or exhausted) compressed air and suppress

vibration.

Figure 6.19: Example of calculate FRF amplitude for the pantograph head. (a) FRF amplitude of
the head, (b) time history of the displacement excitation of last 50 circles, (c) corresponding time
history of acc. of head, (d) corresponding time history of the contact force.
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If only the vertical motion is considered, the pantograph can be simplified as a 2D model. In

this 2D model, the head can be simplified as a lumped mass with only vertical DOF located at

the head’s mass centre. The head suspension is modelled as a spring and damper in parallel.

Assuming that all arms and linkages are rigid components, the basic topology of the pantograph

in a 2D plane is shown in Figure 6.21(b). Two four-bar mechanisms are built with the lower
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Figure 6.20: Amplitudes and phases of experimental FRFs for selected measurement points with
the excitation Ed_1 and Ed_2. (a)(b) the head, (c)(d) the top point of the upper arm, (e)(f) the top
point of the lower arm.
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arm unit and upper arm unit, which can achieve raising and lowering the head vertically. The

base, lower arm, upper arm and lower linkage compose the first four-bar mechanism ABCD.

Similarly, the lower arm, upper arm, stability arm and upper linkage compose the second four-bar

mechanism BEFG. These two four-bar mechanisms have different functions for the pantograph.

The four-bar mechanism ABCD is designed to raise or lower the head by powering or releasing

the pneumatic actuator. While the four-bar mechanism BEFG is designed to make the axis of the

stability arm always in a vertical orientation over the whole working height.

6.4.2 Multibody model of the HSX pantograph

According to the introduction for the pantograph structure, the simplified 2D multibody pan-

tograph model consists of 7 rigid bodies. Local coordinates systems are built at each body’s

centre of mass (COM) as shown in Figure 6.21(b). For each body i, it has 3 DOFs totally, i.e., two

translational DOFs, Ri = [xi, yi]T and 1 rotational DOF, θi. Note that superscript ’ T ’ means

matrix transpose. Therefore, the generalised coordinates of the pantograph model is a 21-element

vector as

q= [R1T
,θ1,R2T

,θ2,R3T
,θ3,R4T

,θ4,R5T
,θ5,R6T

,θ6,R7T
,θ7]T. (6.26)

Based on these defined coordinates and properties of the pantograph, a multibody model of the

pantograph is established in the following.

Figure 6.21: (a) The HSX pantograph and (b) the diagram of its 2D multibody model.
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Table 6.2: Each body’s mass, inertia about COM, initial position of the centre of mass and initial
orientations in the pantograph multibody model.

Body No. Rigid body
Mass, mi

(kg)
Inertia, I i
(kg.m^2)

Initial position of COM
(m)

Initial orientation
(rad)

1 Base 41.93 7.899 (0.0000;0.0000) 0.0000
2 Lower arm 17.18 5.860 (0.3048; 0.2301) 0.4217
3 Upper arm 11.33 4.271 (0.6341; 0.8587) -0.2646
4 Lower link 3.75 1.177 (0.4581; 0.2650) 0.4489
5 Upper link 2.09 0.609 (0.5392; 0.8578) -0.2483
6 Stability arm 5.57 0.050 (-0.3476; 1.1538) 0.0000
7 Head 5.41 0.182 (-0.3476; 1.2750) 0.0000

Table 6.3: Mechanical joints used in the pantograph multibody model.

Kinematic joint
Connected bodies Connected points’ positions in the local coordinates

Body i Body j [xi; yi] [x j; y j]

Revolute A 1 2 [-0.3530; 0.0840] [-0.6600; 0.1360]
Revolute B 2 3 [0.9900; 0.0860] [0.5580; 0.001]
Revolute C 3 4 [0.6100; -0.0770] [0.8270; 0.001]
Revolute D 1 4 [-0.2730; -0.0860] [-0.8110; 0.001]
Revolute E 3 6 [-1.0320; 0.0510] [0.0000; 0.0240]
Revolute F 5 6 [-0.9620; 0.0150] [-0.0440; -0.0430]
Revolute G 5 2 [0.6340; -0.0270] [0.9510; 0.0620]
Prismatic P 6 7 [0.0000; 0.0000] [0.0000; 0.0000]

For this multibody pantograph model, according to the order of the generalised coordinates

defined in Eq. (6.26), the system mass matrix can be expressed as

M=


M1 · · · 0

...
. . .

...

0 · · · M7

 (6.27)

which is a matrix with each body’s mass matrix Mi =


mi 0 0

0 mi 0

0 0 I i

 , i ∈ {1,2, ·,7} as diagonal

element. For each individual body’s mass matrix, Mi, the first two diagonal elements, mi, and

the third diagonal element, I i, corresponds the translational DOFs in x and y directions and

rotational DOF, respectively. The detailed information for each body’s property, for example, each

body’s mass, inertia, are listed on Table 6.2.

According to the pantograph’s mechanism topology shown in Figure 6.21(b), the pantograph

is an assembly of free bodies constrained by mechanical joints defining kinematic relationship

between free bodies. In this constrained multibody model, three different kinds of mechanical
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joints are used: fixed joint, revolute joint and prismatic joint. The base (body 1) is fixed on the

ground using the fixed joint located at base’s centre of mass. For the head (body 7), only vertical

motion is allowed relative to the top point of stability arm (body 6) with a prismatic joint. The

lower arm (body 2), upper arm (body 3), lower linkage (body 4) and upper linkage (body 5),

forming two four-bar mechanisms, are constrained by revolute joints. The applied mechanical

joints and the positions of each connected point in the local coordinates are listed on Table 6.3.

All mechanical joints are formulated using a set of algebraic equation C= 0, see Eq. (4.1). For

example, for body 1 (the base) with its COM fixed on the origin of the global coordinate system,

its translational DOFs, R1, and rotational DOF, θ1, are all fixed to 0. Its corresponding constraint

equations are

C1 =
[

R1

θ1

]
= 0 (6.28)

For a planar revolute joint used in this model, the connected points on body i and j, denoted as

Si and S j, are required to be with same position throughout the motion, where its corresponding

constraint equation can be expressed as [157]

ri
S −r j

S = 0. (6.29)

where ri
S (or r j

S) is the position of point S of the body i (or j) in the global coordinates. Following

the constraint equations identified in Eq. (6.29), the constraint equations of the revolute joint A,

B, C, D, E, F, G listed on Table 6.3 can be respectively expressed as

C2 = r1
A −r2

A = 0, (6.30)

C3 = r2
B −r3

B = 0, (6.31)

C4 = r3
C −r4

C = 0, (6.32)

C5 = r4
D −r1

D = 0, (6.33)

C6 = r3
E −r6

E = 0, (6.34)

C7 = r5
F −r6

F = 0, (6.35)

C8 = r2
G −r5

G = 0. (6.36)

The head is always supported on the top point of stability arm and only vertical motion of the

head relative to the top of stability arm exists. For the mechanical joint between the head and

top point of the stability arm, the horizontal positions (x axis) of the head is required to coincide

with that of the top point of the stability and only vertical motion is allowed for the head relative

to the top point of the stability arm. Thus, this constraint can be written as

C9 = x6
P − x7

P = 0 (6.37)
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where x6
P and x7

P are the global positions in x axis of the head and the top point of the stability arm.

Combining preceding constraint equations in a compact matrix form, the constraint equations of

the basic pantograph system can be written as

C=


C1

C2
...

C9

= 0 (6.38)

In this constrained multibody system, the kinematic relationship of the pantograph’components

is defined through the constraint equations. And corresponding constraint forces acting at

mechanical joints are generated according to the defined constraint equations using Lagrange

multipliers introduced in Eq. (4.6). Apart from the constraint forces, there are also external

forces, such as, gravity forces, actuator forces, friction forces, spring forces, damper forces. An

external force is incorporated in the multibody system in the form of its generalised external

force vector associated with the generalised coordinates of the body at which the external force

acts. For a planar multibody model, the generalised external force vector of a body consists 3

elements, the force element in x and y direction separately and the moment about the reference

point, corresponding to the DOFs in x, y directions and rotation respectively.

Specifically, for this multibody pantograph model, there are three kinds of external forces:

gravity forces, actuator forces and spring-damper forces. Gravity force which acts at the COM of

each body and keeps the direction downward to the earth is the simplest one among them. For

the centroidal body coordinate system in which the reference point is selected to be the COM

of the body used here, the generalised external force vector of the gravity force of body i can be

written directly as

Qi
g =


0

−mig

0

 , i = {1,2,3, · · · ,7} (6.39)

where negative sign means the direction downward to earth.

As gravity forces act at the bodies’ COMs (the reference points of bodies), it easy to write their

generalised external force vector for each body as Eq. (6.39). However, for other external forces

which usually do not act at the body’s COM, extra moments are produced. For example, a force

element, such as, spring, damper or actuator, presented as a square block, is connected between

point Si on body i and point S j on body j as defined in Figure 6.22. Let a general external force is

denoted as Fe (define tension force to be positive) and its generalised external force vector in the

multibody system can be expressed as [157]

Qi
Fe

=−Fe

[
∂ri, j

S
∂qi

]T
r̂i, j

S (6.40)

where ri, j
S = r j

S −ri
S is the relative position vector from point Si to point S j and r̂i, j

S is the unit

vector of ri, j
S . In this pantograph multibody model, the generalised external force vector for head
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Figure 6.22: Diagram of a general force element connecting two two bodies.

suspension force and base pneumatic force are discussed in the following.

