

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Poenaru, Andrei

Title:
Modern vector architectures for high-performance computing

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Modern Vector Architectures for

High-Performance Computing

Andrei Poenaru

A dissertation submitted to the University of Bristol in accordance with the

requirements for award of the degree of Doctor of Philosophy in the Faculty

of Engineering, Department of Computer Science.

June 2021

Word count: 42,675

Abstract

Recent generations of general-purpose central processing units (CPUs) for
the high-performance segment have had to adopt new approaches in order to
deliver increasing performance. Clock frequency has increased little, but the
number of cores per chip has increased by several times in a single decade.
Inside each core, single instruction, multiple data (SIMD) capabilities have
also increased in capacity, resulting in modern vector processors that can
achieve peak performance close to that of graphics processing units (GPUs),
while maintaining the versatility of a general-purpose processor. These in-
creases in compute power, however, have not been met with similar advances
in memory performance.

These architectural changes have coincided with another change in the
High-Performance Computing (HPC) landscape: Arm-based processor designs
have made their way into supercomputer systems alongside commodity x86
processors. These designs have come in the form of custom implementations
from several vendors, and they aim to address deficiencies in both compute
and memory performance for the HPC environment. Arm’s implementation
of wide SIMD is called the Scalable Vector Extension (SVE), and it repres-
ents a modern implementation of ideas first seen in the vector architectures
of the original Cray supercomputers of the 1970s. For memory bandwidth,
the novelty of these Arm-based designs lies in a significant increase in the
number of memory channels available, and even in bringing high-bandwidth
memory from GPUs to CPUs.

This thesis is a study of modern CPU architectures for HPC. The fo-
cus of this research is on the efficacy of the vector capabilities in these new
processors, which it investigates from the twin perspectives of performance
and programmability. The initial experiments are performed in the context
of the first Arm-based hardware adopted in HPC, building up to experi-
ments in simulated and emulated environments on the challenges faced by
a wide vector instruction set like SVE, and finally analysing the real-world
performance of the first implementation of SVE in hardware. The thesis
concludes with an outlook towards the next generations of high-performance
processors, highlighting the need for co-design in the quest for performance,
and suggesting future research avenues for a new generation of performance
tools that can enable informed design decisions for upcoming hardware.

i

ii

Dedication

Thank you to Prof Simon McIntosh-Smith for six years of guidance, in-

spiration, and support. You have been a great leader and mentor for my

research projects, and I could not have asked for any more patience, flex-

ibility, open-mindedness, or pragmatism from my supervisor. From you I

have learned a composed, constructive, and realistic approach to unexpected

circumstances that reaches beyond the scope of this thesis, and for that I am

grateful.

Thank you to the Bristol HPC Group for treating me as one of their own

from my very first day. Your comments, advice, and feedback have been

most helpful as I’ve learned how to be a researcher, and our conversations

have made pleasant journeys that were otherwise only long and tiring.

To my family and close friends, thank you for being by my side the whole

way. Your continued reassurance and confidence in me have been invaluable

throughout these four years.

Thank you to the many people at Arm who have worked with me through-

out this PhD: Assad, Chris, David, John, Olly, Phil, Roxana, and Will. You

have been nothing but welcoming, and you have made my journey more

engaging, more valuable, more unique.

Finally, my thanks go to members of the Bristol Computer Science De-

partment that have made me feel part of a big family throughout my time

here: Ben, Bogdan, Dan, David B, David M, and Tilo. It has been a pleasant

and rewarding journey being part of this department, learning from you, and

later working alongside you. It was your energy and enthusiasm that helped

me decide to pursue this PhD.

iii

iv

Acknowledgements

This thesis used the Isambard UK National Tier-2 HPC Service operated

by GW4 and the UK Met Office, and funded by EPSRC (EP/T022078/1).

Access to the Cray XC50 supercomputers Swan and Horizon was kindly

provided by Cray through their Marketing Partner Network. Work in this

thesis was carried out using the HPC Zoo, a research cluster run by the

University of Bristol HPC Group. Some experiments were performed on the

University of Bristol supercomputer systems BluePebble and Catalyst. Early

work on the A64FX platform was possible thanks to a remote Early Access

programme from Fujitsu.

This PhD was sponsored through a Doctoral Training Partnership stu-

dentship award by the Engineering and Physical Sciences Research Council

(EPSRC) and the EPSRC National Productivity Investment Fund (NPIF).

Some of this work was made possible though an Industrial CASE (ICASE)

award in collaboration with Arm. In addition to project funding, Arm kindly

provided early access to design documents, technical specifications, and de-

veloper tools that enabled research around their emerging Scalable Vector

Extension (SVE) instruction set.

v

vi

Author’s declaration

I declare that the work in this dissertation was carried out in accordance

with the requirements of the University’s Regulations and Code of Practice

for Research Degree Programmes and that it has not been submitted for any

other academic award. Except where indicated by specific reference in the

text, the work is the candidate’s own work. Work done in collaboration with,

or with the assistance of, others, is indicated as such. Any views expressed

in the dissertation are those of the author.

SIGNED: ... DATE:..........................

vii

viii

Contents

1 Introduction 1

1.1 Contributions . 3

2 Background 5

2.1 Vectorisation . 7

2.1.1 Generating and Running Vector Code 10

2.1.2 An Overview of Modern Vector Instruction Sets 12

2.2 Modern High-Performance CPU Architectures 15

2.3 Programming Models and Performance Portability 16

2.4 Common Classes of HPC Applications 20

2.5 Benchmarking . 21

2.5.1 Mini-Apps . 24

3 Emerging CPU Architectures for HPC 29

3.1 High Performance Arm-based Systems 31

3.1.1 The ThunderX2 Microarchitecture 31

3.2 Benchmarks . 34

3.3 Experimental Set-Up . 39

3.4 Results . 42

3.4.1 Best Application Performance 42

3.4.2 Compiler Performance Comparison 50

3.4.3 Library Performance Comparison 55

ix

CONTENTS

3.5 ThunderX2 Performance Summary 57

3.6 Reproducibility . 58

4 Next-Generation Vector Instruction Sets 59

4.1 Modern Vector Instructions Sets 60

4.2 SVE Evaluation Methodology 61

4.3 Results . 63

4.3.1 Compiler Vectorisation Efficiency 63

4.3.2 Dynamic Instruction Analysis 65

4.3.3 SVE Vector Lane Utilisation 69

4.3.4 SVE Memory Operations 71

4.4 SVE Usage Discussion . 73

4.5 Relevance of SVE for HPC . 77

4.6 Towards Accurate Performance Modelling 78

4.7 Reproducibility . 79

4.8 Conclusion . 79

5 The Effects on Cache of Wide Vector Operations 81

5.1 Processor Cache Design Space 83

5.2 Cache Analysis Methodology 84

5.3 Results . 88

5.3.1 Cache Parameters . 88

5.3.2 SVE Width . 91

5.3.3 Lifetimes . 93

5.3.4 Non-Contiguous Accesses 95

5.4 Implications for Vector Processors 98

5.5 Towards Performance-Portable Application Design 98

5.6 Reproducibility . 100

5.7 Conclusion . 100

6 Next-Generation Vector Processors 101

6.1 Background . 102

6.2 Performance Evaluation Methodology 103

6.2.1 Bandwidth-Bound Benchmarks 104

x

CONTENTS

6.2.2 Compute-Bound Benchmarks 106

6.3 Results and Performance Analysis 107

6.3.1 Benchmark Results . 107

6.3.2 Thread Placement on the A64FX 117

6.4 Future Work . 120

6.5 Reproducibility . 121

6.6 Conclusion . 121

7 Programming Models for Modern HPC Architectures 123

7.1 Background . 125

7.1.1 High-Performance Molecular Docking 125

7.1.2 Modern Parallel Programming Models 125

7.1.3 Performance Portability 127

7.2 Evaluation Methodology . 127

7.2.1 A BUDE Mini-App . 127

7.2.2 Performance Analysis 128

7.3 Results and Performance Analysis 131

7.3.1 CPUs . 131

7.3.2 GPUs . 137

7.4 Towards Portable High-Performance Code 139

7.5 Reproducibility . 143

7.6 Conclusion . 144

8 Research for Future HPC Architectures 145

8.1 Towards Accurate Performance Modelling 145

8.2 Next-Generation Vector Processors 146

8.3 Productivity in Modern Programming 147

9 Conclusion 149

Appendix A Data 155

A.1 Chapter 3: Emerging CPU Architectures for HPC 155

A.2 Chapter 4: Next-Generation Vector Instruction Sets 157

A.3 Chapter 5: The Effects on Cache of Wide Vector Operations . 170

xi

CONTENTS

A.4 Chapter 6: Next-Generation Vector Processors 174

A.5 Chapter 7: Programming Models for Modern HPC Architectures180

Appendix B Cache Simulator Design 183

B.1 The Main Loop . 183

B.2 Reading Execution Traces . 184

B.2.1 Efficient Reading of Traces 185

B.3 Cache Models . 186

B.3.1 Capturing Simulation Data 188

B.4 Configuration Files . 188

B.5 Simulator Output . 189

B.6 Testing . 190

Acronyms 191

References 195

xii

List of Tables

3.1 Processor model details and their peak performance. 40

3.2 Compilers available for each platform. 40

3.3 Third-party libraries, the benchmarks that use them, and the

available variants. 40

3.4 Best compiler for each application on the platforms studied. . 51

3.5 Initial TX2 compiler versions from 2018 compared to the latest

available releases in 2021. 54

4.1 Number of loops vectorised by each compiler on the top loop-

nests, selected by percentage of total run time on a ThunderX2

processor, in the mini-apps studied. The results for AVX2 and

AVX-512 were identical; here they share the AVX label. . . . 64

5.1 Cache configurations of current-generation server-class pro-

cessors based on Arm architecture. Level 2 is shared on A64FX,

but private on TX2; TX2 has a shared cache at Level 3. 86

5.2 Percentage differences between data from simulation and equi-

valent statistics obtained from querying hardware counters on

real processors. The simulated results are within 10% of the

data collected from hardware. 86

6.1 Hardware specifications of the processors benchmarked. 105

7.1 Hardware platforms used for evaluation. 129

xiii

LIST OF TABLES

7.2 Compilers used and their programming model and target plat-

form support. 130

A.1 Data from Figure 3.1. 155

A.2 Data from Figure 3.4. 156

A.3 Data from Figure 3.5. 156

A.4 Data from Figure 3.6. 156

A.5 Data from Figure 3.8. 157

A.6 Data from Figure 4.1: Instruction count, grouped by instruc-

tion type, for the STREAM benchmark. 157

A.7 Data from Figure 4.2: Instruction count, grouped by instruc-

tion type, for the BUDE benchmark. 159

A.8 Data from Figure 4.3: Instruction count, grouped by instruc-

tion type, for the TeaLeaf benchmark. 161

A.9 Data from Figure 4.4: Instruction count, grouped by instruc-

tion type, for the CloverLeaf benchmark. 163

A.10 Data from Figure 4.5: Instruction count, grouped by instruc-

tion type, for the MegaSweep benchmark. 165

A.11 Data from Figure 4.6: Instruction count, grouped by instruc-

tion type, for the MiniFMM benchmark. 166

A.12 Data from Figure 4.7. 167

A.13 Data from Figures 5.6, 5.7, and 5.8: Cache miss rates at

different SVE widths for the CloverLeaf, MegaSweep, and

MiniFMM benchmarks, respectively, on the ThunderX2 and

A64FX processors. 171

A.14 Data from Figure 5.9: Total number of non-contiguous ac-

cesses, grouped by the number of cache lines touched at each

SVE width for the CloverLeaf benchmark. 172

A.15 Data from Figure 5.10: Total number of non-contiguous ac-

cesses, grouped by the number of cache lines touched at each

SVE width for the MiniFMM benchmark. 173

A.16 Benchmark results for each compiler on each platform covered. 174

xiv

LIST OF TABLES

A.17 Data for Figure 6.11: Benchmark performance for different

run-time configurations on the A64FX. 179

A.18 MiniBUDE performance data on all platforms studied, grouped

by programming model. 180

xv

LIST OF TABLES

xvi

List of Figures

2.1 Scalar (a) and vector (b) instructions. 8

2.2 x86 vector register aliases: xmm and ymm refer to the lower 128

and 256 bits, respectively, of the 512-bit zmm registers. 13

2.3 SVE vector registers. NEON (V) registers are aliased to the

lower 128 bits of the full SVE (Z) registers. Additional predic-

ate (P) and control (ZCR) registers also depend on the vector

length (VL). Source: Arm [127]. 14

2.4 Example of a roofline chart, a visualisation produced using the

roofline model. The kernel’s achieved performance is below the

memory bandwidth roof. 24

3.1 Relative performance of four application on the different SMT

settings of a TX2 node. Higher numbers represent faster run

times. 32

3.2 The cache configuration of the 32-core ThunderX2 processor.

Source: Cavium [16]. 33

3.3 Total (aggregate) cache bandwidth achieved on the Thun-

derX2 (TX2) and Intel Xeon Platinum 8176 (SKL). 34

3.4 Relative performance of mini-apps compared to Intel Broad-

well. Higher numbers represent better performance. 42

3.5 Relative performance of applications compared to Intel Broad-

well. Higher numbers represent better performance. 43

xvii

LIST OF FIGURES

3.6 Relative performance of mini-apps running on ThunderX2 when

compiled with different toolchains. 52

3.7 Relative performance of full applications running on Thun-

derX2 when compiled with different toolchains. For each ap-

plication, the fastest result is labelled “100%”. Build- and

run-time errors are marked in red, and dashes indicate build

configurations not supported at the time of writing. 53

3.8 Relative performance of the latest version of TX2 compilers in

2021 compared to the initial releases in 2018. Numbers above

1 represent an increase in performance. 54

3.9 Relative performance of optimised maths libraries on Thun-

derX2. 56

4.1 Dynamic instruction count and grouping for STREAM. Lower

is generally better. A64 refers to scalar instructions; NEON

refers to base-AArch64 ASIMD vector instructions; the re-

maining groups are all SVE instructions. 66

4.2 Dynamic instruction count and grouping for miniBUDE. Lower

is generally better. A64 refers to scalar instructions; NEON

refers to base-AArch64 ASIMD vector instructions; the re-

maining groups are all SVE instructions. 67

4.3 Dynamic instruction count and grouping for TeaLeaf. 68

4.4 Dynamic instruction count and grouping for CloverLeaf. . . . 68

4.5 Dynamic instruction count and grouping for MegaSweep. . . . 69

4.6 Dynamic instruction count and grouping for MiniFMM. 70

4.7 Histogram showing the number of active bits in the SVE op-

erations performed by MiniFMM. The application cannot sat-

urate the full widths of the vectors when the SVE length is

512 bits or higher. 71

4.8 Histogram showing the number of active bits in the SVE op-

erations performed by miniBUDE. Vectorisation is perfectly

efficient at all SVE widths. 72

xviii

LIST OF FIGURES

4.9 Relative counts, by number of instructions, of memory opera-

tions in miniBUDE. All memory accesses are contiguous and

most are performed through SVE instructions. 74

4.10 Relative counts, by number of instructions, of memory opera-

tions in CloverLeaf. Memory accesses are split between SVE

and non-SVE instructions. In the vast majority of cases where

SVE is used, accesses are contiguous and all the lanes are being

utilised. 74

4.11 Relative counts, by number of instructions, of memory opera-

tions in MiniFMM. This applications shows a mixture of SVE

and non-SVE operations, and the SVE ones show a further

split between contiguous and non-contiguous accesses. Not all

lanes are always used in SVE operations for MiniFMM. 75

5.1 Cache misses, as a percentage of total cache accesses, for

CloverLeaf in different cache configurations, at the two levels

of cache. The A64FX and TX2 configurations are highlighted

in orange and pink, respectively. 88

5.2 Cache misses, as a percentage of total cache accesses, for

MegaSweep in different cache configurations, at the two levels

of cache. 89

5.3 Cache misses, as a percentage of total cache accesses, for

MiniFMM in different cache configurations, at the two levels

of cache. 89

5.4 Cache miss rates for at different SVE lengths, for the cache

configurations in the Marvell ThunderX2 (TX2) and the Fujitsu

A64FX (A64FX). 91

5.5 Cache miss rates for at different SVE lengths, for the cache

configurations in the Marvell ThunderX2 (TX2) and the Fujitsu

A64FX (A64FX) on the MiniFMM benchmark. 92

xix

LIST OF FIGURES

5.6 Level 1 cache lifetimes for CloverLeaf at different SVE lengths

under the configurations of the A64FX and the TX2. A higher

mean (µ) shows more time spent in cache on average; σ is the

standard deviation. 94

5.7 Level 1 cache lifetimes for MegaSweep at different SVE lengths

under the A64FX and TX2 configurations. 94

5.8 Level 1 cache lifetimes for MiniFMM at different SVE lengths

under the A64FX and TX2 configurations. 95

5.9 Distribution of the numbers of cache lines touched by non-

contiguous SVE memory accesses for CloverLeaf on the A64FX

and TX2 cache configuration. Thicker bars represent more

memory accesses. 96

5.10 Distribution of the numbers of cache lines touched by non-

contiguous SVE memory accesses for MiniFMM on the TX2

cache configuration. On the A64FX configuration, all requests

were services by 2 cache lines. 97

6.1 A64FX block diagram. Source: Fujitsu [70]. 103

6.2 Achieved bandwidth in BabelStream Triad. Higher numbers

show better results. 108

6.3 TeaLeaf bm5 benchmark time. Lower numbers show better

results. 109

6.4 CloverLeaf bm16 benchmark time. Lower numbers show better

results. 110

6.5 OpenFOAM DrivAer solve time after 50 time steps. The time

taken for the first step is excluded. Lower numbers show better

results. 112

6.6 Achieved performance in miniBUDE. Higher numbers show

better results. 113

6.7 SPARTA benchmark time using the collisional flow input, 10M

cells, and 5000 iterations. Lower numbers show better results. 114

6.8 MiniFMM benchmark time using a Plummer and the OpenMP

tasks implementation. Lower numbers show better results. . . 115

xx

LIST OF FIGURES

6.9 Achieved performance in two GROMACS benchmarks. The

open-source FFTW library was used with GCC and Fujitsu,

ArmPL was used with the ACfL, MKL with the Intel compiler,

and Cray’s optimised build of FFTW was used with CCE.

Higher numbers show better results. 116

6.10 Performance across all benchmarks, normalised to Intel Cas-

cade Lake. The best compiler choice was used in each case.

Higher numbers represent higher performance. 118

6.11 Comparison of MPI–OpenMP run configurations on A64FX.

As many OpenMP threads were used as needed in each case

to fill all 48 cores. Lower numbers show better results. 119

7.1 Performance of the OpenMP implementation at different group

sizes, normalised to the best result on each platform. Plat-

forms are labelled using the abbreviations in Table 7.1 and

the number of cores. Higher numbers, shown here in brighter

colours, correspond to higher performance. 132

7.2 Performance of the OpenMP implementation across systems

and compilers. Higher numbers represent faster execution. . . 133

7.3 Cache-aware roofline for the Cascade Lake platform showing

the achieved performance for miniBUDE. 134

7.4 Performance of Kokkos with the OpenMP backend on the test

platforms. Higher numbers represent faster execution. 135

7.5 Relative performance of SYCL implementations, on the plat-

forms where more than one was available. Higher numbers

represent faster execution. 136

7.6 Performance of the GPU implementations, normalized to the

fastest result on each platform. The fastest model on each

platform is labelled explicitly. 140

7.7 Achieved performance across all programming models, norm-

alised to the fastest result on each platform. Lighter colours

correspond to higher relative performance; blank cells are im-

possible results. 141

xxi

CHAPTER 1

Introduction

Computational science is an integral part of modern scientific research. It

gives scientists tools for early and rapid experimentation at a cost far below

what is possible without computer systems. Each scientific domain brings

its own set of problem types and challenges to overcome, but the underlying

systems have similar characteristics. The field that brings together these

challenges and works to improve computational systems for the benefit of all

areas of science is High-Performance Computing (HPC).

HPC is concerned with architecting and exploiting computing systems to

their fullest in scientific applications. The core research in HPC that eventu-

ally benefits the wider fields of science revolves around modelling computer

architectures, understanding their weak and strong points, designing software

to exploits those, and proposing improvements for future hardware genera-

tions. Since the times of the early Cray supercomputers in the 1970s [117],

HPC hardware has taken many forms, but one core goal has stayed the same:

designing architectures that bring maximum computational power to domain

scientists, as effortlessly as possible.

The Cray-1 was a computer that utilised purpose-built hardware to achieve

high performance. This approach was common in HPC even in the 2000s,

but in the 1990s a different paradigm appeared: instead of large mainframes,

powerful computational systems could be built from collections of smaller,

general-purpose hardware. The new paradigm gained traction quickly, and by

2010 the majority of HPC systems were built from commodity hardware and

1

ran the same operating systems as servers and workstations everywhere [132,

64].

One part of the motivation behind this change was production costs,

but another part was the increasing overlap with consumer hardware: pro-

cessor features that were previously used in HPC found their use in home

computers. Early examples of such features migrating from enterprise to con-

sumer hardware are floating-point capabilities, error-correcting memory, and

64-bit word sizes; a more recent example is vector processing, the paradigm

in which single instructions operate on several operands — or sets of op-

erands — at the same time. The Cray-1 and the earlier systems TI-ASC

from Texas Instruments and STAR-loo from Control Data Corporation were

the first architecture to utilise vector processing [33], but by the year 2000

desktop processors included functional units for single instruction, multiple

data (SIMD) [36] operations, which brought significant speed-up to multime-

dia applications. For video games and advanced video encoding/decoding,

dedicated hardware was added to general-purpose processors: video cards,

or graphics processing units (GPUs). The late 2000s then saw GPUs reach

back into HPC through a model called general-purpose graphics processing

units (GPGPUs), based on the observation that GPUs are at their core wide

vector processors and, as had been correctly identified many decades before,

scientific workloads can benefit from such processors.

GPUs saw a big rise in adoption over the following years [62], and since

then the HPC community has focused on quantifying the benefit of wide

vector processing and optimising application code to take advantage of it [65].

On the one hand, many Machine Learning (ML) applications were identified

as prime use cases for GPUs, and today most research in the field of artificial

intelligence (AI) uses GPUs [96, 54]. On the other hand, porting many

traditional applications to GPUs has proved difficult, and so a middle-ground

could be more favourable: a general-purpose central processing unit (CPU)

with wide vector capabilities may bring a large portion of a GPUs benefit

with few of the drawbacks. This design is prevalent in 2021, when all major

vendors of high-performance processors integrate SIMD units in their CPUs,

2

CHAPTER 1. INTRODUCTION

and this hardware often has higher vector processing capabilities than GPUs

themselves had a decade ago.

In 2016, Arm introduced the Scalable Vector Extension (SVE), a new vec-

tor instruction set that combines modern instruction set architecture (ISA)

design with the classic idea of vector processing [128]. This announcement

aligned with another step in unifying HPC and consumer-grade hardware:

Arm-based CPUs making their way into the x86-dominated supercomputer

world [112, 77, 115]. SVE is enabling Arm to exploit an industry-wide move

towards accelerated vector computation inside CPUs [122, 31], and in 2020

the fastest supercomputer in the world was powered by this new architec-

ture [119]. This incredible achievement was the result of many years of

co-design, the process of iteratively making design decisions by considering

all the hardware, software, and tooling components involved in a system all

together, rather than each of them individually [51, 9]. It is a modern ap-

proach to HPC research, which benefits chip designers, software developers,

and end-users alike, but holistically integrating the many aspects involved is

an enormous challenge that uncovers the very limits of our tools and meth-

odology. In this thesis, I explore co-design and its role in creating the next

generations of HPC systems, from the hardware to the software used to pro-

gram it.

1.1 Contributions

This thesis makes several contributions:

• In Chapter 3 I discuss the implications of a diversified landscape of

architectures in mainstream HPC and I evaluate the Arm-based Thun-

derX2 processor, the first general-purpose CPU to compete with the

x86 architecture since its establishment in HPC more than ten years

ago;

• Chapter 4 expands on top of strengths and weaknesses identified in the

previous chapter to estimate the impact of next-generation instructions

sets on the performance of scientific applications;

3

1.1. CONTRIBUTIONS

• In Chapter 5 I present an in-depth exploration of the implications for

the processor’s memory subsystem of the wide vector operations avail-

able in contemporary vector instructions sets;

• Chapter 6 analyses the real-world performance of the first modern mi-

croarchitectural implementation of a scalable vector instruction set,

which at the time of writing powers the machine ranked first in the

TOP500;

• Chapter 7 surveys the software frameworks used in HPC and their

efficacy at generating performant code on a wide range of modern ar-

chitectures, including Arm- and x86-based CPUs, as well as GPUs from

all major vendors;

• Finally, Chapter 8 gives an outlook towards further research tools and

processes that are needed to enable accurate and relevant performance

experiments in HPC, keeping to the overarching goals of co-design and

performance portability.

4

CHAPTER 2

Background

Supercomputers, as we know them today, are the result of decades of

ongoing research, technological advances, and engineering expertise. Between

the 1970s and the mid 1990s, HPC systems were large monolithic machines,

but nowadays they are collections of commodity processors, carefully coupled

together to create performant machines that can split their computational

capacity into arbitrary partitions on demand. In these systems, the smallest

building block is a node, generally in the form of a blade or rack-mounted

server. Nodes are joined together using a high-performance interconnect,

thus creating clusters that can range in size from only a few nodes in a single

rack to datacenter-sized systems comprising tens or hundreds of thousands of

nodes, for which purpose-built facilities are needed. Such a design is scalable,

cost-efficient, and failure-tolerant.

On the inside, each node is powered by hardware similar to what can be

found in web-services datacenters: high-performance general-purpose cent-

ral processing units (CPUs), often with high core counts, large pools of fast

memory, and tiered storage that aims to strike a balance between capacity

and speed. In the early 2000s, these processors were based on a number

of different architectures, often each with its own operating system. More

5

recently, the x86-based chips from Intel and AMD1 have dominated the super-

computer market, with some systems based on IBM’s POWER architecture,

and over the past few years also Arm-based designs from Fujitsu, Marvell,

or Ampere. On the vast majority of systems, the operating system used is

Linux [132]. This design has stayed relatively unchanged over the past dec-

ade; each component has become individually faster, but the way they are

integrated together is similar.

Inside a node, mostly for cost and power efficiency reasons, it has been

common for nodes to utilise a dual-socket configuration, in which two pro-

cessors share a single motherboard. Single-socket configurations are used

when the chosen CPU cannot be used in multi-socket systems, and some

systems have four sockets per node, but more commonly vendors pack sev-

eral motherboards inside a single blade rather than adding more sockets to

a single motherboard [22].

In multi-socket systems, each CPU is connected directly to only a part

of the system’s main memory. To access memory attached to other (remote)

sockets, the CPU must send a request over the inter-socket connection and

wait to receive back the data. This gives rise to a non-uniform memory

access (NUMA) architecture, in which the latency of accessing main memory

depends on where the data is located. Because all NUMA accesses to other

sockets share the same interconnect, the more remote requests are made

concurrently, the slower they will perform.

For some workloads, specific types of co-processors can be employed

alongside the CPU to improve performance. These are known as acceler-

ators, of which common examples nowadays are general-purpose graphics

processing units (GPGPUs), field-programmable gate arrayss (FPGAs), and

high-performance network interface cards (NICs) with support for in-network

computation. Accelerators are attached to a node’s CPU, the latter being

referred to as the host in such a configuration.

1The term x86 is sometimes used to refer to the original 32-bit instruction set, which
was expanded to 64 bits with x86 64 or amd64. Because x86 64 is a superset of the 32-bit
x86, and 32-bit x86 systems are not in use any more in HPC today, it is common to use
“x86” as shorthand for x86 64. In this thesis, I do not use any 32-bit hardware, and the
terms x86, x86 64, and amd64 are used interchangeably.

6

CHAPTER 2. BACKGROUND

At the CPU level, the last decade has brought many changes. In 2010,

the top-end parts — sometimes referred to as stock keeping units (SKUs) — of

high-performance processors had between 10 and 16 cores; in 2020, a single

processor can house up to 64 cores. To support this 4× increase in core

count, other components on and off the chip have also become bigger and

faster: caches are larger and comprise several levels, interconnects — both

within nodes (between sockets) and between nodes — have higher bandwidth

and lower latencies due to increased optimisation and lower overhead, and

main memory has increased in speed and capacity.

This increase in computation capacity has outlined, around the middle of

the previous decade, the next milestone in the HPC world: exascale, the capa-

city to compute 1018 floating-point operations within a second (1 EFLOP/s)

in an individual system [92]. As systems have got closer to this milestone,

which has not yet been reached as of mid-2021, the HPC literature speaks

of “the road to exascale”, referring to challenges encountered as bigger-and-

bigger systems are commissioned, and suggesting potential solutions. Reach-

ing exascale-level performance is such an enormous challenge that we need to

be able to extract as much performance as possible from all of a system’s com-

ponents, while still maintaining a clean, productive application design. Thus,

a balance needs to be reached between writing high-performance code and

not over-specialising for current hardware, because the next iterations of the

systems may use different architectures, potentially from different vendors,

which might support different programming models.

Regardless of the architectures and configurations used in a supercom-

puter, one feature has been key for achieving high performance on virtually

any recent CPU or GPU: vector processing, or single instruction, multiple

data (SIMD) computation.

2.1 Vectorisation

Almost all high-performance processors today include vector computing

capabilities. Inside each core, dedicated functional units run a single in-

struction on a whole batch of operands simultaneously. This design allows

7

2.1. VECTORISATION

a single source of control flow to be fed to several batches of data for each

SIMD instruction, thus saving overhead by reducing the number of instruc-

tions that need to be decoded. On the other hand, the downside is lower

flexibility: compared to a full (scalar) instruction set, generally only a subset

of the instructions will be available in SIMD format. Figure 2.1 illustrates

the operation of a generic SIMD instruction.

R1

⊕

R2

R3

R1

⊕

R2

R3

R1

⊕

R2

R3

R1

⊕

R2

R3

(a)

R1.3 R1.4R1.1 R1.2

R2.3 R3.4R2.1 R2.2

R3.3 R3.4R3.1 R3.2

⊕

(b)

ControlSource Destination

Figure 2.1: Scalar (a) and vector (b) instructions.

Some recent many-core architectures are designed from the ground up

around SIMD computation: exploiting these capabilities is critical on GPUs [25]

and the Intel Xeon Phi [101, 139], for example, even outside HPC workloads.

Compared to general-purpose CPUs, individual cores in these devices are

simpler and offer lower performance, but by employing a large number of

them in efficient operations, the aggregate computational power of the device

becomes substantial. However, with SIMD units having become commonly

available in CPUs too, vector code is now important in all high-performance

processors. Utilising the wide vector units in the latest generations of x86

processors, for example, is the only way to approach peak performance [46,

130].

In consumer-grade processors, SIMD instructions are often used for ef-

ficiency [98], for example in applications with structured computation pat-

8

CHAPTER 2. BACKGROUND

terns, such as media processing and cryptographic ciphers. Here, SIMD

provides a performance boost with a cost to the chip’s surface area and power

usage that is far smaller than adding whole additional general-purpose cores.

These applications have supported the growth of SIMD extensions in common

ISAs: x86-based designs started with the Streaming SIMD Extensions (SSE)

in 1999 and later moved to the Advanced Vector Extensions (AVX), AVX,

and AVX-512, and Arm designs offered the NEON multimedia extension in

the ARMv7 architecture, which have become the Advanced SIMD (ASIMD)

group of the latest ARMv8 ISA, recently joined by the Scalable Vector Ex-

tension (SVE). More recently, general-purpose SIMD capabilities have been

used to implement high-precision floating point operations even when the

underlying hardware only offers limited precision natively [73].

Scientific applications often exhibit well structured computation patterns [6,

81], and this makes them good candidates for vector processing. In many

cases, they consist of a core piece of computation, sometimes referred to as

the kernel, that is repeatedly applied to a large set of elements in a well-

defined sequence. If the kernel can be applied multiple nearby elements

simultaneously, then it is a good candidate to benefit from vectorised oper-

ations. This is easiest to achieve if the computation for each element does

not depend on elements close to it and if elements are iterated through in a

contiguous pattern. When successive elements located next to each-other in

memory, accesses can be coalesced, such that a single memory request can

return several contiguous element, but modern vector instruction sets offer

alternative solutions when this is not possible. For example, gather opera-

tions enable data to be collected into a single vector register from arbitrary

locations in memory, scatter operations provide the inverse functionality,

and per-lane predication allows instructions to conditionally enable or dis-

able individual operands, which can help work around data dependencies or

uncommon access patterns.

9

2.1. VECTORISATION

2.1.1 Generating and Running Vector Code

There are two common ways of producing vector machine code: manually,

through in-line assembly code or compiler intrinsics that map almost-one-to-

one onto machine instructions, or automatically, using a vectorising compiler.

The former is more tedious and error-prone, because programming languages

generally do not provide types that map onto hardware vectors, so it becomes

the programmer’s responsibility to pack and unpack vector registers. With

all but simple applications, this is a very time-consuming task, and it has the

major disadvantage that it makes the application code less portable, since

intrinsics and assembly instructions are hardware-specific. The advantage

of this approach, however, is that one can ensure vectors are being used

optimally in the most performance-critical parts of the application, and if

these parts are relatively small but very commonly used, it may be worth

maintaining a version for each platform targetted [93]. This approach is

commonly used in optimised maths libraries.

The option of relying on the compiler to auto-vectorise source code re-

quires much less intervention from the programmer, with most modern com-

pilers applying vector optimisation by default in many cases. The most

common vector transformation is loop vectorisation, where consecutive loop

iterations are packed together into vector operations, but some compilers also

perform superword-level parallelism (SLP) vectorisation, in which groups of

similar scalar operations are combined into vector operations. With a vec-

torising compiler, the same application source code can theoretically take

advantage of vector features on any platforms for which a compiler exists.

However, compilers are not perfect tools, and so they may not always succeed

to automatically vectorise code wherever a skilled programmer could [8].

This latter point is very important for contemporary HPC research. Most

applications rely on a compiler at some point in the build process, and the

compiler’s ability to generate code that is optimised for the target platform

is directly linked with the application’s run-time performance [150]. Vector

optimisations are among the most difficult for compilers to apply, so one

factor that often distinguishes compilers in HPC is their ability to under-

10

CHAPTER 2. BACKGROUND

stand patterns in high-level source code and transform them into equivalent

SIMD machine code. In addition to open-source compilers, of which the

GNU Compiler Collection (GCC) and the LLVM Project are the best-known

options, processor or system vendors sometime provide their own compiler,

for free or under a licence, which in some cases can offer better performance.

For example, Intel has held a long track record of providing a robust com-

piler with good vectorisation ability for its x86 processors, Arm offers the

HPC Compiler with a particular focus on its SVE instruction set, and Cray

ships the highly regarded Cray Compilation Environment (CCE) with its

supercomputer systems. This wide range of choices has led to the standard

practice in the field of HPC of benchmarking the different compiler options

when running performance experiments, because even a simple code change

may lead to vastly different performance effects with some compilers but not

others.

Unfortunately, most optimising compilers are black boxes from the user’s

perspective. They are complex system that try to predict the performance

of several possible transformations under a model of the target platform, in

an attempt to choose the optimal one, but any oversight in either the trans-

formation logic or the model itself can have far-reaching consequences for the

generated code. Additionally, compilers will try to obtain the maximum level

of performance, but they cannot sacrifice code correctness in this process,

so before even attempting many optimisations, they will try to prove that

other parts of the code will not be impacted by the changes. Such proofs

are hard for human and machine alike, and when the result is uncertain,

compilers must choose the cautious approach of disabling any optimisation

that have the potential to lead to incorrect code. In practice, this often

leads to programmers fighting against the optimising compiler, trying hard

to demonstrate that optimisations are safe to apply, sometimes through tech-

niques that reduce code clarity or inadvertently reference a specific machine’s

hardware parameters.

An exception to the two methods above, and in some ways a middle-

ground between them, is higher-level programming with explicit vectorisa-

tion, as utilised in CUDA and OpenCL. In these languages, kernels are pro-

11

2.1. VECTORISATION

grammed from the point of view of the smallest work item, which is a vector

lane in a SIMD processor. Loops over data structures are replaced with kernel

invocations over a large thread space, and the programming model restricts

the interactions possible within and between kernel instances. This frees the

compiler from checking dependencies and promoting scalar code to vector

code, with that task instead becoming the responsibility of the programmer.

For GPUs, this model has been successful in obtaining high performance,

at the cost of porting time when applications need to be converted between

CUDA or OpenCL and traditional high-level languages. On CPUs, it is more

common to use to libraries or domain-specific programming frameworks that

help expose parallelism in the code, such as those built into or on top of

modern C++, while leaving explicit vector code generation to the compiler.

2.1.2 An Overview of Modern Vector Instruction Sets

x86. The x86 architecture first gained SIMD support with MMX, an early,

64-bit, integer-only vector instruction set. It was originally introduced for

multimedia applications, but because of its overlap with GPU functionality

and lack of floating-point support, it was not heavily utilised. In the following

years, Intel introduced SSE, and its revisions SSE2, SSE3, and SSE4, which

significantly expanded the range of operations supported, including covering

floating-point arithmetic, and increased the vector width to 128 bits. More

than ten years after SSE appeared, the AVX instruction set superseded it,

adding further instructions and introducing 256-bit operations.

AVX came at a time critical for the importance of vector instructions

in HPC. General-purpose compute on GPUs had started to grain traction,

and compilers and programming models had matured enough to allow for

good SIMD support, both through automatic vectorisation and explicit us-

age. But whereas GPUs ran all instructions as vectors, vector extensions on

CPUs only covered a small subset of the instructions available. As a result,

many computational patterns could only be partially vectorised or required

additional code to set up the data in a form suitable for vector instructions.

12

CHAPTER 2. BACKGROUND

Today, x86-based processors use AVX2 and AVX-512, expansions on AVX

which are much more flexible than their early counterparts. When code is not

vectorised, the cause is usually not the lack of suitable vector instructions,

but rather the compiler’s inability to understand the code’s structure and

transform it into vector form [109]. AVX-512 itself is divided into several sets

of instructions, and each implementation can choose which part to support.

Most operations are 512-bit-wide predicated instructions, but one of the sets,

AVX-512VL, offers the same core instructions in 256-bit form too. It is

easy to combine instructions from all versions of SSE and AVX up to the

most recent supported one in an implementation, because vector registers

are aliased: a CPU implementing AVX-512 will offer 512-bit registers, called

zmm, and the ymm and xmm registers from earlier versions of the ISA simply

reference the lowest 256 and 128 bits in the same registers, respectively.

Figure 2.2 shows how the register aliases overlap.

zmm ymm xmm Register name

Bit number0127128255256511

Figure 2.2: x86 vector register aliases: xmm and ymm refer to the lower 128
and 256 bits, respectively, of the 512-bit zmm registers.

The current generation of Intel processors, Cascade Lake, supports AVX-

512, including AVX-512VL. The latest x86-based design from AMD, EPYC

Rome, supports AVX2.

Arm. Arm processors have traditionally been applied more often in power-

limited environments, such as embedded or mobile devices, rather than in

high-performance computers. As such, vector extensions were introduced to

improve efficiency and focused on media and signal processing, starting with

the NEON extension in ARMv7. In ARMv8, NEON was renamed to ASIMD

and integrated into the core AArch64 architecture, so it is available on all

64-bit Arm processors. Its origins, however, make it largely unsuitable for

modern HPC applications, because it offers very few operations and a vector

length of only 128 bits [104].

13

2.1. VECTORISATION

Figure 2.3: SVE vector registers. NEON (V) registers are aliased to the lower
128 bits of the full SVE (Z) registers. Additional predicate (P) and control
(ZCR) registers also depend on the vector length (VL). Source: Arm [127].

The introduction of SVE changes this. SVE is a modern and flexible in-

struction set, with features relevant for HPC that are on par with AVX-512,

such as predication, gather and scatter operations, varied data-type support,

and instructions that implement operations across lanes [5]. Unlike the AVX

variants, which have a pre-determined vector length, SVE allows each mi-

croarchitecture to choose its desired length, in multiples of 128 bits, between

128 and 2048 bits total. SVE code is then vector-length-agnostic (VLA)

and special instructions are provided to obtain the implementation’s chosen

(hardware) width at run-time. This concept is illustrated in Figure 2.3, where

register sizes depend on the VL parameter.

As is the case on x86, compiler support for automatic vectorisation is now

the limiting factor in vectorising HPC applications on platforms that imple-

ment Arm SVE, rather than instruction availability. The Fujitsu A64FX,

released in 2020, is the first processor to implement SVE.

14

CHAPTER 2. BACKGROUND

2.2 Modern High-Performance CPU Archi-

tectures

Contemporary high-performance processors, while similar from many per-

spectives, have defining features that make each stand out in certain envir-

onments. In this section I introduce the main processor architectures used

throughout the experiments in this thesis.

Broadwell. Intel’s 5th generation Core architecture was widely used in

HPC. Among its top features are 256-bit AVX2 vector instructions, 4 chan-

nels of DDR4 memory and up to 24 cores per socket. It features three levels

of cache, of which only the last one is shared, with about 2.5 MB of cache

for each core in the processor, in an inclusive configuration.

Skylake. Broadwell’s successor brought 512-bit AVX-512 vectors to general-

purpose CPUs. Memory bandwidth was increased by supporting up to 6

DDR4 channels, and the top SKU offered 28 cores in a single socket. Since

it offers more aggregate bandwidth than Broadwell, more cores can run at

their full bandwidth; however, since there are also more cores overall, the

available bandwidth per core is less than in Broadwell when all cores are

used. The last-level cache configuration was changed to an exclusive victim

cache, so it is only filled with data that is evicted from the second level, but

the amount of last-level cache per core was decreased to 1.375 MB. When

running AVX-512 instructions, Skylake decreases its clock frequency, which

in practice means that applications need a high ratio of vectorisation to bene-

fit from the 512-bit instructions. These different performance characteristics

compared to the previous generation, and its increased price, resulted in slow

adoption for Skylake, many centres still using Broadwell several years after

the launch of the new architecture. Skylake was succeeded by Cascade Lake,

an incremental improvement that did not bring significant new features.

Rome. AMD’s first-generation EPYC processors, codenamed Naples, were

used in datacenters, but less so in HPC; it was the second generation, Rome,

15

2.3. PROGRAMMING MODELS AND PERFORMANCE
PORTABILITY

that gained traction. Rome uses the x86 instruction set and supports up to 64

cores per socket connected to 8 channels of DDR4. It brings a novel approach

to microarchitectural design in which the chip is built from several chiplets,

individual compute modules of 8 cores. This design is highly scalable, but

because each chiplet is a separate NUMA node, it is also potentially more

susceptible to latency issues. Rome supports x86 vector instructions up to

256-bit AVX2.

ThunderX2. Cavium — later acquired by Marvell — released a first gener-

ation of Arm-based processors for the datacenter with the ThunderX series.

