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Abstract—Graphs are suitable to model topology and data
patterns in systems such as WSNs. To detect change, there is a need
for graph comparison, a computationally demanding task difficult
to run on constrained devices. For monitoring, the definition of
normal patterns, and deviation from normal are required. In
this contribution a flexible graph comparison method allowing
monitoring of normal patterns and metrics providing measures
of deviation from normal are proposed. In this manuscript, we
apply the method to the system modelled by synthetic and random
graphs. We demonstrate that the fingerprints of normal topology
and data patterns can be acquired with the measures of deviation
from normal. We discuss applicability of the method at the edge
of WSNs.

Index Terms—Wireless sensor networks, Data pattern, Topol-
ogy, Graph comparison, Monitoring,

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are vulnerable to attacks
due to limited resources available for protection and deploy-
ment which by nature is ubiquitous. Some vulnerabilities can
be reduced by careful hardware and software design but due
to diverse market with many manufactures it is difficult if not
impossible to assess security of devices. For critical devices,
security certification process may be used, usually costly and
time consuming which is clearly in contrast to low-cost nature
and ubiquity of sensing devices [1].

Typically, security is addressed by threat modelling. This
multi-step process is expensive and requires definition of use
cases and entities to protect, threats and possible attackers,
security objectives, and the way to address them [2]. The mod-
elling suffers from limited information about devices, diverse
nature of Eco-system to protect and inability to predict all
attack vectors. To circumvent this limitation, a “black box”
approach can be used to analyze what is observable externally
(e.g. at the edge) to infer about something unusual occurring
in the system. This typically involves data (also encrypted)
and network topology which are subject to attacks such as
denial of service, and malicious topology change to facilitate
data eavesdropping. By defining topology and data patterns it
becomes possible to monitor these normal patterns and flag up
any deviations.

In this contribution, topology and data patterns are modelled
as graphs. To allow comparison, graph similarity measures are
proposed allowing acquiring normal data and topology patterns
and detection of deviation from normal. The method is flexible
as graphs can be scaled to reflect computational resources
available and can be deployed at edge devices.

II. RELATED WORK

Machine learning and neural networks have been used to
analyse graphs. An example of which are deep graph kernels

in [3] and graph convolution networks [4], [5] which use
convolution operation and neural networks for graph analysis.

Nodes embedding techniques in [6], [7] help perform graph
mining for vertex and edge comparison for the tasks such
as vertex labelling and link predictions. They also use neural
networks and require model parameters optimisation by mini-
mizing the loss function during the training. The loss function
compares the statistics acquired from random walks performed
on a graph with the statistics encoded by the embeddings.
Stochastic gradient descent is used to find a solution to the
optimisation with some approximation. The loss function quan-
tifies errors in the approximation, and does not define or impose
any restriction on relation between the embeddings in the latent
space. As a result, the similarity measure becomes inaccurate
with the dissimilarity increase. The technique is not suitable
for comparison between graphs as each run of the optimisation
algorithm may yield different results. For weighted graphs,
the approximation in results impacts detection sensitivity. In
[8] it was proven the optimisation process, finds a solution
(many may exist) to a matrix factorisation problem for the
random walk statistics. Matrix factorisation may be seen as
finding latent representations of target statistics which reside
on a hyper-plane.

As attack vectors are often scarce and may not reflect the
latest threats, a system capturing robust representation of the
normal is of value. In [9], [10] the latent representation of
the normal is found by varational autonecoders, which can
also be used for anomaly detection. As deep models are used,
the problem of latent space irregularity is solved by encoding
latent space following standard (Gaussian) distributions, and by
defining the loss function minimising reconstruction errors and
penalising irregularity. This achieves regularisation of the latent
space in the high dimensional space. The normal data is used
for training and to facilitate classification and anomaly detec-
tion. However, these methods are computationally expensive,
requiring considerable data-sets for training.

In this contribution, a graph comparison method for directed,
weighted graphs is poposed. The method allows capturing
normal topology and data patterns fingerprints which can be
used for further processing and change/anomaly detection in
the systems such as WSNs.

