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In quantum mechanics, the wave function predicts
probabilities of possible measurement outcomes, but
not which individual outcome is realized in each run
of an experiment. This suggests that it describes an
ensemble of states with different values of a hidden
variable. Here, we analyse this idea with reference
to currently known theorems and experiments. We
argue that the ψ-ontic/epistemic distinction fails
to properly identify ensemble interpretations and
propose a more useful definition. We then show that
all local ψ-ensemble interpretations which reproduce
quantum mechanics violate statistical independence.
Theories with this property are commonly referred
to as superdeterministic or retrocausal. Finally, we
explain how this interpretation helps make sense of
some otherwise puzzling phenomena in quantum
mechanics, such as the delayed choice experiment,
the Elitzur–Vaidman bomb detector and the extended
Wigner’s friends scenario.

1. Introduction
The wave function is weird. Its most salient feature—
that it merely predicts probabilities for measurement
outcomes, rather than the outcomes themselves—
suggests that quantum mechanics is an emergent,
average description of an underlying, more complicated
dynamics. In this underlying theory, the time-evolution
of the system would be determined and measurement
outcomes could be predicted. It is because we lack
information about the details of the initial state
that we can only make a probabilistic prediction.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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That the wave function might be an emergent description of yet-to-be-discovered underlying
physics is often called a hidden variable interpretation. The hidden variables are the information
that is missing in quantum mechanics. This straightforward explanation for the strange properties
of the wave function, however, has seemingly been disfavoured by Bell’s and related theorems
[1,2], and, more recently, by the Pusey–Barrett–Rudolph theorem [3,4] (hereafter PBR-theorem).
We here want to look closer at what these theorems actually say about the wave function as an
ensemble of different values of the hidden variables.

The PBR-theorem in particular builds on a classification of models put forward by
Harrigan & Spekkens [5]. Their framework attempts to mathematically formalize the distinction
between a wave function that represents reality (ψ-ontic) and one that represents knowledge
(ψ-epistemic). That this is a false dichotomy was previously pointed out in [6]. We here want to
spell out another problem with theψ-ontic/epistemic framework—it does not identify the hidden
variables theories that Bell was trying to rule out.

We begin with defining in what sense we take the wave function to be an ensemble in §2, and
explain the relation to the ψ-ontic/epistemic framework in §3. In §4, we will discuss the most
important consequence, that is the different definition of what the hidden variables describe,
and how to interpret it. In §5, we will revisit the PBR-theorem in this light. In §6, we discuss
statistical independence (SI), locality, and the sometimes used classification of superdeterminism
and retrocausality for violations of SI. Finally, in §7, we will explain how the ψ-ensemble
interpretation helps make sense of quantum mechanics.

2. Theψ -ensemble interpretation
We will begin by explaining what exactly we mean by the wave function being an ensemble.
We do not mean the Ensemble, or Statistical, interpretation of quantum mechanics [7], according
to which the wave function describes an ensemble of identically prepared states in identical
experiments. It arguably does, but if the states are indeed identical, that’s not much of an
ensemble. Similarly, we do not mean Smolin’s ensemble interpretation [8], where the ensemble
considered is the ensemble of all the systems in the same quantum state in the Universe.

We mean instead that the supposedly identically prepared states in supposedly identical
experiments are in fact different: they have different hidden variables and this is the reason why
the measurement outcomes can be different for identical wave functions. We will refer to this
interpretation of the wave function as the ψ-ensemble interpretation.

In our ψ-ensemble interpretation, we have an underlying theory with variables that we will
collectively name κ and we will denote the state-space of all κ with K. The κ are generically time-
dependent, κ(t). These κ(t)s are not the same as Bell’s hidden variables, as will become clear in a
moment.

In the ψ-ensemble interpretation, the wave function in quantum mechanics emerges as an
average description from the hidden variables theory, much like thermodynamics emerges from
statistical mechanics. This interpretation suggests itself because of the apparent similarity of the
von Neumann–Dirac equation with the Liouville equation, and also, as was pointed out in [9],
because the naive h̄ → 0 limit of quantum mechanics results in a statistical theory.