In HPC, these were used for some experiments, but it was only its successor,

the ThunderX2, that gained popularity. Built on a design that originated

at Broadcomm, the ThunderX2 includes up to 32 ARMv8 cores connected

to 8 memory channels. Its memory bandwidth was superior to x86-based

alternatives at the time, but its cache was relatively low at 1 MB per core,

and it only offered 128-bit vectors.

2.3 Programming Models and Performance

Portability

In HPC, programming languages and frameworks are slow-moving. Many

applications that are still commonly used today were first released in the

1990s — some even earlier — and so they use some of the same programming

languages, concepts, and techniques that were available then. Furthermore,

because performance has always been critical in HPC by definition, the com-

mon programming languages used are those that incur the least amount of

overhead. This has led to the C and Fortran languages being the most pre-

valent in the industry.

In the wider context, however, programming languages have evolved very

rapidly over the past few decades. Advances in hardware and compilers mean

that many things are possible now that were not before, but re-writing old

applications in a new language is a daunting task. Not only do they involve

16

CHAPTER 2. BACKGROUND

codebases that have evolved over many years, but the existing versions have

proved over the years that they are reliable and produce correct results; a

modern port would need a long time to go through the same verification

and validation processes, so that it provides the same level of confidence.

Thus, HPC users have not benefited significantly from recent advances in

programming [94, 126].

One slight exception to this observation is the C++ language. Some

applications adopted C++ early, starting with its initial versions, hoping to

utilise the higher level of abstraction to ease the burden on the programmer.

But C++, unlike C and Fortran, has evolved very rapidly; C++11 is almost

a completely different language from the C++ of the 1990s, and more recent

versions such as C++17 and C++20 further bridge the gap in usability

between C++ and much higher-level languages which rely on heavyweight

runtimes and features like garbage collection in an attempt to provide an

efficient programming experience. For applications already using C++, an

improvement over time came naturally, at a much lower cost than switching

languages altogether.

For the applications that were unable to replace the programming lan-

guage used, there is still a desire to modernise code. In general, the longer

a codebase is used, the larger and harder to maintain it becomes, so pro-

grammer productivity is reduced. As compilers have evolved, productivity

can further be improved by offloading common tasks from the programmer

to the machine. One way to achieve this is through new programming frame-

works built on the same traditional languages.

HPC applications span many scientific domains, but one characteristic

they share is the need to exploit parallelism to achieve high performance.

Because this is a very common requirement, it is widespread practice to use

libraries to parallelise code instead of implementing everything from scratch

every time. Two of the most widely used parallelisation frameworks are the

Message Passing Interface (MPI) and OpenMP [67]. Both of these natively

support C and Fortran, and while there is some support for C++, often it

only covers the language itself and not its standard library of data structures

and algorithms. If a framework were to improve upon MPI or OpenMP,

17

2.3. PROGRAMMING MODELS AND PERFORMANCE
PORTABILITY

delivering similar performance while improving programmer productivity, its

impact would be significant.

To some extent, there have existed frameworks that delivered some of

these goals. NVIDIA CUDA, followed later by OpenACC, provides a low-

overhead toolchain that is efficient at extracting high performance from

NVIDIA GPU hardware, for which it is heavily optimised. However, this

comes at the cost of vendor lock-in: the future of these tools is entirely

in the hands of the company behind them, unlike open standards for pro-

gramming languages and open-source frameworks. This issue has deterred

many developers from investing heavily into a vendor-controlled ecosystem,

because their efforts may be wasted if future generations of supercomputers

use different hardware, on which these frameworks cannot be used.

In addition to simplifying development of parallel code, there is another

area with opportunities for novel programming frameworks to enhance pro-

ductivity in HPC code: portability. In the second half of the previous decade,

the HPC community has placed increasing importance on the performance

portability of HPC code, with the goal to understand how to write applica-

tions in such a way that they achieve a large fraction of peak performance on

many different platforms [29]. This endeavour originally appeared as code

targeting GPUs — often written using frameworks such as CUDA, which can-

not easily be run on CPUs — diverged more-and-more from CPU code, and

has grown increasingly important in the context of the upcoming exascale

systems, Frontier, El Capitan, Aurora, and Perlmutter, which together com-

bine CPUs from two vendors and GPUs from three vendors, with no estab-

lished programming framework able to target all these combinations. If code

is not performance-portable, it needs to be refactored in large proportions,

and sometimes completely rewritten using new libraries, when moving to a

system that uses different hardware.

Recently, two frameworks have emerged that aim to improve the portab-

ility of HPC code, while maintaining performance and helping programmer

productivity: Kokkos [32] and SYCL [45]. These are both frameworks that

expand on top of modern C++ and can target both CPUs and GPUs without

any change to the source code. They are of particular interest to the HPC

18

CHAPTER 2. BACKGROUND

community because they may offer a solution to the fragmentation between

hardware targets and programming languages they support. Their adoption

is still early, but if it proves successful, another side effect will be increased

migration to the C++ language, which some argue is a better choice for the

longer term compared to older languages such as C and Fortran.

SYCL is an abstraction layer built on top of C++ that combines the

functionality of OpenCL with a single-source approach. An OpenCL program

contains two parts: a host program, usually written in C or C++, that

initialises the OpenCL stack and compiles one or more kernels, then schedules

them to be run on the target device, which may be an accelerator connected

to the host, like a GPU or FPGA, or the same CPU as the host itself.

In contrast, SYCL code is embedded in the C++ host code, eliminating

the need for a kernel compiler that is invoked when the host program runs.

This does mean that support for the target device must be present when

compiling the SYCL application — as opposed to OpenCL, which only calls

the kernel compiler and libraries when the host program is run, targeting

the hardware present at that moment — but this is almost always the case

in HPC systems. There are currently three major SYCL compilers: Intel

DPC++, based on the new-generation Intel ICX compiler (itself based on

LLVM), which supports several platforms through the OpenCL, CUDA, and

Intel Level Zero backends; ComputeCPP, a compiler developed by Codeplay;

and hipSYCL, an open-source implementation that supports CUDA, ROCm,

and OpenMP for CPUs and GPUs as backends [3].

Kokkos is packaged as a C++ library. It is distributed as source code,

integrated into the application’s build process, and built at the same time

and using the same compiler. This route has the advantage of not forcing

the user to choose a particular compiler — any modern C++ compiler can

compile Kokkos. The downside is that Kokkos itself must be updated to

support new architectures, so it possible to reach situations in which the

underlying compiler is aware of a target architecture, but Kokkos is not, and

so the generated parallel code may not be fully optimised.

19

2.4. COMMON CLASSES OF HPC APPLICATIONS

2.4 Common Classes of HPC Applications

Scientific computing applications are diverse and span a large number of

domain sciences, but their computational patterns often fall into one of a few

categories. It is common to speak of the “dwarfs” of HPC, each representing a

class of common application types [6]. Each class has distinctive computation

patterns, and similar algorithmic and optimisation strategies work well across

applications within the same class.

From a performance point of view, applications are most often classified

by the one factor that prevents the code from running faster. This is some-

times referred to as the bottleneck of the application and it represents the one

resource which, if increased, would immediately improve the performance of

the application. Most HPC applications are bound by one of the following

factors:

• Raw arithmetic performance. These applications are called compute-

bound. To improve their performance, the system needs to be able to

perform more calculations — usually floating-point operations (FLOPs) —

which implies either faster cores, e. g. through higher clock speeds or

wider vectors, or a higher core count.

• Memory bandwidth. This is generally the largest class, because over the

years compute performance has improved faster than memory perform-

ance in hardware. Depending on the size of the working set and the lay-

out of the system’s memory hierarchy, the bottleneck can be either one

of the levels of cache (cache-bandwidth-bound) or, more commonly, the

main memory (DRAM-bandwidth-bound or simply memory-bandwidth-

bound).

• Latency. This bottleneck is most common for applications that perform

small operations on many different objects, as opposed to batched com-

putation on large, contiguous data. Examples of this class are graph

applications, which are often bound by the latency of local memory as

processing moves between vertices [71, 35, 40], and distributed FFT

applications, which can be bound by the latency of the network in

20

CHAPTER 2. BACKGROUND

all-to-all operations [17]. Latency bottlenecks can also appear in deep

NUMA hierarchies, e. g. between NUMA nodes or between different

levels of cache. This class is particularly hard to characterise and op-

timise.

In order to analyse the performance of systems and applications, and

quantify the effect of optimisations, it is common to utilise benchmarking.

The most commonly used HPC benchmarks have been developed to represent

individual dwarfs, and because performance characteristics are often shared

within classes of problems, they offer good indication of real-world application

performance.

2.5 Benchmarking

Benchmarking is the process of a measuring a system’s performance using

well-defined metrics and test cases. In HPC, benchmarking is commonly used

in three different situations:

• In evaluating a system’s performance. Systems are often compared

against one-another, for example to identify weaknesses or strengths

of a different architecture, or to quantify performance improvements

versus an older generation of the same system. When comparing between

different systems, the benchmarks themselves are usually fixed. A range

of benchmarks is chosen from different problem classes to cover as many

aspects of the systems as possible — this ensures the benchmarks rep-

resent realistic use of the system.

• When selecting optimal configurations, parameters, and software com-

ponents to solve a problem. For example, different algorithms or imple-

mentations could be chosen when using optimised math libraries, and

different choices may be fastest on different systems.

• To quantify the performance improvements within an application fol-

lowing an optimisation attempt. In this case, the new version of the

application is measured against a snapshot before the changes, record-

ing the performance changes. Because there is a wide variety of HPC

21

2.5. BENCHMARKING

systems available, it is highly valuable to benchmark optimisations on

many different platforms, since not all systems will react in a similar

way to the same code change.

When applied to several independent parts of a system or application,

for the purpose of determining the relative impact of each part on the full

run time, benchmarking is referred to as profiling [146, 143]. The result

of such an experiment is a document detailing the amount of resources —

usually time — spent in each component, called a profile, and is the de facto

way of characterising performance empirically [66]. Most HPC experiments,

and in particular optimisation attempts, commonly begin with a profile of

the initial state, which serves to identify the critical points to be improved

in a system [47]. For example, if the goal is to parallelise a serial application,

it is most beneficial to first address those sections of the code in which the

largest portion of run time is spent — any improvement gained here will be

much more valuable than optimisations for rarely visited code.

For benchmarks to be meaningful, a rigorous and objective methodology

must be followed thoroughly [53]. Large systems have many moving parts,

so it is critical that the testing environment is well documented and kept

stable throughout the experiments. To increase confidence in results, tests

should be run several times and an average measure produced; this helps

isolate noise in the system. If the application is particularly sensitive to

the utilisation of the system, for example because of network congestion or

I/O wait, then tests should be run on a quiet system to avoid introducing

confounders.

The benchmarks used in this thesis have negligible run-to-run variability,

in most cases below 2%. They are run within a single compute node, so

network performance does not impact the results, and they are configured

such that disk I/O is kept to a minimum or completely absent. Unless stated

otherwise, each benchmark was run 5 times and the average result presented.

Where there was a significant spread ot the results, it is addressed separately.

In order to ensure the consistency of the software environment, each bench-

mark was run in a clean shell session, using environment modules to load

exact versions of the libraries used.

22

CHAPTER 2. BACKGROUND

It is common to tune a benchmark for each system it is run on. Some

applications have built-it tuning knobs, which can control, for example, loop

unrolling or sizes of the data structures and types used. These tunables

can sometimes be chosen by looking at the system’s architecture, but of-

ten the parameters are harder to understand and map well to the target, so

an experimental approach may be more suitable. If the parameter space is

large, auto-tuning can be employed to evaluate many combinations proced-

urally [111, 110].

In HPC, there are also a number of system-wide options that need to

be considered. The vast majority of applications are written in compiled

languages, so the compiler choice is itself a tunable. As discussed in Sec-

tion 2.1, a good compiler can make the difference between fully utilising an

architecture’s features and merely running generic code. Different compilers

may make different assumptions or choices by default, so finding the right set

of optimisation flags that maximises performance introduces another tuning

dimension. For multi-node applications, if the communication framework

used is MPI, there are several implementations to choose from, ranging from

the open-source Open MPI and MPICH to vendor-specific ones such as Cray

MPI, and some may perform better in certain scenarios or when running on

certain hardware. If the application uses additional third-party libraries, then

the choice of library may impact the performance of the whole application:

for optimised maths routines, for example, it is common to utilise either the

open-source OpenBLAS or a vendor-provided library like Intel MKL, Cray

LibSci, or the Arm Performance Libraries.

When analysing the results of performance experiments, it is often use-

ful to compare the performance obtained against the peak capabilities of

the hardware used: if there is a large gap between achieved and peak per-

formance, there may be further opportunities to optimise the code for the

target platform. One tool commonly used in HPC research for such com-

parisons is the roofline model, in which the “roofs” represent the hardware’s

peak memory and arithmetic performance, and the application’s achieved

performance is shown relative to those [145]. The roofline model can suggest

if the application studied is likely to be bound by memory bandwidth or

23

2.5. BENCHMARKING

by arithmetic performance, as well as how far the application is from peak

performance.

0.0 0.1 1.0 10.0 100.0
Operational Intensity (FLOPS/byte)

0.0

0.1

1.0

10.0

100.0

1000.0

Si
ng

le
 p

re
cis

io
n

GF
LO

P/
s (

SI
M

D)

 OI = 19.9

Peak GFLOP/s = 4096.0kernel

Figure 2.4: Example of a roofline chart, a visualisation produced using the
roofline model. The kernel’s achieved performance is below the memory
bandwidth roof.

2.5.1 Mini-Apps

The large parameter space makes comprehensive benchmarking very resource-

intensive. In addition to the time required to run many configurations of the

same application, even simply setting up the benchmark configurations can

be a lengthy process that needs a lot of developer and processor time, as well

as disk space. One of the reasons for this is the compilation process: scientific

applications are complex codebases that often rely on third-party libraries,

and in order to achieve optimal performance on a system, all of these com-

ponents need to be compiled from scratch, targeting the system under test.

Application code can sometimes be decades-old, sometimes utilising tools

that were not designed with the configurations and constraints of modern

platforms in mind, and so, in practice, compiling a scientific application on

24

CHAPTER 2. BACKGROUND

a new system often first involves finding a compatible compiler version and

fixing legacy build system issues.

The other common reason why benchmarking is resource-heavy is input

data: many applications rely on large input data sets to process, for example

terrain models for weather and climate applications or geometry meshes for

fluid dynamics applications. In order to ensure that the benchmarks run are

representative of real workloads, it is not always possible to use small inputs,

which are sometimes referred to as toy problems, but rather full-sized inputs

are needed. Again due to the focus on performance, it is not uncommon for

input data to need a pre-processing stage before it can be fed to a simulation

application, for example by splitting a large geometry in exactly as many

components as there are processors in the system. For a regular scientific

workflow, in which many runs of the same application will happen in the same

configuration and on the same model, this pre-processing step is beneficial,

but when benchmarking several configurations across multiple systems, pre-

processing often needs to be run as many times — and often takes as long to

execute — as the solver itself.

A good way to avoid a large amount of this set-up cost, while still main-

taining a relevant testing environment, is avoiding full-scale applications at

some stages of benchmarking [142]. Instead, smaller applications known as

mini-apps, or sometimes proxy apps, can be leveraged to provide code that

maintains the performance characteristics of a full-size application, but gen-

erally does not rely on third-party libraries, large input sets, or complex

build processes. Mini-apps are developed from full applications by isolating

the performance-critical kernels and adding the minimum amount of wrapper

code required to run these kernels on quasi-real data [20, 91]. For example, a

mini-app for a fluid dynamics code might include just a subset of commonly

used physics solvers, input data that is easy to generate and store, and none

of the pre- and post-processing operations that may sometimes be found

in full applications for niche situations [12]. In addition, because they are

purposely developed for performance analysis, mini-apps often output useful

performance metrics out-of-the-box, whereas full applications may need to

be profiled to extract the right metrics [15].

25

2.5. BENCHMARKING

Mini-apps have become popular for HPC experiments, and as a side ef-

fect of their wide adoption, their code is often more modern and easier to

understand than full-scale application code developed over a long time. This

makes mini-apps ideal for early system benchmarking: in a new system,

where many configurations need to be tried and problems are likely to be

encountered along the way, it pays to use as simple a test case as possible.

They are also excellent candidates for simulation environments, in which it

may not be feasible to run full-scale applications due to the time it would

take to simulate such complex code [43, 19, 116, 118]. Because mini-apps are

smaller codebases, they are significantly easier to reason about, which in turn

makes it easier to predict expected performance and compare it to results

obtained from benchmarking. Once most system-related problems have been

addressed, and a good selection of tuning parameters has been found for the

problem at hand, benchmarking can then move to full applications for more

relevant real-world results.

Throughout this thesis, mini-apps are heavily utilised for performance

experiments and analysis. I have selected a set of mini-apps that covers a

wide range of real scientific workloads, each representing a class of problems.

The mini-apps used are:

• TeaLeaf, a heat diffusion mini-app that applies a five-point stencil

to a regular grid. It uses a conjugate gradient (CG) solver and it is

memory-bandwidth-bound [90].

• CloverLeaf, which uses a structured grid to solve Euler’s equations of

fluid dynamics [76]. It is also memory-bandwidth-bound, but contains

a higher ratio of compute-intensive operations than TeaLeaf.

• miniBUDE, a compute-bound mini-app for virtual drug screening

runs using the Bristol University Docking Engine, a well-known mo-

lecular docking application. It uses an empirical model to predict the

energy of binding drug candidates to target proteins, a process which

can occur in a large number of configurations that need to be evaluated

individually [106].

26

CHAPTER 2. BACKGROUND

• MiniFMM, an implementation of the Fast Multipole Method using

a tasking dependency model. It is modern code written in C++ and

utilising the latest features of OpenMP for task-based parallelism, and

while vectorising it is hard, there are good performance benefits to be

gained from doing it [7].

• SNAP, a mini-app for a deterministic discrete ordinates transport ap-

plication. The kernel is memory-intensive, and dependencies between

elements impose constraints on the sizes of problems that can be run [148].

SNAP has a large memory footprint, so the MegaSweep mini-app has

been developed to keep the very kernel of SNAP but reduce some of

the constraints on run-time configuration [23]. MegaSweep is a good

substitute for SNAP in emulated and simulated environments.

Some additional mini-apps are used for a subset of the experiments and

are introduced in the the appropriate sections.

27

2.5. BENCHMARKING

28

CHAPTER 3

Emerging CPU Architectures for HPC

Content from this chapter appears in the following publications:

• Simon McIntosh-Smith, James Price, Tom Deakin and Andrei Poen-

aru. ‘A Performance Analysis of the First Generation of HPC-

Optimized Arm Processors’. In: Concurrency and Computation:

Practice and Experience 31.16 (2019), e5110. doi: 10.1002/cpe.

5110

• Simon McIntosh-Smith, James Price, Andrei Poenaru and Tom

Deakin. ‘Benchmarking the First Generation of Production-Quality

Arm-Based Supercomputers’. In: Concurrency and Computation:

Practice and Experience (2019), e5569. doi: 10.1002/cpe.5569

In the early 2010s, x86-based processors from Intel and AMD dominated

the data segment. Intel brought the AVX2 vector instruction set alongside

higher core counts and improvements in performance-per-watt versus previ-

ous generations with Haswell (up to 18 cores/socket), and later Broadwell

(up to 24 cores/socket). AMD did not have clear candidates for the server

market after the Opteron processors, and Arm-based designs were almost

exclusively found in the mobile space and in very-low-power computers such

as the Raspberry Pi.

29

https://doi.org/10.1002/cpe.5110
https://doi.org/10.1002/cpe.5110
https://doi.org/10.1002/cpe.5569

AMD attempted an Arm-based processor for the data center with the

A1100 series, but the relatively high TDP of 32 W for only 8 cores with

mobile-class performance made it unattractive [59]. Another design was in-

troduced by Cavium in 2014, the ThunderX, which offered up to 48 cores

on a single chip, but offered less performance than the high-end x86-based

processors of that generation [69]. Neither of these processors was adopted

in the HPC world.

In 2018, however, Cavium introduced the ThunderX2 (TX2) processor.

Although the name may suggest it was only an iterative improvement on the

first-generation ThunderX, it was in fact an entirely different design, based on

what was previously known as the Broadcom Vulcan [144]. The TX2 offered

up to 32 AArch64 cores per socket running at up tp 2.5 GHz, supporting

dual-socket configurations, but the innovation that set it apart from its Xeon

competitors was the amount of memory bandwidth available: whereas it was

common for server processors, e. g. Broadwell, to have 4 channels of DDR4

memory, the TX2 offered 8 — twice as many. When Cavium was acquired by

Marvell, the TX2 became known as the Marvell ThunderX2.

A large number of HPC applications are memory-bandwidth-bound, so

the TX2 immediately became an anticipated platform in HPC. In addition,

being an Arm-based system, it had the potential to disrupt an x86-dominated

market through an increase in competition. Increased competition is desir-

able not only from a financial standpoint, where it can improve the afford-

ability of HPC systems, but also because it stimulates the development of

programming languages, toolchains, and applications in portable, vendor-

and platform-agnostic way. In the long term, this prevents research centres

becoming locked-in to particular technologies or vendors, improving the flex-

ibility and adaptability of the HPC community to new tools and systems.

This chapter discusses the architecture of the ThunderX2, its relevance

for modern HPC, and the lessons learned from its performance character-

istics on contemporary HPC workloads that may help shape the future of

supercomputing.

30

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

3.1 High Performance Arm-based Systems

The UK HPC community adopted the ThunderX2 quickly, albeit to a

limited degree. As a novel architecture with the potential to bring sizeable

improvements in application performance at a very low cost, research organ-

isations quickly began exploring ways to utilise it to its full potential. The

Isambard system1 was the first supercomputer in the world to offer 64-bit

Arm processors in production. It is set up as a Tier 2 service, i. e. a cluster in-

tended to provide computational facilities to researchers at a regional level,

bigger than individual centres but smaller than national-level services. In

addition, the Catalyst project2 recognised the potential of future Arm-based

systems in HPC and provided ThunderX2 hardware to researchers in a push

to solidify the ecosystem on this platform.

The HPC Group at the University of Bristol contributed heavily to both

of these projects. Our work was among the first research published worldwide

that looked into how TX2 processors can be exploited for HPC workloads,

what types of applications are best suited for their architecture, and how they

compare to existing platforms. Outside the UK, one of the most important

TX2 system is Astra, at Sandia National Laboratories. The researchers there

focused on large-scale applications and used Astra as a test-bed for emerging

technologies, such as operating-system-level containers, which can be used

to package applications together with their dependencies in portable, low-

overhead formats [48, 100].

3.1.1 The ThunderX2 Microarchitecture

The top-end ThunderX2 part has 32 cores running at up to 2.5 GHz,

connected to 8 channels of DDR4-2400 memory. Both the Isambard and

Catalyst systems use the same variant, installed in a dual-socket configura-

tion. The cores are pipelined, 4-way out-of-order designs based on the 64-

bit ARMv8.1-A (AArch64) instruction set. Each core includes two 128-bit

1https://gw4.ac.uk/isambard/
2https://www.hpe.com/us/en/newsroom/press-release/2018/04/

academia-and-industry-collaborate-to-drive-uk-supercomputer-adoption.html

31

https://gw4.ac.uk/isambard/
https://www.hpe.com/us/en/newsroom/press-release/2018/04/academia-and-industry-collaborate-to-drive-uk-supercomputer-adoption.html
https://www.hpe.com/us/en/newsroom/press-release/2018/04/academia-and-industry-collaborate-to-drive-uk-supercomputer-adoption.html

3.1. HIGH PERFORMANCE ARM-BASED SYSTEMS

NEON SIMD units, support for fused multiply–add (FMA) instructions, and

can be configured in 1-, 2-, or 4-way simultaneous multithreading (SMT).

Early work on the ThunderX2 focused on quantifying the performance

benefit from the different SMT modes. Experience with existing x86-based

systems suggested that running more than one SMT thread per core can be

beneficial for compute-bound applications. An additional consideration is

that if all threads perform network communication, then the total number of

messages exchanged grows rapidly when scaling up the node count. There-

fore, even if more compute performance may be available, it may not always

lead to faster runtime if the network becomes more congested.

C1 C2 M1 M2
Application

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rfo

rm
an

ce

SMT
1
2
4

Figure 3.1: Relative performance of four application on the different SMT
settings of a TX2 node. Higher numbers represent faster run times.

I observed a similar effect with the TX2’s SMT configurations. Going up

to 4-way — which presents an impressive 256 logical CPUs at the operating-

system level — provided improvements for applications that perform a lot of

arithmetic, but could reduce performance when running across more than

one node. Figure 3.1 shows the effects of using 1-, 2-, and 4-way SMT on

four different HPC applications. The applications labelled M1 and M2 are

memory-bandwidth-bound, and C1 and C2 are compute-bound. Perform-

32

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

ance is shown relative to using a single thread per core, and it can be seen

that using more than one SMT thread per core improves performance for the

compute-bound applications, but not for the others. The extent to which

performance is improved depends on the applications’ computation patterns

and how much they are able to hide memory latency by overlapping it with

computations. These effects are discussed in-depth in Section 3.4.

The number of hardware threads available can be limited at boot-time to

1 or 2. Regardless of the setting, users can choose to schedule fewer threads

on each core, effectively disregarding the SMT capabilities of the processor

if they are not useful.

The ThunderX2 includes 32 KB of instruction cache per core, and there

are three levels of data cache: 32 KB of private L1, 256 KB of private L2, and

32 MB of shared L3 in a ring arrangement. A block diagram of the TX2’s

cache configuration is shown in Figure 3.2.

Figure 3.2: The cache configuration of the 32-core ThunderX2 processor.
Source: Cavium [16].

Even though the total amount of cache is comparable to a contemporary

Intel x86-based processor — the top-end Xeon Platinum 8176 (Skylake) has

33

3.2. BENCHMARKS

38.5 MB of L3 cache — I have found the cache bandwidth available on the

TX2 to be lower than on the Skylake. Figure 3.3 shows the aggregate cache

bandwidth of these two processors, measured using the University of Bristol’s

HPC Group’s cache-bandwidth tool [78].

211 213 215 217 219 221 223

Memory Footprint (Bytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
em

or
y

Ba
nd

wi
dt

h
(G

B/
s)

CPU
SKL
TX2

Figure 3.3: Total (aggregate) cache bandwidth achieved on the ThunderX2
(TX2) and Intel Xeon Platinum 8176 (SKL).

3.2 Benchmarks

For the evaluation of the ThunderX2 architecture, I used a diverse set

of benchmarks, ranging from simple synthetic kernels to mini-apps and full

scientific applications. Because one of this processor’s strong points and

advantages against its competitors is the high memory bandwidth available,

a relevant starting point for performance analysis on TX2 is the STREAM

benchmark [83]. STREAM is a simple tool that runs four kernels and reports

the achieved performance in terms of the amount of memory processed per

34

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

unit time. Given arrays A, B, and C and a scalar s, the four STREAM

kernels perform the following operations:

• copy simply copies data from one array to another: C = A;

• scale applies a scalar multiplication to data before copying: C = s×A;

• add computes vector addition: C = A + B;

• triad combines the previous two operations in one: C = s× A + B.

STREAM is used to discover an upper bound for the the achievable

memory bandwidth on a system — as optimised an application may be, it

is unlikely to be able to extract more memory performance than a large

sequence of simple and fully independent operations. On modern systems,

all four kernels should achieve similar performance, because the difference

in computation is negligible for such a bandwidth-bound application. On

older hardware, for example, the triad kernel sometimes showed lower per-

formance because fused multiply–add (FMA) instructions were not available.

Some architectures may also offer more bandwidth for read operations than

for writes, and such a system might see lower performance in the copy ker-

nel — where the ratio of read-to-write operations is 1:1 — versus the other

kernels which do several reads for every write.

The STREAM benchmark uses a compile-time parameter to set the sizes

of the arrays used in the four kernels. In order to ensure that the bandwidth

measured is that of the main memory, and not of cache, the arrays needs to

be larger than the size of the cache, at least by a factor of two; there is no

upper constraint for the size other than the time taken to run the benchmark.

When multiple platforms are compared, the STREAM binary compiled on

each platform should use an array size chosen appropriately based on the size

of the cache available. For the analysis in this chapter, I used arrays sizes

at least 4× larger than the last-level cache on the processor, rounding up to

the next power of 2. For example, a dual-socket TX2 system has 64 MB of

L3 cache, so the size chosen for the arrays was 225 double-precision elements,

which equates to 256 MB of memory per array.

35

3.2. BENCHMARKS

The natural step up from STREAM is benchmarking using mini-apps.

The strong points of using mini-apps for performance analysis were detailed

in Section 2.5.1. This section also introduced a set of mini-apps covering

different scientific applications, all of which I used on the ThunderX2.

The final step to comprehensive performance analysis of a new system

is benchmarking real-world application performance. For this, I selected a

subset of applications from the list of the most heavily utilised scientific

applications on ARCHER, the UK’s national supercomputer facility [137].

The selected applications cover a representative sample of contemporary HPC

use cases, and a description of each benchmark used follows below.

CP2K. CP2K simulates the ab-initio electronic structure and molecular

dynamics of different systems such as solids or liquids [138]. Fast Fourier

transforms (FFTs) form part of the solution step, but it is not straightforward

to attribute these as the performance-limiting factor of this code; the memory

bandwidth of the processor and the core count both have an impact. The

benchmark used, H2O-64, simulates 64 water molecules, consisting of 192

atoms and 512 electrons, in a 12.4 Å
3

cell for 10 time steps. This is an

often-studied benchmark for CP2K, making it a useful tool for performance

exploration.

GROMACS. A molecular dynamics package used to solve Newton’s equa-

tions of motion, GROMACS is routinely used on systems such as proteins

that contain up to millions of particles [1]. It is thought that GROMACS is

bound by the floating-point performance of the processor architecture. This

has motivated the developers to handwrite vectorised code in order to ensure

an optimal sequence of such arithmetic [99]. The hand-optimised code is

written using vector intrinsics, which results in GROMACS not supporting

some compilers, such as the Cray Compiler, because they do not implement

all of the required intrinsics. For each supported platform, computation is

packed so that it saturates the native vector length of the platform, e. g.

256 bits for AVX2 and 512 bits for AVX-512.

36

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

The molecular system simulated in this benchmark is ion channel vsites3.

It consists of the membrane protein GluCl, containing around 150,000 atoms —

a small size compared to typical GROMACS runs — simulated in 5 femto-

second time steps. For the ThunderX2 processor, the ARM NEON ASIMD vector

implementation can be used, as it targets the ARMv8.1 architecture. How-

ever, this implementation is not as mature as those targeting AVX on x86.

NEMO. The Nucleus for European Modelling of the Ocean code is one

ocean modelling framework used by the UK’s Met Office, and is often used

in conjunction with the Unified Model atmosphere simulation code. The code

consists of simulations of the ocean, sea-ice and marine biogeochemistry un-

der an automatic mesh refinement scheme [74]. As a structured-grid code,

the performance-limiting factor is typically memory bandwidth at the node

level, however communication overheads start to significantly impact per-

formance at scale. The benchmark used was derived from the GYRE PISCES

reference configuration, with a (1⁄12)◦ resolution and 31 model levels, resulting

in 2.72M points, running for 720 time-steps. Version 4.0 of NEMO was used,

running with one MPI rank per core for all platforms, without using SMT.

OpenFOAM. In Computational Fluid Dynamics (CFD), OpenFOAM is a

well-known modular toolkit written in C++. It is organised as a collection of

libraries that can be called individually through thin wrappers or combined

in more complex simulation pipelines [58]. Benchmarks with this applica-

tion used the simpleFoam solver for incompressible flow from OpenFOAM

v1712+ to model the aerodynamics of the open-source RANS DrivAer model

of a generic passenger car. This solver is the de facto benchmarking config-

uration of OpenFOAM, and the model is developed specifically to provide a

representative case of real-world aerodynamics simulation [50]. OpenFOAM

is largely memory-bandwidth-bound.

OpenSBLI. OpenSBLI is a grid-based finite-difference solver that uses

compressible Navier-Stokes equations for shock-boundary layer interactions.

3https://bitbucket.org/pszilard/isambard-bench-pack.git

37

https://bitbucket.org/pszilard/isambard-bench-pack.git

3.2. BENCHMARKS

The application uses Python to automatically generate code to solve the

equations expressed in mathematical Einstein notation, and uses the Ox-

ford Parallel library for Structured mesh solvers (OPS) software for parallel-

ism [56]. As a structured-grid code, it should be memory-bandwidth-bound

under the Roofline model, with low computational intensity from the fi-

nite difference approximation. The benchmark used is the one developed by

the ARCHER community4, which solves a Taylor-Green vortex on a grid of

1024 × 1024 × 1024 (one billion) cells. One MPI rank was used per core,

without using SMT.

UM. The Unified Model is the UK’s Met Office code for atmosphere sim-

ulation, used for weather and climate applications. Often coupled with the

NEMO code, the UM is used for weather prediction, seasonal forecasting,

and for climate modelling, with time scales ranging from days to hundreds of

years. At its core, the code solves the compressible non-hydrostatic motion

equations on the domain of the Earth discretised into a latitude-longitude

grid [141]. As a structured-grid code, the performance limiting factor is

highly likely to be memory bandwidth. Version 10.8 of the UM was used,

with an AMIP benchmark [44] provided by the UK Met Office.

VASP. The Vienna Ab initio Simulation Package is used to model mater-

ials at the atomic scale, in particular performing electronic structure calcu-

lations and quantum-mechanical molecular dynamics. It solves the N-body

Schrödinger equation using a variety of solution techniques. VASP includes

a significant number of settings which affect performance, from domain de-

composition options to maths library parameters. Previous investigations

have found that VASP is bound by floating-point compute performance at

scales of up to a few hundred cores [14].

The benchmark utilised is known as PdO, because it simulates a slab of

palladium oxide. It consists of 1392 atoms, and is based on a benchmark

that was originally designed by one of VASP’s developers, who found that,

on a single node, the benchmark is mostly compute-bound; however, there

4http://www.archer.ac.uk/community/benchmarks/archer/

38

http://www.archer.ac.uk/community/benchmarks/archer/

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

exist a few methods that benefit from increased memory bandwidth [151].

VASP was run with one MPI rank per core, without using SMT, and an

empirically tuned value for NCORE, a parameter which describes the parallel

decomposition.

3.3 Experimental Set-Up

In order to understand the strong and weak points of the TX2 platform, I

compared it to other established HPC systems. The Broadwell and Skylake

generations of processors from Intel were the most widely used CPUs in

the HPC space during the 2016–2020 period, so they are the best options

for comparison. I selected the top-end parts of each of these processors as

comparison points, because they represent the most challenging competition

for the TX2. However, in practice the top-end (28-core) Skylake Platinum

SKU was significantly more expensive than slightly lower-end variants, and

so some centres preferred to buy more nodes with a lower core count each,

thus achieving a better price-to-performance ratio. In order to keep the

comparison representative of the hardware used in real centres, I have also

included a lower-end (20-core) Skylake Gold part in the benchmarks. The

hardware details for all these processors and their peak performance are given

in Table 3.1. In this table, the base value is shown for the clock speed, but

dynamic frequency scaling was enabled on all the processors, which may

temporarily increase the speed when thermal constraints allow it.

As explained in Section 2.5, the selection of toolchain can result in a

significant performance difference. My main goal in this work was to compare

the best achieved performance achievable on each platform, but it was also

useful to know which tools generate the fastest code; in particular, a common

question raised in HPC is whether proprietary toolchains are essential for

good performance. To address these questions, I experimented with all the

available compilers on each platform.

On the Intel platforms, the compilers used were Cray, Intel, and GNU.

Cray and GNU are also available for Arm, but Intel is not. Instead, the Arm

HPC Compiler — later renamed to the Arm Compiler for Linux (ACfL) —

39

3.3.
E

X
P

E
R

IM
E

N
T

A
L

S
E

T
-U

P

Table 3.1: Processor model details and their peak performance.

Processor Cores SMT
Clock Speed

(GHz)

TDP

(W)

Arithmetic

(FP64 TFLOP/s)

Mem. Bandwidth

(GB/s)

Intel Xeon E5-2699 v4 (Broadwell) 2× 22 2 2.2 145 1.55 154

Intel Xeon Gold 6148 (Skylake) 2× 20 2 2.4 150 3.07 256

Intel Xeon Platinum 8176 (Skylake) 2× 28 2 2.1 165 3.76 256

Marvell ThunderX2 2× 32 4 2.2 175 1.13 320

Table 3.2: Compilers available for each platform.

Compiler Version Target Platforms

Arm HPC Compiler (ACfL) 18.2 aarch64 only

Cray Compilation Environment (CCE) 8.7 x86 and aarch64

Intel (ICC) 18 x86 only

GNU (GCC) 7.2 x86 and aarch64

Table 3.3: Third-party libraries, the benchmarks that use them, and the available variants.

Library Used in Benchmarks Options

BLAS CP2K, VASP ArmPL, Intel MKL, OpenBLAS

FFT NAMD, VASP ArmPL, Intel MKL, FFTW

40

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

can be used. Table 3.2 shows the versions of the compilers used in this study,

alongside the platforms they can target.

Where libraries were utilised and multiple alternatives were available,

these were also compared. Table 3.3 shows a summary of the libraries used

and which applications need them.

The systems used for this work were all built by Cray. One of the core

innovations of Cray systems is their high-performance network, Aries [4].

Along with the network hardware, Cray provide optimised MPI libraries that

can take full advantage of the network to perform operations effectively. For

scaling experiments, the Cray MPI library, which is based on MPICH2 [42],

was used for inter-process communication.

Within each node, all the available cores were always utilised. Where

SMT was available, I tried all possible numbers of threads per core and settled

on the best result. For applications that use MPI together with OpenMP —

in particular the mini-apps — I tried the following common configurations:

• Flat OpenMP: a single MPI rank per node, which spawns enough

OpenMP threads to fill all the cores;

• Flat MPI: one MPI rank for each core, with a single thread inside each

rank;

• Hybrid per-socket: one MPI rank per socket and enough OpenMP

threads inside each rank to fill the socket, all bound so that threads

cannot migrate between sockets;

• Hybrid per-core: one MPI rank per physical core and enough OpenMP

threads inside each rank to fill all the hardware threads of the core, all

bound so that threads cannot migrate between cores.

MPI ranks were mapped and pinned to CPU cores using Cray’s aprun

launcher. This ensured that each rank is assigned its own, dedicated CPU

cores and that ranks are not migrated between cores. To pin threads to

cores within each MPI rank, I set the OMP PROC BIND environment variable

to true.

41

3.4. RESULTS

3.4 Results

In order to fairly asses the performance of the TX2 versus the other

platforms, I first looked at the best performance obtained on each benchmark.

Together, these form a good expectation of the performance, on average, of

each platform on real-world workloads.

The results presented in Section 3.4.1 are the best case for each platform:

where several compilers or parameters could be used, I tried all combinations

and selected the best result. The following sections go into more details about

the impact of the compilers and libraries used.

3.4.1 Best Application Performance

Figures 3.4 and 3.5 show the performance of the four platforms studied

when running mini-apps and full applications, respectively. The results are

normalised to Broadwell, which was the de facto architecture utilised in HPC

when the ThunderX2 became available [133].

STREAM CloverLeaf TeaLeaf SNAP Neutral
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
P

er
fo

rm
an

ce

TX2 BDW SKL20 SKL28

Figure 3.4: Relative performance of mini-apps compared to Intel Broadwell.
Higher numbers represent better performance.

42

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

CP2K GROMACS NAMD NEMO OpenFOAM OpenSBLI Unified Model VASP
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

Pe
rfo

rm
an

ce

TX2 BDW SKL20 SKL28

Figure 3.5: Relative performance of applications compared to Intel Broad-
well. Higher numbers represent better performance.

STREAM. For the processors tested, the available memory bandwidth is

determined by the number of memory channels. Skylake achieved a 1.64×
improvement over Broadwell, which was expected, given Skylake uses 6 chan-

nels of 2666 MHz DDR4 vs. Broadwell’s 4 channels at 2400 MHz. The 8

memory channels per socket on the Marvell ThunderX2 resulted in a 1.93×
speed-up over Broadwell.

Broadwell and Skylake achieved 84.4% and 83.9% of theoretical peak

memory bandwidth, respectively. At 253 GB/s, ThunderX2 achieved 79.2%

of theoretical peak memory bandwidth. On ThunderX2, the best STREAM

Triad performance was achieved with running 16 OpenMP threads per socket

(32 in total), rather than one thread per core (64 total). With 32 total

threads, the CrayPAT tool reported cache hit rates of 69.4% for L1 and

66.9% for L2, whereas for 64 threads, the cache hit rates were 66.6% for

L1 and 38.5% for L2; notice that the L2 hit rate is lower when using more

threads. On the 18-core Broadwell CPUs in the Isambard Phase 1 system,

the cache hit rates were 66.7% for L1 and 11.3% for L2, both with 36 threads,

43

3.4. RESULTS

and the numbers were similar with only half the number of threads. This

suggests that on high-core-count processors like the ThunderX2, if memory

bandwidth is the sole concern, sometimes better results may be achieved by

not filling all the available cores.

The use of non-temporal store instructions is an important optimisation

for the STREAM benchmark, as Raman et al showed: for the Triad kernel,

for example, it provided a 37% performance improvement on Intel Broadwell

and Xeon Phi (Knights Landing) processors [113]. On the Intel architectures,

using these instructions for the write operations in the STREAM kernels en-

sures that the cache is not polluted with output values, which are never

re-used. As such, if this data occupied space in the cache, it would reduce

the capacity available for the other arrays which are being prefetched into

cache. The construction of the STREAM benchmark — arrays allocated on

the stack, with the problem size known at compile-time — allowed the Intel

compiler to generate non-temporal store instructions for all the Intel archi-

tectures in this study.

Although the GCC compiler does not generate non-temporal stores for

the ThunderX2 architecture — in fact, it cannot generate non-temporal store

instructions for any architecture — the implementation of these instructions

within the ThunderX2 architecture does not result in a bypass of cache any-

way. Instead, these stores still write to L1 cache, but in a way that exploits

the write-back policy and least recently used eviction policy to limit the dis-

ruption on cache. This lack of true streaming stores may be a limiting factor

in achieving higher architectural efficiency with STREAM on ThunderX2, as

memory bandwidth is being wasted evicting the output arrays of the kernels.

However, the additional memory controllers on ThunderX2 processors still

provided a clear memory bandwidth advantage over Broadwell and Skylake

processors.

CloverLeaf. The normalised results for the CloverLeaf mini-app are con-

sistent with those for STREAM on all the processors studies. CloverLeaf

is a structured-grid code and the majority of its kernels are bound by the

available memory bandwidth, and it has been shown previously that using

44

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

GPUs with high memory bandwidth results in proportional improvements

for CloverLeaf performance [85]. The same was true on the processors in

this study: the improvements on ThunderX2 came from its greater memory

bandwidth, reaching the highest performance of the processors tested.