III. NORMAL MODELLING

Graphs are naturally suited to model relations. A relation is
an abstract term and is associated with passing or possessing
information. Information may be related to control, user data
or metrics measured and associated with entities. Topology is
often defined as a geometric form that remain the same after
continuous (smooth) transformations. To model information
passing, besides defining information, the paths need to be



considered. That implies geometric structure, the topology with
additional description about information being passed. The
description can be defined for vertices and edges and contained
in labels. Labels attached to vertices usually reflect permanent
state, whereas labels attached to edges (e.g. weights) may repre-
sent volatile state. Weights may contain measured information.
In communication systems such as WSNs, topology is used to
describe connectivity between nodes. A WSN may use part of
topology, a sub-topology to pass information (data), and routing
protocols make sure that the currently used sub-topology gives
the highest probability of successful delivery (e.g. Routing
Protocol for Low-Power and Lossy Networks [11]). As the
current sub-topology may change over time, the normal topol-
ogy patterns consists of all legitimate sub-topologies. Likewise
normal data patterns consist of a set of sub-topologies and
measured egress data distributions from vertices. In this con-
tribution systems modeled as graphs are compared using the
proposed graph comparison method. Normal topology patterns
and normal data patterns are defined as sets of numbers, which
can be processed further as demonstrated in [12].

A. Data and topology pattern change
Difficulty to define topology pattern stems from verbosity

of a graph which is further exacerbated when graphs are
compared. A topology pattern is defined as an ordered pair of
directed graphs (graph A, graph B) each modelling connectivity
between sensors in a WSN network. Graph A is the selected
baseline and graph B is the assessed graph. The topology
pattern measure is a comparative measure defined by metrics
which describe pattern change. A single n-vertex directed graph
has (2n−1)n different topology patterns excluding the patterns
which have one or more vertices with no egress edges. If a
vertex has no egress edge, it is modelled as having a self loop.
For example, a 4-vertex graph excluding vertices with no edges,
has (24 − 1)4 = 50625 topology patterns. A data pattern is
defined by distributions of weights assigned to edges. For a
given topology, data patterns are unbounded, as each vertex
may have many different continuous distributions of weights.
The data pattern depends on the current sub-topology. In this
contribution a method measuring topology and data pattern
change in relation to the selected base graph is discussed.

B. System view (WSN)
WSNs are enablers for sensors to send data to the main

infrastructure modelled as a cloud with the edge device, a
border router interconnecting the cloud with the sensors. Due
to distributed nature of WSNs, a monitoring system at the
edge capable of detecting topology and data pattern change
is of great benefits. Sensors push data to the cloud, receive
control data, or are polled by server processes. Topologies
representing data path connectivity are formed in WSNs based
on 6LoWPAN/IPv6 which are deployed in a multi-hop mesh
scenario. In this setup, routing protocol needs to be used to form
paths for data. Often RPL (Routing Protocol for Low-Power
and Lossy Networks) is used which perceives the network
as a Destination Oriented Directed Acyclic Graph (DODAG).
DODAG is not always a tree, but in practice the existing RPL
implementations result in the routing topology being a tree
with the root at the gateway. This means that traffic flowing up
the tree towards the root causes a funneling effect as sensors
relay data to/from other sensors to facilitate the distribution
of WSNs. This makes the system vulnerable to attacks and

Fig. 1. Directed, weighted, annotated graph (example)

miss-configuration with the impact exacerbated as the impaired
devices get closer to the edge router. For these reasons detection
of topology and data patterns change with locality information
is valuable to implement countermeasures. The graph is built
to reflect topology of the system. Edges represent data flows;
vertices represent devices. Vertices are annotated with labels
reflecting permanent state which in WSN is a unique IPv6
address. As a measured and volatile state, the normalized data
volumes passed between vertices is used to label edges. Sensor
data traffic is often MQTT over TCP and MQTT and TCP
protocols are used to push data to the cloud. The method
presented in this paper was applied to WSNs in [12]. However,
it can also be applied to other systems, and any protocol layer
(e.g. a bespoke network stack), and to measure protocol data
and/or traffic volumes, which makes the method flexible.

C. Graph comparison method
The method proposed in this paper is a matrix-based method

which combines concepts of obtaining graph feature vectors
in [7], and the latent space regularisation in [9] for anomaly
detection. Vertices of a weighted directed graph are transformed
to the latent space which is a bounded hyper-plane as in [7].
The latent space is regularised requiring same distance between
the embeddings (similarity to [9]) but the dimensionality of
the latent space is not reduced. With these assumptions, it
is possible to find matrix factorisations analytically, in sec-
tion III-D, and later perform calculation of vertex metrics for
lower dimensionalal representation, and further processing.