The head suspension force is modelled as a paralleled spring-damper force expressed as

Fh = k1lh + c2 l̇h where lh is the relative length between the head’s COM and the top point of the

stability arm. Note that the damping coefficient c2 is unknown, and will be identified in Section

6.5. Following Eq. (6.40), for Fh, its generalised external force vector associated with generalised

coordinates of body 6 and body 7, Q6
Fh

and Q7
Fh

, are

Q6
Fh

=−Fh

[
∂r6,7

P
∂q6

]T
r̂6,7

P , (6.41)

Q7
Fh

=−Fh

[
∂r6,7

P
∂q7

]T
r̂6,7

P . (6.42)

For the pneumatic actuator force, it is also modelled as an external force in this multibody

pantograph model. The base pneumatic model used here is the simplified linear model developed

in Subsection 5.4.3 with the mechanical network shown in Figure 5.15 and parameters given

in Table 5.3. Note that, as mentioned in subsection 5.4.3, due to that there is a angle between

the axial line of the base pneumatic actuator and horizontal plane when the base pneumatic

actuator is install into the pantograph, the constant force, Fc, measured horizontally (5460 N) in

Chapter 5 is slightly bigger than the actual constant force applied to the connection terminals

of the pantograph. Hence, the constant force, Fc, for the base pneumatic actuator measured in

the whole pantograph dynamic test (5374 N) is used as the constant force’s value for the base

pneumatic actuator model in this pantograph multibody model. Denoting the pneumatic actuator

force as Fp and following Eq. (6.40), its generalised external force vector associated with the

generalised coordinates of body 1 and body 2, Q1
Fp

and Q2
Fp

, are

Q1
Fp

=−Fp

[
∂r1,2

HQ
∂q1

]T
r̂1,2

HQ , (6.43)

Q2
Fp

=−Fp

[
∂r1,2

HQ
∂q2

]T
r̂1,2

HQ . (6.44)
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Combining all generalised external force vectors into a compact matrix form, the generalised

external force vector of the pantograph system can be established as

Qe =



Q1
g +Q1

Fp

Q2
g +Q2

Fp

Q3
g

Q4
g

Q5
g

Q6
g +Q6

Fh

Q7
g +Q7

Fh


. (6.45)

With the developed mass matrix, M, constraint equations, C, and generalised external force

vector, Qe, using Eq. (4.12), the equations of motion for the basic pantograph multibody model

are established successfully.

6.5 Identification of the multibody pantograph model

The basic pantograph multibody model is developed in the preceding section with the unknown

damping coefficient c2 of the head suspension. In this section, the unknown damping coefficient

c2 is identified using the experimental FRFs. Moreover, the bending effect of the pantograph

mechanism and the non-ideal joint effect of the main frame are considered and identified using

experimental FRFs. FRFs with excitation Ed_2, where the pantograph has been fully excited

using the maximum achievable excitation amplitude, are used here to identify the pantograph

multibody model as an example in the following.

6.5.1 Identifying the damping coefficient of the head suspension

Firstly, the damping coefficient c2 of the head suspension is identified. The linearised head

suspension stiffness has been identified as k2=5562 N/m via the experimental data in the static

test, see Section 6.3.1 for detail. Here the linearised damping coefficient of the head suspension, c2,

is identified using experimentally measured FRFs. As the head suspension system dominates the

second peak in FRFs, optimisation is used to fit the model FRFs with experimentally measured

FRFs by minimising the cost function over 4 Hz to 8 Hz (around second peak)

g1(c2)=∑
i

{∑
f

[
abs

(
FRFi(c2, f )−FRFE

i ( f )
)]2

}
, i ∈ {P, E, B}, f ∈ [4 Hz,8 Hz] (6.46)

where FRFi(c2, f ) and FRFE
i ( f ) are the FRFs of the measurement points i ∈ {P, E, B} for the

present model and the experimental data, respectively, and abs(·) is the modulus function. The

MATLAB® command patternsearch (Generalized pattern search method [162]), same as rest

optimisations in this thesis, is applied to minimise g1(c2, f ). The result is that c2 = 77 Ns/m. The
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Figure 6.23: (a) Amplitude and (b) phase of FRFs for selected measured points of the model with
identified head suspension damping c2= 77 Ns/m comparing with experimentally measured ones.

RFRs of the model with identified head damping are shown in Figure 6.23. The amplitudes of

the second peaks for the head and the upper arm, in Figure 6.23, match with the experimental

data curves. The amplitude for the lower arm, in Figure 6.23, is a little lower than that observed

experimentally, but it is considered less important for the pantograph-catenary interaction than

the amplitude for the head, where the contact takes place. However, the third peaks are missing.

And it is also noted that the phase of two points of upper arm and lower arm are overlapped. This

is because the present model has only 2 DOFs. To capture the third peaks, an additional DOF

needs to be added. The discrepancies between the model and experimental FRFs for the third

peak and in the phase is now addressed in the following.

6.5.2 Identifying flexibility and joint friction effects

To capture the higher frequency mode, an additional DOF is required, which are introduced by

modelling flexibility of the upper arm and joint B. This is achieved by introducing a rotational

spring, ku, at point B, see Figure 6.24. The model parameters of rigid bodies resulting from

breaking arms can be updated according to their geometrical properties. Meanwhile, the joint

friction forces at pantograph frame and base actuator, is modelled equivalently using a rotational

spring, k f and damper, c f in parallel at joint B here as discussed in Subsection 5.4.3. It should be

noted that only a single spring and single damper need be introduced, since the friction forces of

all the joints in the pantograph frame (including the base actuator) are coupled in a mechanism.

Considering that different modes may affects each other slightly, the additional parameters, ku,

k f and c f , and the preceding parameter, c2, are identified simultaneously to minimise the total
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square FRF error between the present model and the experimental data, using the cost function

g2(c2,ku,k f , c f )=∑
i

{∑
f

[
abs

(
FRFi(c2,ku,k f , c f , f )−FRFE

i ( f )
)]2

}
,

i ∈ {P, E, B}, f ∈ [0.5 Hz,11 Hz]

(6.47)

Figure 6.24: The pantograph model considering the bending effect and joint friction effect.

Figure 6.25: (a) Amplitude and (b) phase of FRFs for selected measured points of the model with
c2= 78 Ns/m, ku= 29 kNm/rad, k f = 658 Nm/rad and c f = 128 Nms/rad.
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The results for the best fit are c2= 78 Ns/m ku= 29 kNm/rad, k f = 658 Nm/rad and c f = 128

Nms/rad. It is noted that the value of c2= 78 Ns/m identified here is slightly bigger than that

identified in previous Subsection 6.5.1. This is because the interaction among different modes is

considered here, which can be more accurate compared with the value identified with only consid-

eration of the second mode previously. Hence, the refined c2= 78 Ns/m here with consideration of

the interaction effect among different modes is adopted in the pantograph model. It is also noted

that the identified flexibility value ku= 29 kNm/rad is much smaller the experimental evaluation

of the bending stiffness of the upper arm (110 kNm/rad) in Section 6.3.1. This is because chains

are used to connect the ends of the lower linkage and upper arm in the knee joint shown in Figure

6.26. In this way, the connection between ends of lower linkage and upper arm, joint C shown

in Figure 6.25, is not an exact rigid revolute joint, but some flexibility is brought in due to the

connection with chains. The identified ku= 29 kNm/rad includes flexibility of the upper arm and

chains at the knee joint.

With the identified parameters through fitting the model FRFs with measured ones, i.e., c2=

78 Ns/m ku= 29 kNm/rad, k f = 658 Nm/rad and c f = 128 Nms/rad, and the other parameters

measured experimentally listed in Table 6.4, the identified model is complete and its frequency

response is shown in Figure 6.25 (solid lines). It can be observed that the model’s FRFs match

with experimental FRFs both in amplitudes and phases in the considered frequency range. The

third peaks, around 10 Hz, are captured, as well as the amplitudes of the second peaks remaining

similar to what they were after identifying c2 only. Considering phase, the phase gap between

the top of the upper arm and top of the lower arm in high frequency has also been captured.

Note that it can be observed that the FRF amplitudes of the top points of upper arm and lower

arm are slightly smaller than corresponding measured FRF amplitudes. These discrepancies

are less important as the head is where the pantograph-catenary interaction occurs. After all

these experimental verification identifications and validations, the proposed multibody model can

describe accurately the dynamic responses with clear physical meanings. This developed HSX

pantograph multibody model with all identified parameters’ values summarised in Table 6.4 can

now be used as a default model to study the suspension system design.

6.6 Summary and discussion

In this chapter, a pantograph test rig is designed for the pantograph static and dynamic tests

firstly. It has been shown that the designed test rig frame’s fundamental frequency is significantly

larger than the maximum frequency of the excitation from the mode shape analysis. Then the

designed input, multi-sensor measurement and data acquisition systems are introduced in detail.

Using the designed pantograph test rig, static and dynamic tests are carried out. In the static

test, a series of constant forces are applied on the pantograph head with the investigations

of head suspension’s stiffness property and the equivalent bending stiffnesses of arms. In the
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Figure 6.26: (a) The HSX pantograph located on test bed and (b) the detail with enlarged scale at
the knee joint where chains are used to link the ends of upper arm and lower linkage.

Table 6.4: The identified parameters’ values of the proposed HSX pantograph multibody model
used in Chapter 7.