The time taken to execute each iteration increased as the simulation pro-

gressed on the ThunderX2 processor. This was due to the data-dependent

need for floating-point intrinsic functions, such as abs, min and sqrt, which

can be seen in the viscosity kernel, for instance. As the iterations pro-

gress, the need for such functions became higher and, therefore, the kernel

increased in runtime. Although these kernels are memory-bandwidth-bound,

the increased number of floating-point operations increase the computational

intensity, and CloverLeaf as a whole is therefore slightly less bandwidth-

bound under the Roofline model. On the x86-based processors, which have

less memory bandwidth available but more arithmetic resources, this change

in the iteration time was not observed, suggesting that the extra arithmetic

was entirely hidden by the slower memory operations.

On all the platforms studied, I found that the best run configuration for

CloverLeaf was per-core hybrid MPI, with OpenMP threads used to fill all

the available hardware threads. On the ThunderX2, this meant running 64

MPI ranks, each bound to a physical core and splitting its computation over

4 OpenMP threads. This was the best way to utilise the processor’s SMT

capabilities; without, it was better to run a single MPI rank per physical core

without any OpenMP threading, for a total of 64 ranks of one thread each,

rather than one MPI rank for each hardware thread available.

TeaLeaf. The TeaLeaf mini-app again tracked the memory bandwidth per-

formance of the processors, as previously shown on x86 and GPU architec-

tures [90]. The additional memory bandwidth of the ThunderX2 processor

clearly improved the performance over processors with fewer memory chan-

nels. As was the case with CloverLeaf, the most efficient run configuration

was one MPI rank per physical core, each using 4 threads, for a total of 256

threads on a dual-socket ThunderX2 node.

45

3.4. RESULTS

SNAP. Understanding the performance characteristics of the SNAP proxy

application is difficult [23]. If truly memory-bandwidth-bound, the extra

bandwidth available on the ThunderX2 processor would increase the per-

formance as it did for the other memory-bandwidth-bound codes discussed.

However, the ThunderX2 processor was almost 30% slower than Broadwell

for the input problem in this benchmark. The Skylake processor, on the

other hand, did show an improvement, and memory bandwidth was not the

main factor here: Skylake has 512-bit vectors, which create a wide data path

through the cache hierarchy. In comparison, Broadwell has 256-bit vectors

and the ThunderX2 has 128-bit vectors, moving half and a quarter of a 64

byte cache line per load operation, respectively.

The main sweep kernel in the SNAP code requires that a cache hierarchy

support both accessing a very large data set and simultaneously keeping a

small working set in low levels of cache. To evaluate the performance of the

caches, the CrayPAT profiler was used to obtain the cache hit rates for L1

and L2 caches. On the ThunderX2, the hit rates for the caches were both at

around 84%, which is much higher than the hit rate for the STREAM bench-

mark — the latter is truly main-memory-bandwidth-bound. This shows that

the SNAP proxy application heavily reuses data in cache, and so perform-

ance of the memory traffic to and from cache is a key performance factor.

On the Broadwell processors in Isambard Phase 1, CrayPAT reported cache

hit rates of 89.4% for L1 and 24.8% for L2. Again, the L1 cache hit rate was

much higher than in the STREAM benchmark, indicating high reuse of data

in the L1 cache, but that the L2 was not used as efficiently. It is thus clear

that main memory bandwidth alone is not the performance limiting factor,

but rather it is aggregate bandwidth to the caches where the x86 processors

have an advantage [28].

Neutral. In previous work, it has been shown that the Neutral mini-app

has algorithmically little data reuse, due to the random access to memory

required for accessing the mesh data structures [79]. Additionally, the access

pattern is data-driven, and thus not predictable, so any hardware prefetch-

ing of data into cache according to common access patterns is likely to be

46

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

ineffective, resulting in a relatively high cache miss rate. Indeed, CrayPAT

showed a low percentage (27.3%) of L2 cache hits on the ThunderX2 pro-

cessor and a similar percentage on Broadwell. The L1 cache hit rate was high

on both architectures, with over 95% hits. As a result, the extra memory

bandwidth available on the ThunderX2 processor did not provide an advant-

age over the Intel Xeon processors. Note that the ThunderX2 processor still

achieved performance close to that of Broadwell, with 28-core Skylake only

offering a performance improvement of about 29%.

CP2K. CP2K comprises many different kernels that have varying per-

formance characteristics, including some floating-point-intensive routines and

some that are affected by memory bandwidth. While the compute-intensive

routines ran up to 3× faster on Broadwell compared to ThunderX2, the im-

proved memory bandwidth and higher core counts provided by ThunderX2

allowed it to reach a 1.15× final speed-up over Broadwell for this benchmark.

The 28-core Skylake processor provided even higher floating-point through-

put and closed the gap in terms of memory bandwidth, yielding a further

19% improvement over ThunderX2. The H2O-64 benchmark has been shown

to scale sublinearly when running on tens of cores [11], which impacts on the

improvements that ThunderX2 can offer on its 64 cores. When running the

benchmark on a single socket, Skylake was just 5% faster than ThunderX2.

GROMACS. The GROMACS performance results were influenced by two

main factors. First, the application is heavily compute-bound, and the x86

platforms were able to exploit their wider vector units and wider datapaths

to cache. Performance did not scale perfectly with vector width due to

the influence of other parts of the simulation, in particular the distributed

FFTs. Secondly, because GROMACS uses hand-optimised vector code for

each platform, x86 benefits from having the more mature implementation,

one that has evolved over many years. Since Arm platforms were new in

HPC at the time, the NEON implementation did not achieve peak efficiency

on ThunderX2.

47

3.4. RESULTS

NAMD. As discussed in Section 3.2, NAMD is not clearly bound by a

single factor, and thus it is hard to underline a specific reason why one

platform was slower — or faster — than another. It is likely that results were

influenced by a combination of memory bandwidth, compute performance,

and other latency-bound operations. The results observed do correlate with

memory bandwidth, making Broadwell the slowest platform of the three for

this application. Running more than one thread per core in SMT increased

NAMD performance, and this is the most pronounced on the ThunderX2,

which can run 4 hardware threads on each physical core. Furthermore, due

to NAMD’s internal load balancing mechanism, the application was able to

efficiently exploit a large number of threads, which conferred yet another

advantage to ThunderX2 for being able to run more threads (256) than the

x86 platforms (112 on the 28-core Skylake). As a result, while the 32-core

ThunderX2 did not match the top-bin 28-core Skylake, it did outperform the

mainstream 20-core Skylake by about 18%.

NEMO. For the NEMO benchmark, ThunderX2 was 1.49× faster than

the 22-core Broadwell, and slightly faster than the 20-core Skylake, while

not matching the 28-core Skylake. While the benchmark should be mostly

memory-bandwidth-bound, leading to significant improvements over Broad-

well, the greater on-chip cache bandwidth of Skylake gave the top-bin part a

performance advantage over ThunderX2. Running with multiple threads per

core to ensure that the memory controllers are saturated provided a small

improvement for ThunderX2.

OpenFOAM. The OpenFOAM results followed the STREAM behaviour

of the three platforms closely, confirming that memory bandwidth is the main

factor that influences performance here. With its eight memory channels,

ThunderX2 yielded the fastest result, at 1.87× the Broadwell performance.

Skylake ran 1.57×–1.66× faster than Broadwell, i. e. a bigger difference than

in plain STREAM, because it is likely able to get additional benefit from

its improved caching, which is not a factor in STREAM. This benchmark

48

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

strongly highlights ThunderX2’s strength in how performance for HPC work-

loads can be improved significantly through higher memory bandwidth.

OpenSBLI. The OpenSBLI benchmark exhibited a similar performance

profile to OpenFOAM, providing another workload that directly benefits

from increases in memory bandwidth. The ThunderX2 system produced

speed-ups of 1.69× and 1.21× over 22-core Broadwell and 20-core Skylake,

respectively, and almost matched the 28-core Skylake.

Unified Model. Comprising two million lines of Fortran, the Unified Model

is arguably the most challenging of the benchmarks used in this study, stress-

ing the maturity of the compilers as well as the processors themselves. The

28-core Skylake only reached 1.19× the performance of the 22-core Broadwell,

indicating that the performance of this test case is not entirely correlated to

memory and cache bandwidth or floating-point computational performance,

and that the relatively low-resolution benchmark may struggle to scale effi-

ciently to higher core counts. The ThunderX2 result was around 8% slower

than the top-bin Broadwell, but demonstrated the robustness of the Cray

software stack on Arm systems by successfully building and running a com-

plex, long-lived piece of software without requiring any modifications.

Interestingly, when running on just a single socket, ThunderX2 provided

a ∼15% improvement over Broadwell, suggesting a potential scaling issue of

this application to high-core-count nodes — a dual-socket node of TX2 has

64 cores total, but a dual-socket node of Broadwell only has 44 — or perhaps

that inter-socket communication may be less optimal on the TX2 system

than it is on the Intel systems. I also observed performance regressions in

the more recent versions of CCE on all three platforms: the Broadwell result

was fastest using CCE 8.5, which could not be used for either Skylake or

ThunderX2, because CCE only gained support for these with version 8.6.

VASP. The calculations performed by the VASP benchmark are domin-

ated by floating-point-intensive routines, which naturally favour the x86 pro-

cessors with their wider vector units. While the higher core counts provided

49

3.4. RESULTS

by ThunderX2 made up for some of the difference, the VASP benchmark ex-

hibited a similar profile to GROMACS, with ThunderX2 reaching around 3⁄4
the performance of the 22-core Broadwell and around half that of the 28-core

Skylake.

Application Performance Summary. Many of these results highlight

the superior memory bandwidth offered by the ThunderX2’s eight memory

channels, which deliver 253 GB/s for the STREAM Triad benchmark — twice

that of Broadwell and 18% more than Skylake. This performance increase

can be seen in the memory-bandwidth-bound mini-apps such as CloverLeaf

and TeaLeaf, with the ThunderX2 processor showing similar improvements

to STREAM over the x86 processors. The SNAP and Neutral mini-apps,

however, rely more on the on-chip memory architecture — the caches — and

so they are unable to leverage the memory bandwidth on all processors. As

such, the additional memory controllers on the ThunderX2 processors do not

seem to improve the performance of these mini-apps relative to processors

with less memory bandwidth.

The remainder of this chapter dives deeper into insight on running HPC

workloads on the ThunderX2. In the following chapters of this thesis, I ex-

plore the challenges of SVE-enabled processors: Chapters 4 and 5 address is-

sues that implementations of SVE have to consider in making optimal design

choices; Chapter 6 evaluates the first real-world implementation of SVE; and

Chapter 7 surveys modern programming models and their applicability to

a wide range of architectures, including Arm SVE. Finally, in Chapter 8

I present insight I have gained that could suggest exploration avenues and

methodology for further studies involving modern vector architectures.

3.4.2 Compiler Performance Comparison

Early toolchain comparison. The results discussed in Section 3.4.1 are

the best achieved on each platform. They were obtained by compiling each

application with all the supported compilers, using a set of compiler flags

to enable the highest level of optimisation for the target platform, e. g.

50

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

Table 3.4: Best compiler for each application on the platforms studied.

Benchmark ThunderX2 Broadwell Skylake

STREAM Arm 18.3 Intel 18 CCE 8.7
CloverLeaf CCE 8.7 Intel 18 Intel 18

TeaLeaf CCE 8.7 GCC 7 Intel 18
SNAP CCE 8.6 Intel 18 Intel 18

Neutral GCC 8 Intel 18 GCC 7

CP2K GCC 8 GCC 7 GCC 7
GROMACS GCC 8 GCC 7 GCC 7

NAMD Arm 18.2 GCC 7 GCC 7
NEMO CCE 8.7 CCE 8.7 CCE 8.7

OpenFOAM GCC 7 GCC 7 GCC 7
OpenSBLI CCE 8.7 Intel 18 CCE 8.7

UM CCE 8.6 CCE 8.5 CCE 8.7
VASP GCC 7.2 Intel 18 Intel 18

-mcpu=native -O3 -ffast-math -ffp-contract-fast, then selecting the

best-performing one. Table 3.4 shows which compiler produced the fastest

binary in each case.

For mini-apps, the Intel compiler often produced the fastest results on

the x86 platform: it was able to match patterns in the kernels and generate

highly optimised code sequences for them, and because the mini-apps contain

relatively little kernel code, the performance gained this way was significant.

On the other hand, when moving to full-scale applications, the Cray compiler

was the fastest, by virtue of higher vectorisation performance, on x86 and

Arm alike. The best-performing compiler was weakly correlated with the

programming language of the application: the Cray compiler performed the

best on Fortran programs, such as NEMO and UM, while GCC was fastest

with C++, for example on OpenFOAM and GROMACS.

Figures 3.6 and 3.7 compare the three major compilers on the ThunderX2

platform, normalised to the best performance observed for each benchmark.

The benefit of having multiple compilers for Arm processors is clear, as none

of the compilers dominated performance, and no single compiler was able

to build all of the benchmarks. Performance for the mini-apps was broadly

51

3.4. RESULTS

STREAM CloverLeaf TeaLeaf SNAP Neutral
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
Arm 18.4 CCE 8.7 GCC 7.2 GCC 8.1

Figure 3.6: Relative performance of mini-apps running on ThunderX2 when
compiled with different toolchains.

similar across all of the compilers, with 15–20% variations for SNAP and

Neutral, where the more complex kernels drew out differences in the optim-

isations applied by the compilers. The Arm HPC compiler uses the LLVM-

based Flang, a relatively new Fortran frontend, which at the time of writing

produced an internal compiler error while building CP2K. Both CP2K and

GROMACS crashed at runtime when built with CCE; this issue also occurred

on the Broadwell system and so was not specific to Arm processors. While

the NAMD benchmark built and ran correctly with GCC 7, it froze after

initialisation with GCC 8. It is unclear whether these issues are a result of

bugs in the applications themselves or errors in the compilers.

NAMD failed to build with CCE because Charm++ uses inline assembly

syntax which is not supported by the Cray compiler. OpenFOAM exhibited

multiple syntax errors in its source code, which are only flagged as issues

by GCC 8 and CCE; this syntax was only valid in legacy versions of C++

and more modern compilers do not accept it any more. The largest perform-

ance difference I observed between the compilers was with the OpenSBLI

benchmark, where the code generated by CCE was 2.5× faster than any of

the other compilers. On x86, performance was much closer between all of

52

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

GCC 7 GCC 8 Arm 18.3 CCE 8.7

CP2K

GROMACS

NAMD

NEMO

OpenFOAM

OpenSBLI

Unified Model

VASP

99%

99%

85%

—

100%

39%

84%

100%

100%

100%

CRASH

—

BUILD

39%

BUILD

—

BUILD

91%

100%

—

99%

38%

72%

—

CRASH

CRASH

BUILD

100%

BUILD

100%

100%

—

Figure 3.7: Relative performance of full applications running on ThunderX2
when compiled with different toolchains. For each application, the fastest
result is labelled “100%”. Build- and run-time errors are marked in red, and
dashes indicate build configurations not supported at the time of writing.

the compilers, and the main factor causing a performance discrepancy is the

MPI library used. On systems where Cray MPI can be used with non-CCE

compilers, the final performance difference should be minimal.

The results above were produced using the latest versions of the tool-

chains available when the Isambard system was installed in 2017–18. Those

were, in most cases, the very first release versions of these tools targeting

an HPC environment and the ThunderX2 processor. However, toolchains

have continuously improved since then, and the four years of running the

Isambard service have directly contributed to their maturity.

Updated toolchain comparison. In 2021, I repeated the same compiler

experiments with the latest versions of the tools to quantify the improvement

over time. The initial and updated versions of the toolchains are given in

Table 3.5.

53

3.4. RESULTS

Table 3.5: Initial TX2 compiler versions from 2018 compared to the latest
available releases in 2021.

Compiler Early version (2018) Modern version (2021)

Arm HPC Compiler (ACfL) 18.2 21.0
Cray Compiler (CCE) 8.7 11.0
GNU (GCC) 7.2 11.1

STREAM CloverLeaf TeaLeaf SNAP Neutral
Benchmark

0.95

1.00

1.05

1.10

1.15

1.20

Re
la

tiv
e

Pe
rfo

rm
an

ce

Compiler
Arm
Cray
GNU

Figure 3.8: Relative performance of the latest version of TX2 compilers in
2021 compared to the initial releases in 2018. Numbers above 1 represent an
increase in performance.

54

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

I observed 5–10% increases in the memory bandwidth reported by STREAM,

but no significant performance change for any of the bandwidth-bound mini-

apps. There were increases in the performance of SNAP — particularly with

the Cray compiler, which improved by more than 20% — which suggest that

the compilers have more mature cost models of the TX2 microarchitecture.

CCE also generated better code for Neutral, closing the gap to the other

compilers. The performance of the code generated by the Arm Fortran com-

piler was 5% lower than 3 years before. Figure 3.8 shows the performance

achieved for the mini-apps with the newer toolchains.

Full applications have since been updated to support the latest compilers.

Build errors have been reduced, and I did not find any Arm-target-specific

build failures — where an application failed to build with a compiler, it did so

on both Arm and x86. Performance did improve for some applications, but

that was the result of manual optimisation work rather than compiler im-

provement: in GROMACS, for example, the ARM NEON ASIMD implementation

has been improved and an ARM SVE variant has been added. As for librar-

ies, ArmPL and FFTW produced virtually similar results on the ThunderX2

after undergoing optimisations for these platforms. These observations are

consistent with a stable, developed ecosystem and are what I expected to

find after years of improvement.

3.4.3 Library Performance Comparison

In addition to the compiler’s ability to generate optimised code for the

target processor, some of the benchmarks presented in Section 3.4.1 utilise

external libraries for optimised maths routines. This is standard practice in

scientific applications, because it lets application developers focus on their

specific problem, while ensuring that optimisation work put into common

routines can benefit everyone. The x86 architecture is well established in

HPC, and so it is a common expectation that maths libraries provide good

performance, both in open-source packages and in vendor-specific toolchains.

On Arm-based platforms, however, the introduction of the ThunderX2 in the

55

3.4. RESULTS

HPC space provided the first real opportunity to evaluate the performance

of the libraries.

The benchmarks in this work use external libraries for two types of op-

erations: FFTs and basic linear algebra subprograms (BLAS). In each case,

there are two alternatives that can often be used interchangeably:

• for FFTs, Cray provide an optimised build of FFTW, and Arm imple-

ment the same FFT interface as part of the Arm Performance Libraries

(ArmPL);

• for BLAS, the proprietary ArmPL implementation can be used, or the

open-source OpenBLAS package can be built from source.

Figures 3.9a and 3.9b show heatmaps of the relative performance of these

options in the benchmarks where there are used, for BLAS and FFT, re-

spectively. For each benchmark, the best-performing choice is marked 100%

and the other option is given as a relative percentage of the former. The

compiler here is the Arm HPC compiler in all cases, because it is compatible

with all these library options.

ArmPL 18.4 OpenBLAS 0.2

CP2K

VASP

95%

100%

100%

97%

(a) BLAS

ArmPL 18.4 FFTW 3.3.6

NAMD

VASP

100%

82%

100%

100%

(b) FFT

Figure 3.9: Relative performance of optimised maths libraries on ThunderX2.

The results show that while performance differences did exist between the

different libraries, in most cases these affected the overall benchmark result

by less than 10%. The one exception to this rule was VASP when run with

the FFT implementation in ArmPL, which was identified as a weakness in

56

CHAPTER 3. EMERGING CPU ARCHITECTURES FOR HPC

the Arm implementation and was fixed in subsequent release of the library.

The small differences observed increased confidence that the Arm toolchain

ecosystem was of high, production-ready quality even from the first releases

of software targeting the very first Arm-based processor aimed at HPC work-

loads.

3.5 ThunderX2 Performance Summary

Overall, the results presented in this chapter demonstrate that the Arm-

based Marvell ThunderX2 processors are able to execute a wide range of

important scientific computing workloads with performance that was compet-

itive with state-of-the-art x86 offerings at the time of its release. The Thun-

derX2 processors can provide significant performance improvements when an

application’s performance is limited by memory bandwidth, but are slower

in cases where codes are compute-bound. When processor cost is taken into

account, ThunderX2’s proposition was even more compelling. With multiple

production-quality compilers now available for 64-bit Arm processors, the

software ecosystem has reached a point where developers can have confid-

ence that real applications will build and run correctly, in the vast majority

of cases with no modifications.

Some of the applications tested highlighted the lower floating-point through-

put and L1/L2 cache bandwidth of ThunderX2. Both of these characteristics

stem from the narrower vector units relative to AVX-capable x86 processors,

but Arm SVE enables hardware vendors to design processors with much

wider vectors of up to 2,048 bits, compared to the 128 bits of today’s NEON.

Therefore, SVE-enabled Arm-based processors are anticipated to likely ad-

dress most of the issues observed in this study, enabling Arm processors to

deliver even greater performance for a wider range of workloads. I explore

the extent to which this potential is fulfilled in the first generation of SVE

hardware in Chapter 6.

Another difference between the processors used in this study is the total

cache available. The longer the vector width, the faster the cache can be

filled, but even at the same vector widths difference cache configurations

57

3.6. REPRODUCIBILITY

can affect application performance. I further investigate the impact of a

processor’s cache structure on application performance in Chapter 5.

3.6 Reproducibility

The benchmarks presented in this chapter cover a large set of applications,

each with specific build-time and run-time options and potentially different

flag choices on each platform. This parameter space has been captured in a

set of scripts that can be used to reproduce the results in this chapter. They

are set up for the systems used in this work, but can be easily modified for

other environments. The scripts are available online5.

5https://github.com/UoB-HPC/benchmarks

58

https://github.com/UoB-HPC/benchmarks

CHAPTER 4

Next-Generation Vector Instruction Sets

Content from this chapter appears in the following publication:

• Andrei Poenaru and Simon McIntosh-Smith. ‘Evaluating the Ef-

fectiveness of a Vector-Length-Agnostic Instruction Set’. In: Euro-

Par 2020: Parallel Processing. Euro-Par 2020 (Warsaw, Poland,

24–28 August 2020). Ed. by Maciej Malawski and Krzysztof Rza-

dca. Cham: Springer International Publishing, 2020, pp. 98–114

Modern processors rely on SIMD hardware to provide high performance

for scientific applications. Vector hardware is not a new concept, with its

origins reaching back to the CRAY-1 in 1975, but taking advantage of such

capabilities has become increasingly important over the past few years.

Current x86-based processors offer SIMD capabilities through the 256-

bit AVX2 and 512-bit AVX-512 instruction sets. Arm-based alternatives,

however, have so far only offered 128-bit vectors through the instruction set

previously known as NEON, which is now part of the ARMv8 ASIMD instruc-

tion group. The relatively short width of ASIMD vectors, combined with the

reduced flexibility of this instruction set originally designed for media and

signal processing, has limited the performance of Arm-based processors on a

number of scientific applications [87]. In Chapter 3, this effect was observed

on some of the more compute-bound benchmarks.

59

4.1. MODERN VECTOR INSTRUCTIONS SETS

The next generations of high-performance Arm processors will use the

Scalable Vector Extension (SVE) to provide more powerful vector opera-

tions [128]. Unlike other current mainstream SIMD implementations, SVE

is a vector-length-agnostic (VLA) instruction set, allowing each implement-

ation to choose a vector width between 128 and 2048 bits, in increments of

128 bits, with SVE binaries being portable between implementations. The

first SVE-capable hardware did not become available until 2020 [134], but a

number of tools that enable SVE experiments through either emulation or

simulation were available earlier. In this chapter, I use these SVE perform-

ance tools to assess the efficacy of the new vector instruction set across a

range of common HPC problem classes.

First, I compare the vectorisation efficiency of several HPC mini-apps

on contemporary vector platforms from Arm and Intel; this sets a baseline

for expectations. Then, I analyse how SVE mini-apps representing different

classes of scientific applications are able to exploit SVE, by inspecting ex-

ecuted vector code and memory access patterns. Because the vector width

is not fixed in SVE, this can be done across a range of chosen widths, ex-

amining the changes at every step. Finally, I evaluate the state of early SVE

compilers and performance analysis tools, which are critical for the adoption

of this new platform in HPC.

The goal of these experiments is to study the applicability in HPC of

SVE as a target instructions set, without relying on a specific hardware im-

plementation. Lessons learned here can be used to guide future implementa-

tions towards making design decisions that bring the biggest benefit possible

to HPC applications. This work is a good example of how the co-design of

hardware and software can build towards more advanced, more efficient, and

more performant systems.

4.1 Modern Vector Instructions Sets

Section 2.1.1 explained that it is common for vector code to be produced

by optimising compilers. However, compiler-backed auto-vectorisation can-

not be assumed to be optimal [75, 109]. Therefore, it is important to eval-

60

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

uate its effectiveness on new hardware platforms. Furthermore, differences

in instruction sets and their implementation in hardware can cause different

behaviour on two distinct processors, even when the same benchmark and

toolchain are used.

On x86 processors there are many variants of AVX available, and the

optimal code for each variant may be significantly different [149], but with

the Arm SVE instruction set, the generated machine code does not depend on

a fixed vector width. Instead, executables automatically exploit the widest

vector size available at run-time, using an approach similar to that of the very

first vector computers [129]. This is particularly attractive for benchmarks

based on real-world scientific applications, as they tend to steer clear of

platform- or vendor-specific optimisations and instead opt for portable code1.

SVE is implemented in new and upcoming generations of Arm-based HPC

processors, including the recently announced Fujitsu A64FX [147] and the

Marvell ThunderX4 [121]. Because SVE supports vector widths between 128

and 2048 bits, chip designers need to select the vector width to be used in

their implementation. It is, thus, important to estimate how this choice will

affect the performance of applications run on such future processors, and

experiments are already being run to determine the impact of SVE width on

scientific kernels [63].

4.2 SVE Evaluation Methodology

To study the efficacy of SVE in the field of HPC, I used mini-apps. These

use only OpenMP or MPI, require no external libraries, and rely on auto-

matic vectorisation by the compiler, i. e. no platform-specific intrinsics are

used. Each mini-app is representative of a different class of common sci-

entific problems, and they were individually introduced in Section 2.5.1.

The same set was used to characterise the performance of Isambard, the

first production-ready system based on ARMv8 processors. This work was

1One notable exception to this is GROMACS, introduced in Section 3.2. Implications of
their choice to implement vectorisation using platform-specific intrinsics will be presented
in Chapter 6.

61

4.2. SVE EVALUATION METHODOLOGY

presented in Chapter 3 and gives a good overview of their performance on

modern HPC systems.

I performed the experiments described in this chapter using a combination

of static and dynamic analysis tools. The compilers used were the latest ver-

sions of the three main SVE toolchains available at the time of writing: Arm

HPC Compiler 19.2, GCC 8.2, and Cray Compiler (CCE) 9.0; for SVE, a pre-

release version of the Cray Compiler, 9.0a, was used. I enabled most compiler

optimisation with the flags -O3 -ffast-math -mcpu=thunderx2t99+sve; full

reproducibility details can be found in Section 4.7. In all experiments, I used

a single OpenMP thread and MPI process (where applicable), and the inputs

were chosen such that the non-instrumented run time is below 5 seconds on

a single core of a ThunderX2 processor. I used compiler optimisation listings

and annotated source code to count vectorised loops in each mini-app, and I

confirmed that vector instructions are run using hardware counters.

These experiments were performed prior to any SVE-equipped hardware

becoming available, and so do not focus on any particular microarchitectural

implementation. Instead, I ran the SVE versions of the mini-apps using the

Arm Instruction Emulator (ArmIE)2. ArmIE runs base AArch64 instruc-

tions natively on the host, and switches to emulation when encountering

SVE instructions. It also allows user-defined instrumentation code, known

as instrumentation clients, to be run over both the native and emulated parts

of the application.

For these experiments, I wrote custom instrumentation clients to record

data about the instructions executed and the memory accesses performed

by the programs. I limited instrumentation to the core computation ker-

nels in the mini-apps, such that data is not collected for the initialisation

and shut-down stages of the applications, because these are generally not

important when measuring real-world performance. Recording data outside

the kernels can skew the results by showing a misleadingly high number of

scalar instructions if these sections are not optimised for vectorisation. To

define the regions where data was collected, I inserted special instructions to

2https://developer.arm.com/tools-and-software/server-and-hpc/compile/

arm-instruction-emulator

62

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

start and stop instrumentation, which are invalid AArch64 instructions but

are recognised and honoured by our ArmIE client.

I classified dynamically recorded instructions into several categories: scalar

AArch64 (A64), vector AArch64 (i.e. Advanced SIMD/NEON), SVE arith-

metic, SVE memory loads, SVE memory stores, SVE moves, and SVE con-

trol flow. I used the memory access trace data to describe each operation as

〈load/store, contiguous/non-contiguous, some/all vector lanes active〉. The

SVE vector width was set by stepping through the powers of two between

128 and 2048.

4.3 Results

4.3.1 Compiler Vectorisation Efficiency

I analysed the static vectorisation efficiency of SVE compared to AVX

by looking at the loops in the core computation kernels of each mini-app. I

selected loops to cover the majority of the mini-apps’ run times, as reported

by a profiled run on a real ThunderX2 processor. For targeting Arm, both

with SVE and NEON, I used the three main HPC compilers: Arm’s HPC

compiler, GCC, and the Cray Compiler; for x86, I used the same versions of

GCC and Cray, but I used the Intel Compiler 19.0 instead of the Arm HPC

Compiler.

Table 4.1 shows, for each application, the number of loops considered, the

percentage of run time that they represent, and the number of loops vector-

ised by each compiler on each platform. I show TeaLeaf twice — once using

a CG solver, once using a PPCG solver — because the two runs cover very

different code paths, and both are representative of real workloads. There

are no MiniFMM results with the Cray Compiler because the application’s

build system does not currently support the Cray Compiler.

Aggregating the results across mini-apps, I observed that the compilers

which can generate code for all the instructions sets vectorised the highest

number of loops on SVE.

63

4.3.
R

E
S
U

L
T

S

Table 4.1: Number of loops vectorised by each compiler on the top loop-nests, selected by percentage of total run
time on a ThunderX2 processor, in the mini-apps studied. The results for AVX2 and AVX-512 were identical; here
they share the AVX label.

Application
% Time

(Total Loops)

SVE NEON AVX

Arm Cray GCC Arm Cray GCC Intel Cray GCC

STREAM 92.4 (4) 4 4 4 4 4 4 4 4 4

miniBUDE 98.6 (4) 4 3 3 3 4 3 4 4 3

TeaLeaf (cg) 87.2 (8) 5 6 8 5 6 8 8 6 6

TeaLeaf (ppcg) 91.2 (6) 6 6 6 6 6 6 6 6 6

CloverLeaf 62.5 (10) 9 10 6 8 9 6 10 9 8

MegaSweep 70.3 (4) 1 4 0 1 1 0 4 1 0

Neutral 85.8 (2) 0 0 0 0 0 0 0 0 0

MiniFMM 98.1 (8) 7 — 5 3 — 5 7 — 5

Total (46) 36 32 32 30 30 32 43 28 32

64

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

I then studied the factors influencing vectorisation on each mini-app in-

dividually. TeaLeaf with the PPCG solver was fully vectorised on all the

platforms, by all compilers. TeaLeaf with CG and miniBUDE achieved 80%

or more vectorisation with all compilers; it should be possible to achieve full

vectorisation, as shown by the Intel compiler on AVX and GCC on Arm.

CloverLeaf and MiniFMM showed all loops except one vectorised with Arm,

Cray, and Intel, but only about half with GCC; GCC reports that further

vectorisation is not beneficial according to its cost model, on all platforms,

due to indirect access. MegaSweep was not vectorised by GCC on any plat-

form, but fully vectorised by Cray on SVE and Intel on x86, which suggests

vectorisation is possible, but not all compilers understand the loops’ struc-

ture. Neutral was not vectorised at all, on any platform, due to the deeply

nested branching in its algorithm.

The differences in vectorisation between SVE and NEON are due to the

higher flexibility of SVE: there are more general-purpose vector instructions

available, compared to the multimedia-focused NEON instruction set, so

more operations can be implemented efficiently using vectors. When target-

ing x86, all compilers vectorised the same number of loops on both AVX2,

e. g. for Broadwell, and AVX-512, e. g. for Skylake. An ideal compiler should

be able to vectorise all 46 loops studied, although it is likely that the per-

formance gained by vectorising the remaining three loops — two in Neutral

and one in MiniFMM — depends on the data supplied at run-time.

4.3.2 Dynamic Instruction Analysis

After I obtained vectorised code for the mini-apps, I recorded dynamic

instruction execution traces at each power-of-two SVE vector length between

128 and 2048 bits. I added a NEON-only and a non-vectorised (scalar) run

for each application, to serve as baselines against which to compare the SVE

results. The traces allowed us to identify the types of SVE instructions

executed and how their dynamic count varies with the chosen vector length.

Figure 4.1 shows the dynamic instruction count analysis for the STREAM

benchmark, where instructions are grouped by type: scalar AArch64, NEON

65

4.3. RESULTS

Figure 4.1: Dynamic instruction count and grouping for STREAM. Lower
is generally better. A64 refers to scalar instructions; NEON refers to base-
AArch64 ASIMD vector instructions; the remaining groups are all SVE in-
structions.

(AArch64 ASIMD), and several groups of SVE operations; a lower number

of instructions executed is generally better. In the scalar and NEON-only

cases, the Arm and Cray Compiler showed similar behaviour, but the GCC

version ran more than twice as many instructions because it did not make

use of load/store pair instructions, an operation in which two 64-bit values

can be read from/written to memory in a single instruction. When targeting

SVE, all three compilers performed similarly, and I saw a decrease in the

total instruction count as I increased vector length, since each instruction

had increasingly more active lanes. No compiler generated load/store pairs

for SVE, so the instruction count at 128 bits — the same vector length that

NEON uses — is close to that observed for GCC when targeting NEON. The

Arm and Cray compilers, but not GCC, chose to use scalar A64 instruc-

tions for loop control flow, which resulted in the scalar instruction count also

varying with SVE width.

miniBUDE, a heavily compute-bound application, ran vector code al-

most exclusively, which results in a clear inverse relation between the dy-

66

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

Figure 4.2: Dynamic instruction count and grouping for miniBUDE. Lower
is generally better. A64 refers to scalar instructions; NEON refers to base-
AArch64 ASIMD vector instructions; the remaining groups are all SVE in-
structions.

namic instruction count and the vector length. All compilers performed very

similarly for this application. The results are shown in Figure 4.2.

TeaLeaf and CloverLeaf exhibited similar behaviour: the code was only

partially vectorised, leading to a mixture of SVE and scalar instructions. As

the SVE length was increased, the number of executed SVE instructions

decreased, but the number of scalar instructions executed stayed constant.

The non-SVE part comes largely from outer-loop code, since in these cases

only the innermost loop is vectorised by the compilers. Figures 4.3 and

4.4 show the results for TeaLeaf and CloverLeaf, respectively. The TeaLeaf

results shown are for the CG solver, which is the default and most commonly

utilised option for the mini-app.

MegaSweep was only vectorised by the Cray Compiler. As with STREAM,

CCE performed control flow using scalar instructions, so the instruction

counts followed a similar profile here. Because the GCC- and Arm-compiled

versions were not vectorised, all instructions run were scalar A64 and their

67

4.3. RESULTS

Figure 4.3: Dynamic instruction count and grouping for TeaLeaf.

Figure 4.4: Dynamic instruction count and grouping for CloverLeaf.

68

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

execution count did not change with SVE width. Figure 4.5 shows the results

for all three compilers.

Figure 4.5: Dynamic instruction count and grouping for MegaSweep.

Figure 4.6 shows the dynamic instruction analysis for MiniFMM. This

application’s build system does not currently support the Cray Compiler,

so results are only shown for GCC and Arm. Even though the application

was (partially) vectorised, the instruction count did not decrease signific-

antly when increasing the SVE vector width over 512 bits, in contrast to the

applications presented previously. Due to an interaction between the way

MiniFMM vectorises over particles and the small scale of the problem run,

not all the lanes in SVE registers were being utilised at high vector lengths;

since the vectors were partially empty, the total instruction count did not

decrease linearly.

Neutral is excluded from this analysis because it was not vectorised at

all.

4.3.3 SVE Vector Lane Utilisation

Because SVE instructions employ per-lane predication, observing that

SVE instructions are being executed is not enough to conclude that the ap-

69

4.3. RESULTS

Figure 4.6: Dynamic instruction count and grouping for MiniFMM.

plication is using vector operations efficiently — it is possible that a large

portion of the elements, potentially all but one, are masked out. This means

that vector register can be underpopulated, almost empty. To investigate

this, I looked at per-lane utilisation of SVE registers when running the mini-

apps.

For applications with a high degree of vectorisation, e. g. miniBUDE,

TeaLeaf, or CloverLeaf, vector operations were performed using all the lanes,

i. e. at maximum utilisation. For MiniFMM, however, the number of active

lanes varied: at 512-bit-wide SVE and below, most instructions used 80%

or more of the lanes available, but when increasing the SVE length further,

vector register utilisation peaked between 512 and 768 bits. Vector utilisation

was virtually identical across both compilers tested, Arm and GCC.

Figure 4.7 shows a histogram of the number of active bits in SVE opera-

tions, grouped in 128-bit-wide bins. Increasing the SVE width past 512 bits

brings little benefit for MiniFMM, as only a minority of the operations per-

formed use more than 512 bits. When the vector width is set to 1024 bits,

70

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

less than 5% of the instructions use the full available width, and further

increasing the width to 2048 bits produces no change in vector utilisation.

In contrast, Figure 4.8 shows how miniBUDE, a mini-app that vectorises

efficiently, was able to fully utilise vectors in all operations, even at the

highest widths allowed by SVE. The other mini-apps investigated in this

chapter showed the same perfect vector utilisation efficiency as miniBUDE.

These results cover both 32- and 64-bit floating-point data types: miniBUDE

uses 32-bit data (float), and the other mini-apps use 64-bit types (double).

Figure 4.7: Histogram showing the number of active bits in the SVE op-
erations performed by MiniFMM. The application cannot saturate the full
widths of the vectors when the SVE length is 512 bits or higher.

4.3.4 SVE Memory Operations

Finally, I looked at how the mini-apps are able to take advantage of SVE

for memory operations. Since all SVE instructions are predicated per-lane,

including contiguous and strided memory operations, every SVE memory

instruction can differ in the number of bytes transferred.

I found that SVE usage for memory operations varied greatly between

applications. Mini-apps with lower degrees of vectorisation, such as Mega-

Sweep, used little SVE for memory accesses, but even applications with

a higher degree of vectorisation showed a mixture of SVE and non-SVE

71

4.3. RESULTS

Figure 4.8: Histogram showing the number of active bits in the SVE opera-
tions performed by miniBUDE. Vectorisation is perfectly efficient at all SVE
widths.

72

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

memory operations. In miniBUDE, about three quarters of the memory in-

structions were SVE instructions; in CloverLeaf, TeaLeaf, and MiniFMM,

between a quarter and a third of the memory operations were SVE. In Mini-

FMM, of the SVE operations, about a third were gathers, while there were

no scatters; the other applications utilised contiguous accesses almost exclus-

ively. All applications utilised all the SVE lanes in their memory operations,

except for MiniFMM, where about half the SVE memory operations, includ-

ing all the gathers, were only partially filled.

Figures 4.9 and 4.11 show the distributions of memory accesses in miniBUDE

and MiniFMM, respectively. These two mini-apps form the most contrasting

pair in the set of mini-apps evaluated. The observations here are consist-

ent with Sections 4.3.2 and 4.3.3: miniBUDE vectorises very efficiently, and

MiniFMM utilises some SVE-specific features but does not always utilise all

vector lanes available. CloverLeaf, shown in Figure 4.10, performed both

SVE and non-SVE memory operations, with the large majority of accesses

being contiguous. More analysis of the non-contiguous scatter and gather

accesses in CloverLeaf is presented in Chapter 5.

These results are collected from the version of the applications compiled

with the Arm Compiler 19.2 and run on 512-bit SVE, which is the vector

length utilised in the Fujitsu A64FX processor. The absolute numbers of

vector operations varies between the versions built with different compilers

and when adjusting the SVE width, but the same important characteristics

can be seen in all cases, and the conclusions drawn are similar.

4.4 SVE Usage Discussion

The STREAM benchmark runs simple, predictable memory operations.

All the compilers tested were able to successfully use SVE — at all vector

lengths — to vectorise this code, and at run-time the vectors were fully util-

ised. This is the expected behaviour for the benchmark.

miniBUDE is a heavily compute-bound benchmark, and thus comple-

mentary to STREAM. This application shows very efficient utilisation of

SVE: the main kernels all execute vectorised operations, which scale with

73

4.4. SVE USAGE DISCUSSION

Figure 4.9: Relative counts, by number of instructions, of memory operations
in miniBUDE. All memory accesses are contiguous and most are performed
through SVE instructions.

Figure 4.10: Relative counts, by number of instructions, of memory opera-
tions in CloverLeaf. Memory accesses are split between SVE and non-SVE
instructions. In the vast majority of cases where SVE is used, accesses are
contiguous and all the lanes are being utilised.

the chosen SVE length. At 128 bits, the amount of code run — both vec-

tor and scalar — is almost identical to the established NEON version, which

indicates that good code is generated by all the compilers. Increasing the

vector length by 2× reduces by half the number of instructions run up to

1024 bits; at 2048 bits, the total number of executed vector instructions

becomes smaller than the number of scalar instructions.

Even though more than half of the main loops in TeaLeaf are vectorised

by all the compilers, only relatively few vector instructions are executed at

run-time: for 128-bit SVE, these represent less than a third of the total

instructions run for the Arm and GCC versions. Increasing the vector length

74

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

Figure 4.11: Relative counts, by number of instructions, of memory opera-
tions in MiniFMM. This applications shows a mixture of SVE and non-SVE
operations, and the SVE ones show a further split between contiguous and
non-contiguous accesses. Not all lanes are always used in SVE operations for
MiniFMM.

decreases the count, but only with around 50% efficiency and up to 1024 bits;

there is virtually no change going to 2048 bits. The Arm-compiled executable

runs comparatively more instructions than the GCC version, by 35–40%,

depending on the chosen vector length. With the Cray executable, less than

10% of the instructions run are vector operations, even though the compiler

vectorised the same loops as Arm and GCC; at 1024 and 2048 bits, the vector

code run is NEON, and not SVE, which I suspect is due to a compiler bug.

The CloverLeaf benchmark shows characteristics similar to TeaLeaf,

but with more vector instruction utilisation. In all three versions, vector in-

structions account for between a third and half of the total instruction count

at 128 bits; all three compilers produce a similar total dynamic instruction

count. The SVE instruction count scales as expected up to the largest vec-

tor width possible, 2048 bits. The Cray-compiled version initially runs the

highest number of total instructions, but it decreases sharply at 256 and

512 bits; at 512 bits more than two thirds of the code executed is SVE, and

at 2048 bits the total count constitutes 22% of those of the Arm and GCC

versions, suggesting that the Cray compiler optimises better for higher vector

lengths.

This also hints at the importance of the loop chosen for vectorisation: if

a compiler is able to vectorise the outer loop, as CCE is, and perhaps also

to collapse the inner loop when doing so, the reduction in instruction count

75

4.4. SVE USAGE DISCUSSION

at high vector lengths can be considerable. On the other hand, the same

strategy may not be desirable at smaller vector lengths, where vectorising the

inner-most loop may be optimal. This would imply that, for optimal code

generation, the compiler either needs to know the hardware vector width

at compile-time, or it needs to generate several code paths and dynamically

choose the optimal one when the vector length information becomes available

at run-time.