Unlike in [9], the latent space is flat and bounded, vara-
tional inference is not required (N(x, s2) parameters are not
estimated), and the latent space vectors are not sampled from
the target distributions. However, the latent space representa-
tions of the normal graph vertices are regularised conditional
probability distributions of data over egress flows given each
vertex assuming s2 = 0. In [10], the Kullback–Leibler (KL)
distance measure of conditional posterior distribution of the
latent variable given a new sample, and the prior is used
as the measure of anomaly. The KL measure is not used in
this contribution, but d1 metrics in section III-D is calculated
instead as a new measure of topology/distribution change.
If data-sets are rich, the statistics of d1 are also calculated,
or otherwise thresholds are used for anomaly detection as
discussed in [12]. Metrics d3 in section III-D is used to provide
additional discrimination when d1 on its own does not suffice,
and is used for patterns fingerprinting. Topology hash is also
calculated as discussed in section IV to further differentiate
scenarios when topology differs but some edges have small
weights leading to vertex vector representations proximity.

As n-vertex graph requires a hyper plane in n-dimensions
(Rn) for the latent space, n vertices suffice to uniquely define
the hyper-lane. If some vertices have equal distributions or
are linearly dependant, the least square approximation is used
to find the plane. Each assessed vertex is compared with
baseline n-vertices due to regularisation. N-vertices define the



Fig. 2. Regularisation and relation to normal baseline vertices

partitioning of Rn and the comparison scale. A distribution also
defines topology as absent edges are marked by weights equal
to zero. As a hyper-plane is smooth, a group of points having
different distributions but the same topology can be identified.
Two groups are in neighbourhood if their topology differs by
1 edge which enforces a topological layout.

An example in 3d space is given in Fig.3. The points
(v1,v2,v3) represent probability distributions of egress flows
for vertices of the baseline graph in Fig.4 before regularisation.
These points after regularisation (i.e. applying the transforma-
tion T in section III-D) are plotted as (v1t,v2t,v3t). Regular-
isation is further exemplified by the red circle with the same
radius from the point p(v1). The circle represents hypothetical
distributions an assessed vertex can take. Their location only
depends on their distributions disregarding similarity to other
baseline vertices. By regularisation (i.e. applying the same
transformation T), the red circle, becomes the purple ellipse
on the triangle P(uP1, uP2, uP3). The triangle P represents the
latent space. The purple ellipse takes baseline vertex distribu-
tions (and also topology) into account (see also Fig.2) as each
point is expressed in the latent space as a linear combination of
baseline vertices. The same procedure is applied to any assessed
graph for its vertices i.e. the transformation T is applied, and
the distance from the labeled normal vertex serves as a change
measure. Having the same baseline, allows comparison also
between assessed graphs.

The model benefits from the diversity of the normal baseline
graph. The transformation T modifies Rn space in order to
relate each assessed vertex to the normal baseline expressing
its latent representation as a linear combination of the baseline
vertices.

The regularisation of normal vertex representations aims to
achieve the best in the least square sense orthonormal vectors in
Rn also making them reside on the same bounded hyper-plane.
Likewise, the assessed vertices reside on the same hyper-plane,
and their distributions (also carrying topological information)
are expressed in relation to the regularised normal vertex repre-
sentations either as a relative change (latent representations in
the area of the triangle N(v1t, v2t,v3t)) or projected (the area
on the triangle P(uP1, uP2, uP3) excluding the triangle N).

Normalisation flattens the latent space as (1) defines a hyper-
plane. However, adding edges (i.e increasing egress vertex
degree) decreases probabilities due to normalisation, also re-
ducing the distance between vectors, and the scale. To help,
regularisation is used for scale adjustment, the level of which
depends on vertices’ degree difference and weights, and to
measure relative change as presented in Fig.2. The closed
form solution to matrix factorisations derived in III-D removes

Fig. 3. Domain space transformation after regularisation

approximation errors which impact similarity measure for large
dissimilarities in [7]. Regularisation also helps to incorporate
exact relation to all the baseline vertices with their topology
and weights distribution in embeddings helping the measure
finer changes, which is absent in [7]. The metrics used for
comparison are discussed in section III-D.