We use the term ‘hidden variables’ because it has become common terminology. However,
we want to stress that these variables are not a priori unmeasurable. They are ‘hidden’ merely
in the sense that they do not appear in quantum mechanics. If the underlying theory was better
understood, they could well become measurable one day. That is to say, the ψ-ensemble is an
interpretation of the wave function in quantum mechanics, but it implies the existence of an
underlying hidden variables theory. This underlying theory is better referred to as a completion
or modification. This is as opposed to interpretations, such as the Transactional Interpretation
[10,11] or Decoherent Histories [12], which have the same ontological basis as standard quantum
mechanics, or Modal interpretations [13] that do not rely on an underlying completion (and do
not violate SI—we will get to this point below).
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We assume that the underlying theory is deterministic, that is, if one specifies an initial state,
one can use the theory to uniquely calculate the outcome of a measurement.

|ψ〉 is, as usual, an element of a projected Hilbert space, H. It fulfils the Schrödinger equation.
We are considering a generic quantum mechanical measurement, in which |ψ〉 is prepared at time
tp and measured at time tm. The measurement is described by an orthonormal basis of pointer
states that we will denote |I〉, where I ∈ {0 · · · N − 1} and N is the dimension of the Hilbert space.
|I〉 could be describing multiple different detectors, and might be a product-state or an entangled
state when expressed in a basis of the individual detectors. The basis |I〉 implicitly contains the
measurement settings at the time of measurement.

For simplicity, we will in the following assume that the basis |I〉 is time-independent. This
does not mean that the detector setting cannot change. It merely means that if the detector setting
before the measurement was different from the setting at the actual measurement, then it was not
described by |I〉.

In quantum mechanics now, the Schrödinger evolution of |ψ〉 will generically result in a state
that is not one of the detector eigenstates at the time of measurement. In this case, we assume that
|ψ(tm)〉 is an ensemble of different κ(tm), that is, a distribution μ(κ(t)) over K. This means in the
ψ-ensemble theory we have a map

P(K) �μ(κ(t)) → |ψ(t)〉 ∈H, (2.1)

where P(K) is the space of all normalizable probability distributions on K. That is to say,
we interpret |ψ(tm)〉 as an ensemble because we empirically know it corresponds to different
measurement outcomes.

For each pointer state |I〉, there is a subset of hidden variables, {κ}I that will lead to this
outcome. We will refer to these subsets {κ}I as ‘clusters’. The measurement reveals which cluster
the hidden variable of the actual state belonged to. Hence, the measurement reveals some
information about the hidden variable.

The reason we have for considering this interpretation is that the wave function update is
non-local when interpreted as a physical process. This makes it difficult to combine quantum
theory with general relativity. If we hence introduce a ψ-ensemble interpretation, our motivation
is to develop an underlying theory which restores locality, causality and determinism. Of course,
one can conceive of ψ-ensembles that are not local, but these (unsurprisingly) are not useful for
restoring locality. Therefore, for the rest of this paper, we will only consider ψ-ensembles that are
locally causal in Bell’s sense [14–16].

3. Difference betweenψ -ensemble andψ -epistemic
The introduction of theψ-ensemble in the previous section sounds superficially very similar to the
definition of a ψ-epistemic model introduced by Harrigan & Spekkens [5]. According to Harrigan
and Spekkens (hereafter HS), a model is ψ-epistemic if one particular value of the hidden variable
can correspond to more than one wave function.

As a simple example, consider you have a two-state system with detector eigenstates |0〉
and |1〉. You could prepare the state so that under the Schrödinger-evolution it goes to |0〉 with
certainty. Or you could prepare it so that it goes to (|0〉 + |1〉)/√2. If the wave function was
ψ-epistemic, then the latter case must have some overlap with the former in the underlying
hidden-variables theory because it can result in the same measurement outcome. At least that
is the idea.