Item identified Parameter Value Identification method

Base pneumatic actuator

Fc 5374 N Measured
mp 3.45 kg Measured
c1 10.44 kNs/m Measured
k1 141 kN/m Measured

Head suspension
k2 5562 N/m Measured
c2 78 Ns/m Model fitting

Joint friction
k f 658 Nm/rad Model fitting
c f 128 Nms/rad Model fitting

Flexibility effect ku 29 kNm/rad Model fitting

dynamic tests, a series of sinusoidal displacement excitations with constant velocity amplitudes

are applied on the pantograph head, and FRFs of the three selected measurement points are

obtained. Using the experimental FRFs, the developed multibody pantograph model are identified

and verified. Consequently, an experimentally verified pantograph multibody model is developed

successfully and ready to be used in the following suspension design.

In the process of developing the pantograph multibody model, simplification and approxima-

tion are used. For example, friction forces for the base pneumatic actuator and main pantograph
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frame are integrated into a rotational spring and damper in parallel at joint B. And a rotational

spring at joint B is used to approximate the effect of flexibility resulting from the pantograph

upper arm and chains at joint B. All these simplification and approximation are aimed to sim-

plify the model, keep the model linear, as well as capture the basic principle properties of the

pantograph. In this work, as our aim is to explore the inertance-integrated vibration suppression

technique in the pantograph system, these simplification and approximation are acceptable for

this concept design work. But, for further more realistic study of the pantograph, for example,

specific component design, more details should be included into the model.
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7
VIBRATION SUPPRESSION SYSTEM DESIGN

7.1 Introduction

The main aim of this chapter is to explore the beneficial inertance-integrated mechanical configu-

rations for pantographs’ suspension design. Two multibody pantograph models are developed

respectively in Chapter 4 and 6. The pantograph multibody model developed in Chapter 4 is based

on published data and improved to match with the experimental responses with parameters’

calibration and implementation of additional features. For more detailed and reliable models

of pantographs, the other HSX pantograph multibody model which is identified and verified

experimentally using the developed pantograph test rig is developed in Chapter 6. In this Chapter,

the benefits of inertance-integrated vibration suppression applied to the pantograph-catenary

system are investigated for both pantographs, separately. The standard deviation of the contact

force, as one of the most important metrics of pantograph-catenary dynamics, is aimed to be

reduced using the proposed inertance-integrated vibration suppression systems. Sections 7.2 and

7.3 in this chapter are taken from Section 4 in the following published paper.

Publications resulting from this work

M. Zhu, S.Y. Zhang, J.Z. Jiang, J. Macdonald, S. Neild, P. Antunes, J. Pombo, S. Cullingford, M.

Askill & S. Fielder, "Enhancing pantograph-catenary dynamic performance using an inertance-

integrated damping system." Vehicle System Dynamics, pp. 1-24, 2021.
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7.2 Pantograph-catenary interaction model

The catenary systems shown in Figure 7.1 are periodic structures generally composed of a

messenger wire, contact wire, droppers, registration arm and masts. The contact wire is the cable

which carries the electricity and powers the trains via contacting with pantographs mounted on

the roofs of railway vehicles. To establish an accurate mathematical model of the whole catenary

system is awkward due to its distributed characteristics. Many FEM models of catenary systems

have been established [101, 108, 173–175], but these models are usually complex and they are

not the focus of this work.

In this work, the focus is the design of a base suspension for the high-speed train pantograph

using the inertance-integrated vibration suppression technique. It is also noted that the pattern

search methodology which is applied in the following optimization process requires a large

number of iterations and therefore the dynamic models need to be reasonably simple to ensure its

simulation’s speed to be fast enough. A simplified catenary model which can represent the basic

dynamic properties of the catenary system is sufficiently accurate for this purpose at this first

concept design stage. Although the obtained responses using the simplified catenary model do not

exactly match the realistic ones, this simplified catenary model favours the aim of the work which

is not to evaluate the pantograph-catenary in realistic situations but to explore possible benefits

in the use of inerters in a pantograph system. In a preliminary study, a lumped mass pantograph

model coupled with a time-varying lumped mass catenary model was adopted to design an

inertance-integrated damping system of the pantograph and significant dynamic performance

Figure 7.1: (a) Overview of railway catenary and track system and (b) the detail of catenary
suspension. Both photos were taken at Granham’s Rd., Great Shelford, Cambridge.
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benefit was observed [176]. For the sake of modelling simplification and calculation efficiency, the

time-varying lumped mass catenary model in [100], is used in this work. As catenary systems are

spatial-periodic structures, the equivalent parameters of the catenary system are spatial-periodic

functions of the displacement x along the contact wire from a reference mast. If the operational

speed is denoted as vop, the distance x = vop t. Hence, the equivalent parameters of the catenary

system can be converted to time-periodic functions and expressed as a Fourier series including

the first three harmonics as
mc(t)= mc0 +∑3

i=1 mci cos
(
2πi

vop

L
t
)

cc(t)= cc0 +∑3
i=1 cci cos

(
2πi

vop

L
t
)

kc(t)= kc0 +∑3
i=1 kci cos

(
2πi

vop

L
t
) (7.1)

where
vop

L
can be denoted as fp called the pumping frequency [177], presenting the fundamental

frequency of the pantograph passing a span with speed vop. The equivalent mechanical parame-

ters of the catenary system i.e., the equivalent mass, stiffness and damper, denoted as mc, cc

and kc, respectively, present periodic behaviour along each span with the harmonics of the first

three integer multiples of the pumping frequency. The parameters of the catenary model, i.e.,

mci, cci and kci, are detailed in [100]. This simplified time-varying lumped mass catenary model

can describe dynamic properties of the catenary well in a range of low frequencies. As we focus

Figure 7.2: A simplified pantograp-catenary model with the pantograph developed in Chapter 4
and a simplified catenary model, and the modification to the base suspension.
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on the pantograph’s vibration in low frequencies, this simplified catenary model is acceptable in

this study. However, for high frequencies, for example, up to 100 Hz, this model is not suitable.

To investigate the dynamic properties in high frequencies, a more complicate finite element

model should be established. For the pantograph in Chapter 4, a pantograph-catenary interaction

is depicted in Figure 7.2. The state variables of the pantograph and the catenary system are

combined by coupling their dynamical equations. The contact wire is an additional lumped mass

body coupled with the pantograph model. Hence, a revolute joint between the contact points of

the catenary and the head is adopted to model the contact between them in this work shown

in Figure 7.2. The contact force is evaluated as the vertical reaction force of this revolute joint

applied on the head, using Eq. (4.6) discussed in Section 4.2. As the upward direction defined as

positive shown in Figure 7.2, the contact force applied on the pantograph head is downward, i.e.,

a negative force. In this way, as contact loss is not explicitly modelled, each output of the model

has been checked to ensure that the contact force does not become positive and hence that this

modelling approach for the contact is valid. Meanwhile, the friction force between the head and

contact wire is not considered in this study.

7.3 Suspension system design for the pantograph in Chapter 4

For the pantograph developed in Chapter 4, a pantograph-catenary interaction model with a

simplified catenary model has been established in the previous section. In this section, with the

discussion of the pantograph-catenary contact performance index, the optimisation cost function

for pantograph vibration suppression design is given, and the mechanical configurations of the

base suspension of the pantograph is designed using structure-based method by minimising

this cost function. Note that there are mainly two reasons to choose to design the pantograph’s

base suspension system rather than to design the head suspension system or introduce any

new vibration suppression systems at any other positions. The first reason is that the mass

of the head is expected to be as less as possible because less mass of the head leads to better

contact performance of the pantograph. The second reason is that it can be easier for industries to

accept our inertance-integrated vibration system by modifying existing base suspension system

rather than introducing any new vibration suppression systems. Lastly, the performance of the

optimised based suspension is investigated.

7.3.1 Contact performance index and optimisation cost function

In practice, in order to ensure the efficiency of power transmission between the contact wire

and the pantograph head, an optimal mean contact force Fm is suggested in EN 50367:2012

[178]. Meanwhile, the standard deviation of the contact force σ is required to be smaller than

0.3Fm to ensure the probability that the contact force is lower than 0.1Fm is less than 0.27%,

assuming a Gaussian distribution [178]. These specifications aim to ensure the percentage of
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time for electric arcing – the main reason for electrical wear of the contact wire and the head – is

smaller than 0.2%. Hence, in this work, the standard deviation of the contact force σ is used as

the performance measure.

The proposal in this work is to reduce the standard deviation of the pantograph-catenary

contact force through designing the base suspension system using inertance-integrated vibration

suppression technique, as shown in Figure 7.2. The standard deviation of the contact force σ for

each individual vehicle speed can be evaluated via the corresponding contact force time history.

For example, for the default damping system with a conventional damper, the contact force time

histories for 40 m/s and 60 m/s are shown in Figure 7.3(a) and (b), respectively. Considering

operational speeds between 20 m/s and 80 m/s, the standard deviation of the contact force for

the default damping system is shown in Figure 7.3(c), where the values for 40 m/s and 60 m/s

are marked with red and blue points, respectively. It is noted that in Figure 7.3(c) the default

pantograph-catenary system has a maximum value of the standard deviation σmax= 25.45 N

at an operational speed vop= 65 m/s. Note that given the level of fidelity of the catenary model

employed, it is challenging to make the simulated responses satisfy an industrial standard

for a real system, such as EN 50367, over the full operating range. Simulations of the system

considered do satisfy EN 50367 near the operational speed of 65 m/s, which is the main speed

we are interested in. In this work, the optimization aim is to minimise σmax over the whole

Figure 7.3: Contact force for (a) 40 m/s and (b) 60 m/s, (c) contact force standard deviations across
the whole range of operational speeds from 20 m/s to 80 m/s.
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operational speed range. The cost function J1(φi) of the optimization is identified as

J1(φi)=σmax(φi), i ∈S1,v ∈ [20 m/s,80 m/s] (7.2)

where φi is the design variables for candidate layout i, and S1 is the set of candidate layouts for

this case study introduced in 7.3.2. For all the optimizations carried out in the base suspension

designs, the MATLAB® command patternsearch (Generalized pattern search method [162]) is

used. A number of sets of random initial values are used to find the optimum parameter values

to minimise the cost function J1.