D. Mathematical overview

The weighted, annotated (labelled), directed graphs an exam-
ple of which is presented in Fig.1 can be described by weighted
adjacency matrix. Labelled vertices are ordered and the same
order is applied when constructing adjacency matrices. The
weights as distribution of data volumes represent conditional
probability of transition to vertex n, given vertex k and traffic
type t.

wkn = P (vn|vk,t), for all k
∑
n

wkn = 1 (1)

The problem addressed is how to compare systems represented
by graphs each described by the corresponding adjacency
matrix A and B and perform vertex comparison with respect
to incident edges from vertices. Typically to compare matrices
a norm (distance measure) needs to be defined. However, it is
hard for a norm to reflect graphs’ verbosity when it transforms
the graph space to another space (for example Hilbert space).
This leads to distortion of graph properties in the target space. A
desirable property of a norm is to be bounded, to make their use
by machines easier with ability to localize anomaly. Frobenius
norm is often used to compare matrices, however it is not
suitable for graphs described by adjacency matrices, because
of its local (vertex) scope, indifference to permutation of
rows or poor discrimination of edge permutations for scarcely
connected vertices to mention a few. To address this a norm
with a graph scope is desirable. In order to achieve it, it
is proposed to factorise graph adjacency matrices to make
graph comparison feasible. There are many matrix pairs (V,
Z) which can factorize an adjacency matrix. When compar-
ing graph A and graph B, there are four unknown matrices
VA,ZA,VB,ZB which factorise two adjacency matrices A
and B as presented in (2).

VAZA = A

VBZB = B
(2)

In the prior art, the problem of finding matrix Z (a single
matrix factorization problem) has multiple realisations such as
principal component analysis (PCA) which changes coordinates
base to achieve alignment with the largest variance components.
Another approach is to train a neural network auto-encoder
which does not impose any restrictions on Z if the outputs
match the inputs. Some other variants use the regularisation



term in the loss function for the neural network training to
obtain desirable features in the latent space. However, neither
PCA, nor matrix factorization based on neural networks are
suitable due to either computational requirements or their ap-
plicability to the graph comparison problem where two matrices
needs to be factorised and compared. As matrix multiplication
can be seen as rotations and re-scaling of each input vector,
the adjacency matrix change for graphs A and graph B can be
reflected in matrix VB by making assumption that ZA = ZB.
Lets define metric d1 in (3) where ∥·∥F denotes Frobenius
norm, and use it for comparison.

d1 = ∥VA −VB∥F (3)

Metric d1 simplifies when VA is orthogonal i.e. d1 becomes
only dependant on A, and B. It is further assumed that VA

is orthonormal with 1s on the diagonal. Matrix T proposed
in this document transforms matrices A and B to make VA

orthonormal so that matrix VB reflects graph B in relation
to graph A. The matrices VA and VB are approximated in
the least square sense by using Moore-Penrose pseudo inverse
when calculating T = A+(this is to be solvable when matrix
A is singular). Having found matrix T, the same transformation
can be applied to matrix B, and the norm d1 is further modified
in (4).

d1 = ∥AT−BT∥F
= ∥AT −BT∥F

(4)

After this operation, nth row vector of matrix BT, bTn is
comparable with the corresponding row vector from the or-
thonormal matrix AT, and graph space is converted to vector
space which is measurable. Metric d1n is defined for nth peer
vertices in (5).

d1n = ∥aTn − bTn∥F
aTn, bTn − nth row vectors of AT, BT

(5)

For matrix B, row vectors bTn of BT yield alignment such as
distance measure d1 is bounded by the interval [0..U1] with 0
indicating perfect alignment (similarity). U1 is the upper bound
defined in (6), and its value depends on graph A.

u1n = max({elem|elem = ∥−−→aTn −−→vkT∥, for all k})
−→vk − zero vector with 1 at component k

U1 =
∑
n

u1n
(6)

d2 is defined in (7) as cosine similarity measure, where aTn,
bTn are nth row vectors from matrix AT, BT respectively.

d2 =
∑
n

d2n,d2n(
−−→aTn,

−→
bTn) =

−−→aTn ·
−→
bTn

∥−−→aTn∥ · ∥
−→
bTn∥

(7)

d2 is bounded by the interval [U2..N] with N indicating perfect
alignment (similarity), where N is the number of vertices. U2
is the lower bound defined in (8) and its value depends on
graph A.

u2n = min({elem|elem =
−−→aTn · −→vkT

∥−−→aTn∥ · ∥−→vkT∥
, for all k})

−→vk − zero vector with 1 at component k

U2 =
∑
n

u2n

(8)

For data pattern also metric d3 is defined in (9) bounded by
the interval [0..U3].

d3 =
∑
n

d3n,d3n = arccos (d2n)

U3 =
∑
n

arccos (u2n)
(9)

Given a base graph, metric d1 has only one extremum (min-
imum), equal to zero when matrices A and B are the same
and increases with the anomaly increase. Likewise d3 metric
is zero when matrices A and B are the same and increases
with anomaly increase. Local similarity information can be
obtained when the corresponding metrics for peer row vectors
are compared individually and not included as part of the
aggregated measure.