Formally, HS first define the probability p(κ|ψ) that the quantum wave function ψ is described
by κ , where κ ∈ K [17,18]. Next, they define the probability of getting a particular measurement
outcome given κ . While their framework can be used for any measurement, here we merely need
the probability A(ψ |κ) that the state κ is measured asψ . From this, one obtains the support Kψ ⊂ K
for the wave function ψ

∀ κ ∈ Kψ ,A(ψ |κ) = 1. (3.1)
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Figure 1. Harrigan and Spekkens’s ψ -epistemic and ψ -ontic models of reality [5]. Wave functions ψ and ϕ each have
probability distributions over state-space. In aψ -epistemic model, these can overlap over a subspace. A state κ within this
overlap can then be represented both byψ andϕ. However, inψ -ontic models, each state can be represented by at most one
wave function. The amount of overlap is quantified by the parameter�. Forψ -ontic models,�= 0.

They then take a second wave function, ϕ, with its own probability distribution p(κ|ϕ), and ask
what is the probability that the κs which contribute to ϕ also contribute to ψ . They quantify this
overlap as

�=
∫

Kψ
p(κ|ϕ) dκ . (3.2)

If �> 0, HS interpret the wave functions in such a model as epistemic states, because the
same underlying κ could contribute to both ψ and ϕ. Models with non-zero overlap � are
correspondingly calledψ-epistemic, whereas models without overlap areψ-ontic (for illustration,
see figure 1).

There are several problems with the HS ψ-ontic/epistemic distinction. One of them is purely
linguistic. According to the HS definition, for ψ-ontic theories, the wave function in quantum
mechanics itself is ontic. It seems odd to declare something ontic that can’t be observed, especially
given that Bohr already argued ψ is far better interpreted as knowledge. Settling a 100-year-old
debate by definition is not insightful.

One might put this aside as historical nitpicking, but this linguistic issue reflects a deeper
problem. If there’s no observational requirement tied to calling something ontic, then every model
can be made ontic just by declaring the wave function to be part of the hidden variables [4,19].
Such an easily malleable definition of ‘ontic’ is not what one wants to base theorems on.

It is also highly confusing that, according to the HS-definition, most hidden variables models
which have been proposed so far are actually ψ-ontic. Think back to the example with the
two state system that evolves into (|0〉 + |1〉)/√2 but is measured in either |0〉 or |1〉. While the
(|0〉 + |1〉)/√2 state must have been made up of different underlying states (because otherwise it
could not give rise to different outcomes) there is no reason why any one of those underlying
states must have been the same as those of a system prepared to evolve into |0〉 or |1〉. Hence,
according to the HS-definition, a ψ-ontic model can solve the measurement problem as well as a
ψ-epistemic one.

We believe our definition of a ψ-ensemble to be more descriptive of hidden variables models,
and less ambiguous than the ψ-epistemology proposed by HS. Whether or not the state prepared
to evolve into (|0〉 + |1〉)/√2 had overlap with any other wave function, it will always be an
ensemble if the underlying hidden variables theory solves the measurement problem. That is
to say a ψ-ensemble could be either ψ-ontic or ψ-epistemic according to the HS-definition.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 J

ul
y 

20
22

 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210705

..........................................................

4. Hidden variables label trajectories
In our definition of a ψ-ensemble, we have been careful to point out that naturally the underlying
hidden variables theory will be dynamic, hence the hidden variables will be functions of time.
This is of utmost importance for locality considerations, as those usually pertain to arguments
about the distribution of the hidden variables. (We will discuss this in §6.)

If we evaluate the distribution of hidden variables at the time of measurement, then we can
infer the measurement outcome directly from that. However, for Bell’s theorem, and also for the
PBR-theorem, one normally considers the distribution of variables at the time of preparation
instead. These two distributions will in general not be identical. The problem is, if one merely
takes the distribution at the time of preparation, this will not constitute the hidden variables of
Bell’s theorem.

To see this, note that since we assume the underlying theory is deterministic, we can always
take the distribution at the time of preparation, tp, and evolve it forward with whatever is the
transport function of the theory. Assuming time-translation invariance, let us denote the transport
function as T(t1 − t0, ·) where the free slot is for the hidden variables. It has the property that

κ(t1) = T(t1 − t0, κ(t0)), T(0, ·) ≡ Id. (4.1)

Now arguably the entire information that is necessary to determine the outcome at tm is both the
initial distribution at preparation κ(tp) and the transport function T(tm − tp, ·).