A related issue is that the compilers tested in the study use a generic

cost model for SVE, which stays the same even when targeting different

vector lengths. This is a limitation in the current study, since it may not

accurately reflect any real implementation. With access to the cost model of

a different SVE implementations, the compilers may generate different code

to take advantage of each implementation’s strengths.

In CloverLeaf, SVE memory accesses represent about half the total memory

operations performed, both when reading and writing, and the vast majority

of those are contiguous operations.

Of the mini-apps included in this study, MegaSweep shows the most

notable difference between the three compilers: Cray is the only one that

successfully vectorises the code, both on NEON and SVE. The binary it

produces runs 2.5× fewer total instructions than Arm and GCC at 128 bits,

and the amount of SVE instructions executed scales almost perfectly up to

2048 bits, although the 1024-bit binary highlights a compiler issue where

some of the code run is NEON, not SVE, which reduces the scaling efficiency

in this particular case. At 2048 bits, the Cray version runs 10.5× fewer

instructions than the GCC alternative. The Cray version also successfully

utilises SVE for memory access, all of which are contiguous and are able to

exploit the full lengths of the vectors.

Neutral does not vectorise with any of the compilers, so no SVE is

being run. Due to the nature of the Monte-Carlo algorithm, there is little

structure in the access patterns in the kernels. As Martineau and McIntosh-

Smith explained, it is possible to force vector code generation, but it will

be comprised almost entirely of indirect, variable-stride accesses that do not

76

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

improve performance [79]; the compilers make the right choice to generate

scalar instructions in this case.

In general it is desirable to utilise as much of the available vectors as

possible, but partial utilisation does not always signal a problem. The Mini-

FMM result exhibits the flexibility of SVE: even though the parallelisation

strategy in the application cannot fill the vectors above 512 bits, the hard-

ware can still efficiently utilise its resources by executing partially masked

operations. These operations should not be any more expensive than regular

operations with full vectors, and so are more efficient than falling back to

scalar code. It is possible to construct an input for MiniFMM that can util-

ise longer vectors, but this would require either a larger problem scale, with

many more total particles, which would be intractable under an emulated

environment, or a configuration of the FMM parameters that would not be

representative of real FMM runs.

4.5 Relevance of SVE for HPC

The results presented in Sections 4.3 and 4.4 show that SVE is a viable,

competitive vector instruction set for HPC applications. For HPC work-

loads, it represents a noticeable improvement over NEON, bringing high-

performance Arm processors in line with current-generation x86 processors,

both in terms of the available vector length and the flexibility of the opera-

tions.

Even before SVE hardware was available, I have found the SVE toolchains

to be mature already. Generating SVE code only required enabling the SVE

extension in the target architecture flag, and the compilers were successful

in utilising SVE where expected. Compared to NEON, more loops were vec-

torised with SVE by all compilers. In addition, the Arm and Cray compilers

achieved a similar or higher degree of vectorisation with SVE compared to

AVX-512, a significant improvement compared to what was previously pos-

sible with NEON.

One of the main advantages of SVE arose from its per-lane predication,

which allowed loops with heavy control flow to be vectorised without addi-

77

4.6. TOWARDS ACCURATE PERFORMANCE MODELLING

tional cost. This additional flexibility meant it was sometimes beneficial to

vectorise loops on SVE even when it was not on other instructions sets.

In the wider context, these results suggest that many HPC applications

should be able to utilise SVE and benefit from doing so. The flexibility of

SVE allows a wide range of loops to be turned into vector code, including

cases where vectorisation is not possible with NEON or AVX, e. g. with ir-

regular and unpredictable access patterns. Compute-bound applications can

exploit high vector widths, bringing the number of instructions required sig-

nificantly lower than on (128-bit) NEON. Partially filled operations allow

vector instructions to be generated and executed even when the application

cannot fill whole vector registers, a more efficient alternative than falling

back to scalar code.

While in this study I have shown that SVE HPC applications behave well

in an emulated environment, I cannot yet make any claims regarding their

performance on real hardware. Implementations of SVE are likely to come

with caveats and performance characteristics which cannot be determined a

priori, and so it is impossible to predict which types of operations will be

fast and which will bring little improvement over scalar code. Until several

SVE implementations, with different native vector widths, become available

and supported by the compilers, such a study is infeasible.

4.6 Towards Accurate Performance Model-

ling

The analysis presented in this study covers the three main SVE com-

pilers available at the time of writing. However, Fujitsu A64FX systems

ship with a proprietary compiler supplied by Fujitsu to accompany their

processor. Optimisations applied by this compiler may be key in extract-

ing high performance from the A64FX, so analysing the binaries it produces

should prove a valuable research direction. Chapter 6 studies the performance

of the A64FX, the first hardware implementation of SVE, using real-world

HPC applications.

78

CHAPTER 4. MODERN VECTOR INSTRUCTION SETS

One of the shortcomings of the compilers available at this stage was their

lack of cost models for real SVE platforms, and further work will be en-

abled when the compilers are able to generate tuned binaries. The early

versions used in this study only use a generic model of an SVE processor,

because neither the compilers nor ArmIE currently allow the user to specify

microarchitectural details, except the SVE width. Once a tuned binary can

be generated, running it on its target platform will enable quantifying of the

tuning benefit, and an even wider range of experiments is possible if these

tuning parameters can be adjusted dynamically.

4.7 Reproducibility

The tools developed to perform the analysis in this chapter have been

released as open-source software. Detailed build and run instructions for each

application, the custom ArmIE instrumentation clients used, and scripts to

aggregate and plot the collected data can be found online3.

4.8 Conclusion

In this work, I have presented an analysis of SVE usage across a number

of mini-apps that span several common HPC problem classes. I have looked

at how currently available compilers are able to utilise SVE to automatically

vectorise the mini-apps’ code, how much of the executed code is SVE, the

efficiency of the executed SVE vector instructions, and whether new ways of

accessing memory introduced with SVE are utilised in these mini-apps.

I found that SVE was generally well targetted by the compilers: in most

cases, compilers were able to utilise SVE at least as well as AVX and NEON,

and often better. The available compilers for SVE were only surpassed by

the Intel compiler targeting AVX on select few occasions. Most SVE binaries

used wide vectors efficiently, with all lanes being active for the vast majority

of the run time; MiniFMM was the only exception, where SVE efficiency

3https://github.com/UoB-HPC/sve-analysis-tools/tree/euro-par-2020

79

https://github.com/UoB-HPC/sve-analysis-tools/tree/euro-par-2020

4.8. CONCLUSION

varied depending on the SVE width utilised. In terms of memory accesses,

vectorised mini-apps were able to use SVE instructions to efficiently load

and store data, and MiniFMM also made use of gather operations, either

fully or partially filled. I saw little use of SVE scatter instructions, but this

is expected given the optimised memory access patterns on the mini-apps

studied.

I conclude that SVE is a promising instruction set, and HPC applications

and toolchains appear ready to take advantage of it to deliver performant

code running on upcoming generations of Arm-based high-performance pro-

cessors.

With wider vector lengths comes an additional consideration when design-

ing processors: the impact of these wide vector operations on the caches. In

Chapter 5, I will examine how cache utilisation relates to the vector width

and what parameters of the cache are most critical for high performance. I

also explore the impact of non-contiguous memory operations, which are a

new addition that came to the Arm instruction set with SVE. Finally, in

Chapters 6 and 7 I explore the performance of the first implementation of

SVE in hardware, the Fujitsu A64FX, and compare it with other mainstream

processors, both from a microarchitectural point of view, but also from the

perspective of programming, performance portability, and productivity.

80

CHAPTER 5

The Effects on Cache of Wide Vector

Operations

Content from this chapter appears in the following publication:

• Andrei Poenaru and Simon McIntosh-Smith. ‘The Effects of Wide

Vector Operations on Processor Caches’. In: 2020 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER). 2020, pp. 531–

539. doi: 10.1109/CLUSTER49012.2020.00076

In high-performance processors, the speed at which data can be processed

is generally limited by how fast the processor can perform operations on it,

how quickly it can be read from and written to memory, or a combination of

both. To increase the overall throughput of operations, several architectural

techniques can be employed to enable having more than a single instruc-

tion in-flight at a time, or the instructions themselves can be extended to

several operands. These wide instructions, known as vector or single in-

struction, multiple data (SIMD) operations, require suitably high memory

throughput in order to sustain their ability to consume operands. Main

system memory — usually dyamic random access memory (DRAM) — does

not on its own meet the latency and raw bandwidth requirements of high-

performance CPUs, so caches are employed to bridge this gap.

81

https://doi.org/10.1109/CLUSTER49012.2020.00076

Caches are additional memories that sit between the processor and its

main memory. They are optimised for speed rather than size, so they are

generally smaller but faster than main memory. This trade-off can be heav-

ily variable, so it is common for processors to have several levels of cache

arranged in a cache hierarchy, where the fastest — but smallest — cache is

connected directly to the CPU and the largest — but slowest — comes right

before main memory. When more than two levels are used, any other levels

between the first and the last maintain this trend of increasing size and de-

creasing speed.

In varying the speed–size compromise, there are several parameters of a

cache that can be tuned. Any changes in the cache’s architecture will affect

how the cache performs under load, not only in terms of raw bandwidth

and latency, but also in its capacity to provide data to the CPU without

needing to fetch it from higher up the memory hierarchy [82]. Two of the

most common metrics used to describe cache efficiency look at how often

requested data is not found in the cache (cache misses) and how much data

is replaced when bringing in new data (cache evictions).

The effects on performance of changing cache parameters are particularly

important when running vector instructions, because they have the potential

to exhaust small caches very quickly. For example, the latest generations of

Arm processors can use the Scalable Vector Extension (SVE) instruction set

to processes up to 2048 bits of data in a single instruction. Because the size

of a typical first-level cache is in the order of kilobytes, only a few tens of

SVE instructions can be enough to fill up the cache. Hence, it is critical that

caches are designed with not only micro-architectural constraints in mind,

but also with the performance implications of the design choices made.

In this chapter, I investigate the lifetime of data in cache — its evict dis-

tance — at different SVE widths, for three different scientific mini-apps. I ap-

ply visualisations to present the effects of varying cache parameters in modern

high-performance processors under typical scientific workloads, and I give de-

tailed insight into the interaction of non-contiguous memory operations with

the cache hierarchy in two contemporary AArch64-based processors.

82

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

5.1 Processor Cache Design Space

In modern systems, all requests from the processor to the main memory

must pass through the cache hierarchy. Every possible memory address must

therefore have at least one possible location in cache, but caches are generally

orders of magnitude smaller than main memory, so several memory addresses

could share the same cache location. To determine how main memory ad-

dresses are mapped to cache addresses, a mapping policy is used. Some caches

in processors available today use direct mapping, where each address can only

have one possible location in cache, but most use set-associative mapping,

where a memory address can take any of a set of cache addresses. The size

of each cache set is sometimes called the associativity, or the “number of

ways” of the cache; a direct-mapped cache is a 1-way set-associative cache.

Direct-mapped caches are faster — and simpler — but set associativity can

decrease cache miss rate.

Once there is no more space for new data to be placed into cache, older

data needs to be evicted to make room. Caches choose what to evict ac-

cording to an eviction policy, of which the most common is the least-recently

used (LRU) policy [140].

Regardless of the mapping and replacement policies used, caches are or-

ganised in blocks, or lines, where a cache block is the smallest structure that

can be inserted or evicted in an operation. A common cache line size in use

today is 64 bytes, which is used in many x86 processor and in the Marvell

ThunderX2 processors, but other options exist, such as the 256-byte cache

lines in the Fujitsu A64FX [38]. The choice of line size is particularly im-

portant in processors that support wide SIMD operations, because these can

quickly touch large amounts of data.

All these variables create a large parameter space from which designers

must choose a single option to implement in a processor. Each option comes

with its own architectural constraints, strengths, and weaknesses, but the

needs of the software running on the processor should also be considered. It

is particularly important for HPC applications that hardware is designed to

not only offer good raw performance, but to make a good portion of the peak

83

5.2. CACHE ANALYSIS METHODOLOGY

performance achievable in practice [29]. In recent years, this has led to the

co-design of hardware and software, an iterative process in which hardware

design choices are made so that it best supports the software running on it

and, in turn, software is optimised for its target architecture.

SVE, Arm’s next-generation vector instruction set, presents new chal-

lenges for software and hardware architectures due to its wide maximum

vector length [107], but also offers timely opportunities for co-design [134].

In order to encourage experiments with SVE ahead of hardware release,

Arm have created the Arm Instruction Emulator (ArmIE), a software tool

that emulates the execution of real SVE binaries on any given vector length

between 128 and 2048 bits [21]. ArmIE can instrument the binaries it runs

to collect arbitrary user-defined metrics, among which is recording traces of

memory the operations performed. The data from these memory traces can

be used to investigate the behaviour cache hierarchies under the selected SVE

width.

5.2 Cache Analysis Methodology

To investigate how cache design choices affect the performance of SVE

applications, I used a cache simulator. I developed the simulator from scratch

to process memory traces produced with ArmIE, with full support for both

contiguous and non-contiguous operations, i. e. scatters and gathers, at any

SVE vector length. The simulator was validated using hardware counter

data obtained on the latest Arm-based CPUs used in HPC, the Marvell

ThunderX2 (TX2) and the Fujitsu A64FX. The cache configurations of these

two processors are shown in Table 5.1 [38, 144].

Data was collected on real hardware using the PAPI library [57] and was

compared to the equivalent metrics obtained from the simulator. Compar-

isons were performed at the hardware’s native vector width, so TX2 data

was compared to simulated 128-bit SVE data and A64FX data was com-

pared to simulated 512-bit SVE output. Table 5.2 presents the difference

between data from hardware counters and the equivalent data produced by

our cache simulator on a number of benchmarks. Total access and misses

84

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

are recorded as absolute numbers, and miss percentages represent the frac-

tion of total cache accesses that missed. Averages between applications are

computed from the raw numbers. These metrics are the same metrics used

for the experiments throughout this study.

The differences between simulated and hardware data arise mainly be-

cause the simulator does not perform prefetching. I do not use prefetching

because it is an implementation detail that can vary widely between pro-

cessors — and one that is often not transparently described — and I aim to

draw conclusions relevant to a wide range of processors, not a particular

implementation. The memory traces generated by ArmIE also do not ac-

curately model time, and prefetching mainly affects the time at which hits

and misses occur: even without prefetching, data requested by the applic-

ation will still generate the same number of hits and misses. Because time

is not modelled in the simulator, prefetching has little effect on its output

when useful data is prefetched. The remaining cases, however, where the

prefetcher loads data that is not needed by the application, will generate

additional misses on real hardware, which the simulator will not account for.

This makes the simulated data slightly optimistic when counting misses, by

up to 10%.

I benchmarked three different mini-apps, each representative of a dif-

ferent class of HPC applications: CloverLeaf, a hydrodynamics code that

solves Euler’s equations of compressible fluid dynamics [76]; MegaSweep, a

STREAM-style benchmark that uses the main kernel from SNAP, a determ-

inistic discrete ordinates transport proxy application [23]; and MiniFMM,

a Fast Multipole Method mini-app [7]. Results from STREAM [83], the

de facto benchmark for measuring memory bandwidth, were also used for

validating the simulator. These applications were introduced in detail in

Section 2.5.1.

The mini-apps were run in a single-core configuration, by setting the both

the number of OpenMP threads and MPI processes to 1. The inputs to the

mini-apps were derived from typical inputs for full-node runs, but with the

problem size reduced by using a smaller grid and fewer iterations. I simulated

two levels of set-associative private cache using a LRU replacement policy.

85

Table 5.1: Cache configurations of current-generation server-class processors based on Arm architecture. Level 2 is
shared on A64FX, but private on TX2; TX2 has a shared cache at Level 3.

Processor
Level 1 Level 2

Total
size

Line
size

Set
size

Total
size

Line
size

Set
size

A64FX 64 KB 256 B 4 8 MB 256 B 16
ThunderX2 32 KB 64 B 8 256 KB 64 B 8

Table 5.2: Percentage differences between data from simulation and equivalent statistics obtained from querying
hardware counters on real processors. The simulated results are within 10% of the data collected from hardware.

Application

128 bits 512 bits

Level 1 Level 2 Level 1 Level 2

Accesses Misses Miss % Accesses Misses Miss % Accesses Misses Miss % Accesses Misses Miss %

STREAM −6.9% +4.7% +13.5% +8.0% +10.3% +2.1% −4.5% −2.4% +1.9% −2.3% −0.1% +2.1%

CloverLeaf −6.6% −8.9% −2.2% +7.0% −9.7% −13.9% +2.6% −8.0% −10.8% −8.0% −9.7% −1.6%

MegaSweep +3.1% +6.1% +3.0% −8.4% −13.6% −4.8% +5.5% −2.3% −8.3% −6.6% −4.7% +1.7%

MiniFMM −7.0% −3.4% +3.4% −5.7% −7.4% −1.5% +4.8% −2.9% −8.1% −6.4% −3.3% +2.9%

Average 5.9% 5.7% 5.5% 7.2% 10.2% 5.5% 4.3% 3.9% 7.2% 5.8% 4.4% 2.1%

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

This configuration is consistent with the design used in the ThunderX2 and

similar to the A64FX, with the exception that in the latter, the second-level

cache is shared between groups of cores (CMGs).

When scaling down from using all the cores available to just one, both

on the TX2 and the A64FX, the performance characteristics of the first

two levels of cache remained the same, bar a scaling factor applied to the

absolute numbers. At scale, when more than one core is used, the applications

distribute the computation between threads and processes. Each thread then

executes a smaller fraction of the total amount of computation, but the

operations it performs stay the same. Since I am only studying the effects

on private caches, interactions between threads would also not affect the

performance characteristics.

I performed several experiments on each mini-app to understand its cache

behaviour. First, looking at 512-bit SVE, the vector width used in the

A64FX, the first hardware implementation of SVE, I varied the associativity

and the line size of the cache. This experiment aimed to show how these

parameters help or hinder performance. Then, using the parameters of the

caches used in the TX2 and the A64FX, in turn, I investigated how chan-

ging the SVE length from 128 to 2048 bits affects the caches. To describe

the effects on the caches I looked at hit/miss ratios and at the length of the

intervals between data being loaded in the cache and the same data being

evicted. Finally, I investigated how SVE non-contiguous memory operations

interact with these two cache configurations.

When counting caches access and misses, I considered the sizes of the

memory requests used. Contiguous requests were counted as a single access,

unless they spanned more than one cache line, in which case the number of

cache lines touched was the number of accesses recorded. Non-contiguous

requests were split into sequences of contiguous access, and each such con-

tiguous part was treated as above.

87

5.3. RESULTS

5.3 Results

5.3.1 Cache Parameters

2 4 8 16 32
set size (lines)

64
12

8
25

6
51

2
10

24
20

48
lin

e
siz

e
(b

yt
es

)

31.72 31.69 32.23 32.34 32.34

19.47 19.44 19.77 19.83 19.83

11.19 10.98 11.16 11.20 11.20

6.68 5.92 5.98 6.00 6.00

4.66 3.37 3.13 3.13 3.13

5.52 4.65 1.93 1.70 1.62

level = 1

2 4 8 16 32
set size (lines)

82.54 82.61 81.23 80.97 80.97

82.43 82.54 81.18 80.91 80.91

80.90 82.42 81.10 80.83 80.83

72.48 81.89 80.94 80.67 80.67

54.05 74.66 80.36 80.36 80.36

23.47 27.86 66.99 76.24 79.80

level = 2

Figure 5.1: Cache misses, as a percentage of total cache accesses, for Clover-
Leaf in different cache configurations, at the two levels of cache. The A64FX
and TX2 configurations are highlighted in orange and pink, respectively.

The choice of cache parameters had a significant impact on hit/miss ratios

across all the applications. This was particularly evident for the first level of

cache (L1), where there was a direct correlation between larger cache lines

and fewer misses. The applications’ memory accesses are arranged in such a

way to do as much contiguous access as possible, so a single load at larger

cache line sizes will service more subsequent requests for data.

When varying the set size of the cache, a similar trend was noticed, where

bigger sizes corresponded to fewer misses, but the effects were less pronounced

compared to changing line size. This parameter had a bigger effect when

memory access were less structured, so MiniFMM and MegaSweep showed

more benefit from higher associativity that CloverLeaf did, and in both cases

the difference was higher at higher line sizes. Compared to the smallest set

size tested, 2 lines per set, and with all the other parameters kept constant,

88

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

2 4 8 16 32
set size (lines)

64
12

8
25

6
51

2
10

24
20

48
lin

e
siz

e
(b

yt
es

)

5.61 5.61 5.48 5.46 5.44

2.88 2.88 2.81 2.81 2.81

1.51 1.49 1.45 1.45 1.46

0.88 0.79 0.77 0.77 0.78

1.16 0.48 0.43 0.43 0.43

2.40 0.46 0.24 0.24 0.24

level = 1

2 4 8 16 32
set size (lines)

41.36 40.83 42.08 41.96 42.52

40.58 40.12 41.32 41.10 41.60

38.99 39.05 40.21 39.96 40.18

33.52 36.94 38.16 37.74 37.81

12.72 30.56 34.09 33.85 34.09

3.11 15.84 30.48 30.67 30.64

level = 2

Figure 5.2: Cache misses, as a percentage of total cache accesses, for Mega-
Sweep in different cache configurations, at the two levels of cache.

2 4 8 16 32
set size (lines)

64
12

8
25

6
51

2
10

24
20

48
lin

e
siz

e
(b

yt
es

)

0.23 0.16 0.15 0.15 0.15

0.16 0.10 0.09 0.09 0.09

0.12 0.06 0.05 0.05 0.05

0.14 0.04 0.03 0.03 0.03

0.24 0.04 0.03 0.02 0.02

0.55 0.21 0.07 0.03 0.03

level = 1

2 4 8 16 32
set size (lines)

6.85 9.71 10.13 10.25 10.28

5.18 8.35 8.81 8.88 8.82

3.52 7.21 7.68 7.83 7.78

1.47 5.53 6.26 6.55 6.53

0.44 2.61 3.97 4.35 4.40

0.10 0.26 0.80 1.69 1.71

level = 2

Figure 5.3: Cache misses, as a percentage of total cache accesses, for Mini-
FMM in different cache configurations, at the two levels of cache.

89

5.3. RESULTS

the biggest improvement for CloverLeaf from using bigger sets was 3.4× fewer

misses, whereas for MiniFMM it was 18.3×, both at 2048-byte lines.

An interaction was observed between the line size and the set size when

using longer lines. At low associativity, e. g. 2- or 4-way, the number of

misses was an order of magnitude higher than at high associativity (32-way).

For line sizes of 512 bytes or lower, using 2- or 4-way associativity did not

result in a steep increase in misses, but this changed above 512 bytes, where

the difference was up to 5× between 2-way and 4-way associativity and up

to 10× between 2- and 8-way associativity. Increasing the set size above 8

still resulted in fewer misses, but the largest factor observed was 2.5×, for

MiniFMM, and it did not change the miss rate for MegaSweep.

At the second level of cache (L2), the relation between higher line sizes

and fewer misses persisted. The set size had little impact when the line

size was below 512 bytes, but the difference between the best and the worst

setting at 2048 bytes was more than 10× for MiniFMM and MegaSweep and

3.4× for CloverLeaf. However, unlike in the case of L1, higher set sizes were

not always better: at high line sizes, smaller set sizes produced fewer misses.

The best configuration, for all the applications benchmarked, was 2048-byte

lines (the maximum tested) with 2-way associativity (the minimum tested).

The previous result is particularly significant for wide vector processors.

As the cache line size is increased, there will be fewer cache lines — and

sets — available if the total cache size is kept constant. For both MiniFMM

and MegaSweep, and to some extent for CloverLeaf, having more sets avail-

able proved more useful than having larger sets. All of these applications

work with several data structures at once, so more separate sets, i. e. lower

associativity, enabled parts of more data structures to be held in cache at

once. At higher associativity, when there were fewer sets overall, more ali-

asing led to one structure evicting more data from others, thus increasing

the number of misses.

Figures 5.1, 5.2, and 5.3 show the miss ratios across a range of line and set

sizes for CloverLeaf, MegaSweep, and MiniFMM, respectively. Both levels

are of cache are shown independently in these figures. In these heatmaps, line

90

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

sizes are given in bytes, set sizes represent the number of ways of associativity,

and darker colours represent more misses.

5.3.2 SVE Width

128 256 512 1024 2048
sve width (bits)

0

10

20

30

40

m
is

s
ra

tio
 (%

)

TX2
A64FX

(a) CloverLeaf.

128 256 512 1024 2048
sve width (bits)

0

1

2

3

4

5

6

m
is

s
ra

tio
 (%

)

TX2
A64FX

(b) MegaSweep.

Figure 5.4: Cache miss rates for at different SVE lengths, for the cache
configurations in the Marvell ThunderX2 (TX2) and the Fujitsu A64FX
(A64FX).

Changing the vector length affects cache accesses in different ways based

on whether the instructions being run are vector instructions or not. For the

vectorised parts of the application, each (vector) memory access can carry

more data at higher lengths, so fewer total access are needed to transfer

the same amount of data. For scalar parts of the application, the vector

length does not change memory accesses directly, but there are cases where

vectorisation indirectly impacts the number of scalar accesses performed,

e. g. nested loops where a fixed number of scalar access are executed per loop

iteration and the number of iterations depends on vectorisation.

Most real applications run a combination of vector and scalar code, and

their performance profile will change with vector length, depending on the

proportion of the code that is vectorised. Figure 5.4a shows how cache misses

scaled with the selected SVE length when using the L1 cache configuration

91

5.3. RESULTS

128 256 512 1024 2048
sve width (bits)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
is

s
ra

tio
 (%

)

TX2
A64FX

Figure 5.5: Cache miss rates for at different SVE lengths, for the cache
configurations in the Marvell ThunderX2 (TX2) and the Fujitsu A64FX
(A64FX) on the MiniFMM benchmark.

of the Marvell ThunderX2 and the Fujitsu A64FX when running CloverLeaf.

As the vector width was increased, the overall number of accesses decreased,

because each operation touched more data. The number of misses, however,

depends on how many times cache lines have to be (re)loaded, which does

not directly correlate to vector width, but rather with the size of the lines.

Therefore, the miss ratio increases as the vector width is scaled up.

In the case of MegaSweep, shown in Figure 5.4b, vector operations only

form a small part of the total number of memory operations, so the effect

of scaling the vector width was much smaller. A similar effect was observed

for MiniFMM, but here the miss rates were lower overall, due to the smaller

working set size. The results for MiniFMM are shown in Figure 5.5.

In both of those cases, the miss rate recorded was lower for the con-

figuration corresponding to the A64FX than the one for TX2. The main

contributing factor was the line size, which is 4× as large in the former.

92

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

5.3.3 Lifetimes

Cache misses show an aggregated view of cache performance, but not

all cache misses have the same impact on real-world performance. Since

caches attempt to exploit temporal locality in the data, the less often data is

reloaded into cache, the more time it spends being available in faster memory,

and so the more “useful” the cache is. To capture the behaviour of the A64FX

and TX2 caches from the point of view of how long data spends in cache, I

measured the lifetime of each cache entry, i. e. the total number of memory

accesses to any address between the moment the data was loaded and when

it was evicted. This metric is sometimes called the evict distance of a cache

line and it is an empirical variant of the reuse distance or stack distance [13].

Figures 5.6 and 5.7 show normalised histograms of cache lifetimes at dif-

ferent SVE widths for CloverLeaf and MegaSweep, respectively. For both

applications, the higher line size and overall cache size of A64FX cache al-

lowed data to be held, on average, for twice as long as the TX2 cache did,

which in the histograms above is represented by wider curves, with the peaks

shifted to the right; the mean of the distributions is also given. This effect

was visible at all the tested SVE vector widths, but was more pronounced

at higher widths, where the TX2 curves are thinner and packed toward the

origin of the time axis.

For CloverLeaf, the distribution of lifetimes showed two distinct peaks

on the TX2 configuration. CloverLeaf implements a multi-dimensional sten-

cil algorithm, and so the rightmost peak corresponds to the higher cache-

friendliness of the inner dimensions of the data structure. At higher SVE

widths, each vector memory access touches more data, so data was evicted

from cache sooner, shifting the curve to the left. These effects were not ob-

served in the A64FX configuration, where the higher line size and total size

allowed more of the outer dimensions to persist in cache, leading to more

homogeneous cache usage overall.

In the case of MegaSweep, the curve was narrower on the TX2 configur-

ation. There is a second peak here as well, but it is less distinct than in the

case of CloverLeaf and it is located to the left of the main peak. On real

93

5.3. RESULTS

0.00

0.25

0.50

0.75

1.00

1.25

1.50

fra
ct

io
n

of
 e

nt
rie

s

1e 4

 = 2921
 = 1051

svewidth = 128

 = 1634
 = 977

svewidth = 256

 = 991
 = 1031

svewidth = 512

 = 670
 = 1078

svewidth = 1024

config = TX2

 = 509
 = 1107

svewidth = 2048

0 5000 10000 15000 20000
lifetime in cache

0.00

0.25

0.50

0.75

1.00

1.25

1.50

fra
ct

io
n

of
 e

nt
rie

s

1e 4

 = 6000
 = 2775

0 5000 10000 15000 20000
lifetime in cache

 = 3357
 = 2184

0 5000 10000 15000 20000
lifetime in cache

 = 2036
 = 2156

0 5000 10000 15000 20000
lifetime in cache

 = 1375
 = 2218

0 5000 10000 15000 20000
lifetime in cache

config = A64FX

 = 1045
 = 2268

Figure 5.6: Level 1 cache lifetimes for CloverLeaf at different SVE lengths
under the configurations of the A64FX and the TX2. A higher mean (µ)
shows more time spent in cache on average; σ is the standard deviation.

0

1

2

3

4

5

6

7

fra
ct

io
n

of
 e

nt
rie

s

1e 5

 = 9783
 = 4374

svewidth = 128

 = 7991
 = 5390

svewidth = 256

 = 7818
 = 5583

svewidth = 512

 = 7726
 = 5715

svewidth = 1024

config = TX2

 = 7680
 = 5770

svewidth = 2048

0 20000 40000 60000
lifetime in cache

0

1

2

3

4

5

6

7

fra
ct

io
n

of
 e

nt
rie

s

1e 5

 = 21976
 = 13578

0 20000 40000 60000
lifetime in cache

 = 17523
 = 14839

0 20000 40000 60000
lifetime in cache

 = 17172
 = 15210

0 20000 40000 60000
lifetime in cache

 = 16989
 = 15349

0 20000 40000 60000
lifetime in cache

config = A64FX

 = 16812
 = 15433

Figure 5.7: Level 1 cache lifetimes for MegaSweep at different SVE lengths
under the A64FX and TX2 configurations.

94

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

0

1

2

3

4

5

fra
ct

io
n

of
 e

nt
rie

s

1e 6 svewidth = 128 svewidth = 256 svewidth = 512 svewidth = 1024

config = TX2

svewidth = 2048

0 2000000 4000000
lifetime in cache

0

1

2

3

4

5

fra
ct

io
n

of
 e

nt
rie

s

1e 6

0 2000000 4000000
lifetime in cache

0 2000000 4000000
lifetime in cache

0 2000000 4000000
lifetime in cache

0 2000000 4000000
lifetime in cache

config = A64FX

Figure 5.8: Level 1 cache lifetimes for MiniFMM at different SVE lengths
under the A64FX and TX2 configurations.

ThunderX2 hardware, this can be seen in the poor utilisation of cache when

running MegaSweep [23], which is partly caused by an interaction between

the cache parameters — its total size, line size, and associativity — and the

memory access pattern of the application. On the A64FX configuration, the

effect was not observed, even though this configuration has smaller associ-

ativity, thus further reinforcing the lack of a correlation between set size and

cache performance at small and medium line sizes.

The MiniFMM profile shares some similarities with those for CloverLeaf

and MegaSweep, showing the same change to a wider and shorter curve when

going from the TX2 configuration to the A64FX configuration. Unlike the

other two, MiniFMM did not show more than one identifiable peak. The

access patterns of this application are unpredictable, with significant use of

non-contiguous access where available, so the main factor contributing to

better performance in the A64FX configurations was the higher cache size.

Results for this application are shown in Figure 5.8.

5.3.4 Non-Contiguous Accesses

SVE includes non-contiguous memory access operations to perform gather

reads and scatter writes. These can interact with cache in different ways

from contiguous accesses, because the amount of data accessed does not

95

5.3. RESULTS

always directly correlate with the number of cache lines used. In a hardware

implementation, the cost of performing gather or scatter operations is likely

to scale with the number of cache lines touched, because these have to be

present in cache regardless of how many elements from each are being used.

Out of the three applications studied in this chapter, CloverLeaf and

MiniFMM utilise non-contiguous memory accesses. Figure 5.9 shows a dis-

tribution of the number of cache lines needed at each SVE width to fulfil

the non-contiguous memory accesses in CloverLeaf for the cache configura-

tions of the Marvell ThunderX2 and Fujitsu A64FX. For each SVE width, a

thicker line shows that a higher proportion of the memory accesses needed

to access the corresponding number of cache lines to collect all the data for

the scatter or gather operation.

1 2 4 8 16 32
cache lines touched

128

256

512

1024

2048

sv
e

w
id

th
 (b

its
)

TX2
A64FX

Figure 5.9: Distribution of the numbers of cache lines touched by non-
contiguous SVE memory accesses for CloverLeaf on the A64FX and TX2
cache configuration. Thicker bars represent more memory accesses.

At 128-bit SVE, the two configurations showed a similar distribution of

cache lines touched. Above this width, however, the larger cache lines of the

A64FX contributed to a significant reduction in the total number of lines

touched: at 1024-bit SVE, for example, most accesses were serviced using 5

96

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

1 2 3 4 5
cache lines touched

128

256

512

1024

2048

sv
ew

id
th

Figure 5.10: Distribution of the numbers of cache lines touched by non-
contiguous SVE memory accesses for MiniFMM on the TX2 cache config-
uration. On the A64FX configuration, all requests were services by 2 cache
lines.

or 6 cache lines, whereas the TX2 needed 16. When moving up to 2048-bit

SVE, the maximum width allowed, the peak is centred around 9 cache lines

on A64FX, but on TX2 it is 32.

There were also a significant number of accesses where the cache line size

did not impact the total number of lines needed. These accessed pairs of

values located very far apart, with more than 15 KB between them, in a

single SVE instruction. Because this distance is orders of magnitude of the

size of a single cache lines, both caches needed two separate lines to service

these requests, which contributes to the local peaks around 2 in the figure.

In the case of MiniFMM, the distribution of widths of the non-contiguous

accesses was narrower. Regardless of SVE width, the largest address range

spanned by a single gather or scatter instruction, i. e. the distance between

the first and the last byte touched, was 320 bytes. Under the A64FX cache

configuration, this allowed all non-contiguous requests to be serviced by at

most 2 cache lines. On TX2, where cache lines are 64 bytes long, most

accesses touched between 3 and 5 cache lines, and all accesses touched at

97

5.4. IMPLICATIONS FOR VECTOR PROCESSORS

least 2 cache lines at vector widths above 256 bits. These results are shown

in Figure 5.10.

5.4 Implications for Vector Processors

The results presented in Section 5.3 show a clear relation between the

choice of cache parameters and the behaviour of HPC applications running

on the system, as measured by cache hit and miss metrics. Better results

measured this way should correlate with faster performance on real hard-

ware. As caches — and the arithmetic units utilising them — become bigger,

the optimal choices are different, and “common” choices may not produce

the best results [136]. The introduction of SVE gives computer architects

unique freedom in terms of vector processing power, but for a processor to

be efficient as a whole, its memory subsystem needs to be designed hand-in-

hand with the core if it is to keep up to its demands. I have shown how vector

length influences optimal choices for core-private caches, but it is likely that

other design decisions, such as the number of vector units employed or the

prefetching algorithm, will have impacts of their own. All of these aspects

needs to be considered together when designing high-performance hardware.

Beyond the field of HPC, vector units have much wider applications, e. g.

media or energy-efficient computing. In other fields, not only constraints

will be different, but it is likely that the optimal design decision from a

performance point of view will differ, too. Both these factors highlight the

need for long-term co-design, a need for processors to be designed hand-in-

hand with the applications they will run, and Arm-based architectures offer

a unique opportunity to this end.

5.5 Towards Performance-Portable Applica-

tion Design

The results presented in this chapter suggest that applications which are

aware of the hardware configurations they run on can make different perform-

98

CHAPTER 5. CACHE EFFECTS OF VECTOR OPERATIONS

ance decisions based on the capabilities and resources available. However,

placing this burden on application developers is infeasible and would lead to

a large amount of duplicated work. Instead, such decision could be made

by the programming frameworks themselves, the very tools used to develop

these applications.

Given access to accurate simulation tools, a future application can make

informed decisions about how best to utilise a wide range of hardware, e. g.

through careful laying out of data. These decisions are particularly import-

ant — and hard to make — on systems with configurable caches, e. g. the sec-

tor cache on the A64FX. The sector cache allows application programmers

to reserve a portion of the processor’s cache for specified data structures

by lowering the associativity of the remaining, general-purpose section [38].

This represents a hardware-backed way to identify particular data objects

that should be kept in cache, which can greatly benefit applications that

perform a mix of streaming memory operations and cache-resident opera-

tions [2], such as CloverLeaf.

There already exist high-level programming frameworks that support

making automatic changes to the data layout based on the architecture tar-

getted [32], and by integrating further information about the hardware con-

figuration, the potential for performance gains increases. One way to achieve

this is to run micro-benchmarks at compile-time, or at the first run of the

application, and tune performance based on the results. This approach is

a generalisation to any given hardware platform of auto-tuning in OpenCL

applications targeting GPUs [110].

In Chapter 7, I explore the efficacy of modern parallel programming

frameworks which have the potential to accurately target architectures and

adjust application behaviour with minimal requirements from the program-

mers’ perspective. I evaluate a number frameworks that have recently started

being adopted by comparing them to established alternatives, on a wide range

of hardware that accurately represents today’s HPC market.

99

5.6. REPRODUCIBILITY

5.6 Reproducibility

The data used in this chapter can be found online1. The raw data is given

in CSV format, and scripts are provided to reproduce the visualisations.

5.7 Conclusion

In this chapter, I have investigated the effects of using wide vector in-

structions on processor caches, focusing on Arm SVE. Using examples from

several classes of common HPC applications, I have shown that there is a dir-

ect correlation between the (hardware) parameters of the processor’s caches

and its efficient utilisation. Changing the line size had the biggest impact on

performance. Several good and less optimal choices for set size were identified

when paired with longer cache lines, but the difference was small when using

shorter cache lines. For all applications tests, increasing the size of the cache

outweighed a reduction in associativity. This correlation is stronger for some

applications — those which implement algorithms that are naturally more

cache-friendly — but it affects all classes.

I have also presented how changing the (hardware) vector widths inter-

acts with the cache hierarchy. Even though wider vectors can mean more

data is processed in parallel, they also change the profile of effects on the

cache. When non-contiguous memory operations are used, because of the

large variety of access patterns these can cover, the effects of changing cache

parameters can be hard to identify a priori. I have found that different cache

parameters are optimal at different vector lengths, and since applications also

tend to prefer some vector widths [107], it is important that decisions in both

hardware and software are made using a co-design approach.

1https://github.com/UoB-HPC/cache-effects-reproducibility/tree/

eahpc-2020

100

https://github.com/UoB-HPC/cache-effects-reproducibility/tree/eahpc-2020
https://github.com/UoB-HPC/cache-effects-reproducibility/tree/eahpc-2020

CHAPTER 6

Next-Generation Vector Processors

Content from this chapter appears in the following publication:

• Andrei Poenaru, Tom Deakin, Simon McIntosh-Smith, Simon D.

Hammond and Andrew J. Younge. ‘An Evaluation of the Fujitsu

A64FX for HPC Applications’. In: Cray User Group. May 2021.

In Press

Arm-based processors have been investigated for use in HPC systems

since the early 2010s [112]. Initially based on mobile designs, dedicated

high-performance cores have been used in recent years to provide perform-

ance similar to high-end Intel and AMD x86-based processors. Likewise,

the tools ecosystem is mature, stable, and production-ready, making Arm a

first-class citizen in HPC [115]. Due to their flexibility, an increasing number

of vendors are integrating Arm-based cores into their upcoming exascale-era

products [97].

Since 2017, a number of systems have deployed Arm in production HPC

using the Marvell ThunderX2 (TX2), one of the first Arm-based processors

designed specifically for HPC [87, 100]. Studies on these systems have helped

identify the types of workloads that are suited for these processors, as well

as what their weakness are: TX2 offered a large number of cores and high

memory bandwidth, but its short 128-bit-wide vectors make it less suited for

compute-intensive applications.

101

6.1. BACKGROUND

In 2020, the Fugaku system in Japan deployed a new Arm-based design:

the A64FX built by Fujitsu [119]. The A64FX improved on both aspects

compared to the TX2, implementing for the first time in a CPU HBM2

memory that offers a peak of 1 TB/s of bandwidth and 512-bit vectors based

on the Arm Scalable Vector Extension (SVE) [128]. This system was ranked

#1 in the TOP500 list in June 2020, and since then several other HPC centres

have been adopting the A64FX processors for their own deployments.

In this chapter, I evaluate the performance of the Fujitsu A64FX processor

on a range of scientific mini-apps and full applications. I compare the A64FX

with the other mainstream HPC processors at the time of writing, and I

devote special attention to its other Arm-based competitors.

6.1 Background

The A64FX is the new HPC-first processor designed for the Japanese su-

percomputer Fugaku. Its core design is custom-made by Fujitsu based on the

ARMv8.2 architecture with extensions. The chips contain 48 cores running

at up to 2.2 GHz, without simultaneous multithreading (SMT). They are

used in single-socket configurations, connected to either TofuD or 100 Gbps

InfiniBand networking [120].

An A64FX chip houses four stacks of HBM2 memory. It is the first

CPU to utilise HBM2 memory, which had only been used on GPUs before.

Each stack is directly attached to a subset of 12 cores, known as a Core–

Memory Group (CMG). Each core has a private Level 1 cache, but Level

2 (the Last-Level Cache) is shared between cores in a CMG. To the oper-

ating system, each CMG appears as a separate NUMA node, and in order

to achieve high performance the latency between these nodes needs to be

carefully considered. Figure 6.1 shows a block diagram of an A64FX chip

with four CMGs.

The A64FX is also the first hardware implementation of SVE. SVE is

a VLA instruction architecture, allowing each implementation to choose its

desired vector length, while ensuring that the same code remains compatible

with all implementations. In the A64FX, the native vector width is 512 bits,

102

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

Figure 6.1: A64FX block diagram. Source: Fujitsu [70].

chosen after experiments in simulation have suggested it is efficient for a

range of applications important for the Fugaku supercomputer [63]. As a

successor to the NEON ASIMD vector instruction set used in previous Arm-

based processors, it offers a wider range of instructions, including gather

loads and scatter stores, and per-lane predication for all operations. These

features are important for the tuning of low-level optimised math libraries [2].