7.3.2 Candidate layouts

In this work, the structure-based approach [74] is used to design a beneficial inertance-integrated

pantograph damping system. The network layouts representing the topology of the mechanical

components are firstly proposed. Then, the parameter values of each element in the mechanical

network are selected using an optimization method. The total candidate layout sets S1 are shown

in Figure 7.4 where the inerter, damper and spring are labelled as b, c and k, respectively.

S1−default in Figure 7.4 is the conventional damper in the existing design of the pantograph.

Four simple candidate layouts are proposed here to assess the potential benefits of employing an

inertance-integrated damping system in the pantograph. A one-element layout, S1−0, with a single

inerter, two two-element layouts, S1−1 and S1−2, with one inerter and one damper, in parallel and

in series, respectively, and a three-element layout, S1−3, known as the TID system [57] with one

inerter, one damper and one spring, are considered in this work. When the candidate layouts

are inserted in the pantograph model, the inerter model in a 2D environment, i.e., Eq.(3.20),

developed in Chapter 3, is used, allowing for the centripetal acceleration correction.

7.3.3 Results for optimised inertance-integrated damping systems

The optimization results, based on the multibody pantograph model developed in Chapter 4, are

given in Table 7.1. It can be observed that the mean contact forces of the proposed inertance-

integrated configurations are kept almost constant, closely matching that of the default damper.

In order to make a fair comparison, the default layout (a conventional damper) is firstly optimised

Figure 7.4: Candidate layout set S1.
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Table 7.1: Optimization results for the improved published pantograph

Layout
Configuration parameters σmax Reduction Velocity for σmax Fm

b (kg) c (Ns/m) k (N/m) (N) (%) (m/s) (N)

S1−default / 600 / 25.45 / 65.0 -121.5
S1−default_opt / 2563 / 25.44 0.04% 65.0 -121.5

S1−0 10745 / / 15.10 40.67% 63.0 -121.1
S1−1 10728 5 / 15.10 40.67% 63.0 -121.1
S1−2 10703 →∞ / 15.10 40.67% 63.0 -121.9
S1−3 10703 →∞ →∞ 15.10 40.67% 63.0 -121.9
S∗

1−1 10733 600 / 15.23 40.16% 63.0 -121.1

for our cost function. The optimised default layout S1−default_opt results in a 0.04% reduction in

σmax compared with S1−default, indicating that the contact force standard deviation cannot be

reduced significantly using the default damper. In contrast, all the proposed inertance-integrated

configurations, i.e., S1−0, S1−1, S1−2 and S1−3, achieve a significant 40.67% reduction in σmax.

For S1−0, the optimum inertance value is 10745 kg. Note that the value of this inertance does

not correspond to the mass of the device achieving this inertance. With a fluid-based inerter

[170, 179], the ratio of the resultant inertance b to the actual fluid mass m is
(

D1

D2

)4
where D1

and D2 are the piston’s and tube’s effective diameters, respectively. A significantly large inertance

can be achieved with much smaller fluid mass via designing these two diameters. For example,

if
(

D1

D2

)
=10, the optimized inertance 10745 kg can be obtained with the actual fluid mass as

1.07 kg. Hence, the inertance value obtained in this paper is totally practical for pantograph

suspensions. The result of S1−1 implies that the inerter dominates the performance improvement

while the damper in parallel contributes little. Hence, S1−1 can be simplified to S1−0, that is,

the damper in parallel can be ignored. This can be concluded from the fact that the optimised

value of the damper in parallel is so small and the inerter value is very close to the optimum

inerter value of S1−0. For S1−2, the value of the damper in series reaches 2.7×1010 Ns/m, which

implies that the damper in series tends to a rigid connection, again suggesting that the inerter

dominants the performance improvement in S1−2. It has been checked that setting the damper

value of S1−2 to be infinite, that is, replacing the damper in S1−2 to a rigid connection, there is no

significant reduction in performance of S1−2. Hence, S1−2 can also be simplified to S1−0 without

any significant reduction in performance. For S1−3, the value of the damper and spring reaches

1.5×1011 Ns/m and 2.5×1011 N/m and a similar argument can also be applied to S1−3. Therefore,

the fact that S1−1, S1−2 and S1−3 can all be converted to S1−0 gives weight to the argument

that the single inerter configuration S1−0 is the optimum design among the proposed candidate

configurations in this case.

The relationship between the contact force standard deviation and inertance for different

parallel dampers at 65 m/s is as shown visually in Figure 7.5. It indicates that about 10000
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Figure 7.5: Standard deviations of the contact force against inertance for different parallel
dampers at 65 m/s.

kg of inertance can minimise the standard deviation of the contact force while the smaller or

larger inertance can deteriorate the contact performance. It is also observed that any inertance

value between 0 and the optimum value can be beneficial to reduce the contact force standard

deviation correspondingly. It also noticed that the presence of a damper in parallel with inerter

has a negative effect on reducing the contact force standard deviation, a further indication why

S1−1 should be simplified to S1−0. This does not mean there is no natural damping in the system

but shows that an additional damper at the base cannot help improve the contact performance.

Considering that the original damper in parallel may have a function that is not included in our

present cost function, for example, suppressing transient vibrations when raising or lowering the

pantograph, the performance of an additional configuration, S∗
1−1 is investigated. The layout of

S∗
1−1 is the same as S1−1, but the parallel damper is fixed to 600 Ns/m, i.e., the original value of

conventional damper, and the inerter is then optimised. It turns out that S∗
1−1, see the blue line

in Figure 7.5, can retain almost the same performance benefit as S1−0, see the red line in Figure

7.5.

7.3.4 Performance analysis of obtained optimal suspension

In order to investigate the performance improvement of S1−0 in detail, analysis in the time domain

is considered. Time histories of the contact force for S1−0 and S1−default at 65 m/s are shown in

Figure 7.6. It is clear that the amplitude of contact force variation is reduced significantly for

S1−0 compared with S1−default. Further, acceleration response for catenary alone with a constant

upward contact force is evaluated. The constant upward contact force whose value is selected as

the value of the mean contact force of the default pantograph-catenary system acts on catenary

along with a sequence of operational speeds, i.e., a sequence of pumping frequencies fp. The
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Figure 7.6: Time histories and mean values of the contact force for S1−0 and S1−default based
pantographs at 65m/s.

corresponding acceleration magnitude Uc of the catenary against different pumping frequencies

fp is investigated as shown in Figure 7.7, indicating the natural frequency of the catenary system

is 1 Hz. Note that the theoretical natural frequency of the catenary system can be approximated

from Eq. (7.1) as
1

2π

√
kc0

mc0
≈ 1Hz, coinciding with the resonance frequency in Figure 7.7. For

the pantograph system alone, the FRFs for the head in the magnitude of S1−default and S1−0

based pantographs are shown in Figure 7.8. Note that the FRF for the head of S1−default based

pantograph in Figure 7.8 is the same as the FRF curve of the modified model in Figure 4.9(a).

Compared with S1−default, the first resonance frequency of the pantograph head for S1−0 is shifted

to 1 Hz from 1.5 Hz, see Figure 7.8, coinciding with the natural frequency of the catenary system.

This results in the vibration of the pantograph head aligning with that of the catenary system

which appears to reduce the contact force variation. This can also explain the discussion about

Figure 7.5, that is, the fact that the inclusion of 10000 kg of inertance tunes the pantograph

first resonance frequency coinciding with the natural frequency of the catenary regulates the

fluctuation of the contact force.

Furthermore, the displacements of the catenary alone with the constant upward contact force

and coupling with the S1−default and S1−0 based pantographs are also evaluated in Figure 7.9. The

catenary oscillation displacement amplitude across the whole operational speed range is shown in

Figure 7.9(a) indicating the amplitudes of the catenary coupling with the pantographs are reduced

compared with the catenary alone with the constant upward contact force. The displacement

amplitude of the catenary coupling with S1−0 based pantograph is also slightly reduced compared

with the default pantograph indicating that, with the S1−0 based pantograph, the cable motion is

acceptable. Figure 7.9(b) shows the catenary displacements in the time domain at 65 m/s. It is

clear that the displacement amplitudes of the catenary coupling with pantographs are smaller
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than the catenary alone with the constant upward contact force. Meanwhile, the phase gap of

the catenary displacement between the catenary alone with the constant upward contact force

and catenary coupling with the pantograph is reduced for S1−0 compared with S1−default. These

means that with S1−0, the pantograph head tends to have the same phase relative to the catenary

system, so as the contact force between them is reduced.

The standard deviation of the contact force across the whole range of operational speed are

presented in Figure 7.10 for the S1−default and S1−0 based pantographs. There is a 40% reduction

for the S1−0 based pantograph compared with the default one and it remains lower than for the

default one for all velocities less than 75 m/s.