Bell, therefore, in the derivation of his inequality, correctly defines the hidden variables as the
‘full specification’ of the information necessary to predict the outcome [14]. In his own words,
the ‘values of these variables together with the state vector determine precisely the results of
individual measurements’ [20]. However, an initial state without an evolution law does not
determine a final state.

Therefore, if we call Bell’s hidden variables (as usual) λ, then λ(t0) = (κ(t0), T(tm − t0, κ(t0)) and
one can now treat the hidden variables as time-independent. The additional information in the
transport function becomes redundant in case one defines the distribution of the hidden variables
at the time of measurement already (t0 = tm) but normally one chooses tp < t0 < tm.

Pictorially this means that Bell’s hidden variables (the λ) can be interpreted as labels for
histories (in state space), whereas the HS hidden variables (that we called κ) define a state
(figure 2). For this reason, assuming that Bell’s hidden variables belong to a particular moment
in the history of the (entire) state makes no sense. We will comment in §6 on what this means for
locality requirements that one normally uses for the distribution of the hidden variables.

A particularly illustrative example for hidden variables that define trajectories is the model
proposed in [21,22]. In this case, the hidden variables simply are the detector eigenstates towards
which the prepared state evolves. Given that we cannot measure the state before we measure the
state, this is the most minimal assumption that one can make.

Following the terminology introduced in [15], we note that a deterministic model may not
be predictable, in the sense that a model may contain variables from which one could calculate
measurement outcomes when one had them, and yet one cannot find out the values of the
hidden variables to actually do that. Bohmian mechanics is an example of such a deterministic,
yet unpredictable mode. The ψ-ensembles we consider here are all deterministic. They may or
may not also be predictable. In the model laid out in [21,22], the hidden variables are incalculable
which also makes the model unpredictable.

A few words are in order here about the sense in which the ψ-ensemble is local. In the ψ-
ensemble, the hidden variables are in general not localized in the sense that they do not belong
to some compact region of space because they actually describe trajectories. The initial values
κ(t0) are in general not localized either because they are not uniquely defined. Suppose, for
example, you have a distribution of variables in space and instead replace them with their Fourier-
transformation. That would contain the same information but one may be localized, the other not.
However, the initial states are localized if one considers experiments in which the prepared state
is localized and is detected in localized detectors, which is for all practical purposes always the
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|I Ò |J Ò

l

   (t0)

Figure 2. Sketch to illustrate the relation between the hidden variablesκ (t) which define the state, and the hidden variablesλ
which define the entire trajectory. |I〉 and |J〉depict twodifferent detector eigenstates. The trajectories that go to the eigenstate
|I〉 belong to cluster {κ}I , and those which go to |J〉 belong to cluster {κ}J , respectively.

case, and certainly in Bell-type experiments. It is for this reason that the ψ-ensembles can fulfil
the definition of local causality, as Bell intended.

We should add here that it is quite possibly the case that the type of model we consider,
in which the hidden variables actually describe trajectories, is not what Bell meant when he
conceived of his definition of local causality. But regardless of what Bell may have meant, such
models can formally fulfil the condition of local causality.

5. The PBR theorem revisited
Let us then look at what happens when one confuses these two sets of hidden variables. The
PBR-theorem [3], in a nutshell, shows that models which are ψ-epistemic according to the HS-
definition are incompatible with observations. This superficially sounds similar to Bell’s theorem
which takes on hidden variables theories, but the PBR-theorem works entirely differently. For
this reason, one cannot draw conclusions from it aboutψ-ensemble theories. It is not our intention
here to criticize the PBR theorem which has instilled much fruitful discussion and helped sharpen
terminology. We merely want to clarify what conclusions can be drawn from it.