6.2 Performance Evaluation Methodology

To evaluate the performance of the A64FX for HPC workloads, I used

mini-apps representative of common classes of HPC applications, as well as

full-scale codes that are widely used in supercomputing centres around the

world. I chose these benchmarks because their performance profiles closely

resemble real workloads, and hence should provide a good indication of the

real-world performance achievable by these processors. I split them according

to the type of resource they depend on most heavily: memory bandwidth or

raw compute performance.

Using these benchmarks, I compared the performance achieved by the

A64FX with that of other common HPC processors. The platforms I com-

103

6.2. PERFORMANCE EVALUATION METHODOLOGY

pare against are the Arm-based Marvell ThunderX2, AWS Graviton 2 (in

an M6g.metal EC2 instance), and Ampere Altra, and the x86-based Intel

Cascade Lake (CLX) and AMD EPYC Rome. At the time of writing, these

represent the top offerings from the most widely utilised vendors in HPC.

The specifications of these processors are given in Table 6.1. Note that the

A64FX and Graviton 2 can only be used in single-socket configurations, but

the other processors were used in dual-socket nodes.

On all platforms, I used the latest versions of the common HPC compilers:

GCC 11.1 supports all the platforms in this study, Arm Compiler for Linux

(ACfL) 21.0 supports all the Arm-based targets, Intel Compiler 19.1 (part of

the 2020.4 package) supports all the x86-based processors, Cray Compilation

Environment (CCE) 11.0 supports all the platforms except the Graviton 2

and the Altra, and Fujitsu Compiler 4.3 supports the A64FX only. There

were two exceptions to the above:

• The latest version of CCE available for the A64FX is a pre-release

version based on 10.0. This uses the legacy Cray-proprietary frontend

instead of the Clang-based frontend used in CCE 11.0;

• There was a regression in the performance of the TeaLeaf benchmark

with CCE 11.0, so 10.0 was used to obtain the fastest results for this

application.

6.2.1 Bandwidth-Bound Benchmarks

To evaluate the best-case achievable memory bandwidth, I used Babel-

Stream [27], a C++ implementation of the de facto memory bandwidth

benchmark, STREAM [83]. BabelStream contains implementations in many

programming models, and for this work I used the baseline OpenMP version.

I used the mini-apps TeaLeaf [90] and CloverLeaf [76] as representat-

ive bandwidth-bound workloads. These are both written in Fortran, using

hybrid MPI and OpenMP, and they solve equations for heat diffusion and

hydrodynamics, respectively. I have studied these extensively in the past and

found that their performance correlates well with STREAM performance. Of

104

C
H

A
P

T
E

R
6.

N
E

X
T

-G
E

N
E

R
A

T
IO

N
V

E
C

T
O

R
P

R
O

C
E

S
S
O

R
S

Table 6.1: Hardware specifications of the processors benchmarked.

CPU Cores
Clock Speed (GHz) Compute Peak

(DP TFLOP/s)

Bandwidth Peak

(GB/s)Base Boost

AMD Rome 7742 2× 64 2.25 3.4 6.9 410

Ampere Altra Q80-30 2× 80 3.0 — 3.8 410

AWS Graviton 2 M6g.metal 64 2.5 — 1.3 205

Fujitsu A64FX 48 1.8 — 2.8 1,024

Intel Cascade Lake 6230 2× 20 2.1 3.9 2.0 375

Marvell ThunderX2 2× 32 2.2 2.5 1.3 320

105

6.2. PERFORMANCE EVALUATION METHODOLOGY

the two, CloverLeaf is slightly more computationally intensive, as it includes

divisions and trigonometry functions.

Finally, I evaluated the performance of OpenFOAM [58], a well-known

computational fluid dynamics (CFD) application and one of the top 10 most

heavily used applications on ARCHER, the UK’s national supercomputer. I

used version 2006 of the code, the DrivAer open-source test-case [50], and

the standard simpleFoam solver, applied for 50 time steps. This test case

was developed at a hackathon on the Isambard system and later used for the

performance results presented in Chapter 3. Because the time reported for

the first step includes some initialisation overhead, I excluded it from the

final benchmark times.

6.2.2 Compute-Bound Benchmarks

I used miniBUDE for a compute-bound mini-app. This is a molecular

docking benchmark developed at the University of Bristol which has previ-

ously been shown to achieve close to 60% of peak arithmetic performance on

contemporary HPC hardware [106]. The code is implemented in several pro-

gramming models, of which I used the standard OpenMP implementation

here. The performance reported for miniBUDE is in the number of poses

computed per unit time.

Another benchmark studied is SPARTA, a Direct Simulation Monte

Carlo (DSMC) mini-app from Sandia National Laboratories designed for

large systems [39]. It is implemented in C++ and MPI, with optional support

for threading through the Kokkos library [32]. As a Monte Carlo applica-

tion, this code is challenging to vectorise and its memory access patterns are

irregular.

I took MiniFMM [7] to represent applications that use task-based par-

allelism instead of traditional loop-based parallelism. For this benchmark, I

used the provided input set based on a Plummer distribution and recorded

the total time taken.

106

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

A good example of a widely used compute-bound application is GROMACS.

I used GROMACS 2021.1 and two different benchmarks to evaluate the per-

formance of the systems tested under different conditions:

• The integrated nonbonded-benchmark, which runs in flat OpenMP

mode and is heavily compute bound. This does not require any in-

put files and runs a Particle Mesh Ewald (PME) [34] simulation; the

size parameter for this benchmark was set to 64;

• The ion channel vsites benchmark, which simulates a membrane

protein system comprising around 145,000 atoms. It uses FFTs and

represents a realistic use-case for GROMACS in modelling drug mo-

lecules. Compared to nonbonded-benchmark, PME calculations in

ion channel vsites only take about 1⁄3 of the total time. I ran this

benchmark for 5000 steps of 5 fs.

The 2021.1 release includes initial support for SVE through the GROMACS

SIMD abstraction layer [99], although at the time of writing this can only be

used with the GNU compiler.

6.3 Results and Performance Analysis

6.3.1 Benchmark Results

BabelStream I was able to achieve 824 GB/s in the Triad run on Babel-

Stream on the A64FX, which represents more than 80% of the platform’s

peak memory bandwidth. This result is more than double that of the next

best platform for memory bandwidth. High memory bandwidth is of course

expected due to the use of HBM2 on A64FX compared to traditional DDR-

DRAM used by the other platforms.

I achieved this result using the Fujitsu compiler, which utilises zero-fill

(zfill) instructions to zero cache lines before writing to them. This prevents

the hardware from first loading the data from memory, because it will be

overwritten anyway; it essentially emulates streaming stores even though

the architecture does not support it explicitly. The other compilers do not

107

6.3. RESULTS AND PERFORMANCE ANALYSIS

A64FX Altra CLX M6g Rome TX2
Platform

0

100

200

300

400

500

600

700

800
Tr

ia
d

Ba
nd

wi
dt

h
(G

B/
s)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.2: Achieved bandwidth in BabelStream Triad. Higher numbers
show better results.

use this procedure, and so observed memory bandwidth there was lower at

around 600 GB/s.

It was also important for this benchmark to set the XOS MMM L PAGING POLICY

environment variable to demand:demand:demand. This controls how memory

pages are allocated between the four NUMA domains in the A64FX, ensuring

they are placed in the same CMG where they are needed, as opposed to that

of the core that first started running the program.

The Ampere Altra obtained the second-highest result with its two sock-

ets of 8-channel DDR4-3200. Even though the TX2 also has 8 channels of

DDR4 and in dual-socket configuration, its slower DDR4-2400 memory put

its result closer to that of a single-socket Graviton 2 with DDR-3200. The

TX2 achieved a lower fraction of peak bandwidth in the BabelStream bench-

108

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

mark, and I observed a regression with CCE 11.0: reverting to version 10.0

produces a result higher by about 15%. The fastest results obtained on each

platform are shown in Figure 6.2. Where a result for a compiler is not shown

this is due to that compiler not supporting the platform.

A64FX Altra CLX M6g Rome TX2
Platform

0

50

100

150

200

250

300

350

400

To
ta

l T
im

e
(s

)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.3: TeaLeaf bm5 benchmark time. Lower numbers show better res-
ults.

TeaLeaf and CloverLeaf Due to their memory-bandwidth-bound nature,

I expected the CloverLeaf and TeaLeaf results to follow similar distributions

between platforms as I saw for BabelStream. I largely observed this beha-

viour, but there were some important differences.

These two applications can be run in hybrid MPI–OpenMP mode, and I

tested all viable combinations. On most platforms, I have previously found

that running in flat MPI mode, i. e. setting the number of OpenMP threads

to 1 and filling all the cores with MPI ranks, generally provides the best

109

6.3. RESULTS AND PERFORMANCE ANALYSIS

A64FX Altra CLX M6g Rome TX2
Platform

0

200

400

600

800

1000

1200
Ti

m
e

(s
)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.4: CloverLeaf bm16 benchmark time. Lower numbers show better
results.

performance in single-node configurations [29]. Where there was a difference

between flat MPI, flat OpenMP, and hybrid MPI–OpenMP, it was below 10%.

On the A64FX, however, I have found larger differences between these run

configurations. This section discusses the fastest results obtained, regardless

of the run configuration, but Section 6.3.2 goes into more details about the

differences.

TeaLeaf contains relatively fewer arithmetic operations compared to Clover-

Leaf, so memory bandwidth is even more important. Of the Arm-based pro-

cessors, in descending order and starting with the fastest result, first was the

A64FX, then the Altra at just under twice the run time, then TX2, closely

followed by the Graviton 2. Where available, the Cray compiler produced

110

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

the fastest results. On A64FX, the Fujitsu compiler was a close second, and

the Arm and GNU compilers performed similarly on all the platforms.

CloverLeaf includes division operations, which on the A64FX have high

execution latency. To work around this, some compilers can replace division

with an iterative reciprocal approximation, which is much faster at a slight

cost of accuracy. The Arm, Cray, and Fujitsu compilers are all able to apply

this optimisation — Cray and Fujitsu do it automatically when targeting the

A64FX, and with Arm the user can specify the -fiterative-reciprocal

flag. The GNU compiler does not apply this optimisation, which results

in almost 10× slower performance compared to Fujitsu. Fujitsu is further

able to optimise this benchmark by using software pipelining of instructions,

a technique which carefully schedules operations such that the processor’s

out-of-order resources are utilised as efficiently as possible.

Due to all the optimisations it applied, the Fujitsu compiler on A64FX

produced the fastest time in this benchmark. However, the Ampere Altra and

AMD Rome benefited from their large number of cores and obtained results

faster than when using the A64FX with other compilers. The Graviton 2

and the TX2 performed almost identically, suggesting that the newer out-

of-order architecture in the Graviton 2 was able to make up for the slightly

lower overall memory bandwidth.

The results obtained for CloverLeaf and TeaLeaf are shown in Figures 6.4

and 6.3, respectively. These figures show run time, so lower numbers corres-

pond to better performance.

OpenFOAM When run on a single-node, OpenFOAM is generally bound

by memory bandwidth and does not benefit greatly from vectorisation [87].

These two effects work for and against the A64FX, respectively: it should

see good performance from the HBM2 memory, but the 512-bit SVE may

not bring a significant improvement over NEON. The results showed that

the fastest processor in this benchmark was the AMD Rome, closely followed

by the Ampere Altra, suggesting that the large amount of total L2 cache —

1 MB/core in both the these processors — helped more than HBM2 did on

A64FX. The Fujitsu compiler was again the fastest choice on the A64FX,

111

6.3. RESULTS AND PERFORMANCE ANALYSIS

A64FX Altra CLX M6g Rome TX2
Platform

0

20

40

60

80

100

120

So
lv

e
Ti

m
e

(s
)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.5: OpenFOAM DrivAer solve time after 50 time steps. The time
taken for the first step is excluded. Lower numbers show better results.

but this time the differences to the other compilers were smaller; Arm and

GNU produced similar results on A64FX and Graviton 2. Figure 6.5 shows

the results on all platforms.

miniBUDE miniBUDE scales very well to many-core architectures — the

full BUDE application is routinely run on GPUs. As expected, the results

for this benchmark followed the peak compute performance of the processors:

TX2 and Graviton 2 achieved similar results, Cascade Lake was more than

twice as fast, and the Altra obtained the highest result of the Arm processors,

only surpassed by the AMD Rome. On the A64FX, the Fujitsu compiler was

able produce better optimised code compared to other compilers, reaching

almost 3× the performance obtained with ACfL and GCC, and more than

1.5× the performance of the CCE-compiled binary. However, the perform-

112

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

A64FX Altra CLX M6g Rome TX2
Platform

0

100

200

300

400

500

Pe
rfo

rm
an

ce
 (p

os
es

/m
s)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.6: Achieved performance in miniBUDE. Higher numbers show bet-
ter results.

ance achieved by the Altra was over twice that of the A64FX, despite their

difference in peak performance being lower than a factor of 2, showing that

its high core count can rival higher vector width as long as the application

parallelises well. The results for miniBUDE are presented in Figure 6.6.

SPARTA The performance of SPARTA scaled very well with the number

of cores available. There was virtually no vectorised code on any of the

platforms, and the choice of compiler made little difference towards the final

run time on this benchmark. The data access patterns of this application

were not cache-friendly, with only 58.5% of the requests hitting L2 cache, so

a lot of time was spent fetching data from main memory.

In general, GCC offered the highest performance on most platforms, being

only slightly slower than the Intel compiler on Cascade Lake and Rome. The

113

6.3. RESULTS AND PERFORMANCE ANALYSIS

A64FX Altra CLX M6g Rome TX2
Platform

0

100

200

300

400

500
Lo

op
 ti

m
e

(s
)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.7: SPARTA benchmark time using the collisional flow input, 10M
cells, and 5000 iterations. Lower numbers show better results.

TX2, Graviton 2, and Cascade Lake achieved similar results, despite the

narrower vectors available on the Arm-based platforms. On the A64FX,

the Fujitsu compiler failed to link the benchmark, in either Trad or Clang

mode, and without its aggressive optimisations the platform’s low out-of-

order resources led to a slower benchmark time. Figure 6.7 shows the results

on all platforms.

MiniFMM I found the vectorisation efficiency of the MiniFMM bench-

mark to be low on all the Arm-based platforms. With NEON, a lot of the

code was not vectorised, and although SVE was able to address that to an

extent, many operations were masked and utilised only a fraction of the avail-

able vector width [107]. In addition, it did not scale well to high core counts:

beyond 60 cores, the run time stopped decreasing, and above 80 it started

114

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

A64FX Altra CLX M6g Rome TX2
Platform

0

10

20

30

40

50

To
ta

l T
im

e
(s

)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

Figure 6.8: MiniFMM benchmark time using a Plummer and the OpenMP
tasks implementation. Lower numbers show better results.

increasing. For the Altra, this meant that fewer than half of the available

cores were utilised. On the x86-based platforms, there was more benefit from

vectorisation, but the high core count of Rome again did not show a tangible

benefit in this benchmark.

The best result was similar on all the Arm platforms, with a slight ad-

vantage to Altra due to its high clock speed. I found that the Cray and

Arm compilers were less efficient at exploiting parallelism in this task-based

benchmark compared to GCC, which was the best compiler choice even on

the A64FX. The Intel compiler performed well on Cascade Lake, but it was

significantly slower compared to Cray and GNU on Rome. The results are

presented in Figure 6.8.

115

6.3. RESULTS AND PERFORMANCE ANALYSIS

A64FX Altra CLX M6g Rome TX2
Platform

0

10000

20000

30000

40000

Pe
rfo

rm
an

ce
 (p

ai
rs

/µ
se

c)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

(a) nonbonded-benchmark

A64FX Altra CLX M6g Rome TX2
Platform

0

25

50

75

100

125

150

175

Pe
rfo

rm
an

ce
 (n

s/
da

y)

Compiler
Arm
Cray
Fujitsu
GNU
Intel

(b) ion channel vsites

Figure 6.9: Achieved performance in two GROMACS benchmarks. The
open-source FFTW library was used with GCC and Fujitsu, ArmPL was
used with the ACfL, MKL with the Intel compiler, and Cray’s optimised
build of FFTW was used with CCE. Higher numbers show better results.

GROMACS With nonbonded-benchmark, there were significant perform-

ance differences between the x86 platforms, where AVX2 and AVX-512 could

be used, compared to the Arm platforms. This workload is heavily compute-

bound, so the wider vector length constituted a significant advantage. This

benchmark cannot be used with MPI and the maximum number of OpenMP

threads allowed in GROMACS is 64, which limited the performance achieved

by the Altra and the Rome platforms, and resulted in similar performance

on Altra and Graviton 2, since both use the same Neoverse N1 cores. Even

though the early SVE implementation for A64FX — which was only usable

with the GNU compiler — achieved almost twice the performance of the

NEON implementation on the Fujitsu platform, it still only produced res-

ults similar to a ThunderX2 running NEON; with more optimised code, it

should be possible for the A64FX to produce results several times faster than

this. On the other platforms, there were virtually no differences between the

compilers, because the performance-critical PME kernels in GROMACS are

written in hand-tuned intrinsics.

116

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

However, the more realistic ion channel vsites test case revealed differ-

ent behaviour. On the one hand, the change in performance profile to place

more emphasis on the memory system brought the results of a 64-core TX2

node very close to that of a 40-core Cascade Lake node, despite the differ-

ence in native vector length between the two processors. On the other hand,

the benefit from the early SVE implementation on the A64FX was lower

and closed the performance gap to the other compilers, which still used the

NEON implementation. With core usage no longer limited to 64, the Altra’s

performance increased relative to the other platforms with lower core counts.

I observed that the optimised FFT implementations in the Arm Perform-

ance Libraries performed significantly better on the Neoverse N1, granting

a 1.43× speed-up over FFTW; on the other platforms, FFTW built from

source, Cray’s Optimised FFTW and ArmPL (on TX2) performed similarly.

For OpenMP parallelism, the best choice of number of threads was 2 or 4 on

all the platforms, with enough MPI ranks run to fill all the available hardware

threads, i. e. utilising SMT where available.

The results for the two GROMACS benchmarks on all the platforms are

shown in Figure 6.9.

Application Performance Summary Finally, Figure 6.10 aggregates all

the benchmark results into a single view. Here, the best result was kept for

each platform, for each benchmark. The results are presented relative to the

Cascade Lake baseline, so numbers above 1 show higher performance than

Cascade Lake.

Overall, the A64FX achieved over 2.5× the performance of Cascade Lake

on memory-bandwidth-bound benchmarks. On the other hand, it was weaker

on compute-bound benchmarks, where the Ampere Altra and AMD Rome

usually produced the fastest results.

6.3.2 Thread Placement on the A64FX

Due to the four NUMA node configuration, placement and binding of

MPI ranks and OpenMP threads are particularly important on the A64FX.

117

6.3. RESULTS AND PERFORMANCE ANALYSIS

Ba
be

lSt
rea

m

Clo
ve

rLe
af

GRO
MAC

S

Mini
FM

M

Ope
nF

OAM

SP
AR

TA

Tea
Le

af

mini
BU

DE

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
fo

rm
an

ce
 re

la
tiv

e
to

 C
LX

Platform
A64FX Altra CLX Graviton 2 Rome TX2

Figure 6.10: Performance across all benchmarks, normalised to Intel Cascade
Lake. The best compiler choice was used in each case. Higher numbers
represent higher performance.

Three of the benchmarks in this study combine MPI with OpenMP and allow

the user to divide parallelism between the two levels: CloverLeaf, TeaLeaf,

and SPARTA.

CloverLeaf and TeaLeaf behaved similarly, in that the fastest configur-

ation differed with the compiler used: hybrid MPI–OpenMP, running one

rank per CMG and filling all its 12 cores with OpenMP threads, was fast-

est with all compilers except for Arm, where flat OpenMP was the fastest

configuration. The difference between the performance of hybrid MPI and

flat MPI was around 5% with GCC and Cray, and around 15% with ACfL.

However, the results were very different when using the Fujitsu compiler:

118

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

flat OpenMP was the slowest configuration, achieving less than 20% the per-

formance of the hybrid configuration, and flat MPI was second, at 62% of

the performance of the hybrid run. Placement results for CloverLeaf with all

the compilers available on the A64FX are shown in Figure 6.11a.

SPARTA failed to build with the Fujitsu compiler; the other compilers

all performed similarly to each other. For this benchmark, flat MPI was the

fastest configuration, but here switching some of the parallelism to Kokkos

threads reduced performance by up to 2×. Even though I used Kokkos 3.4,

the latest at the time of writing and which supports the A64FX target, the

code it generates may not yet be as optimal as OpenMP produced directly

by a compiler. Figure 6.11b shows the run time of SPARTA under the three

different run-time configurations.

Arm Cray Fujitsu GNU
Compiler

0

200

400

600

800

1000

1200

1400

To
ta

l t
im

e
(s

)

MPI Ranks
1
4
48

(a) CloverLeaf

Arm Cray GNU
Compiler

0

200

400

600

800

1000

1200

1400

Lo
op

 ti
m

e
(s

)

MPI Ranks
1
4
48

(b) SPARTA

Figure 6.11: Comparison of MPI–OpenMP run configurations on A64FX. As
many OpenMP threads were used as needed in each case to fill all 48 cores.
Lower numbers show better results.

I found that the four compilers that can target the A64FX have different

default semantics for binding threads, and sometimes these are different from

the optimal configuration. The following settings reliably produced correct

rank and thread placement on all the compilers tested:

119

6.4. FUTURE WORK

• For flat MPI, set OMP NUM THREADS to 1 and bind each rank to a core,

e. g. using the -bind-to core argument to mpirun;

• For flat OpenMP, disable binding of MPI ranks, in order to prevent

all threads from being bound to the same object, using -bind-to

none, then explicitly split threads between all the NUMA nodes us-

ing OMP PLACES=cores OMP PROC BIND=spread;

• For hybrid OpenMP–MPI, fill all NUMA nodes equally with rank using

-map-by numa, bind all its threads to the NUMA node with -bind-to

numa, then spread the OpenMP threads onto the available cores with

OMP PLACES=cores OMP PROC BIND=close.

6.4 Future Work

In this study I have investigated the performance of the A64FX using

single-node benchmarks. I have identified strong and weak points of this

processor, but when running at scale these may manifest differently. In

particular, compute-bound applications can become network-bound, thus in-

creasing the benefits of using A64FX in a large-scale system.

One of the points for improvement that I have identified is around the

compiler support for the A64FX. Because of its relatively lightweight mi-

croarchitecture, this processor relies on a good optimising compiler with an

accurate cost model to schedule instructions well. There is currently a sig-

nificant gap between the performance of binaries compiled with the Fujitsu

Compiler and open-source alternatives, so there is room for further studies

on this architecture to suggest and implement compiler improvements.

Finally, when looking at the next generations of high-performance pro-

cessors, it is essential to understand how microarchitectural design decisions

affect the performance of applications. This process is known as the co-

design of hardware and applications and it is a way to ensure that future

hardware will provide adequate performance for its intended use cases. Such

experiments are generally hard, because modelling hypothetical architectures

accurately is an involved task that requires specialised tools. Still, it is es-

120

CHAPTER 6. NEXT-GENERATION VECTOR PROCESSORS

sential in the co-design process, which is one of the main motivating factors

for the upcoming SimEng simulation framework [86]. SimEng aims to enable

fast, accurate, flexible simulations through a simple interface for extending

existing processor designs with hypothetical additions1.

6.5 Reproducibility

Instructions on running the benchmarks in this study are available on-

line2. The scripts provided obtain the code and any input data, build the

applications with the specified compiler, and provide run configurations for

the platforms used in this chapter.

6.6 Conclusion

In this chapter, I explored the performance of the Fujitsu A64FX pro-

cessor on a range of scientific benchmarks. The benchmarks were chosen to

cover several important classes of HPC applications, and the results were

compared to other common high-performance processors at the time of writ-

ing. I gave special attention to Arm-based alternatives, of which I covered

the previous-generation Marvell ThunderX2 and the newer AWS Graviton

2 and Ampere Altra. I also compared to the best-in-class x86 processors

available at the time of writing.

I found the A64FX to be a competitive processor for HPC. It performed

particularly well for memory-bandwidth-bound applications, where its HBM2

with a peak of 1 TB/s was utilised to its full potential. The results on

compute-bound benchmarks were mixed: performance was good when using

the Fujitu Compiler, which was specifically developed to target the A64FX,

but with other compilers that do not apply optimisations such as software

pipelining, the relatively lower out-of-order capacity of the A64FX led to

reduced performance compared to more heavyweight cores.

1https://uob-hpc.github.io/SimEng-Docs/index.html
2https://github.com/UoB-HPC/benchmarks

121

https://uob-hpc.github.io/SimEng-Docs/index.html
https://github.com/UoB-HPC/benchmarks

6.6. CONCLUSION

122

CHAPTER 7

Programming Models for Modern HPC

Architectures

Content from this chapter appears in the following publication:

• Andrei Poenaru, Wei-Chen Lin and Simon McIntosh-Smith. ‘A

Performance Analysis of Modern Parallel Programming Models Us-

ing a Compute-Bound Application’. In: High Performance Com-

puting. 36th International Conference, ISC High Performance 2021.

Ed. by Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem

Ltaief and Piotr Luszczek. Cham: Springer International Publish-

ing, 2021, pp. 332–350. isbn: 978-3-030-78713-4. doi: 10.1007/

978-3-030-78713-4_18

This paper has received the Hans Meuer Award for the most outstanding

research paper submitted to the ISC 2021 conference.

In HPC, the majority of programs utilise established, long-running par-

allel programming frameworks. OpenMP and MPI are widely adopted [67],

generally on top of the C and Fortran programming languages, and other

frameworks are sometimes used in more specific situations, such as task-based

parallelism libraries, C++-native applications, or programming models that

can target GPUs [10].

123

https://doi.org/10.1007/978-3-030-78713-4_18
https://doi.org/10.1007/978-3-030-78713-4_18

Recent developments in parallel programming frameworks — be it frame-

works developed from scratch, such as Kokkos, or additions and improve-

ments to existing ones, such as tasking and offload support in OpenMP 4.5

and later — have all shared a number of common goals: performant support

for a wide range of hardware platforms, interoperability with modern versions

of the C++ language, and a focus on programmers’ productivity [80, 103].

These goals have organically arisen as a result of the shortcomings in estab-

lished programming models, and together contribute to the wider endeavour

in the field of HPC towards achieving performance portability [29].

In order to support both GPU and CPU platforms, high-level program-

ming frameworks manage underlying data structures automatically: the pro-

grammer expresses what data needs to be computed on, and the framework

arranges it in a format suitable for the target hardware. Because this process

is desirable, but not always optimal from a performance point of view, it is

one of the key focuses of previous analyses of high-level parallel programming

models [26]. Such previous studies have used mostly memory-bandwidth-

bound benchmarks, but the portability and productivity advantages alone

brought by these frameworks may be enough to also justify their usage on

applications that are not memory-bandwidth-bound, provided that they can

deliver performance comparable to established frameworks.

One suitable application for such heterogeneous frameworks is the Bristol

University Docking Engine (BUDE), a molecular docking code that is heavily

compute-bound [89]. BUDE is routinely used for in silico drug discovery, and

out of a need to support both CPUs and GPUs, it is comprised of two paral-

lel implementations: an OpenMP version for CPUs and an OpenCL version

for GPUs. In this chapter, I used a mini-app created from the core com-

putation kernel for BUDE to analyse the performance of emerging parallel

programming models compared to that of traditional models.

124

CHAPTER 7. PROGRAMMING MODELS

7.1 Background

7.1.1 High-Performance Molecular Docking

BUDE is an application for in silico molecular docking, a computational

technique for predicting the structure of a complex formed between two mo-

lecules and estimating the strength of their interaction [89]. Docking is com-

putationally challenging because of the many different ways in which two

molecules may be arranged together to form a complex (three translational

and three rotational degrees of freedom). Indeed, interacting all patches of

the surface of one protein molecule with all patches of a second molecule

requires on the order of 107 trials, each one of which is a computationally

expensive operation [18].

The application includes several modes of operation, of which the most

commonly used — and the most computationally intensive — is virtual screen-

ing. In this mode, molecules of drug candidates, known as ligands, are gener-

ated using a genetic algorithm and are bonded to a target protein molecule.

BUDE uses a tuned empirical free-energy forcefield to predict the binding

energy of the ligand with the target. There are many ways in which this

bonding could occur, so a variety of positions and rotations of the ligand

relative to the protein are attempted; these are known as poses. For each

pose, the energy, i. e. the strength, of the bond is evaluated.

7.1.2 Modern Parallel Programming Models

In the previous decade, low-level programming models that offered the

programmer great control over the hardware saw a rise in their usage. Their

appeal of low overhead and extensive tuning options made them popular with

GPU programmers [37, 131], but over the years the HPC community has

learned the cost these frameworks incur: they require extensive knowledge

of the hardware, and they steer towards over-optimisations for one target,

up to the point where a significant fraction of the code needs to be rewritten

when moving to a new system [110, 60, 124]. The latter observation is par-

125

7.1. BACKGROUND

ticularly relevant in the context of the upcoming exascale systems Frontier,

El Capitan, Aurora, and Perlmutter, which together utilise combinations of

CPUs from two vendors and GPUs from three vendors [52, 68]. It is, thus,

not feasible to use platform- or vendor-specific programming models, and a

portable approach is needed.

In moving to new programming models, the C++ language has partic-

ular appeal: it can achieve the same zero-overhead performance compared

to C and Fortran, but it also offers modern features to write more express-

ive and safer code. Programmers writing parallel C++ hope to outweigh

any lost performance with time gained through easier-to-write and easier-to-

debug code. This is the core selling point of modern parallel programming

frameworks [95, 41].

Two modern, single-source frameworks with a focus on performance, port-

ability, and productivity have emerged: Kokkos [32] and SYCL [45]. Kokkos

is a new framework developed natively for C++, while SYCL builds on pre-

vious OpenCL toolchains and integrates them with modern C++ code. Both

of these frameworks can generate machine code for both CPUs and GPUs

without any change to the high-level source code.

These frameworks solve the same problem in different ways. Kokkos is

distributed as source code that needs to be integrated into the application’s

build process. This means that every application using Kokkos needs to build

Kokkos itself — a relatively quick process — but it also avoids the pitfalls of

system-wide libraries; a C++ compiler is all that is needed to compile a

Kokkos application.

In contrast, SYCL applications rely on a SYCL compiler. At the time of

writing, there are three major SYCL compilers: Data-Parallel C++ (DPC++) [55],

ComputeCpp [125], and hipSYCL [3]. Each implementation can use differ-

ent backends: DPC++ can use OpenCL, CUDA, or Intel’s Level Zero; Com-

puteCpp relies on OpenCL; and hipSYCL supports OpenMP to target CPUs,

CUDA to target NVIDIA GPUs, and ROCm to target AMD GPUs.

126

CHAPTER 7. PROGRAMMING MODELS

7.1.3 Performance Portability

In recent years, the HPC community has made efforts to understand how

to quantify performance portability. Although some formal metrics have been

developed and are commonly applied in portability studies [49], the results

are not always trivial to interpret correctly [102]. One attempt to solve this

challenge relies on carefully designed visualisations [123].

Portability is a common concern for developers — and users — of modern

programming models. These make it more feasible to target several kinds

of compute devices simultaneously, which has led to a diverse landscape of

architectures being investigated in contemporary HPC research. As such, sig-

nificant attention to portability and programmer productivity is also given in

recent studies that evaluate the applicability of novel parallel frameworks [24,

72, 30].

7.2 Evaluation Methodology

7.2.1 A BUDE Mini-App

I have implemented a mini-app for BUDE virtual-screening runs, with

kernels written in a range of widely used parallel programming models. The

baseline implementation is written in OpenCL and is virtually identical to the

core kernel of the full-scale BUDE application. There is a CUDA port with

minimal changes, a CPU OpenMP version that restructures the computation

in the OpenCL kernel to make it easier for compilers to vectorise, and similar

implementations for GPUs using OpenACC and OpenMP target offload. I

chose SYCL and Kokkos for implementations in novel programming models

because of their relative popularity and compatibility with a wide range of

platforms, covering both CPUs and GPU.

The focus of the mini-app is on the core computation, and so most of

the plumbing around it, such as flexible I/O and custom file formats, has

been removed. Instead of using a genetic algorithm to generate ligands, a

procedure which takes negligible time in a full-scale BUDE run, the mini-app

127

7.2. EVALUATION METHODOLOGY

uses pre-generated molecules obtained from the full BUDE application. The

main advantages of this approach are that it simplifies the mini-app logic,

it makes the results easier to reproduce, and it allows for a built-in valida-

tion procedure by comparing mini-app output against reference output from

the full application. Thus, the mini-app simply reads in a protein and a

ligand, computes the bonding energies over a user-defined number of poses,

and compares them against a reference set. To enable custom-length bench-

marks, the mini-app can run several iterations of the same ligand–protein

combination instead of requiring a new ligand each time. The result is a

benchmark consisting of a few hundred lines of code for each implementa-

tion, which is easy to understand, feasible to profile and analyse, has built-in

validation, requires no external libraries, and with a performance profile that

maintains the same important characteristics of the full application.

7.2.2 Performance Analysis

I analysed the performance of our mini-app on a range of modern HPC

platforms; Table 7.1 shows the systems used and their specifications. Where

several compilers could be used for the same programming model, I tested all

the options and picked the best-performing one in each case. I used aggressive

compiler optimisation flags to the level of -march=native -Ofast. Table 7.2

lists the compilers used, the parallel programming frameworks supported by

each, and any platform targeting restrictions they have.

I collected performance data using industry-standard tools. On CPU plat-

forms, I accessed hardware counters through the LIKWID framework [135]

and the built-in Linux perf tool, and collected application-level profiles with

Cray Perftools; on GPUs, I used the NVIDIA CUDA profiler and the OpenCL

Intercept Layer. I obtained peak memory bandwidth figures using Babel-

Stream [27] and the University of Bristol’s HPC Group’s cache-bandwidth

measurement tool [78].

I used two input decks to benchmark the application: a small input set,

consisting of 26 ligands, and a large set, with 2672 ligands. The former takes

around 0.5 seconds to run on a contemporary dual-socket-CPU HPC system,

128

CHAPTER 7. PROGRAMMING MODELS

Table 7.1: Hardware platforms used for evaluation.

Platform Type Cores
Clock Speed

(GHz)
Peak Performance

(SP GFLOP/s)

Intel Skylake 8176 CPU 2 × 28 2.1 5,734
Intel Cascade Lake 6230 CPU 2 × 20 2.1 4,096
AMD Rome 7742 CPU 2 × 64 2.25 9,216
Marvell ThunderX2 CPU 2 × 32 2.5 2,560
Fujitsu A64FX CPU 48 1.8 5,530
NVIDIA V100 GPU 80 1.13 15,700
AMD Radeon VII GPU 60 1.4 13,800
Intel Iris Pro 580 GPU 72 0.95 1,094

while the latter takes around 1.5 minutes. In both cases, I ran 8 iterations

of the algorithm and I computed 216 poses per iteration. I utilised all the

available cores on each platform, using a single thread per core on all the

CPU platforms; where available, using more than a single thread per core

did not improve performance. A warm-up iteration was always run before

the timers were started.

There was very little run time variability in miniBUDE. Even on the

small input set, when individual iterations take less than 100 ms, variance

was only fractions of a percent. This was true for both CPU and GPU

implementations, as long as care is taken to bind threads correctly, especially

when two interacting systems are present, e. g. OpenMP’s OMP PROC BIND and

Cray’s aprun. There was one exception to this observation, which I address

in Section 7.4.

129

7.2. EVALUATION METHODOLOGY

Table 7.2: Compilers used and their programming model and target platform
support.

Compiler CPUs GPUs Frameworks

AOCC 2.3 X m k s
AOMP 11.0 M m
Arm Compiler 21.0 R m k s
ComputeCpp 2.1.1 X I m k s
Cray Compiler 10.0 R X N a1 m k s
Fujitsu Compiler 4.3 R m k s
GCC 10.3 R X M N a l m k s
Intel ICX 2019 X m k2 s
Intel DPC++ 2021.1 X N m k s
LLVM 11.0 R X N m k s
NVCC 10.2 N c
PGI 19.10 N a

CPUs: ARM, X86; GPUs: AMD, NVIDIA, INTEL
Frameworks: cuda, openacc, opencl, openmp, kokkos, sycl

1 Version 9.0 only; 2 With the experimental INTEL GEN backend.

130

CHAPTER 7. PROGRAMMING MODELS

7.3 Results and Performance Analysis

7.3.1 CPUs

OpenMP

The OpenMP implementation was written in plain C, without any higher-

level framework, and was optimised for CPU platforms. I expected this

version to incur the least overhead and thus perform fastest on the CPU.

As I will show in this section, OpenMP did offer the best performance on

CPUs in most cases, but higher-level implementations were sometimes able

to match it.

Parallelism is exposed through OpenMP at two levels: poses are distrib-

uted between threads, and the calculations for each pose take advantage of

each thread’s SIMD lanes. Thread-level parallelism is achieved by dividing

the poses into groups and then distributing the groups over threads; this cre-

ates an execution model similar to OpenCL workgroups, where each thread

iterates over its assigned poses. The size of the group of poses is specified as

a compile-time parameter.

I found that the group size had significant impact on the performance

of the OpenMP implementation of miniBUDE. On each platform, this para-

meter should be at least as large as the native vector length, such that all the

SIMD lanes are utilised for computation, but I found that most platforms

achieved the best performance at group sizes several times larger than the

native vector length. This happened because compilers were able to fully

unroll the inner thread loops. As such, the group size is not only a vector-

isation factor, but also an unroll factor, and higher values allowed platforms

to fully exploit their out-of-order resources by interleaving several (unrolled)

loop iterations. Furthermore, a small part of the arithmetic can be factored

out and computed only once per work group, resulting in additional compu-

tation time savings. Figure 7.1 shows the impact of the group size parameter

on performance for each platform.

131

7.3. RESULTS AND PERFORMANCE ANALYSIS

16 32 64 128 256 512
Block size (poses)

A64FX-48

CXL-40

Rome-128

SKL-56

TX2-64

P
la

tfo
rm

0.36 0.52 0.84 1.00 0.87 0.91

0.68 0.78 0.90 1.00 0.85 0.77

0.79 0.87 0.83 0.95 0.99 1.00

0.76 0.83 0.88 0.96 1.00 0.85

0.72 0.71 0.94 0.94 1.00 0.99

Figure 7.1: Performance of the OpenMP implementation at different group
sizes, normalised to the best result on each platform. Platforms are labelled
using the abbreviations in Table 7.1 and the number of cores. Higher num-
bers, shown here in brighter colours, correspond to higher performance.

The other defining factor for the performance of the OpenMP imple-

mentation is vectorisation. In order to maintain portability, no architecture-

specific intrinsics are used; I rely on compiler auto-vectorisation. The code is

structured such that vectorisation is required at the innermost level, which

allowed all compilers tested to vectorise the main computation. The Cray and

Intel compilers successfully vectorised all the loops in the code, while GCC

and the Arm compiler did not understand the structure of one do-while

loop and so did not vectorise it. This last loop, however, is not critical for

performance.

The compilers further differed in their instruction choice and scheduling.

On the Intel platforms, only the Cray compiler generated 512-bit vector code

by default. Because this code is compute-heavy, long vectors greatly benefit

performance, and forcing the Intel and GNU compilers to generate 512-bit

132

CHAPTER 7. PROGRAMMING MODELS

operations — instead of their 256-bit default — significantly reduced the run

time. In addition, the Intel and Cray compilers automatically interleaved

the loop bodies, thus overlapping arithmetic and memory operations from

different iterations.

On the other hand, GCC only unrolled the loops, without interleav-

ing, and so instructions for each iteration were scheduled sequentially. This

lowered the achieved performance on the platforms with fewer out-of-order

resources, such as the A64FX, which performed slower than a ThunderX2,

even though the former has 4× the vector width of the latter. The Fujitsu

compiler, which has a good cost model of the A64FX and performs aggressive

software pipelining and division optimisation, generates the fastest code in

this case. Figure 7.2 shows the performance of the OpenMP implementation

on the CPU platforms across the compilers tested.

SKL-56 CXL-40 Rome-128 TX2-64 A64FX-48
Platform

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 (p

os
es

/m
s)

Compiler
AMD
Cray
GNU
Intel
LLVM
Arm
Fujitsu

Figure 7.2: Performance of the OpenMP implementation across systems and
compilers. Higher numbers represent faster execution.

Figure 7.3 shows a roofline chart of the Cascade Lake platform. The

OpenMP implementation of miniBUDE has an operational intensity of 0.3

133

7.3. RESULTS AND PERFORMANCE ANALYSIS

and achieved a performance of 2301 GFLOP/s, which represents 56.2% of the

platform’s peak. The application sits directly below the arithmetic roof and

above the memory bandwidth bound, confirming the code is compute-bound.

For the purposes of the roofline model, FLOPs and memory traffic (assuming

caching as per the cache-aware roofline model) were manually counted in the

application’s source code and corroborated using hardware counters.

0.0 0.1 1.0 10.0 100.0
Operational Intensity (FLOPS/byte)

0.0

0.1

1.0

10.0

100.0

1000.0

Si
ng

le
 p

re
cis

io
n

GF
LO

P/
s (

SI
M

D)

DRAM

L1

L2

L3

 OI = 19.9

Peak GFLOP/s = 4096.0miniBUDE

Figure 7.3: Cache-aware roofline for the Cascade Lake platform showing the
achieved performance for miniBUDE.

Kokkos

The Kokkos implementation is a direct port of the OpenMP version, with

parallelism expressed via the idiomatic Kokkos::parallel for function. I

retained the group size parameter to investigate the effects of unrolling, and I

found that it had the same effect as in the case of OpenMP, and the same val-

ues were optimal on each platform. Like the OpenMP version, Kokkos does

134

CHAPTER 7. PROGRAMMING MODELS

SKL-56 CXL-40 Rome-128 TX2-64 A64FX-48
Platform

0

100

200

300

400

500

600

700

Pe
rfo

rm
an

ce
 (p

os
es

/m
s)

Compiler
AMD
Cray
GNU
Intel
LLVM
Arm
Fujitsu

Figure 7.4: Performance of Kokkos with the OpenMP backend on the test
platforms. Higher numbers represent faster execution.

not offer built-in types for vectors and functions to use with them. From a

productivity standpoint, it may be preferable for the framework and runtime

to provide optimised versions of common math types and functions, so that

compilers can better optimise code with the correct constraints. This is espe-

cially important for parallel frameworks that can target different backends —

as Kokkos does — where each platform can have its own unique requirements,

e. g. alignment on specific boundaries.

Kokkos was able to provide complete platform support in our study by

virtue of being able to utilise many different programming frameworks as

backends. Because a C++ compiler is the only requirement to build a Kokkos

application, and because Kokkos itself is built as part of the same process, I

can compare the relative performance on the platforms studied when using

different compilers. Figure 7.4 shows a performance comparison on each CPU

platform, where Kokkos uses the OpenMP backend, normalised to the fastest

result. The results shows a strong correlation compared to the OpenMP

implementation results described in Section 7.3.1, which shows Kokkos is

using OpenMP efficiently on all the architectures.