The transformation T can also be described as a regularisa-
tion process in the Hilbert space to produce the orthonormal
constellation of vertices of the system with deviation expressed
in relation to that system. The regularisation attempts to make
the distance between the labelled normal vertices the same.
Vertices with the same representation in the Hilbert space, and
yet different label are transformed to the same vector due to
the least square solution obtained (Moore-Penrose inverse is
used). Another way to see this transformation is to separate
the vector representations for vertices by moving them to
the latent space. Having a predefined shape of the normal
pattern represented as a constellation of orthonormal vectors in
the latent space, it enables comparisons of the normal graph
with the assessed graph. Geometrically, each row vector of
AT −BT resides on the same bounded hyper-plane, as the
regularisation transforms graph independent but vertex specific
hyper-planes each bounded by (1) to one bounded hyper-plane
for the graphs.

1) Relative data change estimate: For a given topology, and
the normal data pattern point p(d1,d3), the upper bounds of
u1(d1), u3(d3) for metrics d1, d3 can be calculated. This is
similar to the calculations of U1, U3 in (6),(9) except the
bounds are expressed as the maximum distance from the normal
data point p, and not the point (0,0). Vector −→vk is defined if edge
k exists for vertex n in the assessed graph. Given a topology,
the measure showing relative change of d1 and d3 is defined
in (10).

d1rel = (d1− d1normal)/u1(d1normal)

d3rel = (d3− d3normal)/u3(d3normal)
(10)

E. Implementation and scalability

The graph comparison method requires calculation of the
Moore-Penrose pseudo inverse matrix A+, and vector mul-
tiplications by A+. The vectors are row vectors from the
adjacency matrix which are typically sparse. AT has non zero
elements on the diagonal for non-singular matrices, and has
small memory and storage footprint. For singular matrices,
only rows which are not linearly independent have more than
one component greater than zero. For Moore-Penrose pseudo
inverse calculation, the main computational effort is in singular
value decomposition. A+ is calculated once, which can be
done offline and stored locally. However, if the calculation
needs to be done at the edge, matrix multiplication and singular
value decomposition can be scaled depending on computational
resources available and efficiently computed in general purpose
hardware with moderate computational resources [13], [14].



Fig. 4. Graphs for comparison (example)

TABLE I
TOPOLOGY MEASURE (EXAMPLE)

Vertex n 1 2 3
d1n 1.4142 1.4576 0
d2n 0 -0.0163 1

The computation of normal patterns involves multiplication of
typically sparse vectors by A+ and metrics calculation which
also can be done offline if needed, and stored locally. An
assessment process requires only calculation of the graph’s
hash H, metrics d1, d3 and normal pattern retrieval from the
local storage for comparison. The algorithm has O(n2) space
complexity. In terms of time complexity, it is is proportional to
O(n2). This can be improved by breaking down WSN modelled
as an l-vertex graph to sub-networks (sub-graphs) with k-
vertices which reduces space and time complexity by the factor
(k/l)2 for each sub-network (not done in this contribution).

IV. SYNTHETIC GRAPHS EXAMPLE

A system state modelled by two synthetic graphs is presented
in Fig.4. The baseline graph A and the assessed graph B are
compared as discussed in section III-D.

For topology pattern change detection, incident edges from
vertex are ordered and labeled with the values obtained from
a uniform pseudo random generator defined for (0..1] (the
generator is re-initialised with the same seed for each vertex).
The edge ordering follows vertex ordering in the adjacency
matrix. The values are normalised per vertex to satisfy (1).
Metrics d1n and d2n are calculated for vector representation
of peer ’n’ vertices (i.e. the vertices with the same label ’n’)
from the baseline and assessed graphs. For vertex n topology
discrimination, a hash value is calculated using SHA256 algo-
rithm for the sequence of (d1n, d2n). To produce a graph level
topology hash, a sequence of vertex hash values are hashed
again using SHA256 algorithm. The sequence is ordered based
on vertex ordering in the adjacency matrix. For the graphs in
Fig.4, metrics d1n, d2n for the peer vertices used for topology
hash calulations are presented in Table I.

To measure data pattern change, the weighs of the assessed
graph were varied for the edge (3,3) and (3,2) and compared
against the normal (baseline) graph. This is visualized for vertex
3 in Fig. 5,6 where ∥−−→aT3−

−→
bT3∥ and the angle Θ [rad] between

vector representation −−→aT3 and
−→
bT3 are plotted. Zero indicates

perfect similarity. Metrics d1, d3 for vertex 1 and vertex 2
remain unchanged.