The above discussion on ψ-ensembles is relevant as the hidden variables in the HS-definition
merely define the state. They do not also specify the time-evolution of the underlying hidden
variable system. If one hence does not define the state at the time of measurement, then the hidden
variables in the HS-definition do not determine the measurement outcome. How could they if
they do not contain information about the evolution law? Now one may say that a definition is
just that, a definition. However, for the PBR-theorem, one treats the hidden variables as if they
did determine the measurement outcome, which implicitly assumes that the transport function
contains no further information.

If however the transport function contains necessary information to determine the outcome,
then one runs into the following problem. For the PBR-theorem, one considers the distribution
of hidden variables at preparation in the HS-definition. However, those do not tell us what the
outcome is, so no conclusions about whether the theory is viable or not can be derived. If one
instead replaces the variables in the PBR-theorem with the variables which actually determine
the outcome—i.e. those which contain information about the transport function—then one needs
an additional assumption. This assumption is that the complete variables are not correlated with
the detector settings. That is, one needs the assumption that Bell called SI. This is because if SI
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is not fulfilled, then one of the assumptions for the PBR-theorem, the preparation independence
postulate (PIP), is not fulfilled.

Bell defined SI as the absence of correlations between the hidden variables and the two
detector settings which he considered in a particular experiment. However, of course, one can
define SI in general as

μ(λ|S) =μ(λ), (5.1)

where S are the detector settings (of whatever experiment), and μ is the probability distribution
of the hidden variables. As laid out in [23], violating this condition does not necessarily require
correlations between the settings and the distribution of the hidden variables over the state space;
the correlations can instead be induced by the structure of the state space.

SI sneaks into the PBR-theorem because the HS-definition for a ψ-epistemic model assumes
that the hidden variables which define the state at preparation have nothing to do with the
measurement. And that sounds reasonable, until one realizes that if one wants to say anything
about measurement outcomes one needs to know the time-evolution of the hidden variables too.

The PIP now says that if we prepare two independent (spatially separate) experiments,
then the distributions of the hidden variables should factorize. In the PBR argument, one first
considers two experiments in isolation. Then one combines the two so-prepared states—using
PIP—and measures them instead with a smartly chosen basis of distinguishable states. From this,
one derives a contradiction: If the distribution of the hidden variables was actually the product
of the distributions for the separate measurements, then one cannot reproduce the predictions of
quantum mechanics.

Needless to say, the theorem is correct where the mathematics is concerned, but
the relevant physical assumption was that the distributions of the hidden variables
for the individual experiments already did not depend on the measurement settings.
So of course if one multiplies them, they still do not depend on the measurement
settings and one cannot reproduce the predictions of quantum mechanics. That is, in the
ψ-epistemic framework, we have SI ⇒ PIP.1

However, the relevant assumption was the independence of the complete hidden variables
(the λs which determine the outcome) from the measurement settings, not the factorization. In
particular, the initial distribution of the variables, κ(tp), might well factorize at preparation.

An example for a model in which this happens is [24]. This model uses one (complex
valued) hidden variable for each dimension of the Hilbert space. These hidden variables,
which correspond to κ , are uniformly distributed in the unit disc. Hence, the model fulfils the
requirements for the PBR-theorem and yet reproduces the predictions of quantum mechanics,
seemingly defying the theorem. The reason is that the dynamical law of the model depends on
the detector settings, and so do the full hidden variables λ. When one uses these variables, the
model violates PIP, hence no contradiction with the theorem arises. However, since the variables
then no longer describe the initial state at preparation, it is unclear why they should fulfil PIP in
the first place.

We may note that this issue does not appear in Bell’s theorem, simply because Bell considers a
situation where the state is prepared at one place but measured in two, whereas PBR considers a
situation where the state is prepared in two places but measured in one. In Bell’s case, one has no
reason to assume that the distribution of the hidden variables factorizes.

For completeness, let us mention that the approach presented in [25] to rule out (HS)
ψ-epistemic models works by constructing sets of incompatible states and deriving properties
about the overlap of probability distributions from measurements on those. This proof implicitly
assumes that the probability distribution of the hidden variables does not depend on the
measurement settings.