135

7.3. RESULTS AND PERFORMANCE ANALYSIS

SYCL

CXL-40 Rome-128 IrisPro580
Platform

0

50

100

150

200

250

300

350

Pe
rfo

rm
an

ce
 (p

os
es

/m
s)

Compiler
OneAPI
hipSYCL
ComputeCPP

Figure 7.5: Relative performance of SYCL implementations, on the plat-
forms where more than one was available. Higher numbers represent faster
execution.

The SYCL implementation was written in idiomatic SYCL 1.2.1. The

kernel is a direct port of the OpenCL version, utilising workgroup-based

parallelism (sycl::nd range) with few changes required. It retained the

existing GPU-friendly optimisations from the OpenCL kernel where data is

first copied to local memory via OpenCL’s async work group copy. Due to

SYCL’s roots in OpenCL, the APIs used for implementing these operations

are identical both in name and semantics. We were even able to retain the

use of 3-d vector types which correspond to the cl vec3 in OpenCL.

For comparison, we also implemented a separate kernel that is closer

to the OpenMP implementation, where parallelism is achieved with flat

parallel for calls based on sycl::range. Although in theory plain range

may be easier to map onto the hardware than nd range, I found the perform-

ance difference between the two implementations to be negligible (below 2%).

Figure 7.5 shows the performance of all SYCL implementations on the

platforms tested where at least two implementations were supported. On

136

CHAPTER 7. PROGRAMMING MODELS

each platform, performance is normalised to the fastest implementation. For

hipSYCL on the x86-based platforms, I tried all the compilers available and

picked the one that produced the fastest binary, which was Cray on both

Cascade Lake and Rome. The Skylake platform is missing from these results

because an incorrect interaction between the Intel OpenCL driver installed on

the system and the Cray aprun launcher resulted in all threads being pinned

to a single core, effectively invalidating the results obtained with the two

implementations that reply on OpenCL, OneAPI and ComputeCpp. On the

V100 and the Radeon VII, hipSYCL is the only usable SYCL implementation.

7.3.2 GPUs

Low-Level: OpenCL and CUDA

The OpenCL implementation is a close representation of the main kernel

in the full-scale application, with the modifications presented in Section 7.2.1;

the CUDA implementation is a direct port of the OpenCL version. The

two versions performed similarly on the NVIDIA V100 GPU: the CUDA

implementation was 18% faster than the OpenCL code, on both the small

and the large input decks. The performance difference was evenly spread

across the execution of the program: all the kernels were slightly slower

when using OpenCL. Memory transfers are not timed for the purposes of

the benchmark, and they take negligible time (< 1% of the total run time).

All of the benchmarks were run on CUDA Toolkit 10.2 running on NVIDIA

driver version 440.64, so the difference likely came from more optimisation

on the CUDA side of the NVIDIA library.

Both versions also ran on the AMD Radeon VII, converting the CUDA

version through HIP, but OpenCL was 1.6× faster on this platform. Since

the kernel code for both implementations was very similar, I attributed the

performance difference to inefficiencies in AMD’s HIP compiler. CUDA and

HIP cannot be used on the Intel GPU.

137

7.3. RESULTS AND PERFORMANCE ANALYSIS

Directives-Based: OpenMP Offload and OpenACC

The directive-based GPU implementations run the same kernel code in

the OpenCL implementation, but expressed in the same C file as the host

application and without any of the explicit OpenCL platform set-up and

clean-up code. This is a significant advantage for productivity: given host

code, only three pragma directives are used to transfer the data to the GPU

and generate GPU kernel code. The main difference from the OpenCL ver-

sion is that the global and local sizes are not set by the programmer, but

are controlled by the runtime. To control the amount of computation per

workgroup, the directives-based implementations include a macro to control

loop unrolling, similarly to the CPU OpenMP implementation.

The implementations achieved virtually identical performance on the V100.

This was expected, because the same CUDA-based backend is used to gen-

erate code for both frameworks. Compiler support, however, differs between

the two: the OpenMP code can use the latest versions of the Cray and GNU

compilers, but the OpenACC version could only be compiled with an older

version of the Cray compiler (9.0). The GNU and PGI compilers produced

non-working code for OpenACC, and newer versions of CCE have dropped

support for it.

On the V100, the directives-based approach showed about 0.4× the per-

formance of the optimised CUDA code. This is the combined result of in-

efficiencies I identified in two places: 1) high register usage in the kernels

generated by the compiler limits the maximum achievable GPU occupancy;

2) lower performance of library functions. This difference is higher than what

has been observed in previous studies [26], and is likely exacerbated by the

heavily compute-bound nature of miniBUDE.

On the Radeon, OpenACC can be compiled with GNU, but the result-

ing code was two orders of magnitude slower than OpenMP, which in turn

only reached 0.3× the performance of the fastest model, OpenCL. The low-

level nature of OpenCL allowed the code to map very well onto the target

hardware, a performance which the GNU offload maths libraries could not

match.

138

CHAPTER 7. PROGRAMMING MODELS

On the Intel GPU, OpenMP target reached only 0.2−0.3× the perform-

ance of the fastest model, which in this case was SYCL. Although SYCL uses

the same drivers as OpenCL on this platform, in this case the OneAPI com-

piler was better able to extract performance from the hardware when starting

from higher-level, more expressive programming model. The OpenCL imple-

mentation was developed with HPC GPUs in mind, and while with code

changes specific to the Intel GPU architecture it should be possible to reach

the same performance with a low-level OpenCL implementation, this result

highlights the productivity benefit of the higher-level programming model

when targeting several platforms simultaneously, as long as the model is

well-supported on all the targets.

High-Level: Kokkos and SYCL

Kokkos and SYCL both run on all the GPUs studied, but only one imple-

mentation, hipSYCL, runs on AMD and NVIDIA. The code run on the GPU

platforms was unchanged from the version run on CPUs, not even to define

different parallelism, as was the case when moving from CPU OpenMP to

OpenMP target offload.

Figure 7.6 shows the results on the GPU platforms for all programming

models studied. The three GPUs each target different segments: the V100 is

a top-end HPC GPU, the Radeon VII is a high-end consumer GPU, and the

Iris Pro is a mobile chip designed for a very constrained power and transistor

budget. A direct performance comparison between such different platforms

is not useful; instead, I present programming model performance normalised

to the fastest result on each platform. In absolute figures, the best result

on the V100 (CUDA) was twice as fast than the best on the Radeon VII

(OpenCL) and 14× faster than the best Iris Pro 580 result (OneAPI SYCL).

7.4 Towards Portable High-Performance Code

Section 7.3 has analysed the performance of the miniBUDE implement-

ations on the platforms studied, but the implications of these results are

139

7.4. TOWARDS PORTABLE HIGH-PERFORMANCE CODE

CUDA SYCL OpenCL

Figure 7.6: Performance of the GPU implementations, normalized to the
fastest result on each platform. The fastest model on each platform is labelled
explicitly.

further-reaching. Figure 7.7 aggregates the performance results over all the

platforms and programming models and highlights that no programming

model can currently achieve the best performance on all platforms.

This effect is more pronounced on GPUs: each of the three platforms stud-

ied achieved the highest performance using a different programming model,

and they relied on parameter tuning to do so. This immediately imposes a

penalty when moving to a new platform, at which point at the very least

tuning needs to be redone. In the worse case, low-level frameworks can trap

users into code so specific to one platform that a major rewrite is needed

when changing targets. However, OpenCL was the fastest model on the

Radeon VII and a close second on the other two GPUs studied, suggesting

that is may still be the best choice for good performance portability.

140

CHAPTER 7. PROGRAMMING MODELS

CUDA Kokkos OpenACC OpenCL OpenMP SYCL
Model

A64FX-48

CXL-40

IrisPro580

RadeonVII

Rome-128

SKL-56

TX2-64

V100

Pl
at

fo
rm

1.00 0.98 0.53

1.00 0.99 0.31

0.27 0.85 0.23 1.00

0.61 0.54 0.01 1.00 0.33 0.60

1.00 0.85 0.52

0.91 1.00 0.11

1.00 0.98 0.68

1.00 0.40 0.44 0.84 0.44 0.08

Figure 7.7: Achieved performance across all programming models, normal-
ised to the fastest result on each platform. Lighter colours correspond to
higher relative performance; blank cells are impossible results.

Higher-level programming models avoid this issue of over-specialisation

of the code, instead relying on being able to translate the high-level code to

efficient machine code as part of the framework. Kokkos is a good example of

this: on the CPU platforms it achieves performance close to that of OpenMP,

and both frameworks require similarly small amounts of framework-specific

code, which consists mostly of loop annotations. The same Kokkos code

is able to run on both CPUs and GPUs, and on the platforms studied it

again achieved performance similar to that of OpenMP, but without any

source changes ; with OpenMP, a different version of the code was written

for GPUs. Kokkos was the only framework that was able to support all CPU

and GPU platforms in one package.

The SYCL landscape is rapidly evolving, and indeed the new SYCL 2020

standard — which is already being adopted by the three main implementa-

tions — brings much-needed productivity improvements such as built-in re-

141

7.4. TOWARDS PORTABLE HIGH-PERFORMANCE CODE

duction support and alignment with the newer C++17 standard [114]. How-

ever, at the time of writing there are still rough edges to the current SYCL

compilers, mainly around platform support fragmentation. First, support for

non-GPU or non-x86 platforms is experimental, or even missing from some

implementations. Even for GPUs, there is no single implementation that

works across all the hardware from the major vendors.

The open-source hipSYCL implementation is the most portable of the set,

being able to run on CPUs, as well as on NVIDIA and AMD GPUs. Both

ComputeCpp and OneAPI provide experimental NVIDIA GPU support, but

there are still blocking issues such as missing built-in function implement-

ations, which prevent miniBUDE from compiling. Finally, running SYCL

on Intel GPUs requires Intel’s OpenCL-based ComputeRuntime, but only

ComputeCpp and OneAPI support this mode of operation.

The situation on CPUs is similarly complicated. For x86-based platforms,

both ComputeCpp and OneAPI run on top of the Intel OpenCL runtime,

similar to the situation on Intel GPUs. The OpenCL runtime achieves par-

allelism via Intel’s OneAPI Threading Building Blocks (OneTBB), which

provides an optimised abstraction for managing logical threads. Such runtime

approaches limit the extent of SYCL implementations to what the underly-

ing runtime supports, from platform coverage to features it can provide; this

currently prevents the use of ComputeCpp or OneAPI on Arm-based plat-

forms.

On the other hand, hipSYCL translates SYCL abstractions to OpenMP

code, which can then take advantage of existing compiler optimisations nat-

ively. This approach results in wide platform support for hipSYCL, but

it also means, in principle, that parallelism abstractions are mapped to

straightforward OpenMP equivalents. In practice, I found that performance

was lower with hipSYCL compared to Kokkos or plain OpenMP, and code

changes such as using different parallelism abstractions made little difference

for miniBUDE. On platforms not explicitly supported by hipSYCL, as was

the case of the A64FX at the time of writing, the additional layer of abstrac-

tion also prevented optimal code from being generated, despite having used

the correct C++ compiler target flag.

142

CHAPTER 7. PROGRAMMING MODELS

Portability between CPUs and GPUs remains a concern, as SYCL has

inherited the same set of problems seen when running OpenCL on the CPU:

it is problematic to map workgroup-based parallelism onto a CPU intuitively

and efficiently, and it suffers from unexpected setup costs compared to the

OpenMP implementation. To work around potentially inefficient mapping,

I implemented a compile-time tuning parameter to adjust the amount of

work performed by each workgroup, though I found no common setting that

provided the best performance on all platforms. On platforms that use Intel’s

OpenCL runtime, i. e. ComputeCpp and OneAPI, I found the kernel runtime

to have large variations, and no functionality was provided to address or

mitigate this. In particular, investigations revealed that initialisation of the

SYCL context — the queue— took upwards of 800 ms in certain cases, even

for a simple benchmark that itself ran in half that time.

I also discovered that when running several iterations of a benchmark

back-to-back, the first run was usually up to 2× slower than subsequent

runs. It was essential to implement a “warm-up” run, which is completely

discarded, before starting the timer on the benchmark. Once the warm-up

run was completed, the remaining iterations showed consistent run times, as

with the other programming models. Both ComputeCpp and OneAPI com-

pile SYCL kernels ahead-of-time, and neither give any indication why initial-

isation imposes such a large overhead; it is most likely an interaction with

the underlying driver. Implementations that do not use the Intel OpenCL

runtime, e. g. hipSYCL, did not incur this performance penalty.

7.5 Reproducibility

The source code for all the miniBUDE implementations used in this study,

as well as build and run instructions and benchmark input cases, can be found

online1. A set of scripts is also provided to build and run the benchmark on

the platforms used in this study2.

1https://github.com/UoB-HPC/miniBUDE
2https://github.com/UoB-HPC/performance-portability/tree/

2021-benchmarking/benchmarking/2021/bude

143

https://github.com/UoB-HPC/miniBUDE
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking/benchmarking/2021/bude
https://github.com/UoB-HPC/performance-portability/tree/2021-benchmarking/benchmarking/2021/bude

7.6. CONCLUSION

7.6 Conclusion

In this chapter I have explored performance portability through the lens

of a simple, yet realistic, compute-bound benchmark. I have implemented

the benchmark in several programming models, including low- and high-

level, both well-established and up-and-coming. I have shown that modern

programming models can perform on-par with traditional ones, and with

constant work done to improve them, their platform support continues to

grow.

On the other hand, I have seen that true performance portability is still

out of reach: no single version of the code achieved the best performance — or

a high fraction of it — on all the platforms studied. Even for a small kernel,

platform-specific optimisations and empirical tuning of parameters accounted

for more than 30% of the performance and that was enough to differentiate

the best-performing implementation from the rest. On GPUs, low-level APIs

continue to provide the highest possible performance, and on CPUs, the still-

immature driver and implementation ecosystem around SYCL presents an

obstacle to the wide adoption of this programming model as a true cross-

platform, cross-architecture framework. Of the frameworks studied, Kokkos

emerged as a reliable choice, with its lightweight, optimised implementation,

and OpenMP remains in a strong position due to it widespread support,

although different code paths are still needed for optimal CPU and GPU

implementations at the time of writing.

144

CHAPTER 8

Research for Future HPC Architectures

8.1 Towards Accurate Performance Model-

ling

In Chapter 4, I analysed SVE applications using emulation tools. How-

ever, I found these to be severely limiting in terms of the size of the inputs

they can run before emulation time became impractical. These were merely

mini-apps, so evaluating full-size HPC applications on real inputs would in-

cur additional performance penalties. With ArmIE, emulation overhead in-

creases by several orders of magnitude when the instrumented application

uses system calls, dynamically linked libraries, and file operations. For such

experiments, benchmarking real hardware remains the only presently viable

option.

For design-space exploration, a fast, flexible simulator built to take ad-

vantage of HPC infrastructure could address the performance needs of the

tools available today. This class of experiments for microarchitectural design-

space exploration with arbitrary hypothetical processor configurations is one

of the main goals of the upcoming SimEng simulator developed at the Uni-

versity of Bristol [84].

SimEng could integrate the cache simulator presented in Chapter 5 for its

memory hierarchy components. It would be able to extend upon the single-

145

8.2. NEXT-GENERATION VECTOR PROCESSORS

core work presented in this thesis to more accurately model interactions

between cores and their private caches, or contention for shared caches.

The cache simulator itself could be improved in further research. The first

extension should be modelling realistic prefetching implementations, which

would improve both its accuracy and the relevance of its results. At this

point, it would be possible to make direct performance measurements by

introducing a cycle model, which would enable data to be collected in terms

of cycles spent to fulfil cache requests, not just hits and misses.

After comprehensively covering the single-core cache effects of vector com-

putation, a natural next step is extending the investigation to a multi-core

system. At this level, accurate timing of each observation becomes more

important, because it may change interactions between private and shared

caches, and one core’s prefetching may now affect other cores. To address

this, a cycle-accurate core simulator could be coupled with the cache simu-

lator, together simulating a processor and its memory hierarchy. This coupled

design has the advantage of exposing more parallelism that can be exploited

for faster simulations [61]. The upcoming SimEng simulation framework de-

veloped at the University of Bristol has such full-system simulations at high

performance as one of its main goals.

Another opportunity to investigate and potentially improve performance

arises around the design of the applications themselves. Given access to

accurate simulation tools, a future application can make informed decisions

about how best to utilise a wide range of hardware, e. g. through careful

laying out of data. These decisions are particularly important — and hard

to make — on systems with configurable caches, e. g. the sector cache on the

A64FX. Some high-level programming frameworks already support making

automatic changes to the data layout based on the architecture targetted [32],

and further insight into memory systems can only improve their decisions.

8.2 Next-Generation Vector Processors

In Chapter 6 I investigated the performance of the A64FX using single-

node benchmarks. I have identified strong and weak points of this processor,

146

CHAPTER 8. RESEARCH FOR FUTURE HPC ARCHITECTURES

but when running at scale these may manifest differently. In particular,

compute-bound applications can become network-bound, thus increasing the

benefits of using A64FX in a large-scale system.

One of the points for improvement that I have identified is around the

compiler support for the A64FX. Because of its relatively lightweight mi-

croarchitecture, this processor relies on a good optimising compiler with an

accurate cost model to schedule instructions well. There is currently a sig-

nificant gap between the performance of binaries compiled with the Fujitsu

Compiler and open-source alternatives, so there is room for further studies

on this architecture to suggest and implement compiler improvements.

As more SVE implementations become available, they are likely to exhibit

varying performance characteristics on HPC applications. One of the key

differences is the native vector length, and, as I have shown in Chapter 4,

each application reacts differently to each choice of vector length. A future

study comparing the real-world performance of HPC applications on a range

of SVE microarchitectures, and investigating the factors that contribute to

their performance, could further the community’s understanding of the role

of the vector length in achieving high performance and would represent a

step forward towards finding the ideal vector length, if such as choice exists.

Finally, when looking at the next generations of high-performance pro-

cessors, it is essential to understand how microarchitectural design decisions

affect the performance of applications. This process is known as the co-

design of hardware and applications and it is a way to ensure that future

hardware will provide adequate performance for its intended use cases. Such

experiments are generally hard, because modelling hypothetical architectures

accurately is an involved task that requires specialised tools. Still, it is es-

sential in the co-design process, which further motivates SimEng [86].

8.3 Productivity in Modern Programming

The work on miniBUDE presented in Chapter 7 opens the path to ad-

ditional work on the full-scale BUDE application. Instead of maintaining

separate implementations in OpenCL for GPUs and OpenMP for CPUs, the

147

8.3. PRODUCTIVITY IN MODERN PROGRAMMING

code could incorporate a framework like SYCL or Kokkos to reduce diver-

gence. Of course, embracing a new programming model for a scientific ap-

plication is bound to encounter additional challenges, but in solving those the

boundary of performance portability will be pushed further. A higher-level

language undoubtedly benefits the ease of maintaining an application, but

the higher the price that needs to be paid in terms of performance, the less

eager developers are be to adopt it. A targeted investigation using the full

application, one with more focus on productivity and software development

practices, could reveal whether this trade-off would be beneficial for BUDE.

In addition, Kokkos is constantly expanding its support for existing pro-

gramming models as parallelism backends, thus further increasing its reach

on platforms: a SYCL backend is being added, while the existing — but ex-

perimental — OpenMP target and HIP backends begin to mature. A future

study could revisit the performance of hand-tuned, low-level kernels versus

implementations using future Kokkos versions.

Some applications, such as GROMACS, use hand-tuned vector intrinsics

to maximise performance on supported architectures by manually packing

vector registers. However, this comes at the cost of the need for manual

changes whenever support for new architectures is to be added. With SVE,

where each implementation can have a different native vector length, code

changes would be required for each vector length, because even though SVE

instructions are VLA, the higher level data structures used are not. One of

the challenges of emerging programming models for HPC is to provide a per-

formant abstraction of the underlying vector length, and future studies could

investigate their performance across different implementations, comparing it

to manual, intrinsic-based vectorisation.

148

CHAPTER 9

Conclusion

In this thesis I have explored modern high-performance processors by

studying design decisions made in their architecture and hardware design,

by evaluating how application users and developers can take advantage of

this hardware in high-level programming, and by comparing their real-world

performance across a set of benchmarks derived from — and representative

of — HPC applications used in supercomputing centres around the world.

This work was carried out between 2017 and 2021, a period during which

two instructions set extensions became important in mainstream CPUs for

HPC: Intel’s AVX-512 and Arm’s SVE. These two vector instruction sets

were key in achieving performance on this generation of processors, and so

they set the context for the work presented in this thesis.

Chapter 3 described the context at the beginning of this period. It was

the time when the first mainstream Arm-based processor made its way into

the field of HPC, and the work undertaken then was among the first in the

world that evaluated this new ThunderX2 processor from the perspective of

HPC application performance. In doing so, I identified several points for

improvement in the design of the TX2, some of which constituted strong

points of the upcoming SVE instruction set.

Then, in Chapters 4 and 5 I studied the potential benefits of using SVE

in the context of a similar set of scientific workloads. At the time, no SVE

hardware had been released, so a combination of static and dynamics analysis

on emulated execution was used to identify key areas in which the addition

149

of SVE could change the execution characteristics of a given processor on

these scientific workloads. I found that many of the applications benefited

from the increased vector length, as well as from the higher flexibility of the

SVE instructions set compared to NEON. For example, the predication in

SVE allowed parts of the code to be vectorised when under NEON they were

not. On the other hand, I found that other aspects of the processor, such as

the cache hierarchy, needs to be carefully designed together with the cores

in order to enable performance benefits from these new vector instructions.

This was particularly important in instructions such as gather loads and

scatter stores, which have the potential to touch a large number of cache

lines in a single instruction.

In Chapter 6 I evaluated the first hardware implementation of SVE, the

Fujitsu A64FX. This is the same processor used in the Japanese supercom-

puter Fugaku and in addition to SVE, it utilises high-bandwidth HBM2

memory. Around the same time as the A64FX, two other Arm-based pro-

cessors were launched for use in HPC: the Ampere Altra and the Amazon

Web Services (AWS) Graviton 2, both based on the Neoverse N1 core. The

N1-based processors took a different approach to achieving high-performance

compared to the A64FX: they offered more cores and higher clock speeds,

at the cost of narrower vectors. By comparing these two kinds of processors,

as well as their main competitors form Intel and AMD, I obtained valuable

insight into the types of workloads that they are best suited for. While the

A64FX has impressive peak performance figures, I found that in practice

it relies on an advanced optimising compiler with an accurate cost model

to reach a high fraction of that peak. This was the case with the Fujitsu

compiler, but not always with the other compilers, which sometimes put the

A64FX behind the N1-based alternatives, designs for which it was relatively

easier to generate optimal code.

Finally, Chapter 7 focused on the software aspects of programming HPC

machines rather than the hardware. With the upcoming big exascale systems

utilising a varied set of CPUs and GPUs, parallel programming frameworks

that are vendor-agnostic and portable between systems are more important

than ever. These frameworks generally work at a higher level compared

150

CHAPTER 9. CONCLUSION

to traditional choices like MPI and OpenMP, and they promise increased

programmer productivity, but they may sacrifice performance in doing so.

Such frameworks had previously been evaluated in the context of memory-

bandwidth-bound workloads, but my work used a newly developed mini-

app to study them in a compute-bound setting. The two main frameworks

studied were Kokkos and SYCL, and I analysed their performance on diverse

hardware from Intel, AMD, NVIDIA, and several Arm-based vendors. I

found that their performance varied with platform, and there was no single

implementation that performed best on all the hardware available, but that

in some cases it was possible to get performance close to that of proprietary

APIs like CUDA. This chapter concluded by highlighting some weaknesses

in these modern parallel programming frameworks at the time of writing,

which could soon be resolved due to the constantly evolving nature of these

projects.

Together, this thesis gives a comprehensive overview of modern HPC pro-

cessors, the tools used to program them, and typical scientific workloads they

often run. The main focus is on vectorisation, which at the time of writing

is necessary to obtain high performance from these processors. By studying

several contemporary architectures, I was able to identify key strengths and

weaknesses of each, and in doing so raise considerations that may improve

the future generations of HPC hardware.

Memory bandwidth remains critical for achieving high performance in

scientific applications. A lot of the applications that are heavily utilised in

large-scale HPC facilities are bound by memory bandwidth at least partly,

and tools such as the roofline model have made it easy to expose how far an

application is from reaching a platform’s peak performance. However, the

roofline model does not give any indication about the factors that may be

preventing an application from reaching optimal performance, and in many

cases the answer is non-trivial.

Recent hardware has focused on offering high memory bandwidth, through

a combination of employing fast memory and a high number of channels to

access it, as is the case of the Arm-based Marvell ThunderX2 and Fujitsu

A64FX processors. Many applications benefit from these improvements, but

151

they also reach a point where other kinds of resources are needed to improve

performance further. For example, the A64FX achieves good results in ap-

plications such as CloverLeaf and OpenFOAM, which are generally bound

by memory bandwidth, but its weakness is its relatively small out-of-order

backend and its high latency for complex mathematical operations. This has

led to approaches such as the Ampere Altra — employing high core counts

and large caches instead of fast memory and wide vectors — ultimately reach-

ing higher performance compared to the A64FX in OpenFOAM, even though

the Altra has less bandwidth to main memory. The same style of architecture

can be found in the AMD EPYC Rome, which also performs well in a wide

range of benchmarks compared to its contemporary HPC counterparts.

On the Intel platforms studied in this thesis, the wide vectors in AVX-512

come at the cost of reduced clock speed when running vector code, and to

some extent the A64FX pays a similar price: while clock speed is not reduced

directly, the latency of many operations, such as divisions, is high compared

to x86-based alternatives, and the total amount of out-of-order resources is

reduced. As a result, while the A64FX is a general-purpose CPU, in reality

it is only suitable for selected classes of applications: those which are either

heavily bandwidth- or compute-bound, but less so for mixed workloads that

rely on the out-of-order backend to hide latency. This raises the question

whether it is the very flexibility of SVE that induces a performance penalty on

the implementation. Until other SVE microarchitectures become available,

this remains an open question.

The VLA nature of SVE is also currently not exploited in the HPC space.

While the more general-purpose compilers — GCC and LLVM — are able to

general VLA code, the HPC-focused toolchains from Cray and Fujitsu chose

to generate fixed-length vector code for maximum optimisation potential and

minimal overhead. Those latter two compilers have generally been the best

performing choices on the A64FX in my experiments, a result which suggests

that VLA code may not bring a direct benefit to HPC users. An implication

of this observation is that SVE does not help with portability either: if the

best compilers hard-code the vector length, then the code will need to be

recompiled when moving to a new target architecture anyway.

152

CHAPTER 9. CONCLUSION

SVE offers predicated instructions, which allow more types of loops to

be vectorised, in particular those with heavy branching. But on the A64FX,

instructions to generate and manage predicates are slow, and many compilers

disregard that. With GCC, for example, although loops are vectorised, in

many cases the quality of the code generated can be low: a large amount of

code is used, including many expensive predicate-related operations, and a

good fraction of the vector lanes available can remain unused. In practice,

this leads to vector code that does not perform significantly faster than its

scalar counterpart.

The same challenge of utilising vector instruction sets efficiently is faced,

albeit at a different level, by high-level programming frameworks. Frame-

works such as Kokkos and SYCL can help with programmer productivity,

but they introduce yet another layer between the raw parallelism that needs

to be exposed in application and the compiler’s view of the code. This, again,

conditions the performance reached on the compiler’s ability to understand

patterns and generate efficient machine code.

These issues are not specific to SVE, or indeed to any particular instruc-

tion set. By comparing modern Arm- and x86-based processors I was able

to observe that the instruction set makes little difference to the performance

of applications on modern hardware; what is significantly more important

is how well a microarchitecture is optimised for a particular workload. Un-

fortunately, for the HPC community this implies that the details are hidden

behind the surface and that it is hard to get to the roots of an application’s

true performance-limiting factor.

One possible way to address such investigations is through simulation.

With access to simulation tools that are flexible enough to model contem-

porary microarchitecture at near-cycle-accurate levels, and assuming that

their performance makes it feasible to run kernels of real workloads through

a model, researchers should be able to identify the changes to a given mi-

croarchitecture that would allow a given program to run faster.

The other side of such experiments is access to real data. Simulation

is useful for attempts to find solutions to a problem, but a separate set of

tools is needed to correctly identify problems. Traditional profilers are too

153

coarse-grained to explain the performance effects seen on modern system,

and hardware counters offer too much raw data that often lacks context. In

order to provide a starting point for simulation experiments, efficient and

structured access to system performance data is needed, a view which is

rarely provided by contemporary performance analysis tools.

These challenges are core to the HPC field on the path to exascale and

beyond. They are ongoing research topics, and their findings have the po-

tential to redefine performance analysis as we know it, bridging the gap

between software and hardware design. In turn, it is this co-design work

that will shape tomorrow’s high-performance systems and set new boundar-

ies for what it possible in the world of computational science.

154

APPENDIX A

Data

This chapter lists the raw data used to produce the visualisations in this

thesis.

A.1 Chapter 3: Emerging CPU Architectures

for HPC

Table A.1: Data from Figure 3.1.

Application
Relative Performance

SMT-1 SMT-2 SMT-4

C1 1.000 1.218 1.379
C2 1.000 1.802 3.059
M1 1.000 1.031 1.032
M2 1.000 1.001 0.984

155

A.1. Chapter 3: Emerging CPU Architectures for HPC

Table A.2: Data from Figure 3.4.

Benchmark
Relative Performance

BDW TX2 SKL20 SKL28

STREAM 1.00 1.93 1.53 1.64
CloverLeaf 1.00 1.71 1.59 1.64
TeaLeaf 1.00 1.85 1.66 1.75
SNAP 1.00 0.71 1.17 1.48
Neutral 1.00 0.89 0.96 1.29

Table A.3: Data from Figure 3.5.

Benchmark
Relative Performance

BDW TX2 SKL20 SKL28

CP2K 1.00 1.15 1.29 1.37
GROMACS 1.00 0.68 1.29 1.45
NAMD 1.00 1.16 0.98 1.21
NEMO 1.00 1.49 1.44 1.65
OpenFOAM 1.00 1.87 1.57 1.66
OpenSBLI 1.00 1.69 1.39 1.72
Unified Model 1.00 0.92 1.06 1.19
VASP 1.00 0.76 1.32 1.42
Geometric Mean 1.00 1.14 1.28 1.45

Table A.4: Data from Figure 3.6.

Benchmark
Relative Performance

Arm 18.4 CCE 8.7 GCC 7.2 GCC 8.1

STREAM 1.000 0.991 0.969 0.973
CloverLeaf 0.952 1.000 0.915 0.917
TeaLeaf 0.948 1.000 0.993 0.951
SNAP 0.962 1.000 0.791 0.856
Neutral 0.928 0.852 0.951 1.000

156

APPENDIX A. DATA

Table A.5: Data from Figure 3.8.

Benchmark

Relative Performance
Improvement

Arm CCE GCC

STREAM 0.077 0.053 0.107
CloverLeaf -0.022 0.013 -0.030
TeaLeaf -0.033 -0.004 -0.022
SNAP 0.106 0.231 0.135
Neutral -0.050 0.133 -0.006

A.2 Chapter 4: Next-Generation Vector In-

struction Sets

Table A.6: Data from Figure 4.1: Instruction count, grouped by instruction
type, for the STREAM benchmark.

Compiler Vector Width Op Group Op Count

Arm 19.2 no-vec A64 81790836

NEON 0

NEON A64 13633394

NEON 29360133

SVE-128 A64 23070565

NEON 0

arithmetic 25165824

control 12582914

mem-read 20971526

mem-write 12582912

move 4

SVE-256 A64 8389678

NEON 0

arithmetic 14680064

control 8388612

mem-read 12582918

mem-write 8388608

move 4

SVE-512 A64 4195374

NEON 0

arithmetic 7340032

control 4194308

mem-read 6291462

mem-write 4194304

move 4

SVE-1024 A64 2098222

NEON 0

arithmetic 3670016

control 2097156

mem-read 3145734

mem-write 2097152

move 4

157

A.2. Chapter 4: Next-Generation Vector Instruction Sets

SVE-2048 A64 1049646

NEON 0

arithmetic 1835008

control 1048580

mem-read 1572870

mem-write 1048576

move 4

CCE 9.0a no-vec A64 74449203

NEON 4194308

NEON A64 5767474

NEON 33685513

SVE-128 A64 46137796

NEON 0

arithmetic 12582913

control 9

mem-read 25165824

mem-write 16777216

move 4

SVE-256 A64 31457672

NEON 0

arithmetic 6291456

control 8

mem-read 12582912

mem-write 8388608

move 4

SVE-512 A64 11534780

NEON 0

arithmetic 3145728

control 8

mem-read 6291456

mem-write 4194304

move 4

SVE-1024 A64 5767616

NEON 0

arithmetic 1572864

control 8

mem-read 3145728

mem-write 2097152

move 4

SVE-2048 A64 2884026

NEON 0

arithmetic 786432

control 8

mem-read 1572864

mem-write 1048576

move 4

GCC 8.2 no-vec A64 203425701

NEON 0

NEON A64 60819356

NEON 46137348

SVE-128 A64 23070454

NEON 0

arithmetic 25165824

control 12582924

mem-read 20971520

mem-write 12582912

move 4

SVE-256 A64 16778998

NEON 0

arithmetic 12582912

control 6291468

mem-read 10485760

mem-write 6291456

move 4

SVE-512 A64 13633270

NEON 0

arithmetic 6291456

158

APPENDIX A. DATA

control 3145740

mem-read 5242880

mem-write 3145728

move 4

SVE-1024 A64 12060406

NEON 0

arithmetic 3145728

control 1572876

mem-read 2621440

mem-write 1572864

move 4

SVE-2048 A64 11273974

NEON 0

arithmetic 1572864

control 786444

mem-read 1310720

mem-write 786432

move 4

Table A.7: Data from Figure 4.2: Instruction count, grouped by instruction
type, for the BUDE benchmark.

Compiler SVE width Op Group Count

Arm 19.2 no-vec A64 872858411

NEON 2942608

NEON A64 32552425

NEON 243800448

SVE-128 A64 33564265

NEON 272

arithmetic 132066752

control 31218736

mem-read 26226848

mem-write 6266624

move 53492784

SVE-256 A64 24186121

NEON 0

arithmetic 66047808

control 15609536

mem-read 13699360

mem-write 3133440

move 28529984

SVE-512 A64 19497033

NEON 0

arithmetic 33038208

control 7804800

mem-read 7435616

mem-write 1566720

move 16048576

SVE-1024 A64 17152489

NEON 0

arithmetic 16533408

control 3902432

mem-read 4303744

mem-write 783360

move 9807872

SVE-2048 A64 15980217

NEON 0

arithmetic 8281008

control 1951248

mem-read 2737808

mem-write 391680

move 6687520

CCE 9.0a no-vec A64 841032266

159

A.2. Chapter 4: Next-Generation Vector Instruction Sets

NEON 1836816

NEON A64 31343436

NEON 237898882

SVE-128 A64 38502189

NEON 2342912

arithmetic 175263552

control 23802736

mem-read 25054688

mem-write 6263552

move 39801472

SVE-256 A64 38093901

NEON 2342912

arithmetic 87826880

control 14437744

mem-read 12527968

mem-write 3131776

move 19510496

SVE-512 A64 21264669

NEON 1562496

arithmetic 44108768

control 7023792

mem-read 4704592

mem-write 5888

move 13267184

SVE-1024 A64 26287869

NEON 2342912

arithmetic 22249488

control 4292336

mem-read 3133312

mem-write 783328

move 8584640

SVE-2048 A64 18483213

NEON 2342912

arithmetic 11319904

control 1951088

mem-read 2344784

mem-write 1360

move 7024656

GCC 8.2 no-vec A64 894082928

NEON 32

NEON A64 31624341

NEON 235867024

SVE-128 A64 25429749

NEON 16

arithmetic 139631984

control 48526176

mem-read 25835104

mem-write 6263552

move 18543584

SVE-256 A64 22304517

NEON 16

arithmetic 69999520

control 24458224

mem-read 13308384

mem-write 3131776

move 11613664

SVE-512 A64 20741893

NEON 16

arithmetic 35183280

control 12424240

mem-read 7045024

mem-write 1565888

move 8148704

SVE-1024 A64 19960581

NEON 16

arithmetic 17775168

control 6407248

160

APPENDIX A. DATA

mem-read 3913344

mem-write 782944

move 6416224

SVE-2048 A64 19569893

NEON 16

arithmetic 9071120

control 3398752

mem-read 2347504

mem-write 391472

move 5549984

Table A.8: Data from Figure 4.3: Instruction count, grouped by instruction
type, for the TeaLeaf benchmark.

Compiler SVE width Op Group Count

Arm 19.2 no-vec A64 566705

NEON 809

NEON A64 608015

NEON 32529

SVE-128 A64 431901

NEON 809

arithmetic 90502

control 24062

mem-read 52900

mem-write 18840

move 6060

SVE-256 A64 411471

NEON 809

arithmetic 55232

control 18772

mem-read 32830

mem-write 12460

move 6060

SVE-512 A64 401701

NEON 809

arithmetic 38262

control 16242

mem-read 23020

mem-write 9440

move 6060

SVE-1024 A64 391931

NEON 809

arithmetic 21292

control 13712

mem-read 13210

mem-write 6420

move 6060

SVE-2048 A64 391931

NEON 809

arithmetic 21292

control 13712

mem-read 13210

mem-write 6420

move 6060

CCE 9.0a no-vec A64 538609

NEON 809

NEON A64 535119

NEON 32959

SVE-128 A64 487281

NEON 395

arithmetic 4470

control 472

mem-read 10260

161

A.2. Chapter 4: Next-Generation Vector Instruction Sets

mem-write 6350

move 692

SVE-256 A64 495313

NEON 4375

arithmetic 1950

control 602

mem-read 4280

mem-write 2520

move 412

SVE-512 A64 505681

NEON 4315

arithmetic 980

control 432

mem-read 1980

mem-write 1200

move 242

SVE-1024 A64 510987

NEON 17715

control 420

move 50

SVE-2048 A64 510987

NEON 17715

control 420

move 50

GCC 8.2 no-vec A64 471989

NEON 448

NEON A64 361169

NEON 113948

SVE-128 A64 298531

NEON 458

arithmetic 70030

control 16064

mem-read 49540

mem-write 12320

move 2172

SVE-256 A64 294561

NEON 458

arithmetic 42680

control 9734

mem-read 29460

mem-write 7260

move 2172

SVE-512 A64 292631

NEON 458

arithmetic 29610

control 6624

mem-read 19640

mem-write 4840

move 2172

SVE-1024 A64 290701

NEON 458

arithmetic 16540

control 3514

mem-read 9820

mem-write 2420

move 2172

SVE-2048 A64 290701

NEON 458

arithmetic 16540

control 3514

mem-read 9820

mem-write 2420

move 2172

162

APPENDIX A. DATA

Table A.9: Data from Figure 4.4: Instruction count, grouped by instruction
type, for the CloverLeaf benchmark.

Compiler SVE width Op Group Count

Arm 19.2 no-vec A64 3346509743

NEON 106

NEON A64 1464401200

NEON 697897545

SVE-128 A64 1119020917

NEON 22119370

arithmetic 566967920

control 92218501

mem-read 363577720

mem-write 90067160

move 27142489

SVE-256 A64 943654985

NEON 22119370

arithmetic 284270492

control 46507037

mem-read 182118080

mem-write 45239756

move 14003929

SVE-512 A64 856085705

NEON 22119370

arithmetic 142996892

control 23666717

mem-read 91461440

mem-write 22854956

move 7434649

SVE-1024 A64 812301065

NEON 22119370

arithmetic 72360092

control 12246557

mem-read 46133120

mem-write 11662556

move 4150009

SVE-2048 A64 790408745

NEON 22119370

arithmetic 37041692

control 6536477

mem-read 23468960

mem-write 6066356

move 2507689

CCE 9.0a no-vec A64 3664596437

NEON 18484786

NEON A64 1610031731

NEON 850984289

SVE-128 A64 1611152950

NEON 15478

arithmetic 506356722

control 3694790

mem-read 376452725

mem-write 84383753

move 30240525

SVE-256 A64 369700555

NEON 104477

arithmetic 427372755

control 25855090

mem-read 225134139

mem-write 49509382

move 37500345

SVE-512 A64 157778898

NEON 97860

arithmetic 213630311

163

A.2. Chapter 4: Next-Generation Vector Instruction Sets

control 12929074

mem-read 113241865

mem-write 25248274

move 19261742

SVE-1024 A64 66812444

NEON 97932

arithmetic 106837089

control 6466988

mem-read 56628083

mem-write 12624428

move 9719678

SVE-2048 A64 44585521

NEON 97932

arithmetic 53440478

control 3235957

mem-read 28312552

mem-write 6303877

move 4953458

GCC 8.2 no-vec A64 2768395189

NEON 0

NEON A64 1452149717

NEON 719359700

other 4291888

SVE-128 A64 771576273

NEON 0

arithmetic 739129116

control 126761328

mem-read 396585294

mem-write 78637904

mem-write 5027212

move 2657266

other 2215168

SVE-256 A64 748004329

NEON 0

arithmetic 370180484

control 63519304

mem-read 198519574

mem-write 39355492

move 19002826

other 16752208

SVE-512 A64 736233769

NEON 0

arithmetic 185783204

SVE-1024 A64 730348489

NEON 0

arithmetic 93584564

control 16110904

mem-read 50080054

mem-write 9931252

move 4992346

move 37683466

other 33365968

SVE-2048 A64 727405849

NEON 0

arithmetic 47485244

control 8209504

mem-read 25340134

control 31913704

mem-read 99559894

mem-write 19739332

move 9662506

other 8445328

164

APPENDIX A. DATA

Table A.10: Data from Figure 4.5: Instruction count, grouped by instruction
type, for the MegaSweep benchmark.

Compiler SVE width Op Group Count

Arm 19.2 no-vec A64 44499487

NEON 63

NEON A64 41316671

NEON 278621

SVE-128 A64 40381887

NEON 93

arithmetic 278536

control 278552

mem-read 278528

mem-write 278528

move 14352

SVE-256 A64 40537023

NEON 93

arithmetic 139272

control 845848

mem-read 139264

mem-write 487424

move 4112

SVE-512 A64 40293311

NEON 93

arithmetic 69640

control 428056

mem-read 69632

mem-write 243712

move 4112

SVE-1024 A64 40178623

NEON 93

arithmetic 36872

control 231448

mem-read 36864

mem-write 129024

move 4112

SVE-2048 A64 40121279

NEON 93

arithmetic 20488

control 133144

mem-read 20480

mem-write 71680

move 4112

CCE 9.0a no-vec A64 38287040

NEON 1079432

NEON A64 2560241

NEON 15065722

SVE-128 A64 8831127

NEON 84

arithmetic 9478177

control 39

mem-read 5292088

mem-write 3203080

move 8235

SVE-256 A64 4991871

NEON 2762

arithmetic 3907636

control 68

mem-read 2367581

mem-write 1601598

move 581650

SVE-512 A64 3737146

NEON 110

arithmetic 2375726

165

A.2. Chapter 4: Next-Generation Vector Instruction Sets

control 51

mem-read 1323073

mem-write 800784

move 8239

SVE-1024 A64 1675608

NEON 1024110

arithmetic 1122347

control 48

mem-read 624702

mem-write 384013

move 8239

SVE-2048 A64 3014447

NEON 2778

arithmetic 466981

control 53

mem-read 279630

mem-write 192047

move 90138

GCC 8.2 no-vec A64 42789673

NEON 0

NEON A64 42789673

NEON 0

SVE-128 A64 42789673

NEON 0

SVE-256 A64 42789673

NEON 0

SVE-512 A64 42789673

NEON 0

SVE-1024 A64 42789673

NEON 0

SVE-2048 A64 42789673

NEON 0

Table A.11: Data from Figure 4.6: Instruction count, grouped by instruction
type, for the MiniFMM benchmark.