For the baseline graph in Fig.4 the metrics bounds for
topology and data are presented in Table II.

Acquiring fingerprints of the normal system operation in sets
{d1,d3,H}, allows further processing to detect anomaly and
measure relative data change.

Fig. 5. Vectors length difference (d1) for vertex 3

Fig. 6. Angle θ (d3) for vertex 3

A. Relative data pattern change
To demonstrate relative data pattern change, a hypothetical

scenario is considered where data patterns are measured at time
t1, and t2. Only weights w33 and w32 changed at vertex 3 of the
assessed graph in Fig.4. The data pattern and relative change
at t2, t1 are presented in Table III and in (11) respectively.

∆d1 = (d1(t2)− d1(t1))/u1(d1(t1)) = 0.041

∆d3 = (d3(t2)− d3(t1))/u3(d3(t1)) = 0.0226
(11)

Metrics d1, d3 carry topology and data pattern information.
To measure data patterns change given assessed and normal
topology, the topology component needs to be discriminated
i.e. assessed topology at t1, T(t1) is the same as at t2. Otherwise
the metrics contain the aggregated topology and data measure,
and the change may be caused also by the topology component.
Topology hash values for T(t1) and T(t2) for the assessed graph
given the baseline graph are the same.

TABLE II
METRIC BOUNDS FOR TOPOLOGY AND DATA (EXAMPLE)

Vertex n 1 2 3
Td1n [0..9.971] [0..10.361] [0..11.317]
Td2n [-0.708..1] [-0.018..1] [-0.675..1]
Dd1n [0..4.175] [0..4.751] [0..3.742]
Dd3n [0..2.165] [0..2.165] [0..1.878]

TABLE III
DATA PATTERN CHANGE (EXAMPLE)

Vertex Time Edge weights
3 t1 [0.3,0.2,0.5]
3 t2 [0.3,0.1,0.6]



Fig. 7. Graph morphing steps- d1, d3 metrics

Fig. 8. Graph morphing - (d1, d3) points

B. Topology patterns discrimination
For topology discrimination, the baseline graph in Fig.4

was used to discriminate assessed graph topology change.
All possible target topology patterns excluding the patterns
containing vertices with no egress edge were evaluated. All
(23 − 1)3 = 343 target topology patterns given the baseline
graph in Fig.4 produced different topology hash H values. This
was further extended to change the base graph which produced
3894 collisions. There were 343*342 = 117306 different (nor-
mal,assessed) topology pairs excluding the pairs when graphs
are the same. The collisions occurred only when a 3-vertex
base graph had one edge for two or more vertices, or the graph
was symmetrical. Larger graphs provide more diversity.

V. RANDOM GRAPHS EXAMPLE

For further demonstration, two random directed graphs were
generated, each containing 40 vertices, with random topology
pattern limited to 100 edges. Edge weights were randomly
generated from [1..2000] and normalised. The graph A was
morphed to become the base graph B. The morphing step was
to remove a randomly selected edge from graph A and add
randomly selected edge from graph B. After each morphing
step, the morphed graph A is compared with the base graph B
and metrics d1, d3 are calculated. d1, d3 change at each
morphing step as plotted in Fig.7,8. When d1, d3 become zero,
graphs A and B are the same. d1 and d3 are correlated with
pearson correlation coefficient r = 0.99888 in this example.
However, metrics d1, d3 allow finer data pattern detection when
d1 or d3 alone does not allow sufficient discrimination (e.g.
in Fig.5, there are different target graphs for which d1 metric

defined as a distance measure is the same). Anomaly detection
in WSNs for data and topology patterns change is demonstrated
in [12].

VI. CONCLUSION

The method allows comparing the systems modelled as
graphs to detect topology and data patterns change. The change
is represented as a set of numbers, providing fingerprints of
topology and data patterns which can be further analysed.
Metrics were proposed to quantify the change. The size of
the graph can be varied depending on computational resources
available such as memory and processing power helping scala-
bility. The method is better suited for sparse networks. As the
network becomes densely connected, relative traffic distribution
variations become smaller to the point when it is comparable to
data acquisition uncertainty. However, it can be circumvented
by defining sub-graphs with a subset of vertices and edges
also helping scalability. The sub-graphs can be selected based
on criteria such as geographical/topological proximity, traffic
volumes, or probability which is left for future study.
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