Figure 7.7: Acceleration amplitude for the catenary alone with a constant upward contact force
against the pumping frequency.

Figure 7.8: Comparison of amplitudes of FRF for head between S1−default and S1−0 based pan-
tographs.
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Figure 7.9: (a) Displacement amplitudes across the whole operational speed range. (b) displace-
ment time histories of the catenary with the constant upward contact force and coupling with
S1−default and S1−0 based pantographs at 65 m/s.

Figure 7.10: The standard deviation of the contact force for S1−default and S1−0 based pantographs
across the whole operational speed range.
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7.4 Suspension system design for the HSX pantograph
developed in Chapter 6

The experimentally verified multibody model for the HSX pantograph has been developed in

Section 6.5. Coupling with the simplified catenary model (Eq. (7.1)) introduced in Section 7.2, a

pantograph-catenary interaction model with the HSX pantograph can be developed here. In this

section, configurations of vibration suppression system are designed for the HSX pantograph to

reduce the contact force standard deviation between pantograph-catenary interface with a more

robust optimisation cost function considering the uncertainties of catenary system.

7.4.1 Optimisation cost function and candidate layouts

As the discussion in Subsection 7.3.1, the standard deviation of the contact force σ is still used

as the assessment performance here. And the proposal in this section is to reduce the standard

deviation of the pantograph-catenary contact force through designing mechanical configurations

of the base suspension system using inertance-integrated vibration suppression technique for

the HSX pantograph. The HSX pantograph’s default base suspension system (see Section 5.4.3)

consists of a mass of the piston, a constant force and a dynamic force modelled as spring-damper

in series (see Figure 5.15). In the optimisation, the default dynamic force, i.e., the spring-damper

in series, is replaced by proposed candidate layouts shown in Figure 7.11 and the rest components

in the proposed model of base pneumatic actuator (the mass of the piston and the constant force)

are kept as shown in Figure 7.12. When the candidate layouts are inserted in the pantograph

model, the inerter model in a 2D environment, i.e., Eq.(3.20), developed in Chapter 3, is used,

allowing for the centripetal acceleration correction.

To make the optimisation more robust, the uncertainty of the natural frequency of catenary

system, which might be resulted from irregularities of cable’s tension or geometric properties, is

considered. Coupling the HSX pantograph model with the simplified catenary model (Eq. (7.1))

introduced in Section 7.2, a pantograph-catenary interaction model with the HSX pantograph

can be developed here. Apart from this pantograph-catenary interaction model, additional two

pantograph-catenary interaction models using the same HSX pantograph model but catenaries

Figure 7.11: Candidate layout set S2.
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Figure 7.12: The modification of the base suspension for the HSX pantograph.

with ±20% discrepancy for natural frequency, relative to default catenary model, are developed

and included into the optimisation cost function. Note that the natural frequency of default

catenary model, i.e., Eq. (7.1), has been evaluated as 1 Hz with default catenary equivalent

constant stiffness kc0 = 7000 N/m in Subsection 7.3.4. And the natural frequency of the catenary

model can be evaluated theoretically as
1

2π

√
kc0

mc0
. Hence, specifically, by tuning the equivalent

constant stiffness kc0 of the catenary model, additional two catenaries with natural frequencies

0.8 Hz (kc0 = 5000 N/m) and 1.2 Hz (kc0 = 10000 N/m) are developed and included into the cost

function.

Similar with Section 7.3, the optimization aim here is to minimise σmax, the mixmum contact

force standard deviation over the whole operational speed range. For these three pantograph-

catenary models, the maximum contact force standard deviations over the operational speed

interested are σmax1(φi), σmax2(φi) and σmax3(φi), respectively. The maximum value among

them is set to be the value of updated optimisation cost function for optimisation of the HSX
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Table 7.2: Optimization results for new developed HSX pantograph.

Layout
Configuration parameters J2 Reduction

b (kg) c (Ns/m) k (kN/m) (N) (%)

S2−default / 10440 141 11.58 /
S2−1 839 0 85.59 7.21 38%
S2−2 109 109 66.00 7.24 37%
S2−3 0.10 0.98 / 9.95 14%
S2−4 / 0 66.66 7.24 37%
S2−5 / / 66.66 7.24 37%
S∗

2−1 4500 10440 200.00 9.87 15%

pantograph as

J2(φi)=max
(
σmax1(φi),σmax2(φi),σmax3(φi)

)
, i ∈S2,v ∈ [50 km/h,300 km/h] (7.3)

where φi is the design variables for candidate layout i and S2 is the set of the candidate layouts

for HSX pantograph base suspension design, shown in Figure 7.11. Same as preceding sections,

for all the optimizations carried out in this base suspension design, the MATLAB® command

patternsearch (Generalized pattern search method [162]) is used. A number of sets of random

initial values are used to find the optimum parameter values to minimise the cost function J2.

Similar to Section 7.3, the structure-based approach [74] is still used to design beneficial

inertance-integrated configurations for the base suppression of HSX pantograph, where the

layouts representing the topology of the mechanical components are firstly proposed, then the

parameter values of each element in the mechanical network are selected using an optimization

method. In this work, the beneficial mechanical configurations for base suspension of the HSX

pantograph are explored.The total candidate layout sets S2 for the HSX pantograph are shown

in Figure 7.11 where the inerter, damper and spring are labelled as b, c and k, respectively.

S2−default in Figure 7.4 is the conventional base suspension. Five simple candidate layouts are

proposed here to explore the potential benefits for the pantograph.

7.4.2 Results for optimised configurations

The optimization results, based on the HSX pantograph multibody model developed in Section

6.5, are given in Table 7.2. The performance of default base suspension is set to be the base line

in this work. All the proposed configurations, i.e., S2−1, S2−2, S2−3, S2−4, S2−5, achieve reductions

of J2. S2−1, the configuration where inerter, damper, spring are in parallel, achieves a highest

performance improvement, up to 38% reduction of J2 relative to the default base suspension.

The optimum values for damper is 0 Ns/m, which indicates that the damper in parallel can be

neglected and S2−1 can be reduced as a configuration consisting of a spring and an inerter in

parallel. S2−2 also achieves a significant performance improvement with 37% reduction of J2,
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which is a bit smaller than that achieved by S2−1. For S2−2, both damper and inerter in series

with spring reach the up-boundary (109) set at the optimisation algorithm, indicating that the

sub-layout in series with the spring are tended to be rigid connection and the spring dominates

performance improvement. To investigate the inherent nature of the obtained performance

improvements, other three layouts are proposed for further analysis in the following.

To further investigate the contribution of the spring and inerter in S2−1, removing the spring

or the inerter in S2−1 respectively, S2−3 with the spring removed and S2−4 with the inerter

removed are proposed for further optimisation. For S2−2, setting the damper and inerter which

are in series with the spring to be infinite, i.e., rigid connection, S2−2 is simplified to S2−5, only

single spring. According to the optimisation results in Table 7.2, S2−3, the damper and inerter in

parallel achieves a 14% performance improvement with both these two element being around

0, indicating that, without spring, the damper and inerter in parallel have a negative effect for

the proposed performance. Note that, for S2−3, it does not mean that there is no damping for the

pantograph system because a simplified friction force presented as a pair of rotational spring and

damper in parallel is still at joint B. S2−4 and S2−5 achieve the same performance improvement

as S2−2, indicating that the spring dominates the obtained performance improvement. And the

inerter in parallel with the spring can further enhance the performance improvement.

Considering that the original damper may have a function that is not included in our present

cost function, for example, suppressing transient vibrations when raising or lowering the panto-

graph, the performance of an additional configuration, S∗
2−1 is investigated. The layout of S∗

2−1

is the same as S2−1, but the parallel damper is fixed to 10440 Ns/m, i.e., the original value of

conventional damper, and the spring and inerter is then optimised. It turns out that S∗
2−1, can

achieve a 15% performance improvement, indicating that with the default damper in parallel,

the benefit of S2−1 can be lessened, but still significant.

In order to investigate the performance improvement of S2−1 in detail, analysis in the time

domain is considered. Time histories of the contact force for S2−1 and S2−default at 180 km/h are

shown in Figure 7.13 as an example. It is clear that, for the three proposed catenary models,

the amplitudes of contact force variation are all reduced significantly for S2−1 compared with

S2−default. It also observed that the mean contact forces of S2−1 are all reduced a bit than those of

S2−default, these offset can be avoided by adjusting the static force of the base actuator.

Further, for the pantograph system alone, FRFs for the head in the magnitude of S2−default and

S2−1 based pantographs are shown in Figure 7.14. Compared with S2−default based pantograph,

the first resonance frequency of the pantograph for S2−1 based pantograph is tuned to be around

1 Hz which coincides with the natural frequency of the catenary system, see Figure 7.14. Similar

to the discussion in Subsection 7.3.4, this results in the vibration of the pantograph head aligning

with that of the catenary system which appears to reduce the contact force variation. Furthermore,

the displacements of the catenary alone with a constant upward contact force (70 N, the nominal

static contact force of the HSX pantograph) and coupling with the S2−default and S2−1 based
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pantographs in time domain at 180 km/h are also evaluated in Figure 7.16. It is clear that the

phase gap of the catenary displacement between the catenary alone with the constant upward

contact force and catenary coupling with the pantograph is reduced for S2−1 compared with

S2−default in Figure 7.16(a). These means that with S2−1, the pantograph head tends to have the

same phase relative to the catenary system, so as the contact force variation between them is

reduced.