Compiler SVE width Op Group Count

Arm 19.2 0 A64 1121089228

NEON 3229585

1 A64 613615202

NEON 191393417

128 A64 219799000

NEON 3649331

arithmetic 153764054

control 30615324

mem-read 33465596

move 36132385

other 11802479

256 A64 204162239

NEON 3649331

arithmetic 95671567

control 24635506

mem-read 21047816

mem-write 343608

move 29555567

other 8468962

512 A64 196984708

NEON 3649331

arithmetic 68820746

control 21581236

mem-read 15397420

mem-write 229072

move 26718929

166

APPENDIX A. DATA

other 7056363

SVE-1024 A64 192161992

NEON 3649331

arithmetic 50921600

control 19468892

mem-read 11630876

mem-write 114536

move 24827595

other 6114727

SVE-2048 A64 192161992

NEON 3649331

arithmetic 50921600

control 19468892

mem-read 11630876

mem-write 114536

move 24827595

other 6114727

GCC 8.2 no-vec A64 917137860

NEON 2678647

NEON A64 276657511

NEON 180071076

SVE-128 A64 195512059

NEON 12369888

arithmetic 164777476

control 13542568

mem-read 27918198

move 10527192

other 6702181

SVE-256 A64 192522150

NEON 12369888

arithmetic 93019660

control 7514110

mem-read 15958562

move 10502872

other 3687952

SVE-512 A64 191109551

NEON 12369888

arithmetic 59117284

control 4666032

mem-read 10308166

move 10491432

other 2263913

SVE-1024 A64 190167915

NEON 12369888

arithmetic 36518020

control 2766636

mem-read 6541622

move 10483370

other 1314215

SVE-2048 A64 190167915

NEON 12369888

arithmetic 36518020

control 2766636

mem-read 6541622

move 10483370

other 1314215

Table A.12: Data from Figure 4.7.

Compiler SVE width Active Bits Accesses

Arm 19.2 128 32 4800000

Arm 19.2 128 64 4840000

Arm 19.2 128 96 5040000

Arm 19.2 128 128 92600000

167

A.2. Chapter 4: Next-Generation Vector Instruction Sets

GCC 8.2 128 32 4800000

GCC 8.2 128 64 4840000

GCC 8.2 128 96 5040000

GCC 8.2 128 128 92600000

Arm 19.2 256 32 2440000

Arm 19.2 256 64 2440000

Arm 19.2 256 96 2840000

Arm 19.2 256 128 2600000

Arm 19.2 256 160 2360000

Arm 19.2 256 192 2400000

Arm 19.2 256 224 2200000

Arm 19.2 256 256 41520000

GCC 8.2 256 32 2440000

GCC 8.2 256 64 2440000

GCC 8.2 256 96 2840000

GCC 8.2 256 128 2600000

GCC 8.2 256 160 2360000

GCC 8.2 256 192 2400000

GCC 8.2 256 224 2200000

GCC 8.2 256 256 41520000

Arm 19.2 512 32 1640000

Arm 19.2 512 64 1680000

Arm 19.2 512 96 2000000

Arm 19.2 512 128 2080000

Arm 19.2 512 160 1720000

Arm 19.2 512 192 1120000

Arm 19.2 512 224 1120000

Arm 19.2 512 256 1280000

Arm 19.2 512 288 800000

Arm 19.2 512 320 760000

Arm 19.2 512 352 840000

Arm 19.2 512 384 520000

Arm 19.2 512 416 640000

Arm 19.2 512 448 1280000

Arm 19.2 512 480 1080000

Arm 19.2 512 512 17160000

GCC 8.2 512 32 1640000

GCC 8.2 512 64 1680000

GCC 8.2 512 96 2000000

GCC 8.2 512 128 2080000

GCC 8.2 512 160 1720000

GCC 8.2 512 192 1120000

GCC 8.2 512 224 1120000

GCC 8.2 512 256 1280000

GCC 8.2 512 288 800000

GCC 8.2 512 320 760000

GCC 8.2 512 352 840000

GCC 8.2 512 384 520000

GCC 8.2 512 416 640000

GCC 8.2 512 448 1280000

GCC 8.2 512 480 1080000

GCC 8.2 512 512 17160000

Arm 19.2 1024 32 80000

Arm 19.2 1024 64 40000

Arm 19.2 1024 128 40000

Arm 19.2 1024 160 40000

Arm 19.2 1024 288 160000

Arm 19.2 1024 320 120000

Arm 19.2 1024 352 360000

Arm 19.2 1024 384 200000

Arm 19.2 1024 416 400000

Arm 19.2 1024 448 1280000

Arm 19.2 1024 480 920000

Arm 19.2 1024 512 1040000

Arm 19.2 1024 544 1560000

Arm 19.2 1024 576 1640000

Arm 19.2 1024 608 2000000

168

APPENDIX A. DATA

Arm 19.2 1024 640 2040000

Arm 19.2 1024 672 1680000

Arm 19.2 1024 704 1120000

Arm 19.2 1024 736 1120000

Arm 19.2 1024 768 1280000

Arm 19.2 1024 800 640000

Arm 19.2 1024 832 640000

Arm 19.2 1024 864 480000

Arm 19.2 1024 896 320000

Arm 19.2 1024 928 240000

Arm 19.2 1024 992 160000

Arm 19.2 1024 1024 600000

GCC 8.2 1024 32 80000

GCC 8.2 1024 64 40000

GCC 8.2 1024 128 40000

GCC 8.2 1024 160 40000

GCC 8.2 1024 288 160000

GCC 8.2 1024 320 120000

GCC 8.2 1024 352 360000

GCC 8.2 1024 384 200000

GCC 8.2 1024 416 400000

GCC 8.2 1024 448 1280000

GCC 8.2 1024 480 920000

GCC 8.2 1024 512 1040000

GCC 8.2 1024 544 1560000

GCC 8.2 1024 576 1640000

GCC 8.2 1024 608 2000000

GCC 8.2 1024 640 2040000

GCC 8.2 1024 672 1680000

GCC 8.2 1024 704 1120000

GCC 8.2 1024 736 1120000

GCC 8.2 1024 768 1280000

GCC 8.2 1024 800 640000

GCC 8.2 1024 832 640000

GCC 8.2 1024 864 480000

GCC 8.2 1024 896 320000

GCC 8.2 1024 928 240000

GCC 8.2 1024 992 160000

GCC 8.2 1024 1024 600000

Arm 19.2 2048 288 160000

Arm 19.2 2048 320 120000

Arm 19.2 2048 352 360000

Arm 19.2 2048 384 200000

Arm 19.2 2048 416 400000

Arm 19.2 2048 448 1280000

Arm 19.2 2048 480 920000

Arm 19.2 2048 512 1040000

Arm 19.2 2048 544 1560000

Arm 19.2 2048 576 1640000

Arm 19.2 2048 608 2000000

Arm 19.2 2048 640 2040000

Arm 19.2 2048 672 1680000

Arm 19.2 2048 704 1120000

Arm 19.2 2048 736 1120000

Arm 19.2 2048 768 1280000

Arm 19.2 2048 800 640000

Arm 19.2 2048 832 640000

Arm 19.2 2048 864 480000

Arm 19.2 2048 896 280000

Arm 19.2 2048 928 240000

Arm 19.2 2048 992 80000

Arm 19.2 2048 1024 40000

Arm 19.2 2048 1056 80000

Arm 19.2 2048 1088 40000

Arm 19.2 2048 1152 40000

Arm 19.2 2048 1184 40000

Arm 19.2 2048 1920 40000

169

A.3. Chapter 5: The Effects on Cache of Wide Vector Operations

Arm 19.2 2048 2016 80000

Arm 19.2 2048 2048 120000

GCC 8.2 2048 288 160000

GCC 8.2 2048 320 120000

GCC 8.2 2048 352 360000

GCC 8.2 2048 384 200000

GCC 8.2 2048 416 400000

GCC 8.2 2048 448 1280000

GCC 8.2 2048 480 920000

GCC 8.2 2048 512 1040000

GCC 8.2 2048 544 1560000

GCC 8.2 2048 576 1640000

GCC 8.2 2048 608 2000000

GCC 8.2 2048 640 2040000

GCC 8.2 2048 672 1680000

GCC 8.2 2048 704 1120000

GCC 8.2 2048 736 1120000

GCC 8.2 2048 768 1280000

GCC 8.2 2048 800 640000

GCC 8.2 2048 832 640000

GCC 8.2 2048 864 480000

GCC 8.2 2048 896 280000

GCC 8.2 2048 928 240000

GCC 8.2 2048 992 80000

GCC 8.2 2048 1024 40000

GCC 8.2 2048 1056 80000

GCC 8.2 2048 1088 40000

GCC 8.2 2048 1152 40000

GCC 8.2 2048 1184 40000

GCC 8.2 2048 1920 40000

GCC 8.2 2048 2016 80000

GCC 8.2 2048 2048 120000

A.3 Chapter 5: The Effects on Cache of Wide

Vector Operations

The data from this chapter can also be found online1.

1https://github.com/UoB-HPC/cache-effects-reproducibility

170

https://github.com/UoB-HPC/cache-effects-reproducibility

APPENDIX A. DATA

Table A.13: Data from Figures 5.6, 5.7, and 5.8: Cache miss rates at different
SVE widths for the CloverLeaf, MegaSweep, and MiniFMM benchmarks,
respectively, on the ThunderX2 and A64FX processors.

Benchmark
SVE Width (bits)

128 256 512 1024 2048

CloverLeaf TX2 16.28% 23.90% 32.68% 40.03% 45.11%
MegaSweep TX2 5.22% 6.32% 6.44% 6.51% 6.48%
MiniFMM TX2 0.277% 0.046% 0.052% 0.057% 0.351%

CloverLeaf A64FX 4.18 % 7.07% 10.98% 15.17% 18.74%
MegaSeep A64FX 1.16% 1.45% 1.48% 1.49% 1.51%
MiniFMM A64FX 0.046% 0.052% 0.057% 0.061% 0.060%

171

A.3. Chapter 5: The Effects on Cache of Wide Vector Operations

Table A.14: Data from Figure 5.9: Total number of non-contiguous accesses,
grouped by the number of cache lines touched at each SVE width for the
CloverLeaf benchmark.

SVE Width Lines Count Count
(bits) touched TX2 A64FX

128 1 926785 926785
2 13965014 13965014

256 1 464639 464639
2 127964 7046099
3 387 579
4 6918327 0

512 1 233759 233759
2 127964 127964
3 0 3458774
4 0 579
7 386 0
8 3458967 0

1024 1 118319 118319
2 127964 127964
5 0 1729094
6 0 579
15 386 0
16 1729287 0

2048 1 60599 60599
2 127964 127964
9 0 864254
10 0 579
31 386 0
32 864447 0

172

APPENDIX A. DATA

Table A.15: Data from Figure 5.10: Total number of non-contiguous accesses,
grouped by the number of cache lines touched at each SVE width for the
MiniFMM benchmark.

SVE Width Lines Count Count
(bits) touched TX2 A64FX

128 2 1374432 1947112
3 458144 0
4 114536 0

256 2 0 1718040
3 1374432 0
4 229072 0
5 114536 0

512 2 0 1718040
3 1374432 0
5 343608 0

1024 2 0 1718040
3 1374432 0
5 343608 0

2048 2 0 1718040
3 1374432 0
5 343608 0

173

A.4. Chapter 6: Next-Generation Vector Processors

A.4 Chapter 6: Next-Generation Vector Pro-

cessors

Table A.16: Benchmark results for each compiler on each platform covered.

Benchmark Platform Compiler Result Result Type

BabelStream A64FX Arm 597.855 Triad GB/s

Cray 596.297 Triad GB/s

Fujitsu 824.222 Triad GB/s

GNU 599.131 Triad GB/s

Altra Arm 385.748 Triad GB/s

GNU 371.443 Triad GB/s

CLX Cray 162.142 Triad GB/s

GNU 163.644 Triad GB/s

Intel 204.347 Triad GB/s

Graviton 2 Arm 175.177 Triad GB/s

GNU 174.804 Triad GB/s

Rome Cray 285.240 Triad GB/s

GNU 256.757 Triad GB/s

Intel 284.947 Triad GB/s

TX2 Arm 243.510 Triad GB/s

Cray 235.888 Triad GB/s

GNU 242.515 Triad GB/s

miniBUDE A64FX Arm 69.161 poses/ms

Cray 101.203 poses/ms

Fujitsu 168.469 poses/ms

GNU 63.100 poses/ms

Altra Arm 435.709 poses/ms

GNU 402.691 poses/ms

CLX Cray 285.405 poses/ms

GNU 240.267 poses/ms

174

APPENDIX A. DATA

Intel 222.685 poses/ms

Graviton 2 Arm 142.902 poses/ms

GNU 141.699 poses/ms

Rome Cray 530.539 poses/ms

GNU 521.746 poses/ms

Intel 420.776 poses/ms

TX2 Arm 144.761 poses/ms

Cray 153.757 poses/ms

GNU 119.453 poses/ms

CloverLeaf A64FX Arm 381.719 bm16 best time

Cray 490.598 bm16 best time

Fujitsu 146.308 bm16 best time

GNU 1252.991 bm16 best time

Altra Arm 235.330 bm16 best time

GNU 255.764 bm16 best time

CLX Cray 420.255 bm16 best time

GNU 395.506 bm16 best time

Intel 383.650 bm16 best time

Graviton 2 Arm 443.768 bm16 best time

GNU 445.980 bm16 best time

Rome Cray 254.626 bm16 best time

GNU 255.414 bm16 best time

Intel 257.806 bm16 best time

TX2 Arm 384.516 bm16 best time

Cray 353.200 bm16 best time

GNU 402.733 bm16 best time

GROMACS A64FX Arm 3473.007 nonbonded-benchmark pairs/usec

Cray 3126.500 nonbonded-benchmark pairs/usec

Fujitsu 4339.852 nonbonded-benchmark pairs/usec

GNU 8738.046 nonbonded-benchmark pairs/usec

Altra Arm 13387.540 nonbonded-benchmark pairs/usec

GNU 13647.000 nonbonded-benchmark pairs/usec

175

A.4. Chapter 6: Next-Generation Vector Processors

CLX Cray 28152.190 nonbonded-benchmark pairs/usec

GNU 28233.700 nonbonded-benchmark pairs/usec

Intel 27976.160 nonbonded-benchmark pairs/usec

Graviton 2 Arm 12641.010 nonbonded-benchmark pairs/usec

GNU 13610.000 nonbonded-benchmark pairs/usec

Rome Cray 45740.350 nonbonded-benchmark pairs/usec

GNU 46678.090 nonbonded-benchmark pairs/usec

Intel 45932.590 nonbonded-benchmark pairs/usec

TX2 Arm 7396.400 nonbonded-benchmark pairs/usec

Cray 8245.378 nonbonded-benchmark pairs/usec

GNU 8172.720 nonbonded-benchmark pairs/usec

A64FX Arm 14.555 ion channel vsites

Cray 17.936 ion channel vsites

Fujitsu 7.240 ion channel vsites

GNU 21.800 ion channel vsites

Altra Arm 128.354 ion channel vsites

GNU 89.165 ion channel vsites

CLX Cray 56.328 ion channel vsites

GNU 59.559 ion channel vsites

Intel 59.425 ion channel vsites

Graviton 2 Arm 64.201 ion channel vsites

GNU 38.972 ion channel vsites

Rome Cray 150.284 ion channel vsites

GNU 184.554 ion channel vsites

Intel 177.004 ion channel vsites

TX2 Arm 49.716 ion channel vsites

Cray 49.940 ion channel vsites

GNU 53.856 ion channel vsites

MiniFMM A64FX Arm 20.828 omp-task plummer.in total time

Cray 54.659 omp-task plummer.in total time

Fujitsu 9.913 omp-task plummer.in total time

GNU 9.368 omp-task plummer.in total time

176

APPENDIX A. DATA

Altra Arm 6.718 omp-task plummer.in total time

GNU 6.424 omp-task plummer.in total time

CLX Cray 3.635 omp-task plummer.in total time

GNU 5.606 omp-task plummer.in total time

Intel 6.271 omp-task plummer.in total time

Graviton 2 Arm 8.099 omp-task plummer.in total time

GNU 8.037 omp-task plummer.in total time

Rome Cray 2.571 omp-task plummer.in total time

GNU 3.094 omp-task plummer.in total time

Intel 23.105 omp-task plummer.in total time

TX2 Arm 12.638 omp-task plummer.in total time

Cray 15.657 omp-task plummer.in total time

GNU 8.261 omp-task plummer.in total time

OpenFOAM A64FX Arm 90.800 block drivAer small last-first

Cray — block drivAer small last-first

Fujitsu 78.960 block drivAer small last-first

GNU 98.740 block drivAer small last-first

Altra Arm 57.420 block drivAer small last-first

GNU 56.190 block drivAer small last-first

CLX Cray — block drivAer small last-first

GNU 108.560 block drivAer small last-first

Intel 121.020 block drivAer small last-first

Graviton 2 Arm 117.810 block drivAer small last-first

GNU 116.530 block drivAer small last-first

Rome Cray — block drivAer small last-first

GNU 55.530 block drivAer small last-first

Intel 61.740 block drivAer small last-first

TX2 Arm 98.710 block drivAer small last-first

Cray — block drivAer small last-first

GNU 88.550 block drivAer small last-first

SPARTA A64FX Arm 419.405 in.collision

Cray 526.440 in.collision

177

A.4. Chapter 6: Next-Generation Vector Processors

Fujitsu — in.collision

GNU 418.935 in.collision

Altra Arm 80.114 in.collision

GNU 82.073 in.collision

CLX Cray 217.611 in.collision

GNU 223.390 in.collision

Intel 204.644 in.collision

Graviton 2 Arm 209.973 in.collision

GNU 212.241 in.collision

Rome Cray 87.713 in.collision

GNU 80.342 in.collision

Intel 75.748 in.collision

TX2 Arm 190.748 in.collision

Cray 206.272 in.collision

GNU 189.551 in.collision

TeaLeaf A64FX Arm 108.781 bm5 best time

Cray 94.155 bm5 best time

Fujitsu 103.073 bm5 best time

GNU 129.939 bm5 best time

Altra Arm 183.454 bm5 best time

GNU 209.559 bm5 best time

CLX Cray — bm5 best time

GNU 334.268 bm5 best time

Intel 333.914 bm5 best time

Graviton 2 Arm 423.467 bm5 best time

GNU 423.107 bm5 best time

Rome Cray — bm5 best time

GNU 152.921 bm5 best time

Intel 159.383 bm5 best time

TX2 Arm 323.483 bm5 best time

Cray 298.428 bm5 best time

GNU 318.932 bm5 best time

178

APPENDIX A. DATA

Table A.17: Data for Figure 6.11: Benchmark performance for different run-
time configurations on the A64FX.

Benchmark Compiler MPI Ranks
Threads

per Rank
Result Result Type

CloverLeaf Arm 48 1 455.68 Total time (s)

4 12 450.10 Total time (s)

1 48 381.71 Total time (s)

Cray 48 1 510.71 Total time (s)

4 12 493.89 Total time (s)

1 48 490.59 Total time (s)

Fujitsu 48 1 232.74 Total time (s)

4 12 146.30 Total time (s)

1 48 803.32 Total time (s)

GNU 48 1 1287.34 Total time (s)

4 12 1335.98 Total time (s)

1 48 1252.99 Total time (s)

SPARTA Arm 48 1 419.40 in.collision (s)

8 6 677.59 in.collision (s)

4 12 714.36 in.collision (s)

1 48 1268.95 in.collision (s)

Cray 48 1 526.44 in.collision (s)

8 6 651.46 in.collision (s)

4 12 737.09 in.collision (s)

1 48 1426.21 in.collision (s)

Fujitsu 48 1 — in.collision (s)

8 6 — in.collision (s)

4 12 — in.collision (s)

1 48 — in.collision (s)

GNU 48 1 418.93 in.collision (s)

8 6 589.58 in.collision (s)

4 12 669.97 in.collision (s)

179

A.5. Chapter 7: Programming Models for Modern HPC Architectures

1 48 1398.97 in.collision (s)

A.5 Chapter 7: Programming Models for Mod-

ern HPC Architectures

Table A.18: MiniBUDE performance data on all platforms studied, grouped
by programming model.

Platform Model Compiler Time (s)

(Type)

SKL-56 OpenMP AMD 182.970

(CPU) Cray 211.044

GNU 222.678

Intel 263.990

LLVM 241.380

SYCL hipSYCL 1728.783

OneAPI 12841.087

ComputeCPP 12963.504

Kokkos AMD 200.266

Cray 208.063

GNU 214.869

Intel 214.833

LLVM 210.120

CXL-40 OpenMP AMD 231.790

(CPU) Cray 229.624

GNU 272.763

Intel 294.298

LLVM 272.596

SYCL OneAPI 1004.624

hipSYCL 1104.361

ComputeCPP 734.199

180

APPENDIX A. DATA

Kokkos AMD 261.220

Cray 227.071

GNU 371.300

Intel 408.479

LLVM 260.832

Rome-128 OpenMP AMD 122.329

(CPU) Cray 123.527

GNU 125.609

Intel 155.750

LLVM 114.473

SYCL OneAPI 658.549

hipSYCL 302.281

ComputeCPP 186.615

Kokkos AMD 117.710

Cray 104.537

GNU 113.931

Intel 174.453

LLVM 97.632

TX2-64 OpenMP Cray 587.478

(CPU) GNU 710.848

Arm 644.690

LLVM 548.110

SYCL hipSYCL 790.625

Kokkos Cray 534.943

GNU 824.509

Arm 564.525

LLVM 570.137

A64FX-48 OpenMP Cray 646.219

(CPU) GNU 1038.713

Arm 947.355

Fujitsu 388.728

LLVM 1690.439

181

A.5. Chapter 7: Programming Models for Modern HPC Architectures

SYCL hipSYCL 3114.744

hipSYCL 1168.000

Kokkos Cray 1761.795

GNU 1056.854

Arm 987.884

Fujitsu 451.178

LLVM 1605.578

V100 CUDA NVCC 66.210

(GPU) OpenCL GNU 78.560

OpenMP Cray 150.430

OpenACC Cray 151.970

Kokkos GNU 164.348

SYCL hipSYCL 834.242

IrisPro580 SYCL ComputeCPP 1364.646

(GPU) SYCL OneAPI 944.615

Kokkos Intel 3512.905

OpenMP Intel 4187.920

OpenCL GNU 1116.500

RadeonVII OpenCL GNU 140.310

(GPU) CUDA HIP 229.080

OpenMP AMD 427.530

GNU 12780.590

Kokkos AMD 261.167

SYCL hipSYCL 232.463

OpenACC GNU 89743.520

182

APPENDIX B

Cache Simulator Design

This chapter presents the design and implementation of the cache simu-

lator used in Chapter 5.

The simulator is written in C++17 and built using the Meson build sys-

tem1. It runs on any platform for which a modern C++ compiler is available

and has no external dependencies. The code, alongside simple build and run

instructions, can be obtained from a git repository online2.

B.1 The Main Loop

The cache simulator is used to investigate the behaviour of a given cache

configuration on a given workload. In order to understand the strengths and

weaknesses of each configuration, a common usage pattern is running several

configurations side-by-side using the same workload and comparing their

performance. The simulator was optimised for this use case: it assumes that

a single application trace will generally be run on several cache configurations.

The main simulator program follows the following steps for each invoca-

tions:

1. Read an application trace;

2. Read one or more cache configurations;

1https://mesonbuild.com/
2https://gitlab.com/andreipoe/sve-cache-simulator

183

https://mesonbuild.com/
https://gitlab.com/andreipoe/sve-cache-simulator

B.2. READING EXECUTION TRACES

3. Run a simulation for each of the cache configurations using the provided

application trace;

4. Output simulation data.

A diagram of the architecture

The following sections describe each of those steps.

Since the simulator is built on the assumption that a single trace will be

run on several models, the simulation step is parallelised. Thus, if the cache

configuration file contains more than one definition, all the configurations

will be run in parallel, using an OpenMP work-sharing loop.

Each of the simulator’s components are tested using unit tests imple-

mented in the Catch2 framework3. Section B.6 discusses how the tests are

implemented.

B.2 Reading Execution Traces

Each run of the simulator reads a single trace file. Traces can be read from

text files directly obtained from ArmIE and are converted into an internal

representation in the form of MemoryTrace objects.

An execution trace is a sequence of memory access requests. These are

stored as MemoryRequest objects, simple data structures that represent the

data obtained from ArmIE. The following parameters are recorded for each

request:

• The ID of the thread that performed the request;

• The size of the request, in bytes;

• Whether the request is a read or a write;

• The base memory address for the request;

• The value of the program counter when the access was performed;

• Whether the request is part of an SVE bundle, a set of memory requests

that together fulfil an SVE gather read or scatter store.

3https://github.com/catchorg/Catch2

184

https://github.com/catchorg/Catch2

APPENDIX B. CACHE SIMULATOR DESIGN

The following is an example of memory trace:

214, 0, 0, 1, 64, 0xfffff48c5c88, 0x401e40

215, 0, 0, 0, 64, 0x428330, 0x401e84

For performance reasons, a MemoryTrace object stores the sequence of

memory addresses that appear in the trace in a separate list, in addition

to the list of MemoryRequests. This allows fast iteration through addresses

when the additional information is not needed.

B.2.1 Efficient Reading of Traces

Memory trace files can reach very large sizes even for small runs if the

application performs many memory operations. For the workloads used in

this thesis, the sizes of the trace files ranged from 500 MB for the compute-

intensive applications to more than 10 GB for the memory-bandwidth-bound

workloads, even when small input cases were used. Reading these large text

files naively can be more expensive than the simulation part of the process,

which is undesirable.

In order to optimise the trace reading process, the simulator can convert

text trace files to binary files. The binary files hold the same information, but

they occupy less space and are faster to parse, because they can be directly

unpacked into MemoryRequest objects.

The simulator codebase contains a standalone executable that can convert

ArmIE traces from text format to binary. Using this trace converter, the slow

reading cost is incurred only once — when converting the trace — because

subsequent executions of the simulator can directly use the binary trace.

One significant advantage of the binary format is that the extents of

each MemoryRequest object are known, so the trace reading process can be

parallelised. This is not easily achieved with a text format, because the length

of each request depends on the addresses and sizes it uses. Using standard

C++ std::threads, binary trace files are split into chunks, taking care to

only split on object boundaries. After all the threads have finished reading

their part of the trace, the final sequence of memory accesses is reassembled.

185

B.3. CACHE MODELS

In my experiments, this simple binary approach was 5× faster than any other

parsing method, whether using the C++ STL, optimised regular expression

libraries, plain C parsing using strtok, or even protocol buffers. Depending

on the size of the trace file and the storage speed of the host used to run the

simulator, the optimal number of I/O threads was between 4 and 16.

The simulator includes logic to automatically distinguish between text

and binary trace files, so this process is completely transparent after the

initial conversion step. The internal representation generated is the same

regardless of the type of the input file, and it is ready to be run through

cache models.

B.3 Cache Models

The simulator currently supports three types of caches:

• Idealised, infinite caches;

• Direct-mapped caches;

• Set-associative caches.

Most of the functionality is common to all three types, so each type is im-

plemented as a subclass of the base abstract class Cache. All Cache objects

track what memory addresses are currently cached and their locations, and

whenever addresses are inserted or evicted, they collect counters on these

events. The difference between the three types is in how new elements are

inserted and old elements evicted: each type of cache has a different imple-

mentation of the touch method, which contains the logic executed with each

memory access.

The basic block of a cache’s internal structure is the CacheEntry, which

represents the smallest element a cache can hold, a cache line. Each CacheEntry

keeps a flags that shows whether it is currently active, its tag, and a timestamp

showing when it was last set. Because programs run through ArmIE are

not executed in a cycle-accurate environment, the timestamps are not cycle

numbers, but rather counters of memory accesses: every memory operation

186

APPENDIX B. CACHE SIMULATOR DESIGN

performed increments this counter by one. The actual values of the elements

are not held, because the simulator is only concerned with data movement

and never uses it in operations, so they are never used.

Modern processors have several levels of cache, and their interactions

are key to understanding the whole system. To represent this, each con-

figuration to be simulated is represented as a CacheHierarchy object. A

CacheHierarchy holds a Cache object for each of its levels, plus counters

for the traffic between consecutive pairs of levels and between the last level

and main memory. Cache objects are not directly accessed from the main

simulation loop; instead, the requests are given to the CacheHierarchy rep-

resenting the configuration to be simulated, which will touch all the relevant

levels of cache depending on whether they are involved in the request. For

example, if a request hits the second level of cache, the third level will not

receive a request.

The simulator’s entry point constructs a CacheHierarchy for each con-

figuration it is given, then in parallel runs through the sequence of memory ac-

cesses in the input trace and passes them to the hierarchies. Each CacheHierarchy

start with its first level of cache, on which it calls touch using the request’s

address and size. The Cache object uses this information to compute the loc-

ation to be accessed in the cache: a tag, index, and block, together bundled

in a CacheAddress structure. Then, counters are recorded for the access,

and if the operation is a write, the corresponding CacheEntry is updated. If

the access was a hit, processing for the current request stops here; if it was

a miss, it is repeated for the next level of cache, until one of the levels hits

or main memory is reached. The CacheHierarchy records traffic whenever

data is moved between levels, such as a read from a higher level of cache, or

a write through.

It is possible that a single memory request touches multiple cache lines,

e. g. when performing larger vector loads. In these cases, several CacheAddresses

can be generated for a single request, and each is handled separately, as de-

scribed above.

187

B.4. CONFIGURATION FILES

B.3.1 Capturing Simulation Data

Each level of cache, represented by a Cache object within a CacheHierarchy,

records several counters as it simulates requests. The counters are stored in

a structure called CacheEvent, which is updated every time a cache line is

touched. The counters recorded are:

• Number of hits;

• Number of misses;

• Number of evictions;

• The lifetime of each cache line, i. e. the number of memory requests

served between when the line was loaded and when it was evicted.

In addition to the counters recorded at each level, the CacheHierarchy

records further counters that apply to the whole cache configuration, not just

to an individual levels. These additional counters are:

• The amount of traffic, in bytes, between each two consecutive levels of

cache, as well as between the last level and main memory;

• For each SVE bundle encountered: the number of times it was en-

countered, the number of individual cache operations required to ser-

vice it, and the total amount of useful data it touches.

At the end of the main simulation loop, the CacheHierarchy collects the

counters for each of its contained levels and outputs them in addition to its

own counters.

B.4 Configuration Files

To describe the cache configurations that will be instantiated into CacheHierarchy

objects, the simulator uses ini files. The configurations files have two com-

ponents:

1. The key levels, describing how many levels this configuration is com-

prised of;

188

APPENDIX B. CACHE SIMULATOR DESIGN

2. A section for each of the levels, conventionally named L<n> at level n,

containing the parameters type and, where appropriate, cache size,

line size, and set size.

The following is an example of a configuration file:

[hierarchy]

levels = 2

[L1]

type = set_associative

cache_size = 4096

line_size = 64

set_size = 4

[L2]

type = set_associative

cache_size = 32768

line_size = 64

set_size = 4

A command-line flag can be used to run several configurations in parallel,

in which case a separate ini file will be given for each configuration. This

allows the user to define all their desired configurations in separate files, then

choose which will be used for every run.

B.5 Simulator Output

When all the requests in a trace have been run through the cache model,

the simulator requests all the counters from the CacheHierarchy and prints

them to the screen. The CacheHierarchy will return both the counters it

keeps itself, e. g. for traffic between levels, and the counters from each of its

contained levels. This data can be output either in a “pretty” readable format

or in CSV form; the former is the default when a single configuration is used,

189

B.6. TESTING

while the latter is the default when two or more configurations are executed

in parallel. Using the CSV output format and a batch of configuration files,

the simulator can quickly produce data that can then be imported into other

tools for post-processing or graphing.

B.6 Testing

The tests work by instantiating each main component, feeding it known

input, and comparing its output against good known output:

• The trace reader is given a trace fragments, then the internal repres-

entation is compared against a known good state;

• The configuration file reader is given configurations in text format and

the cache objects it instantiates are tested to have the same parameters

as specified in the configurations;

• Each of the cache types is tested on known trace fragments to ensure

all the metrics are counted correctly;

Then, randomised testing is employed to test the behaviour of the caches

and to ensure that errors in trace files are dealt with gracefully. These work

by generating workloads according to constraints, running them through the

simulator, then checking that no unexpected behaviour has occurred in the

simulation. For example, a pair of tests generates (randomised) trace frag-

ments that should produce only cache hits or misses, respectively, which is

checked in the output of the simulation. The Catch2 framework supports

randomised testing that is also easy to reproduce in case of a failure, by

reporting the full state of the tests that failed, so running a large number

of such tests is a good way to increase the confidence in the simulator’s

correctness without manually producing trace files.

Finally, integration testing is employed to test the simulator as a whole.

Rather than checking the internal state or output of individual components,

the whole simulator is run over known input and its (text) output is checked

for correctness.

190

Acronyms

ACfL Arm Compiler for Linux

ArmIE Arm Instruction Emulator

ArmPL Arm Performance Libraries

ASIMD Advanced SIMD

AVX Advanced Vector Extensions

AWS Amazon Web Services

BDW Broadwell

BLAS basic linear algebra subprograms

BUDE Bristol University Docking Engine

CCE Cray Compilation Environment

CFD Computational Fluid Dynamics

CG conjugate gradient

CLX Cascade Lake

CMG Core–Memory Group

CPU central processing unit

DPC++ Data-Parallel C++

DRAM dyamic random access memory

191

B.6. TESTING

DSL domain-specific language

FFT fast Fourier transform

FFTW The Fastest Fourier Transform in the West

FLOP floating-point operation

FMA fused multiply–add

FPGA field-programmable gate arrays

GCC GNU Compiler Collection

GPGPU general-purpose graphics processing unit

GPU graphics processing unit

HPC High-Performance Computing

ISA instruction set architecture

ICC Intel C/C++ Compiler

LRU least-recently used

ML Machine Learning

MPI Message Passing Interface

NIC network interface card

NUMA non-uniform memory access

OneTBB OneAPI Threading Building Blocks

OPS Oxford Parallel library for Structured mesh solvers

PME Particle Mesh Ewald

SIMD single instruction, multiple data

SKL Skylake

SKU stock keeping unit

SLP superword-level parallelism

192

APPENDIX B. CACHE SIMULATOR DESIGN

SMT simultaneous multithreading

SSE Streaming SIMD Extensions

SVE Scalable Vector Extension

TX2 ThunderX2

VLA vector-length-agnostic

193

B.6. TESTING

194

References

[1] Mark James Abraham et al. ‘GROMACS: High Performance Molecu-
lar Simulations Through Multi-Level Parallelism from Laptops to Su-
percomputers’. In: SoftwareX 1-2 (September 2015), pp. 19–25. issn:
23527110. doi: 10.1016/j.softx.2015.06.001.

[2] Christie L. Alappat et al. ‘ECM Modeling and Performance Tuning
of SpMV and Lattice QCD on A64FX’. In: CoRR abs/2103.03013
(2021). arXiv: 2103.03013.

[3] Aksel Alpay and Vincent Heuveline. ‘SYCL beyond OpenCL: The
Architecture, Current State and Future Direction of HipSYCL’. In:
Proceedings of the International Workshop on OpenCL. IWOCL ’20.
Munich, Germany: Association for Computing Machinery, 2020. isbn:
9781450375313. doi: 10.1145/3388333.3388658.

[4] Bob Alverson, Edwin Froese, Larry Kaplan and Duncan Roweth. Cray
XC Series Network. White Paper WP-Aries01-1112. Cray Inc., 2012.

[5] Adrià Armejach et al. ‘Using Arm’s Scalable Vector Extension on
Stencil Codes’. In: The Journal of Supercomputing (8 April 2019).
issn: 0920-8542, 1573-0484. doi: 10.1007/s11227-019-02842-5.

[6] Krste Asanović et al. The Landscape of Parallel Computing Research:
A View from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS De-
partment, University of California, Berkeley, December 2006.

[7] Patrick Atkinson and Simon McIntosh-Smith. ‘On the Performance
of Parallel Tasking Runtimes for an Irregular Fast Multipole Method
Application’. In: Scaling OpenMP for Exascale Performance and Port-
ability. Springer International Publishing, 2017, pp. 92–106. isbn: 978-
3-319-65578-9.

195

https://doi.org/10.1016/j.softx.2015.06.001
https://arxiv.org/abs/2103.03013
https://doi.org/10.1145/3388333.3388658
https://doi.org/10.1007/s11227-019-02842-5

REFERENCES

[8] Gergö Barany. ‘Finding Missed Compiler Optimizations by Differen-
tial Testing’. In: ACM Press, 2018, pp. 82–92. isbn: 978-1-4503-5644-
2. doi: 10.1145/3178372.3179521.

[9] R. F. Barrett et al. ‘On the Role of Co-Design in High Performance
Computing’. In: Advances in Parallel Computing 24 (January 2013),
pp. 141–155. doi: 10.3233/978-1-61499-324-7-141.

[10] David E. Bernholdt et al. ‘A Survey of MPI Usage in the US Exascale
Computing Project’. In: Concurrency and Computation: Practice and
Experience 32.3 (2020), e4851.

[11] Iain Bethune, Fiona Reid and A. Lazzaro. ‘CP2K Performance from
Cray XT3 to XC30’. Presentation at the Cray User Group. Cray User
Group. 2014.

[12] Robert F. Bird, Patrick Gillies, Michael R. Bareford, Andy Herdman
and Stephen Jarvis. ‘Performance Optimisation of Inertial Confine-
ment Fusion Codes using Mini-Applications’. In: The International
Journal of High Performance Computing Applications 32.4 (2018),
pp. 570–581. doi: 10.1177/1094342016670225.

[13] Alexandru Calotoiu et al. ‘Lightweight Requirements Engineering
for Exascale Co-Design’. In: 2018 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE. 2018, pp. 201–211.

[14] Richard Catlow, Scott Woodley, Nora De Leeuw and Andrew Turner.
Optimising the Performance of the VASP 5.2.2 Code on HECToR.
Tech. rep. HECToR, 2010.

[15] Aurélien Cavelan, Rubén M. Cabezón, Michal Grabarczyk and Florina
M. Ciorba. ‘A Smoothed Particle Hydrodynamics Mini-App for Ex-
ascale’. In: Proceedings of the Platform for Advanced Scientific Com-
puting Conference. PASC ’20. Geneva, Switzerland: Association for
Computing Machinery, 2020. isbn: 9781450379939. doi: 10.1145/

3394277.3401855.

[16] Cavium. ThunderX2 Block Diagram. June 2018. url: https://fuse.
wikichip.org/wp-content/uploads/2018/06/cavium-thnderx2-

block.png (visited on 21/03/2022).

[17] Cris Cecka. ‘Low Communication FMM-Accelerated FFT on GPUs’.
In: ACM Press, 2017, pp. 1–11. isbn: 978-1-4503-5114-0. doi: 10.

1145/3126908.3126919.

196

https://doi.org/10.1145/3178372.3179521
https://doi.org/10.3233/978-1-61499-324-7-141
https://doi.org/10.1177/1094342016670225
https://doi.org/10.1145/3394277.3401855
https://doi.org/10.1145/3394277.3401855
https://fuse.wikichip.org/wp-content/uploads/2018/06/cavium-thnderx2-block.png
https://fuse.wikichip.org/wp-content/uploads/2018/06/cavium-thnderx2-block.png
https://fuse.wikichip.org/wp-content/uploads/2018/06/cavium-thnderx2-block.png
https://doi.org/10.1145/3126908.3126919
https://doi.org/10.1145/3126908.3126919

REFERENCES

[18] Jacqueline Cherfils and Joël Janin. ‘Protein Docking Algorithms: Sim-
ulating Molecular Recognition’. In: Current Opinion in Structural
Biology 3.2 (1993), pp. 265–269. issn: 0959-440X. doi: 10.1016/

S0959-440X(05)80162-9.

[19] Patrick Crowley and Jean-Loup Baer. ‘On the Use of Trace Sampling
for Architectural Studies of Desktop Applications’. In: Workload
Characterization: Methodology and Case Studies. Based on the First
Workshop on Workload Characterization. 1998, pp. 15–24. doi: 10.
1109/WWC.1998.809355.

[20] Paul Stewart Crozier et al. Improving Performance via Mini-
Applications. Tech. rep. SAND2009-5574, 993908. 1 September 2009.
doi: 10.2172/993908.

[21] M. T. Cruz, D. Ruiz and R. Rusitoru. ‘Asvie: A Timing-Agnostic
SVE Optimization Methodology’. In: 2019 IEEE/ACM International
Workshop on Programming and Performance Visualization Tools
(ProTools). Denver, CO, USA, 2019, pp. 9–16. doi: 10 . 1109 /

ProTools49597.2019.0000.

[22] Ian Cutress. Managing 8 Rome CPUs in 1U: Cray’s Shasta Direct
Liquid Cooling. HPC Wire. url: https://www.anandtech.com/

show/13616/managing- 16- rome- cpus- in- 1u- crays- shasta-

direct-liquid-cooling (visited on 09/02/2021).

[23] Tom Deakin, Wayne Gaudin and Simon McIntosh-Smith. ‘On the
Mitigation of Cache-Hostile Memory Access Patterns on Many-Core
CPU Architectures’. In: High Performance Computing. Springer In-
ternational Publishing, 2017, pp. 348–362. isbn: 978-3-319-67630-2.

[24] Tom Deakin and Simon McIntosh-Smith. ‘Evaluating the Performance
of HPC-Style SYCL Applications’. In: Proceedings of the International
Workshop on OpenCL. IWOCL ’20. Munich, Germany: Association
for Computing Machinery, 2020. isbn: 9781450375313. doi: 10.1145/
3388333.3388643.

[25] Tom Deakin, Simon McIntosh-Smith and Wayne Gaudin. ‘Expressing
Parallelism on Many-Core for Deterministic Discrete Ordinates Trans-
port’. In: 2015 IEEE International Conference on Cluster Computing.
September 2015, pp. 729–737. doi: 10.1109/CLUSTER.2015.127.