1Note that it is not in general the case that ¬ PIP ⇒ ¬SI because it could be that other assumptions of the ψ-epistemic
framework are violated rather than SI.
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t

x

l

D1 D2

P

Figure 3. A diagram showing the two backwards light cones from detectors D1 and D2, and their overlap at point of
preparation P.

6. Properties ofψ -ensemble theories

(a) Statistical independence
We know from Bell’s theorem that any ψ-ensemble theory which is locally causal (in Bell’s
sense) and reproduces the predictions of quantum mechanics must violate SI. Indeed, that one
can reproduce quantum mechanical correlations while respecting local causality provided SI is
violated is quite possibly the reason why Bell (and others after him) sought other ways to rule out
SI, notably by arguing that it requires fine-tuning (discussed below).

However, one does not need Bell’s theorem to see that local and causal ψ-ensemble models
will violate SI. We just need to note that if we want states in the hidden variables theory to evolve
locally and within the light-cone into detector eigenstates, then we need information about the
detector before the prepared state reaches the detector—otherwise how do we know what state
to evolve into?

For the purposes of this paper, we shall say that a hidden variables theory solves the
measurement problem if it respects Bell’s local causality and gives rise to detector eigenstates
in each single run of an experiment with a probability distribution that agrees (to within
measurement accuracy) with that of quantum mechanics. There are other ways to look at the
measurement problem [26], but for the purposes of this present paper, this simplified notion that
specifically applies to hidden variables theories will suffice.

To illustrate what solutions to the measurement problem have to do with SI, consider the
generic setting of an experiment with two detectors (figure 3). The state is prepared at P and
measured at detectors D1 and D2. One may have in mind for example a single photon that goes
through a beam splitter. The state does not have to be entangled. We want to know how it evolves
in the underlying hidden variables theory.

When the prepared state arrives at D1 it needs to know the setting at D2. Yet, it is clear that
if that information wasn’t available already at P, then it can’t have gotten there within the light
cone. Hence, both detector settings D1 and D2 must have been either in the initial distribution of
hidden variables or the evolution law. In either case, SI is violated.

To be sure, we have drawn an extreme case where the prepared state actually moves with the
speed of light. If one took a massive particle, the last moment in which information about D2
must be available for the underlying state going to D1 could be after preparation. But that does
not change the fact that SI must have been violated because information about the detector setting
must have been in the full specification of the hidden variables.

It is a corollary of this—and not the starting point—that any ψ-ensemble theory that solves the
measurement problem and reproduces quantum mechanics will violate the assumptions of Bell’s
theorem and the PBR-theorem. It follows that experiments which show the violation of a Bell
inequality or the CHSH inequality [27], or the agreement of the measurement proposed by PBR
with the predictions of quantum mechanics [28], cannot rule out ψ-ensemble theories. A different
type of experiment is necessary to test such theories.
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Understanding that SI is violated because that is required to solve the measurement problem
also explains why one need not expect such violations to occur in non-quantum experiments,
like the often quoted tobacco trials to infer a correlation between smoking and cancer (see [29]
and references therein). No preparation of such an experiment will ever result in a superposition
of measurement outcomes. Even if one used a quantum experiment to, say, sample mice into
two groups (one exposed to tobacco smoke, the other not), then the quantum superposition
would be destroyed before one even wrote down the outcome of the quantum experiment.
But SI is only violated between the preparation of an experiment that, under the Schrödinger-
evolution, evolves into a superposition of detector eigenstates, and the measurement of
that state.

It must be understood here that we use the term ‘measurement’ in the same sense as in
quantum mechanics. That is, it does not necessarily require an observer or even a detector, it just
requires a sufficient amount of interactions with the environment. We do not need to be specific
about this because this aspect of the measurement problem was already solved by decoherence
and einselection [30]. A detector is any system that decoheres the prepared state quickly enough,
and the detector eigenstates are defined as those which are stable in that process. We merely need
violations of SI to explain why we always measure a detector eigenstate and not, as decoherence
predicts, a mixed state.