The sensitivity analysis of S2−1 is also carried out as shown in Figure 7.15. The J2 is evaluated

Figure 7.13: Time histories of contact force for S2−1 and S2−default based pantographs at 180 km/h,
coupling the catenaries with (a) kc0 = 5000 N/m, (b) kc0 = 7000 N/m, (c) kc0 = 10000 N/m.
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Figure 7.14: Comparison of amplitudes of FRF for head between S2−1 and S2−default based
pantographs.
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Figure 7.15: Sensitivity analysis of S2−1.

with the inerter, b1, and spring, k1, in the range of 0-1500 kg and 0-100 kN/m, respectively. It can

be observed that if the spring value, k1, is 0, the value of J2 decreases with decreasing inerter

value. And, if the value of inerter, b1, is 0, the minimum J2 can be obtained around k1 at 80

kN/m. Considering S2−1, J2 can achieves a minimum value at k1= 85.59 kN/m and b1= 839 kg in

the range of k1 and b1 considered.

The standard deviation of the contact force across the whole range of operational speeds

are presented in Figure 7.17 for the S2−default and S2−1 based pantographs. There is a 38%

reduction for the S2−1 based pantograph compared with the default one. Note that the effect of

the centripetal acceleration correction term in this case study for the S2−1 based pantograph’s

simulation results is investigated as shown in Appendix A.9.

7.5 Summary and discussion

Firstly, mechanical configurations for the base suspension system are designed for the calibrated

existing multibody pantograph model. The structure-based approach is applied and optimised

configurations to minimise the maximum contact force standard deviation over the operational

speed are obtained. The results suggest that a 40% reduction in the maximum standard deviation

of the contact forces over the whole range of train speeds is possible to achieve using inerter,

based on this specified pantograph-catenary modelling approach considered. Analyses of the

contact force in the time domain for the pantograph with the inerter are carried out, which

shows that the amplitude of the contact force of the S1−0 based pantograph reduced significantly

compared with the default one. Furthermore, mode analysis of the pantograph and the catenary
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Figure 7.16: Time-history displacements relative to equilibrium point of the catenary with the
constant upward contact force and coupling with S2−default and S2−1 based pantographs at 180
km/h.

Figure 7.17: The standard deviations of the contact forces for S2−default and S2−1 based pan-
tographs coupling with the three proposed catenary models over the whole operational speed
range.

shows that in optimizing the inertance-integrated configuration the first resonant frequency of

the pantograph is tuned to the natural frequency of the catenary and this appears to regulate the

128



7.5. SUMMARY AND DISCUSSION

pantograph-catenary contact force oscillation.

Then mechanical configurations for the base suspension system are also optimised for the

experimentally verified HSX pantograph multibody model using the structure-based approach

similarly. While in this case study, three catenary models with different natural frequencies are

considered and the maximum contact force standard deviation among them is defined as the

performance index. For the HSX pantograph, the mechanical configuration with a spring and

a inerter in parallel shows the best performance improvement, achieving a 38% reduction for

the maximum contact force standard deviation for any speed within operational range. With the

further mode analysis of the optimised HSX pantograph, similar principle for the performance

improvement is implied, i.e., the first resonant frequency of the HSX pantograph is significantly

enhanced to the natural frequency of the catenary and this appears to regulate the pantograph-

catenary contact force oscillation.

The numerical implementation of the inertance-integrated vibration suppression method

suggests promising results in improving pantograph-catenary contact performance. Meanwhile,

for different pantographs, the optimised mechanical configurations maybe totally different due

to their unique inherent nature. The obtained results shows that the inertance-integrated

vibration suppression has significant potential in enhancing the capability and efficiency of

passive vibration suppression for the application of pantographs.

It needs to be mentioned that both preceding optimisation result are based on the numerical

pantograph-catenary interaction models based on a simplified catenary model expressed with

3-order Fourier series. With this simplified catenary model, the simulated pantograph-catenary

interaction forces only contain specific harmonics of system fundamental frequency and its

multiple frequencies in the range of low frequency. For the aim in this work, the concept design of

the mechanical configurations for the pantograph base suspensions, the simplification of catenary

model is acceptable. But the interaction forces between pantograph and catenary in practice

contain a wide range of frequencies with inclusion much high frequencies which are not included

in this study. Building on the results obtained in these case studies, future developments are

worthwhile using more detailed catenary models, which will allow further assessment of the

inertance-integrated vibration suppression technology. With more detailed catenary models, such

as, a finite element model, the pantograph-catenary interaction forces will contain wider range of

frequencies, and potential advantages of intertance-integrated vibration suppression applied to

pantograph systems need to be further explored.
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8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The inerter’s model and its application to a multibody system in a 2D or 3D environment have

been developed in this thesis. These were the theoretical bases of the inertance-integrated vibra-

tion suppression for multibody system discussed in this thesis. Then the proposed methods were

applied to designing mechanical configurations for base suspensions of pantographs as examples.

Before the inertance-integrated suspension design for pantographs, accurate multibody models

of the pantographs have been established firstly as base lines. An simplified existing pantograph

multibody model based on published data has been established and improved to better fit with

its corresponding experimental responses firstly. Although best effort has been given, the doubts

on model’s accuracy and reliability still exist because of absence of original experimental data.

Meanwhile, there was scarce public information on pantograph multibody model with all para-

meters available in detail. Hence, a pantograph test rig has been designed and constructed. A

Brecknell Willis HSX pantograph has been tested based on the designed test bed in University of

Bristol. With the measured experimental data, a new HSX pantograph model has been estab-

lished, identified and verified. Lastly, concept designs for base suspensions of these two developed

pantographs have been taken using the proposed inertance-integrated vibration suppression

method in a 2D environment. 40% and 38% reductions of maximum pantograph-catenary contact

force standard deviation over the whole operational speed interested have been achieved for these

two developed pantograph, respectively. Meanwhile, their beneficial performances have been

analysed. It has been shown that, with the obtained beneficial configurations, the first resonance

frequencies of the pantographs were tuned to coincide with the natural frequency of catenary

system, which may has regulated the contact force oscillation. The complete contributions of this
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work are summarised as following.

8.1.1 Inertance-integrated vibration suppression in a 2D or 3D environment

Chapter 3 developed the inerter’s model and the methodology of its implementation in a multi-

body system in a 2D or 3D environment, providing a basic theory for the inertance-integrated

vibration suppression for multibody systems discussed in this thesis. Specifically, the concept

of a uniaxial inerter in a 2D polar coordinate system was discussed firstly, which demonstrated

that the centripetal acceleration correction should be accounted for when the inerter was allowed

to rotate. Then the model of the inerter in a 2D or 3D environment was derived in general

vector form. Expressions for the inerter force in Cartesian and spherical coordinates were also

provided for ease of use. A simple 2D 1DOF inerter-included lumped mass system and an example

of a two-bar mechanism containing an inerter were analysed to demonstrate the centripetal

acceleration correction term’s affects. The main contributions in Chapter 3 are summarised as

following:

• The general inerter force in a 2D or 3D environment was proposed to be defined as a force

proportional to the second time derivative of the distance between its two terminals. The

centripetal acceleration, resulting from rotation of the inerter, needs to be accounted for to

model the inerter force in a 2D or 3D environment.

• A model of uniaxial inerter in a 2D or 3D environment in general vector form was derived

as Eq. (3.9).

• Inerter force in Cartesian and spherical coordinate systems were derived as Eq. (3.10)&(3.11)

for ease use.

• The methodology of implementing the uniaxial inerter in a multibody system was developed,

and introduced as Eq. (3.33).

• The examples showed that the centripetal acceleration correction term affected the system

responses, in terms of oscillation amplitude, the fundamental frequency of free vibrations

and the mean position offset. If the centripetal acceleration correction term in the inerter

force was omitted, significant errors could occur in evaluating the inerter forces and system

responses when operating in a 2D or 3D environment.

8.1.2 Development of a multibody pantograph model

In Chapter 4, a pantograph multibody model was established based on a published pantograph

multibody model developed by Ambrósio et al. [7, 114] and Vieira [8]. Some discrepancies were

observed in terms of the original model’s FRFs compared with its corresponding experimental

data. Basic mode shape analysis of the pantograph was taken using the experimental FRF data,

132



8.1. CONCLUSIONS

which indicated the underestimated damping of head suspension and absence of the effects

resulting from non-ideal joint and flexibility of arms. To better match the experimental data, the

head suspension damping was updated and additional model details are introduced in the model

to allow for non-ideal joints and flexibility of the pantograph upper arm. A methodology to identify

the pantograph parameters with practical physical meaning, using optimization methods, was

proposed. After the calibration, the modified model matched the experimental data accurately

and was used as the default model for the design of an improved base suspension system in

Chapter 7. The main contributions in Chapter 4 are summarised as following:

• According to the experimental FRFs of the pantograph considered, the first mode (around

1.5 Hz) was dominated by pantograph frame mechanism motion with little contribution

from the head. And the second mode (around 6 Hz) was dominated by the motion between

the head and the top point of the upper arm. See detail in Figure 4.6.

• The parameters’ values of the pantograph head suspension were calibrated using the

experimental FRFs to fit the model’s second peak with experimental data. The calibrated

damping value of head suspension is 65 Ns/m.