[26] Tom Deakin, Andrei Poenaru, Tom Lin and Simon McIntosh-Smith.
‘Tracking Performance Portability on the Yellow Brick Road to Exas-
cale’. In: 2020 IEEE/ACM International Workshop on Performance,

197

https://doi.org/10.1016/S0959-440X(05)80162-9
https://doi.org/10.1016/S0959-440X(05)80162-9
https://doi.org/10.1109/WWC.1998.809355
https://doi.org/10.1109/WWC.1998.809355
https://doi.org/10.2172/993908
https://doi.org/10.1109/ProTools49597.2019.0000
https://doi.org/10.1109/ProTools49597.2019.0000
https://www.anandtech.com/show/13616/managing-16-rome-cpus-in-1u-crays-shasta-direct-liquid-cooling
https://www.anandtech.com/show/13616/managing-16-rome-cpus-in-1u-crays-shasta-direct-liquid-cooling
https://www.anandtech.com/show/13616/managing-16-rome-cpus-in-1u-crays-shasta-direct-liquid-cooling
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1109/CLUSTER.2015.127

REFERENCES

Portability and Productivity in HPC (P3HPC). Atlanta, GA, USA,
2020. In Press.

[27] Tom Deakin, James Price, Matthew Martineau and Simon McIntosh-
Smith. ‘GPU-STREAM v2.0: Benchmarking the Achievable Memory
Bandwidth of Many-Core Processors across Diverse Parallel Pro-
gramming Models’. In: International Conference on High Perform-
ance Computing. Springer. 2016, pp. 489–507. isbn: 978-3-319-46079-
6. doi: 10.1007/978-3-319-46079-6_34.

[28] Tom Deakin, James Price and Simon McIntosh-Smith. Portable Meth-
ods for Measuring Cache Hierarchy Performance. Poster presented at
the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC17). November 2017.

[29] Tom Deakin et al. ‘Performance Portability across Diverse Computer
Architectures’. In: 2019 IEEE/ACM International Workshop on Per-
formance, Portability and Productivity in HPC (P3HPC). Denver,
CO, USA, 2019, pp. 1–13. doi: 10.1109/P3HPC49587.2019.00006.

[30] Irina Demeshko et al. ‘Toward Performance Portability of the Al-
bany Finite Element Analysis Code Using the Kokkos Library’. In:
The International Journal of High Performance Computing Applica-
tions (5 February 2018). issn: 1094-3420, 1741-2846. doi: 10.1177/
1094342017749957.

[31] Jens Domke et al. ‘Matrix Engines for High Performance Computing:
A Paragon of Performance or Grasping at straws?’ In: arXiv preprint
arXiv:2010.14373 (2020).

[32] H. Carter Edwards and Christian R. Trott. ‘Kokkos: Enabling Per-
formance Portability Across Manycore Architectures’. In: 2013 Ex-
treme Scaling Workshop (XSW 2013). IEEE. 2013, pp. 18–24.

[33] Roger Espasa, Mateo Valero and James E. Smith. ‘Vector Architec-
tures: Past, Present and Future’. In: Proceedings of the 12th Inter-
national Conference on Supercomputing. ICS ’98. Melbourne, Aus-
tralia: Association for Computing Machinery, 1998, pp. 425–432. isbn:
089791998X. doi: 10.1145/277830.277935.

[34] Ulrich Essmann et al. ‘A Smooth Particle Mesh Ewald Method’.
In: The Journal of Chemical Physics 103.19 (15 November 1995),
pp. 8577–8593. issn: 0021-9606, 1089-7690. doi: 10.1063/1.470117.

198

https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1177/1094342017749957
https://doi.org/10.1177/1094342017749957
https://doi.org/10.1145/277830.277935
https://doi.org/10.1063/1.470117

REFERENCES

[35] Stijn Eyerman, Wim Heirman, Kristof Du Bois, Joshua B. Fryman
and Ibrahim Hur. ‘Many-Core Graph Workload Analysis’. In: SC18:
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. 2018, pp. 282–292. doi: 10.1109/SC.2018.
00025.

[36] Michael J. Flynn. ‘Some Computer Organizations and Their Effective-
ness’. In: IEEE Transactions on Computers C-21.9 (1972), pp. 948–
960. doi: 10.1109/TC.1972.5009071.

[37] A. Fuchs and D. Wentzlaff. ‘The Accelerator Wall: Limits of Chip
Specialization’. In: 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). 2019, pp. 1–14. doi: 10.
1109/HPCA.2019.00023.

[38] Fujitsu. A64FX Microarchitecture Manual. Version 1.1. 28 April 2020.

[39] M. A. Gallis, J. R. Torczynski, S. J. Plimpton, D. J. Rader and T.
Koehler. ‘Direct Simulation Monte Carlo: The Quest for Speed’. In:
29th Intl Symposium on Rarefied Gas Dynamics. Vol. 1628. 27. Xi’an,
China: AIP Conference Proceedings, 2014.

[40] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth
Kalyanaraman and Assefaw H. Gebremedhin. ‘MiniVite: A Graph
Analytics Benchmarking Tool for Massively Parallel Systems’. In:
2018 IEEE/ACM Performance Modeling, Benchmarking and Simu-
lation of High Performance Computer Systems (PMBS). Dallas, TX,
USA: IEEE, November 2018, pp. 51–56. isbn: 978-1-72810-182-8. doi:
10.1109/PMBS.2018.8641631.

[41] Cosmin Gorgovan, Guillermo Callaghan and Mikel Luján. ‘Balancing
Performance and Productivity for the Development of Dynamic Bin-
ary Instrumentation Tools: A Case Study on Arm Systems’. In: Pro-
ceedings of the 29th International Conference on Compiler Construc-
tion. San Diego, CA, USA: ACM, 22 February 2020, pp. 132–142.
isbn: 978-1-4503-7120-9. doi: 10.1145/3377555.3377895.

[42] William Gropp. ‘MPICH2: A New Start for MPI Implementations’.
In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Ed. by Dieter Kranzlmüller, Jens Volkert, Peter Kacsuk and
Jack Dongarra. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 7–7. isbn: 978-3-540-45825-8.

[43] Gwen Voskuilen, Clay Hughes and Mengchi Zhang. ‘Structural Simu-
lation Toolkit (SST) Tutorial’. Presentation at PACT 2019. Almaty,
Kazakhstan, August 2019.

199

https://doi.org/10.1109/SC.2018.00025
https://doi.org/10.1109/SC.2018.00025
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/PMBS.2018.8641631
https://doi.org/10.1145/3377555.3377895

REFERENCES

[44] C.D. Hall. ‘The UK Meteorological Office Climate Model: The AMIP
Run and Recent Changes to Reduce the Systematic Errors’. In: World
Meteorological Organization (1995), pp. 301–306.

[45] Jeff R. Hammond, Michael Kinsner and James Brodman. ‘A Com-
parative Analysis of Kokkos and SYCL as Heterogeneous, Parallel
Programming Models for C++ Applications’. In: Proceedings of the
International Workshop on OpenCL. IWOCL’19. Boston, MA, USA:
Association for Computing Machinery, 2019. isbn: 9781450362306.
doi: 10.1145/3318170.3318193.

[46] S. Hammond, C. Vaughan and C. Hughes. ‘Evaluating the Intel Sky-
lake Xeon Processor for HPC Workloads’. In: 2018 International Con-
ference on High Performance Computing Simulation (HPCS). July
2018, pp. 342–349. doi: 10.1109/HPCS.2018.00064.

[47] Simon D. Hammond. Towards Accurate Application Characterization
for Exascale (APEX). SAND2015–8051, 1221578. 1 September 2015.
doi: 10.2172/1221578.

[48] Simon D. Hammond et al. ‘Evaluating the Marvell ThunderX2 Server
Processor for HPC Workloads’. In: 2019 International Conference on
High Performance Computing & Simulation (HPCS). IEEE. 2019,
pp. 416–423. doi: 10.1109/HPCS48598.2019.9188171.

[49] S. L. Harrell et al. ‘Effective Performance Portability’. In: 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). 2018, pp. 24–36. doi: 10 . 1109 /

P3HPC.2018.00006.

[50] Angelina I. Heft, Thomas Indinger and Nikolaus A. Adams. Introduc-
tion of a New Realistic Generic Car Model for Aerodynamic Investig-
ations. SAE Technical Paper, 2012. doi: 10.4271/2012-01-0168.

[51] John L. Hennessy and David A. Patterson. ‘A New Golden Age for
Computer Architecture’. In: Commun. ACM 62.2 (January 2019),
pp. 48–60. issn: 0001-0782. doi: 10.1145/3282307.

[52] Michael A. Heroux et al. ECP Software Technology Capability Assess-
ment Report–Public. Tech. rep. NNSA, 2020.

[53] Torsten Hoefler and Roberto Belli. ‘Scientific Benchmarking of Par-
allel Computing Systems: Twelve Ways to Tell the Masses When
Reporting Performance Results’. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’15. Austin, Texas: Association for Computing Ma-
chinery, 2015. isbn: 9781450337236. doi: 10.1145/2807591.2807644.

200

https://doi.org/10.1145/3318170.3318193
https://doi.org/10.1109/HPCS.2018.00064
https://doi.org/10.2172/1221578
https://doi.org/10.1109/HPCS48598.2019.9188171
https://doi.org/10.1109/P3HPC.2018.00006
https://doi.org/10.1109/P3HPC.2018.00006
https://doi.org/10.4271/2012-01-0168
https://doi.org/10.1145/3282307
https://doi.org/10.1145/2807591.2807644

REFERENCES

[54] Dan Andrei Iliescu and Francesco Petrogalli. Arm Scalable Vector Ex-
tension and Application to Machine Learning. White Paper.

[55] Intel. Intel® oneAPI: A Unified X-Architecture Programming Model.
2020. url: https://software.intel.com/content/www/us/en/
develop/tools/oneapi.html (visited on 16/12/2020).

[56] Christian T. Jacobs, Satya P. Jammy and Neil D. Sandham.
‘OpenSBLI: A Framework for the Automated Derivation and Parallel
Execution of Finite Difference Solvers on a Range of Computer Archi-
tectures’. In: Journal of Computational Science 18 (2017), pp. 12–23.
issn: 1877-7503. doi: 10.1016/j.jocs.2016.11.001.

[57] Heike Jagode, Anthony Danalis, Hartwig Anzt and Jack Don-
garra. ‘PAPI Software-Defined Events for In-Depth Performance Ana-
lysis’. In: The International Journal of High Performance Com-
puting Applications 33.6 (2019), pp. 1113–1127. doi: 10 . 1177 /

1094342019846287.

[58] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic et al. ‘OpenFOAM:
A C++ Library for Complex Physics Simulations’. In: International
workshop on coupled methods in numerical dynamics (September
2007), pp. 1–20.

[59] J. Kalyanasundaram and Y. Simmhan. ‘ARM Wrestling with Big
Data: A Study of Commodity ARM64 Server for Big Data Workloads’.
In: 2017 IEEE 24th International Conference on High Performance
Computing (HiPC). Los Alamitos, CA, USA: IEEE Computer Society,
December 2017, pp. 203–212. doi: 10.1109/HiPC.2017.00032.

[60] Max P. Katz et al. ‘Preparing Nuclear Astrophysics for Exascale’.
In: The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 2020). Atlanta, GA, USA,
November 2020. In Press.

[61] Georgios Keramidas, Nikolaos Strikos and Stefanos Kaxiras. ‘Mul-
ticore Cache Simulations Using Heterogeneous Computing on General
Purpose and Graphics Processors’. In: 2011 14th Euromicro Confer-
ence on Digital System Design. 2011, pp. 270–273. doi: 10.1109/
DSD.2011.38.

[62] V. V. Kindratenko et al. ‘GPU Clusters for High-Performance Com-
puting’. In: 2009 IEEE International Conference on Cluster Comput-
ing and Workshops. 2009, pp. 1–8. doi: 10.1109/CLUSTR.2009.

5289128.

201

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://doi.org/10.1016/j.jocs.2016.11.001
https://doi.org/10.1177/1094342019846287
https://doi.org/10.1177/1094342019846287
https://doi.org/10.1109/HiPC.2017.00032
https://doi.org/10.1109/DSD.2011.38
https://doi.org/10.1109/DSD.2011.38
https://doi.org/10.1109/CLUSTR.2009.5289128
https://doi.org/10.1109/CLUSTR.2009.5289128

REFERENCES

[63] Yuetsu Kodama et al. ‘Preliminary Performance Evaluation of Ap-
plication Kernels Using ARM SVE with Multiple Vector Lengths’. In:
2017 IEEE International Conference on Cluster Computing. IEEE.
2017, pp. 677–684.

[64] P. M. Kogge and T. J. Dysart. ‘Using the TOP500 to Trace and
Project Technology and Architecture Trends’. In: SC ’11: Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 2011, pp. 1–11. doi: 10.1145/

2063384.2063421.

[65] Kazuhiko Komatsu et al. ‘Performance Evaluation of a Vector Super-
computer SX-Aurora TSUBASA’. In: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
2018, pp. 685–696. doi: 10.1109/SC.2018.00057.

[66] JaeHyuk Kwack, Galen Arnold, Celso Mendes and Gregory H. Bauer.
‘Roofline Analysis with Cray Performance Analysis Tools (CrayPat)
and Roofline-based Performance Projections for a Future Architec-
ture’. In: Cray User Group. Stockholm, 24 May 2018.

[67] Ignacio Laguna et al. ‘A Large-Scale Study of MPI Usage in Open-
Source HPC Applications’. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. SC ’19. Denver, Colorado: Association for Computing Ma-
chinery, 2019. isbn: 9781450362290. doi: 10.1145/3295500.3356176.

[68] Jacob Lambert, Seyong Lee, Jeffrey S. Vetter and Allen Malony.
‘CCAMP: An Integrated Translation and Optimization Framework
for OpenACC and OpenMP’. In: The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC
2020). Atlanta, GA, USA, November 2020. In Press.

[69] Michael Larabel. Benchmarking An ARM 96-Core Cavium ThunderX
System. Phronix. 28 February 2018. url: https://www.phoronix.
com/scan.php?page=article&item=cavium- thunderx- 96core

(visited on 19/05/2021).

[70] Fujitsu Limited. Fujitsu Presents Post-K CPU Specifications. 22 Au-
gust 2018. url: https : / / www . fujitsu . com / global / about /

resources/news/press- releases/2018/0822- 02.html (visited
on 15/06/2021).

202

https://doi.org/10.1145/2063384.2063421
https://doi.org/10.1145/2063384.2063421
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1145/3295500.3356176
https://www.phoronix.com/scan.php?page=article&item=cavium-thunderx-96core
https://www.phoronix.com/scan.php?page=article&item=cavium-thunderx-96core
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

REFERENCES

[71] Heng Lin et al. ‘Shentu: Processing Multi-Trillion Edge Graphs on
Millions of Cores in Seconds’. In: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE. 2018, pp. 706–716. doi: 10.1109/SC.2018.00059.

[72] Wei-Chen Lin, Tom Deakin and Simon McIntosh-Smith. ‘On Meas-
uring the Maturity of SYCL Implementations by Tracking Histor-
ical Performance Improvements’. In: Proceedings of the International
Workshop on OpenCL. IWOCL ’20. Association for Computing Ma-
chinery, 2021. In Press.

[73] David Raymond Lutz and Christopher Neal Hinds. ‘High-Precision
Anchored Accumulators for Reproducible Floating-Point Summation’.
In: IEEE, July 2017, pp. 98–105. isbn: 978-1-5386-1965-0. doi: 10.
1109/ARITH.2017.20.

[74] Gurvan Madec. ‘NEMO Reference Manual, Ocean Dynamics Com-
ponent: NEMO-OPA’. In: Preliminary version. Note du Pole de
modélisation, Institut Pierre-Simon Laplace (IPSL), France 27 (2008),
pp. 1288–161.

[75] Saeed Maleki, Yaoqing Gao, Maria J. Garzar’n, Tommy Wong and
David A. Padua. ‘An Evaluation of Vectorizing Compilers’. In: 2011
International Conference on Parallel Architectures and Compilation
Techniques. Galveston, TX, USA: IEEE, October 2011, pp. 372–382.
isbn: 978-1-4577-1794-9. doi: 10.1109/PACT.2011.68.

[76] A. C. Mallinson et al. ‘CloverLeaf: Preparing Hydrodynamics Codes
for Exascale’. In: Cray User Group. Napa Valley, California, USA,
May 2013.

[77] Jahanzeb Maqbool, Sangyoon Oh and Geoffrey C. Fox. ‘Evaluating
ARM HPC Clusters for Scientific Workloads’. In: Concurrency and
Computation: Practice and Experience 27.17 (2015), pp. 5390–5410.

[78] Matthew Martineau, Patrick Atkinson and Simon McIntosh-Smith.
‘Benchmarking the NVIDIA V100 GPU and Tensor Cores’. In:
Euro-Par 2018: Parallel Processing Workshops: Euro-Par 2018 In-
ternational Workshops. HeteroPar 2018. Springer. Turin, Italy, 2018,
pp. 444–456.

[79] Matthew Martineau and Simon McIntosh-Smith. ‘Exploring On-Node
Parallelism with Neutral, a Monte Carlo Neutral Particle Transport
Mini-App’. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER). September 2017, pp. 498–508. doi: 10.1109/
CLUSTER.2017.83.

203

https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/CLUSTER.2017.83
https://doi.org/10.1109/CLUSTER.2017.83

REFERENCES

[80] Matthew Martineau, James Price, Simon McIntosh-Smith and Wayne
Gaudin. ‘Pragmatic Performance Portability with OpenMP 4.x’. In:
OpenMP: Memory, Devices, and Tasks. Ed. by Naoya Maruyama,
Bronis R. de Supinski and Mohamed Wahib. Vol. 9903. Cham:
Springer International Publishing, 2016, pp. 253–267. isbn: 978-3-319-
45550-1.

[81] Timothy G. Mattson, Beverly Sanders and Berna Massingill. Patterns
for parallel programming. Pearson Education, 2004. isbn: 0321228111.

[82] John D. McCalpin. ‘HPL and DGEMM Performance Variability on
the Xeon Platinum 8160 Processor’. In: SC18: International Confer-
ence for High Performance Computing, Networking, Storage and Ana-
lysis. 2018, pp. 225–237. doi: 10.1109/SC.2018.00021.

[83] John D. McCalpin. ‘Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers’. In: IEEE computer society tech-
nical committee on computer architecture (TCCA) newsletter 2.19–25
(1995).

[84] Simon McIntosh-Smith. ‘Enabling Processor Design Space Explora-
tion with SimEng’. Presentation at ModSim: Workshop on Modeling
and Simulation of Systems and Applications. ModSim: Workshop on
Modeling and Simulation of Systems and Applications (2019). Seattle,
WA, August 2019.

[85] Simon McIntosh-Smith, Michael Boulton, Dan Curran and James
Price. ‘On the Performance Portability of Structured Grid Codes
on Many-Core Computer Architectures’. In: Supercomputing. Lecture
Notes in Computer Science 8488 (2014). Ed. by Julian Martin Kunkel,
Thomas Ludwig and Hans Werner Meuer, pp. 53–75. doi: 10.1007/
978-3-319-07518-1.

[86] Simon McIntosh-Smith, Jack Jones, Harry Waugh and Andrei Poen-
aru. ‘SimEng: A Fast, Easy-To-Use, Open-Source Processor Simula-
tion Framework’. In: ModSim 2021: Workshop on Modeling and Sim-
ulation of Systems and Applications. Seattle, WA, USA, 2021. In Re-
view.

[87] Simon McIntosh-Smith, James Price, Tom Deakin and Andrei Poen-
aru. ‘A Performance Analysis of the First Generation of HPC-
Optimized Arm Processors’. In: Concurrency and Computation: Prac-
tice and Experience 31.16 (2019), e5110. doi: 10.1002/cpe.5110.

204

https://doi.org/10.1109/SC.2018.00021
https://doi.org/10.1007/978-3-319-07518-1
https://doi.org/10.1007/978-3-319-07518-1
https://doi.org/10.1002/cpe.5110

REFERENCES

[88] Simon McIntosh-Smith, James Price, Andrei Poenaru and Tom
Deakin. ‘Benchmarking the First Generation of Production-Quality
Arm-Based Supercomputers’. In: Concurrency and Computation:
Practice and Experience (2019), e5569. doi: 10.1002/cpe.5569.

[89] Simon McIntosh-Smith, James Price, Richard B. Sessions and
Amaurys A. Ibarra. ‘High Performance In Silico Virtual Drug Screen-
ing on Many-core Processors’. In: The International Journal of High
Performance Computing Applications 29.2 (2015), pp. 119–134. doi:
10.1177/1094342014528252.

[90] Simon McIntosh-Smith et al. ‘TeaLeaf: A Mini-Application to En-
able Design-Space Explorations for Iterative Sparse Linear Solv-
ers’. In: 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, September 2017, pp. 842–849. isbn: 978-1-5386-
2326-8. doi: 10.1109/CLUSTER.2017.105.

[91] OE Bronson Messer et al. ‘MiniApps Derived from Production HPC
Applications Using Multiple Programing Models’. In: The Interna-
tional Journal of High Performance Computing Applications 32.4
(2018), pp. 582–593. doi: 10.1177/1094342016668241.

[92] P. Messina. ‘The Exascale Computing Project’. In: Computing in Sci-
ence Engineering 19.3 (2017), pp. 63–67. doi: 10.1109/MCSE.2017.
57.

[93] Nils Meyer, Peter Georg, Dirk Pleiter, Stefan Solbrig and Tilo Wet-
tig. ‘SVE-Enabling Lattice QCD Codes’. In: 2018 IEEE International
Conference on Cluster Computing (CLUSTER). 2018, pp. 623–628.
doi: 10.1109/CLUSTER.2018.00079.

[94] Leo A. Meyerovich and Ariel S. Rabkin. ‘Empirical Analysis of Pro-
gramming Language Adoption’. In: SIGPLAN Not. 48.10 (October
2013), pp. 1–18. issn: 0362-1340. doi: 10.1145/2544173.2509515.

[95] Richard Tran Mills et al. ‘Toward Performance-Portable PETSc for
GPU-based Exascale Systems’. In: arXiv preprint arXiv:2011.00715
(2020).

[96] Sparsh Mittal and Shraiysh Vaishay. ‘A Survey of Techniques for Op-
timizing Deep Learning on GPUs’. In: Journal of Systems Architecture
99 (2019). issn: 1383-7621. doi: 10.1016/j.sysarc.2019.101635.

205

https://doi.org/10.1002/cpe.5569
https://doi.org/10.1177/1094342014528252
https://doi.org/10.1109/CLUSTER.2017.105
https://doi.org/10.1177/1094342016668241
https://doi.org/10.1109/MCSE.2017.57
https://doi.org/10.1109/MCSE.2017.57
https://doi.org/10.1109/CLUSTER.2018.00079
https://doi.org/10.1145/2544173.2509515
https://doi.org/10.1016/j.sysarc.2019.101635

REFERENCES

[97] NVIDIA. NVIDIA Announces CPU for Giant AI and High Per-
formance Computing Workloads. 12 April 2021. url: https : / /

nvidianews . nvidia . com / news / nvidia - announces - cpu - for -

giant-ai-and-high-performance-computing-workloads (visited
on 09/05/2021).

[98] Tetsuya Odajima, Yuetsu Kodama and Mitsuhisa Sato. ‘Performance
and Power Consumption Analysis of Arm Scalable Vector Extension’.
In: The Journal of Supercomputing (10 November 2020). issn: 0920-
8542, 1573-0484. doi: 10.1007/s11227-020-03495-5.

[99] Szilárd Páll and Berk Hess. ‘A Flexible Algorithm for Calculating Pair
Interactions on SIMD Architectures’. In: Computer Physics Commu-
nications 184.12 (2013), pp. 2641–2650. issn: 0010-4655. doi: 10.

1016/j.cpc.2013.06.003.

[100] Kevin Pedretti et al. ‘Chronicles of Astra: Challenges and Lessons
from the First Petascale Arm Supercomputer’. In: Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. SC ’20. Atlanta, Georgia: IEEE Press, 2020.
isbn: 9781728199986.

[101] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy and S. A. Jarvis.
‘Exploring SIMD for Molecular Dynamics, Using Intel Xeon Pro-
cessors and Intel Xeon Phi Coprocessors’. In: 2013 IEEE 27th In-
ternational Symposium on Parallel and Distributed Processing. May
2013, pp. 1085–1097. doi: 10.1109/IPDPS.2013.44.

[102] S. J. Pennycook, J. D. Sewall and V. W. Lee. ‘Implications of a Metric
for Performance Portability’. In: Future Generation Computer Sys-
tems 92 (2019), pp. 947–958. issn: 0167-739X. doi: 10.1016/j.

future.2017.08.007.

[103] Simon J. Pennycook et al. ‘Evaluating the Impact of Proposed
OpenMP 5.0 Features on Performance, Portability and Productivity’.
In: (2018), pp. 37–46. doi: 10.1109/P3HPC.2018.00007.

[104] Andrei Poenaru. ‘A Comprehensive Study of the Effectiveness of Con-
temporary Vector Instruction Sets on Modern Scientic Codes’. Mas-
ter’s Thesis. University of Bristol, UK, 2017.

[105] Andrei Poenaru, Tom Deakin, Simon McIntosh-Smith, Simon D.
Hammond and Andrew J. Younge. ‘An Evaluation of the Fujitsu
A64FX for HPC Applications’. In: Cray User Group. May 2021. In
Press.

206

https://nvidianews.nvidia.com/news/nvidia-announces-cpu-for-giant-ai-and-high-performance-computing-workloads
https://nvidianews.nvidia.com/news/nvidia-announces-cpu-for-giant-ai-and-high-performance-computing-workloads
https://nvidianews.nvidia.com/news/nvidia-announces-cpu-for-giant-ai-and-high-performance-computing-workloads
https://doi.org/10.1007/s11227-020-03495-5
https://doi.org/10.1016/j.cpc.2013.06.003
https://doi.org/10.1016/j.cpc.2013.06.003
https://doi.org/10.1109/IPDPS.2013.44
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1109/P3HPC.2018.00007

REFERENCES

[106] Andrei Poenaru, Wei-Chen Lin and Simon McIntosh-Smith. ‘A Per-
formance Analysis of Modern Parallel Programming Models Using
a Compute-Bound Application’. In: High Performance Computing.
36th International Conference, ISC High Performance 2021. Ed.
by Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief
and Piotr Luszczek. Cham: Springer International Publishing, 2021,
pp. 332–350. isbn: 978-3-030-78713-4. doi: 10.1007/978-3-030-
78713-4_18.

[107] Andrei Poenaru and Simon McIntosh-Smith. ‘Evaluating the Effect-
iveness of a Vector-Length-Agnostic Instruction Set’. In: Euro-Par
2020: Parallel Processing. Euro-Par 2020 (Warsaw, Poland, 24–28 Au-
gust 2020). Ed. by Maciej Malawski and Krzysztof Rzadca. Cham:
Springer International Publishing, 2020, pp. 98–114.

[108] Andrei Poenaru and Simon McIntosh-Smith. ‘The Effects of Wide
Vector Operations on Processor Caches’. In: 2020 IEEE International
Conference on Cluster Computing (CLUSTER). 2020, pp. 531–539.
doi: 10.1109/CLUSTER49012.2020.00076.

[109] Angela Pohl, Biagio Cosenza and Ben Juurlink. ‘Portable Cost Mod-
eling for Auto-Vectorizers’. In: 2019 IEEE 27th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems (MASCOTS). IEEE. 2019, pp. 359–369.

[110] James Price and Simon McIntosh-Smith. ‘Exploiting Auto-tuning to
Analyze and Improve Performance Portability on Many-Core Archi-
tectures’. In: High Performance Computing. Ed. by Julian M. Kunkel,
Rio Yokota, Michela Taufer and John Shalf. Cham: Springer Interna-
tional Publishing, 2017, pp. 538–556. isbn: 978-3-319-67630-2.

[111] James Price and Simon McIntosh-Smith. ‘Improving Auto-Tuning
Convergence Times with Dynamically Generated Predictive Perform-
ance Models’. In: 2015 IEEE 9th International Symposium on Em-
bedded Multicore/Many-Core Systems-on-Chip. IEEE. 2015, pp. 211–
218. doi: 10.1109/MCSoC.2015.31.

[112] Nikola Rajovic, Pall Carpenter, Isaac Gelado, Nikola Puzovic
and Alex Ramirez. ‘Are Mobile Processors Ready for HPC?’ In:
IEEE/ACM Supercomputing Conference. 2013.

[113] Karthik Raman, Tom Deakin, James Price and Simon McIntosh-
Smith. ‘Improving Achieved Memory Bandwidth from C++ Codes
on Intel Xeon Phi Processor (Knights Landing)’. Presentation at the
International Xeon Phi User Group Spring Meeting. Cambridge, UK,
April 2017.

207

https://doi.org/10.1007/978-3-030-78713-4_18
https://doi.org/10.1007/978-3-030-78713-4_18
https://doi.org/10.1109/CLUSTER49012.2020.00076
https://doi.org/10.1109/MCSoC.2015.31

REFERENCES

[114] Ruyman Reyes, Gordon Brown, Rod Burns and Michael Wong. ‘SYCL
2020: More than Meets the Eye’. In: Proceedings of the International
Workshop on OpenCL. IWOCL ’20. Munich, Germany: Association
for Computing Machinery, 2020. isbn: 9781450375313. doi: 10.1145/
3388333.3388649.

[115] Alejandro Rico, José A. Joao, Chris Adeniyi-Jones and Eric Van Hens-
bergen. ‘ARM HPC Ecosystem and the Reemergence of Vectors’. In:
Proceedings of the Computing Frontiers Conference. CF’17. Siena,
Italy: Association for Computing Machinery, 2017, pp. 329–334. isbn:
9781450344876. doi: 10.1145/3075564.3095086.

[116] Alejandro Rico et al. ‘Trace-Driven Simulation of Multithreaded Ap-
plications’. In: IEEE International Symposium on Performance Ana-
lysis of Systems and Software (ISPASS). Austin, TX, USA: IEEE,
April 2011, pp. 87–96. isbn: 978-1-61284-367-4. doi: 10 . 1109 /

ISPASS.2011.5762718.

[117] Richard M. Russell. ‘The CRAY-1 Computer System’. In: Commu-
nications of the ACM 21.1 (1978), pp. 63–72. issn: 0001-0782. doi:
10.1145/359327.359336.

[118] Karthik Sangaiah et al. ‘SynchroTrace: Synchronization-Aware
Architecture-Agnostic Traces for Lightweight Multicore Simulation of
CMP and HPC Workloads’. In: ACM Transactions on Architecture
and Code Optimization 15.1 (2 April 2018), pp. 1–26. issn: 1544-3566,
1544-3973. doi: 10.1145/3158642.

[119] M. Sato. ‘The Supercomputer “Fugaku” and Arm-SVE Enabled
A64FX Processor for Energy Efficiency and Sustained Application
Performance’. In: 2020 19th International Symposium on Parallel
and Distributed Computing (ISPDC). 2020, pp. 1–5. doi: 10.1109/
ISPDC51135.2020.00009.

[120] Mitsuhisa Sato et al. ‘Co-Design for A64FX Manycore Processor and
“Fugaku”’. In: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. 2020, pp. 1–15. doi:
10.1109/SC41405.2020.00051.

[121] David Schor. Marvell Lays Out ARM Server Roadmap. WikiChip
Fuse. 9 November 2019. url: https : / / fuse . wikichip . org /

news/2956/marvell-lays-out-arm-server-roadmap (visited on
10/12/2019).

208

https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3388333.3388649
https://doi.org/10.1145/3075564.3095086
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/3158642
https://doi.org/10.1109/ISPDC51135.2020.00009
https://doi.org/10.1109/ISPDC51135.2020.00009
https://doi.org/10.1109/SC41405.2020.00051
https://fuse.wikichip.org/news/2956/marvell-lays-out-arm-server-roadmap
https://fuse.wikichip.org/news/2956/marvell-lays-out-arm-server-roadmap

REFERENCES

[122] David Schor. The x86 Advanced Matrix Extension (AMX) Brings Mat-
rix Operations. WikiChip Fuse. 29 April 2020. url: https://fuse.
wikichip.org/news/3600 (visited on 14/04/2021).

[123] Jason Sewall, John S. Pennycook, Douglas Jacobsen, Tom Deakin
and Simon McIntosh-Smith. ‘Interpreting and Visualizing Perform-
ance Portability Metrics’. In: 2020 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC).
Atlanta, GA, USA, 2020. In Press.

[124] Andrew Siegel. ‘ECP: Lessons Learned in Porting Complex Ap-
plications to Accelerator-based Systems’. Presentation at the 2020
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). Atlanta, GA, USA, November 2020.

[125] Codeplay Software. ComputeCPP. url: https : / / developer .

codeplay . com / products / computecpp / ce / home (visited on
16/12/2020).

[126] StackOverflow. 2020 Developer Survey. 2020. url: https : / /

insights . stackoverflow . com / survey / 2020 (visited on
10/06/2021).

[127] Nigel Stephens. ‘ARMv8-A Next-Generation Vector Architecture for
HPC’. Presentation at Hot Chips 28. Hot Chips 28. Cupertino, CA,
22 August 2016.

[128] Nigel Stephens et al. ‘The ARM Scalable Vector Extension’. In: IEEE
Micro 37.2 (2017), pp. 26–39. doi: 10.1109/MM.2017.35.

[129] Lynd Stringer. Vectors: How the Old Became New Again in Supercom-
puting. HPC Wire. 26 September 2016. url: https://www.hpcwire.
com/2016/09/26/vectors (visited on 11/12/2019).

[130] Tianjiao Sun et al. ‘A Study of Vectorization for Matrix-Free Finite
Element Methods’. In: The International Journal of High Perform-
ance Computing Applications (31 July 2020). issn: 1094-3420, 1741-
2846. doi: 10.1177/1094342020945005.

[131] Neil Thompson and Svenja Spanuth. ‘The Decline of Computers As
a General Purpose Technology: Why Deep Learning and the End
of Moore’s Law are Fragmenting Computing’. In: SSRN Electronic
Journal (20 November 2018). issn: 1556-5068. doi: 10.2139/ssrn.
3287769.

[132] TOP500, ed. TOP500 Historical Charts: Development Over Time.
2021. url: https://www.top500.org/statistics/overtime (vis-
ited on 14/04/2021).

209

https://fuse.wikichip.org/news/3600
https://fuse.wikichip.org/news/3600
https://developer.codeplay.com/products/computecpp/ce/home
https://developer.codeplay.com/products/computecpp/ce/home
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://doi.org/10.1109/MM.2017.35
https://www.hpcwire.com/2016/09/26/vectors
https://www.hpcwire.com/2016/09/26/vectors
https://doi.org/10.1177/1094342020945005
https://doi.org/10.2139/ssrn.3287769
https://doi.org/10.2139/ssrn.3287769
https://www.top500.org/statistics/overtime

REFERENCES

[133] TOP500, ed. TOP500 List Statistics. 2021. url: https : / / www .

top500.org/statistics/list (visited on 10/06/2021).

[134] Tiffany Trader. Cray, Fujitsu Both Bringing Fujitsu A64FX-based
Supercomputers to Market in 2020. HPC Wire. 12 November 2019.
url: https://www.hpcwire.com/2019/11/12/cray (visited on
10/12/2019).

[135] Jan Treibig, Georg Hager and Gerhard Wellein. ‘LIKWID: A Light-
weight Performance-Oriented Tool Suite for x86 Multicore Environ-
ments’. In: 2010 39th International Conference on Parallel Processing
Workshops. 2010, pp. 207–216. doi: 10.1109/ICPPW.2010.38.

[136] James D. Trotter, Johannes Langguth and Xing Cai. ‘Cache Simula-
tion for Irregular Memory Traffic on Multi-Core CPUs: Case Study
on Performance Models for Sparse Matrix–Vector Multiplication’. In:
Journal of Parallel and Distributed Computing 144 (2020), pp. 189–
205. issn: 0743-7315. doi: 10.1016/j.jpdc.2020.05.020.

[137] Andy Turner and Simon McIntosh-Smith. ‘A Survey of Application
Memory Usage on a National supercomputer: An Analysis of Memory
Requirements on ARCHER’. In: High Performance Computing Sys-
tems. Performance Modeling, Benchmarking, and Simulation. Ed. by
Stephen Jarvis, Steven Wright and Simon Hammond. Cham: Springer
International Publishing, 2018, pp. 250–260. isbn: 978-3-319-72971-8.

[138] Joost VandeVondele et al. ‘Quickstep: Fast and Accurate Density
Functional Calculations Using a Mixed Gaussian and Plane Waves
Approach’. In: Computer Physics Communications 167.2 (2005),
pp. 103–128. issn: 0010-4655. doi: 10.1016/j.cpc.2004.12.014.

[139] C. T. Vaughan et al. ‘On the Use of Vectorization in Production En-
gineering Workloads’. In: Cray User Group. Stockholm, 24 May 2018.

[140] Pepe Vila, Pierre Ganty, Marco Guarnieri and Boris Köpf.
‘CacheQuery: Learning Replacement Policies from Hardware Caches’.
In: Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2020. London,
UK: Association for Computing Machinery, 2020, pp. 519–532. isbn:
9781450376136. doi: 10.1145/3385412.3386008.

[141] D. Walters et al. ‘The Met Office Unified Model Global Atmo-
sphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations’. In:
Geoscientific Model Development 10.4 (2017), pp. 1487–1520. doi:
10.5194/gmd-10-1487-2017.

210

https://www.top500.org/statistics/list
https://www.top500.org/statistics/list
https://www.hpcwire.com/2019/11/12/cray
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1016/j.jpdc.2020.05.020
https://doi.org/10.1016/j.cpc.2004.12.014
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.5194/gmd-10-1487-2017

REFERENCES

[142] Hannes Weisbach, Balazs Gerofi, Brian Kocoloski, Hermann Härtig
and Yutaka Ishikawa. ‘Hardware Performance Variation: A Compar-
ative Study Using Lightweight Kernels’. In: High Performance Com-
puting. Ed. by Rio Yokota, Michèle Weiland, David Keyes and Carsten
Trinitis. Vol. 10876. Cham: Springer International Publishing, 2018,
pp. 246–265. isbn: 978-3-319-92040-5. doi: 10.1007/978-3-319-
92040-5_13.

[143] Shasha Wen, Xu Liu, John Byrne and Milind Chabbi. ‘Watching for
Software Inefficiencies with Witch’. In: ACM Press, 2018, pp. 332–
347. isbn: 978-1-4503-4911-6. doi: 10.1145/3173162.3177159.

[144] WikiChip, ed. The Vulcan Microarchitecture. 4 October 2019. url:
https://en.wikichip.org/wiki/cavium/microarchitectures/

vulcan (visited on 13/07/2020).

[145] Samuel Williams, Andrew Waterman and David Patterson. ‘Roofline:
An Insightful Visual Performance Model for Multicore Architectures’.
In: Communications of the ACM 52.4 (1 April 2009). issn: 00010782.
doi: 10.1145/1498765.1498785.

[146] Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook and
Samuel Williams. ‘Toward Automated Application Profiling on Cray
Systems’. In: Cray User Group. 24 May 2018.

[147] Toshio Yoshida. ‘Fujitsu High Performance CPU for the Post-K Com-
puter’. In: Hot Chips 30 Symposium (HCS). Vol. 18. 2018.

[148] Robert J. Zerr and Randal S. Baker. SNAP: SN (Discrete Ordinates)
Application Proxy - Proxy Description. Tech. rep. LA-UR-13-21070,
Los Alamos National Labratory, 2013.

[149] Bo Zhao et al. ‘Performance Evaluation of NPB and SPEC CPU2006
on Various SIMD Extensions’. In: Big Data Computing and Commu-
nications. Springer International Publishing, 2015, pp. 257–272. isbn:
978-3-319-22047-5.

[150] Tuowen Zhao, Protonu Basu, Samuel Williams, Mary Hall and Hans
Johansen. ‘Exploiting Reuse and Vectorization in Blocked Stencil
Computations on CPUs and GPUs’. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis. Denver, Colorado: ACM Press, 2019, pp. 1–44.
isbn: 978-1-4503-6229-0. doi: 10.1145/3295500.3356210.

[151] Zhengji Zhao and Martijn Marsman. ‘Estimating the Performance
Impact of the MCDRAM on KNL using Dual-Socket Ivy Bridge Nodes
on Cray XC30’. In: Cray User Group (2016).

211

https://doi.org/10.1007/978-3-319-92040-5_13
https://doi.org/10.1007/978-3-319-92040-5_13
https://doi.org/10.1145/3173162.3177159
https://en.wikichip.org/wiki/cavium/microarchitectures/vulcan
https://en.wikichip.org/wiki/cavium/microarchitectures/vulcan
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/3295500.3356210

	Abstract
	Contents
	Introduction
	Contributions

	Background
	Vectorisation
	Generating and Running Vector Code
	An Overview of Modern Vector Instruction Sets

	Modern High-Performance CPU Architectures
	Programming Models and Performance Portability
	Common Classes of HPC Applications
	Benchmarking
	Mini-Apps

	Emerging CPU Architectures for HPC
	High Performance Arm-based Systems
	The ThunderX2 Microarchitecture

	Benchmarks
	Experimental Set-Up
	Results
	Best Application Performance
	Compiler Performance Comparison
	Library Performance Comparison

	ThunderX2 Performance Summary
	Reproducibility

	Next-Generation Vector Instruction Sets
	Modern Vector Instructions Sets
	SVE Evaluation Methodology
	Results
	Compiler Vectorisation Efficiency
	Dynamic Instruction Analysis
	SVE Vector Lane Utilisation
	SVE Memory Operations

	SVE Usage Discussion
	Relevance of SVE for HPC
	Towards Accurate Performance Modelling
	Reproducibility
	Conclusion

	The Effects on Cache of Wide Vector Operations
	Processor Cache Design Space
	Cache Analysis Methodology
	Results
	Cache Parameters
	SVE Width
	Lifetimes
	Non-Contiguous Accesses

	Implications for Vector Processors
	Towards Performance-Portable Application Design
	Reproducibility
	Conclusion

	Next-Generation Vector Processors
	Background
	Performance Evaluation Methodology
	Bandwidth-Bound Benchmarks
	Compute-Bound Benchmarks

	Results and Performance Analysis
	Benchmark Results
	Thread Placement on the A64FX

	Future Work
	Reproducibility
	Conclusion

	Programming Models for Modern HPC Architectures
	Background
	High-Performance Molecular Docking
	Modern Parallel Programming Models
	Performance Portability

	Evaluation Methodology
	A BUDE Mini-App
	Performance Analysis

	Results and Performance Analysis
	CPUs
	GPUs

	Towards Portable High-Performance Code
	Reproducibility
	Conclusion

	Research for Future HPC Architectures
	Towards Accurate Performance Modelling
	Next-Generation Vector Processors
	Productivity in Modern Programming

	Conclusion
	Appendix Data
	Chapter 3: Emerging CPU Architectures for HPC
	Chapter 4: Next-Generation Vector Instruction Sets
	Chapter 5: The Effects on Cache of Wide Vector Operations
	Chapter 6: Next-Generation Vector Processors
	Chapter 7: Programming Models for Modern HPC Architectures

	Appendix Cache Simulator Design
	The Main Loop
	Reading Execution Traces
	Efficient Reading of Traces

	Cache Models
	Capturing Simulation Data

	Configuration Files
	Simulator Output
	Testing

	Acronyms
	References