It is worth stressing that the statements made in this section are not suggested interpretations
of mathematical expressions, they are conclusions drawn from empirical facts. We know, as a
matter of fact, that measurements yield definite results. If the results come about locally, causally,
and deterministically from the prepared state, then the underlying theory must violate SI. We also
know empirically that we never observe superpositions of detector eigenstates, hence violations
of SI are negligible for macroscopic objects.

Theories which violate statistical independence are often further broken down into those
which are superdeterministic and those that are retrocausal. The superdeterministic ones were
recently further broken down into those that are and are not supermeasured [23]. However, the
terms superdeterministic and retrocausal have been used to mean different things by different
authors which has made the situation very confusing. For example, some authors assume
superdeterminism is deterministic [29], while others do not [31]. Some equate retrocausality
with future input dependence [32], others do not [33,34]. Some claim that retrocausality is just
mislabelled superdeterminism [35]. Yet other authors have proposed to use the terms all-at-once
or atemporal [36]. None seem to assign much importance to the ensemble that the wave function
should describe, which is at the centre of our definition.

We believe that the ψ-ensemble is a more useful classification because it captures those
approaches which are candidates to solve the measurement problem(s).

(b) Locality
It is quite common to get confused here about how such a requirement—that the evolution
law depends on the measurement settings at the time of measurement—can possibly be local.
However, keep in mind that the hidden variables λ label trajectories, not initial states, of the
underlying theory. The trajectories necessarily connect the prepared state with the detectors
locally and causally (if they did not, we could not detect the prepared state). Hence, the
requirement that the hidden variables are correlated with the detector settings at measurement
can come about entirely by local propagation and by local interactions. (Again, we do not
claim that such a theory necessarily has to be local. It is just that this is the case we are
interested in.)

Such ψ-ensemble theories that violate SI fulfil Bell’s criterion of local causality because if
the information about both detector settings was available already at preparation, then it is
unnecessary to later add it.
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(c) Fine-tuning
It is frequently argued that theories which violate SI would need a lot of detail to specify the initial
state for the detector setting at the time of measurement, and that they are thence fine-tuned
‘conspiracies’ [37]. This initial state is often believed to be required long before the experiment
even began, possibly as far back as the Big Bang.

However, the idea that we need to define an initial state for the detector setting is patently
absurd. In quantum mechanics, we also never define the initial condition at the Big Bang that
will give rise to a specific detector setting. Indeed, we never do this in any theory. It is in practice
unnecessary to ever write down this initial state, regardless of whether it is feasible in the first
place. We simply make predictions for any possible measurement setting. Hence, violating SI does
not require a lot of detail; it merely requires the detector settings at the time of measurement—an
input we also use in ordinary quantum mechanics.

A second fine-tuning argument [38] has it that it would require specifying a lot of details for the
distribution of hidden variables in order to prevent violations of Born’s rule that would allow for
superluminal signalling. However, leaving aside that the absolute impossibility of superluminal
signalling (rather than its observed rarity) is a postulate, not an empirical fact, we can arguably
always achieve that Born’s rule is fulfilled simply by postulating that it is fulfilled, which one also
does in quantum mechanics.

That is, these two arguments use a double-standard: assumptions are not called fine-tuned
when used in normal quantum mechanics (detector settings at measurement and Born’s rule are
required to calculate probabilities) but are called fine-tuned when used in other frameworks. As
already argued in [39], such a notion of fine-tuning is scientifically meaningless and can at best
be considered metaphysical. (Fine-tuning in these contexts has been discussed in more detail by
Adlam [40].)

7. Using theψ -ensemble to make sense of quantum experiments
Of course using a ψ-ensemble, even if deterministic, local, and causal does not remove the
weirdness of quantum mechanics. It remains in the property that for a spatially distributed
detector, a state in the underlying theory that goes to one particular eigenstate must have had
information about that part of the detector to which it did not go. Again, this requirement can be
formulated purely in local terms (if the state would have gone to the other part of the detector,
it would have interacted with it), but this is where the famed quantum weirdness goes. If the
underlying hidden variables theory is local and causal and deterministic, then the evolution
which the actual state takes—and which we ultimately observe—takes into account what would
have happened if the state had gone elsewhere. We will now explain how this nicely explains
some otherwise very unintuitive quantum behaviour.