• The non-ideal joint and flexibility of the arms were considered in the improved model. With

the inclusion of additional features, the first peaks’ amplitude and frequency matched

with the experimental data curves accurately, and the peaks, phase gap in high frequency,

around 11 Hz, were also captured as well as the amplitudes of the second peaks remaining.

The values of rotational spring, ku, at joint B (see Figure 4.10) which was the flexibility of

upper and paralleled spring and damper, k f and c f , at joint B (see Figure 4.10) which were

a equivalent simplification of non-ideal joint effect were identified as ku = 124 kNm/rad, k f

= 6.46 kNm/rad and c f = 334 Nms/rad, respectively.

In summary, after all these calibration and validation, the proposed multibody model described

accurately the dynamic responses with clear physical meanings. This improved multibody panto-

graph was used as a default model to study the base suspension design.

8.1.3 Experimental test and modelling for the base pneumatic actuator of
HSX pantograph

Chapter 5 firstly introduced the motivations to carry out the pantograph tests in University

of Bristol, and an overview of the tests. As there was scarce public information on pantograph

multibody model with all parameters available or experimental data set in detail, to resolve the

doubts of the model’s accuracy and reliability in the previous existing pantograph multibody

model, a pantograph test rig was constructed and the tests for a HSX pantograph were carried

out in University of Bristol. A base pneumatic actuator, as a key subsystem for HSX pantographs,

is with function to raise and lower a pantograph head and suppress vibration. Public information
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on properties and models of the base pneumatic actuator was also rare. Thus, with the base

pneumatic actuator firstly tested and modelled separately in Chapter 5 as a preliminary work

before the whole pantograph tests, an experimentally verified model of the base pneumatic

actuator was developed in Chapter 5. Specifically, the network presentation in pneumatic domain

was firstly introduced. Then an equivalent mechanical network for the pneumatic actuator

was derived from it, with each hydraulic variable modelled as its corresponding mechanical

counterpart. Using the test rig for the pneumatic actuator developed in Bristol University, the

proposed equivalent mechanical model for the pneumatic actuator was identified. It was shown

that the identified model can match well with experimental data both in the force-velocity

admittance Bode plot and time domain for the interested range of frequencies. Lastly, due to the

requirement of efficient simulation speed in the model identification in Chapter 6, a simplified

linear model without the friction force term of the base pneumatic actuator was proposed and

this simplified linear model was used in developing the HSX pantograph multibody model in

Chapter 6. The main contributions in Chapter 5 are summarised as following:

• A equivalent mechanical network for the base pneumatic actuator was derived using

the mechanical-hydraulic analogy. The counterparts between mechanical and pneumatic

elements in the proposed network presentation are beneficial for understanding the physical

inherent properties of the base pneumatic actuator.

• A test rig for pantograph’s base pneumatic actuator was constructed. The general damping

property and friction of the base pneumatic actuator were identified through constant

velocity tests. With the sinusoidal displacement excitations, the effective compliance of the

base pneumatic actuator was identified by fitting the model’s force-velocity admittance to

experimental data.

• It was shown that the identified model for the base pneumatic actuator matched well with

both force-velocity admittance in Bode plot and time-domain responses in the range of

frequencies interested.

• Full understanding of the inherent properties of the base pneumatic actuator and the

proposed accurate equivalent mechanical model are valuable for design and improvement

of the base pneumatic actuator.

8.1.4 Experimental test and model development of the HSX pantograph

In Chapter 6, a pantograph test rig was designed for the whole pantograph tests firstly. The

designed pantograph test rig frame’s fundamental frequency was verified to be significantly

larger than the maximum frequency of the excitation applied, which ensured that the resonance

due to test rig itself was avoided. Using the designed pantograph test rig, static and dynamic

tests were carried out. In the static tests, the head suspension’s stiffness property and the
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equivalent bending stiffnesses of arms were investigated. A linearised head suspension stiffness

was identified and used for developing the new HSX pantograph multibody model. In the dynamic

tests, FRFs of the three selected measurement points were evaluated using the measured data.

Using the experimental FRFs, the developed multibody pantograph model were identified and

verified. Consequently, an experimentally verified pantograph multibody model was developed

successfully and ready to be used in the following suspension design. The main contributions in

Chapter 6 are summarised as following:

• A pantograph test rig was designed and constructed in University of Bristol.

• A linearised stiffness value for head suspension was identified in static tests, which was

used for developing HSX pantograph multibody model.

• FRFs of the selected three measurement points were evaluated using measured data in the

dynamic tests.

• A multibody model of the HSX pantograph was identified by fitting the model FRFs to

experimentally evaluated FRFs’ curves.

8.1.5 Vibration suppression system design

In Chapter 7, the optimised inertance-integrated configurations were designed to minimise the

maximum contact force standard deviation over the operational speeds for the both pantographs

developed. Firstly, mechanical configurations for the base vibration suppression system was

designed for the calibrated existing pantograph multibody model developed in Chapter 4. The

results suggested that a 40% reduction in the maximum standard deviation of the contact forces

for any train speed within operational range was possible to achieve using inerter, based on

this specified pantograph-catenary modelling approach considered. Analyses of the contact force

in the time domain for the pantograph with the inerter were carried out, which showed that

the amplitude of the contact force of the S1−0 based pantograph reduced significantly compared

with the default one. Furthermore, mode analysis of the pantograph and the catenary showed

that in optimizing the inertance-integrated configuration the first resonant frequency of the

pantograph was tuned to the natural frequency of the catenary and this appeared to regulate the

pantograph-catenary contact force oscillation.

Then mechanical configurations for the base vibration suppression system was also optimised

for the new HSX pantograph multibody model developed in Chapter 6 similarly. In this case study,

three catenary models with different natural frequencies were considered and the maximum

contact force standard deviation among them was defined as the performance index. For the HSX

pantograph, a configuration with a spring and inerter in parallel achieved the best performance

improvement, up to a 38% reduction for the maximum contact force standard deviation. With the

further mode analysis of the optimised HSX pantograph, similar principle for the performance
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improvement was implied, i.e., the first resonant frequency of the HSX pantograph is significantly

enhanced to the natural frequency of the catenary and this appeared to regulate the pantograph-

catenary contact force oscillation. The main contributions in Chapter 7 are:

• Beneficial inertance-integrated mechanical configurations for these two pantographs were

obtained with significant reductions of the maximum contact force standard deviation.

A single inerter achieved a 40% performance improvement for the calibrated existing

pantograph, and a spring and inerter in parallel achieved a 38% performacne improvement

for the new developed HSX pantograph.

• The performance of the pantographs with designed benefical mechanical configurations

were verified both in time domain and over the whole range of the operational speeds.

• Tuning the first resonant frequency of the pantographs with the benefical mechnical

configurations to the natural frequency of the catenary appeared to regulate the pantograph-

catenary contact force oscillation.

8.2 Future work

Based on the work presented in this thesis, there are still many directions that can be extended

as future research. A few examples are listed in this section.

8.2.1 Develop inerter model in a 2D or 3D environment considering more
practical effects

In Chapter 3, the formulations for modelling a uniaxial inerter in a 2D or 3D environment and

the methodology of its implementation in a multibody system were developed. Here we only

considered the implications of using an idealised uniaxial inerter in a 2D or 3D environment. It

is noted that, in line with much of the literature, we treated the inerter as an idealised element.

When the device is implemented physically, in addition to the centripetal acceleration effects

highlighted here, further device-dependent considerations may need to be addressed, including

mass moment of inertia and possibly gyroscopic effects, as well as friction and compliance.

8.2.2 Develop the HSX pantograph model with chains at the knee joint and
nonlinear effects

In Subsection 6.5.2, the identified flexibility value ku= 29 kNm/rad was much smaller the the

experimental evaluation of the bending stiffness of the upper arm (110 kNm/rad) in Section 6.3.1.

This is because chains are used to connect the terminals of the lower linkage and upper arm at

the knee joint B. The application of chains at the joint B brings in more flexibility. The identified

ku= 29 kNm/rad includes flexibility of the upper arm and inside the joint B resulting from the
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chains. To enhance the physical interpretation of the pantograph multibody model, the bending

effects of the upper arm and the chains at the knee joint B would ideally be modelled separately.

Also more details of each component should be included into the model for further more practical

study of the pantograph, for example, specific component design.

In the process of developing the pantograph multibody model, friction forces for the base

pneumatic actuator and main pantograph frame were integrated into a simplified linear rotational

spring and damper in parallel at joint B equivalently. With this approximation, the proposed

model was conceptually simple and linear, as well as captured the basic principle properties of

the pantograph. To model a more accurate pantograph model, nonlinear effects, such as friction

force and backlashes in the joints should be considered.

8.2.3 Identify inertance-integrated suspension for pantographs with a more
detailed catenary model

In Chapter 7, the obtained optimisation result were based on the numerical pantograph-catenary

interaction models using on a simplified catenary model based on a 3-order Fourier series. With

this simplified catenary model, the simulated pantograph-catenary interaction only captured

specific harmonics of system’s fundamental frequency and its multiple frequencies in the range

of low frequencies. As the interaction forces between pantograph and catenary in practice

contain a wide range of frequencies with inclusion much high frequency due to deformation

and friction force between the contact interfaces. Building on the results obtained in these case

studies, future developments are worthwhile using more detailed catenary models, which will

allow further assessment of the inertance-integrated vibration suppression technology in such

conditions. With more detailed catenary models, such as, a finite element model, the pantograph-

catenary interaction forces will contain wider range of frequencies, and potential advantages

of intertance-integrated vibration suppression applied to pantograph systems can be further

explored. Also other effects, such as transient behaviour when entering or leaving tunnels, or

stochastic components of input, from irregularity of the catenary or track profile, could be further

investigated.

8.2.4 Physical prototype design and experimental validation

The optimisation results presented In Chapter 7 are based on simulation studies. To facilitate the

application of developed beneficial inertance-integrated vibration suppression device to industries,

it is necessary to verify their benefits experimentally. Prototypes need to be established, tested

and refined to match the designed expected dynamic properties. Then a technique such as hybrid,

or hardware-in-the-loop, testing could be employed to test the pantograph. In such a setup, the

pantograph would be physically tested with the cable system simulated numerically. Actuators

would be used at the interface between the two to ensure that equilibrium and compatibility

conditions are met. Such a set-up would allow the physical performance of the pantograph to be
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assessed for a wide range of cable configurations without the need for numerous changes to the

experimental set-up as the cable parameters are represented numerically.
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A.1 Linearisation of Eq. (3.14)

If a small perturbation is applied to the equilibrium point of the system in the 2D inerter-included

lumped mass system, the position of the lumped mass can be expressed as

y= Lb − yd (A.1)

where yd is the dynamic component of the response. Differentiating both sides of Eq. (A.1) yields

ẏ= ẏd (A.2)

ÿ= ÿd (A.3)

Substituting Eq. (A.1) into the length between the two terminals,
√

La
2 + y2 , yields√

La
2 + y2 = L0

√
1+ 2Lb yd + yd

2

L0
2 ≈ L0

(
1+ 2Lb yd + yd

2

2L0
2

)
. (A.4)

If only the first-order term of yd is retained,
√

La
2 + y2 can be approximated as√

La
2 + y2 ≈ L0 + Lb

L0
yd. (A.5)

Using Eq. (A.5), Eq. (3.14) can be linearised as(
m+ (

Lb

L0
)2b

)
ÿd +k(

Lb

L0
)2 yd = 0. (A.6)

In the linearised system, the equivalent system mass, me, is m+ (
Lb

L0
)2b and the equivalent

system stiffness, ke, is k(
Lb

L0
)2. So, the natural frequency of the linearised system is fe = 1

2π

√
ke

me
which, for the given parameter values, is 1.518 Hz.
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A.2 Transformation matrix for body i expressed with defined
Euler angles

Ai(θi)=


cosψi cosφi −cosθi sinφi sinψi −sinψi cosφi −cosθi sinφi cosψi sinθi sinφi

cosψi sinφi +cosθi cosφi sinψi −sinψi sinφi +cosθi cosφi cosψi −sinθi cosφi

sinθi sinψi sinθi cosψi cosθi

 (A.7)

A.3 Parameters of the example 2D inerter-included two-bar
mechanism

Table A.1: Local coordinates of each point of the two-bar mechanism.

Body Point
Local coordinates (m)
(X̄i-Ȳi)

Body 1
A (-0.5,0)
B (0.5,0)
D (0.25,0)

Body 2
A (-0.5,0)
B (0.5,0)
D (0.25,0)

Table A.2: Parameters of the two-bar mechanism.

Parameter Value Units
kr 1000 Nmrad−1

k 100 Nm−1

c 100 Nsm−1

b 10 kg
M1 1 kg
M2 1 kg
J1 0.083 kgm2

J1 0.083 kgm2

A.4 Sensitivity analysis of kl

In order to investigate the sensitivity of the bending stiffness of the lower arm, a rotational

spring, kl , is introduced in the lower arm at point A. FRF amplitudes of the measurement points

with several enumerated values of kl in a wide range (10 kNm/rad, 50 kNm/rad, 100 kNm/rad,

500 kNm/rad, 1000 kNm/rad, 10000 kNm/rad) are investigated. The results are shown as Figure

A.1. It shows that the FRF amplitudes of the measurement points are not significantly affected

by kl . Hence, the bending stiffness can be negligible.
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Figure A.1: Sensitivity analysis of kl : FRF amplitudes of the (a) head, (b) top of the upper arm
and (c) top of the lower arm.

A.5 Process of estimating k̃u

The main span of the upper arm, BE (Figure 1), can be modelled as a flexible cantilever beam

fixed at point B with a transverse load P applied at E. The deflection of the end E is then δ= Pl3

3EI
where l ≈ 2 m is the length BE, E ≈ 210×109 Pa is Young’s modulus and I is the second moment

of area of the beam. In this work, the second moment of area for the hollow circular section can

be calculated as

I = π

64
(
D4 − (D−2d)4)≈ 4×10−7 m4 (A.8)

where D is the outside diameter, d is the thickness. The cantilever beam can be simplified as

a rigid beam constrained by a revolute joint and an equivalent rotational spring (k̃u) at B. An

angle θ of the rigid beam can be generated when the load P is applied at the other end. Using a

small angle approximation, θ ≈ δ

l
. The moment at point B is MB = Pl. The equivalent rotational

stiffness at point B can be evaluated as

k̃u = MB

θ
≈ Pl2

δ
= 3EI

l
= 120 kN/rad. (A.9)
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A.6 Experimentally measured relative displacement of base
pneumatic actuator’s piston in the whole pantograph test
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Figure A.2: Experimentally measured relative displacement of piston of base pneumatic actuator
in the whole pantograph test.
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FRAME

A.7 The dimensions and cross-sections of components of the test
rig frame

The general structure of the designed test rig consists of six parts: the main frame, bracings,

actuator frame, electrical actuator, base mounts and test bed as shown in Figure 6.1. To avoid

structural deformation in the tests, a triangle steel structure are used in the designed test rig’s

frame. The test rig’s main frame is made of mild steel (S355) with 2720 mm height and 1400

mm width, and fixed on the test bed with M20 bolts. Two bracings are designed to support the

main frame on the side where the actuator hangs, which construct triangle structures with the

vertical main frame from the side view. The electrical actuator is fixed centrally on a horizontal

beam of the main frame vertically via the actuator frame. The main frame consists of two vertical

steel columns, three horizontal steel beams and a steel cross-bracing assembled by bolts and

nuts. The cross-bracing is designed to enhance the stiffness of the whole frame. The horizontal

beams are manufactured by welding a parallel flange channel and a plate to form a box section.

Three 200 mm height base mounts constrained on the test bed rigidly are designed to install the

pantograph. For the detailed geometry and cross-section information of these components, see

following Table A.3.

Table A.3: The dimensions and cross-sections of components of the test rig frame.

Component Cross-section Section designation Length

Vertical column Universal beam Depth 203 mm, width 102 mm, mass per meter
23 kg

2700 mm

Horizontal beam Box Parallel flange channel: depth 150 mm, width
90 mm, mass per meter 24kg; plate: size 1275
mm×150 mm, thickness 10 mm

1295 mm

Cross Equal leg angle 120 mm×120 mm, thickness 10 mm \

Bracing Equal leg angle 100 mm×100 mm, thickness 10 mm 3570 mm

Actuator frame Equal leg angle 50 mm×50 mm, thickness 6 mm \
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A.8 Channels of sensors

Table A.4: Channels of sensors in pantograph test rig.

Sensor No. Sensor name Channel Measurement Type Unit

1 acc1 1 acceleration m/s2

2 acc2 2 acceleration m/s2

3 acc3 3 acceleration m/s2

4 acc4 4 acceleration m/s2

5 acc5 5 acceleration m/s2

6 acc6 6 acceleration m/s2

7 acc7 7 acceleration m/s2

8 acc8 8 acceleration m/s2

9 LVDT1 10 displacement mm
10 LVDT2 11 displacement mm
11 Inclinometer1 12 rotation degree
12 Inclinometer2 13 rotation degree
13 Laser dis. Sensor 1 14 displacement mm
14 Rotary sensor 15 rotation degree
15 Laser dis. Sensor 2 16 displacement mm
16 Laser dis. Sensor 3 17 displacement mm
17 Load cell 50kg 33 force kg
18 Load cell 10000kg 34 force newton
19 Load cell 50kg 36 force kg
20 Strain gauge 1 (120 Ohms) 37 strain \
21 Strain gauge 2 (120 Ohms) 39 strain \
22 Strain gauge 3 (350 Ohms) 41 strain \
23 Strain gauge 4 (350 Ohms) 42 strain \
24 Strain gauge 5 (350 Ohms) 43 strain \
25 Strain gauge 6 (350 Ohms) 44 strain \
26 Strain gauge 7 (350 Ohms) 45 strain \
27 Strain gauge 8 (350 Ohms) 46 strain \

144



A.9. SIMULATION RESULTS OF MODELS WITH AND WITHOUT THE CENTRIPETAL
ACCELERATION CORRECTION FOR S2−1

A.9 Simulation results of models with and without the
centripetal acceleration correction for S2−1

S2−1 based pantograph models with and without consideration of centripetal acceleration cor-

rection in their inerter are compared as shown in Figure A.3. It can be observed in Figure A.3

that the effect of the centripetal acceleration correction is not significant in the case study. This

is because the rotation effect in the case study is quiet tiny. However, this does not mean that

the centripetal acceleration correction discussed in Chapter 3 is not meaningful. The inerter’s

models in 3D or 2D environment developed in Chapter 3 do offer a completable methodology to

model the inerter. If the inerter’s rotation is significant, the centripetal acceleration correction

does have significant effect.
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Figure A.3: Comparison of the simulation results between models with and without consideration
of centripetal acceleration for S2−1 in the case study.
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