(a) The double-slit experiment
To warm up, we consider the familiar double-slit experiment. The odd thing about this
experiment is that the behaviour of the quantum particle changes depending on whether we
know which slit the particle goes through. If we do not know, the particle seems to go through
both slits and interferes with itself, like we expect for a wave. But if we measure which slit the
particle goes through, the interference pattern vanishes.

This seemingly strange behaviour makes total sense from the ψ-ensemble perspective because
the trajectory of the state in the underlying hidden variables theory depends on what is being
measured.

(b) Wheeler’s delayed-choice experiment
The delayed-choice experiment [41] comes in a large number of variations, but in the simplest
version, one changes the variable that is being measured after the prepared state has begun its
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propagation. In normal quantum mechanics, this is even more difficult to understand than the
double slit experiment because it seems that the prepared state must somehow ‘change its mind’
as the setting is changed.

However, from the ψ-ensemble perspective this is clearly not what happened. This is because
the trajectories depend on the detector setting at the time of measurement. What the settings were
before that or how often they were changed is irrelevant.

(c) The Elitzur–Vaidman bomb detector
The Elitzur–Vaidman bomb detector allows one to detect whether a bomb is live (would blow up
when it detects a photon) without triggering the bomb [42]. In this experiment, the bomb acts as
a detector. Whether the bomb is live or a dud therefore constitutes two different detector settings.
From the ψ-ensemble perspective, it is hence rather unsurprising that the case in which the bomb
does not blow up contains information about whether the bomb is live, because this is just a type
of detector setting.

(d) Counterfactual computation/communication
In counterfactual computation [43], one infers the result of a computer query without interacting
with the computer. This experiment is a variant of the Elitzur–Vaidman experiment and can be
explained the same way. The computer acts as a detector depending on what the outcome of
the calculation is. In the ψ-ensemble interpretation, the particle which one measures contains
information about the setting of the detectors which it was not detected in, which allows one to
infer the result of the computation.

The same logic also applies to Salih et al.’s counterfactual communication device and related
protocols [44–46], and so protocols for imaging [47] and for quantum information transfer derived
from it [48,49].

(e) The extended Wigner’s Friend scenario
The previous examples all work more or less the same way. The extended Wigner’s Friend
experiment [50] is a more recent proposal that beautifully highlights the problems one runs into
when rejecting hidden variables theories, but works entirely differently.

The extended Wigner’s Friend scenario is a Bell-type test with two entangled particles, one
measured by Charlie and one by Debbie (the friends) in spatially separated laboratories. Each
of the two observers is observed by a super-observer, Alice and Bob, respectively. Charlie and
Debbie measure an entangled state and Alice and Bob then further measure correlations between
Alice’s and Bob’s measurement outcomes. It turns out that, given suitable measurement settings,
the observers cannot all agree on what the measurement results are.

The issue with this experiment is a fuzzy definition of what constitutes a measurement. As
already pointed out in [51,52], one can interpret the friends’ measurements as either having
resulted in a definite outcome, or as still being in an entangled quantum state. The resulting
contradiction does not occur if one has a theory in which a measurement outcome is an
unambiguous result of the time-evolution.

In a ψ-ensemble theory, the friends either make a measurement and violations of SI are for
all practical purposes destroyed. Then the super-observers can no longer measure quantum
correlations between the friends. Or the friends really just make a transformation on a quantum
state, rather than a measurement, in which case the super-observers can well observe further
quantum effects.

8. Conclusion
We have argued here that the ψ-ontic/epistemic distinction is not descriptive of hidden variables
models that can restore locality and causality by giving a physical meaning to the wave function
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update. Instead, they can better be described as ψ-ensemble theories. If they are local, causal,
deterministic and reproduce the predictions of quantum mechanics, then such theories violate
the assumptions of both Bell’s theorem and the PBR-theorem. We have shown that taking this
possibility seriously can help making sense of some otherwise strange quantum phenomena.
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