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ABSTRACT 

We show that a previously described ceftazidime/avibactam plus 

meropenem/vaborbactam resistant Klebsiella pneumoniae variant having ramR 

plus ompK36 mutation and producing the V239G variant KPC-3 (V240G per 

standard numbering system) confers resistance to ceftazidime/avibactam plus 

aztreonam and imipenem/relebactam but not cefepime/taniborbactam. The 

V239G variant does not generate collateral β-lactam susceptibility like many 

KPC-3 variants associated with ceftazidime/avibactam resistance. Additional 

mutation of ompK35 and production of the OXA-48-like carbapenemase OXA-

232 were required to confer cefepime/taniborbactam resistance. 
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TEXT 

Aztreonam/avibactam (AZT/AVI) is a β-lactam/β-lactamase inhibitor combination 

currently in clinical trials, which has activity against Enterobacterales producing 

metallo-carbapenemases and those with AZT-hydrolysing enzymes such as plasmid-

mediated AmpCs (pAmpCs), extended-spectrum β-lactamases (ESBLs) and the 

serine carbapenemase KPC. All these enzymes are increasingly carried in Klebsiella 

pneumoniae, and yet few studies have been performed to consider mechanisms of 

AZT/AVI resistance in this species. It was recently reported that among 8787 

Enterobacterales isolates, 17 were AZT/AVI resistant. Of these, three Klebsiella spp. 

were identified. Production of the pAmpC, DHA-1 plus acrA efflux pump gene 

overexpression and mutation of ompK35 or ompK36 porins were identified in two 

resistant isolates. The other produced the ESBL PER-2 and carried an ompK35 loss 

of function mutation (1). In one in vitro study, selecting AZT/AVI resistance identified 

mutations in the pAmpC, CMY-16 in a K. pneumoniae strain (2). AVI is currently in 

clinical use partnered by ceftazidime (CAZ/AVI) and here, mutations in KPC are 

known to confer resistance. However, such mutations tend to reduce hydrolytic 

activity to β-lactams other than CAZ, including carbapenems and AZT (3-6). 

Accordingly, it is conceivable that such mutant KPC enzymes might not confer 

AZT/AVI resistance. 

Another recently licenced β-lactam/β-lactamase inhibitor combination is 

imipenem/relebactam (IMI/REL). Unlike AZT/AVI, this does not have efficacy against 

isolates producing metallo-carbapenemases, but is generally efficacious against 

Enterobacterales producing pAmpC, KPC and ESBLs (7). Again, analysis of clinical 
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isolates shows that IMI/REL resistance in K. pneumoniae is rare, but resistant 

isolates have mutations in or reduced expression of ompK35 and/or ompK36 porin 

genes and/or increased acrA efflux pump gene expression, alongside ESBL 

production (8). Similar impacts of porin and efflux pump production on IMI/REL 

susceptibility have been seen in in vitro studies using KPC-producing isolates (9). 

Given seeming overlaps between AZT/AVI and IMI/REL resistance mechanisms in 

K. pneumoniae, we set out to dissect the mechanisms contributing to resistance to 

each in K. pneumoniae using a bank of clinical isolates and targeted recombinants 

having fully defined genotypes. Table 1 reports MICs (determined using CLSI broth 

microdilution methodology [10,11]) of AZT/AVI and IMI/REL against a collection of 

clinical isolates, which have been previously described (12) and their β-lactam 

resistance genotypes characterised (13). All isolates, whether producing 

carbapenemases of classes A (KPC-3), B (NDM-1) or D (OXA-232) were AZT/AVI 

susceptible, but the NDM-1/OXA-232 producer KP4 was, as expected, IMI/REL 

resistant, as was the OXA-232 producer KP11, though with lower MICs (Table 1). 

Notably, KP4 and KP11 have ramR mutations (12), which lead to overproduction of 

AcrAB-TolC efflux pump, and reduced production of the OmpK35 porin in K. 

pneumoniae (14). Nonetheless, a ramR mutant clinical isolate producing KPC-3, 

KP30, was susceptible to both AZT/AVI and IMI/REL (Table 1) so we conclude that 

modulating production of these permeability-associated proteins is not sufficient to 

give resistance to either β-lactam/β-lactamase inhibitor combination in a KPC-3 

positive background.  
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To investigate the effect of blaKPC-3 mutations known to be associated with CAZ/AVI 

resistance (15) on AZT/AVI and IMI/REL susceptibility, we took K. pneumoniae 

clinical isolate KP21, which is a ramR mutant and fully susceptible to AZT and IMI 

(Table 1). We introduced blaKPC-3 on a plasmid (pKPC-3), either wild-type or following 

site-directed mutagenesis to create the D178Y or V239G amino acid substitutions 

previously associated with CAZ/AVI resistance (15). Here we use numbering based 

on the KPC-3 amino acid sequence [16]; these substitutions are frequently referred 

to in the literature as D179Y and V240G using a standardised numbering system for 

class A β-lactamases (15). The construction of these variant KPC-3 plasmids has 

been reported previously (17). Reduced MICs of AZT and IMI were observed against 

KP21 carrying the D178Y variant, compared with KP21 carrying wild-type KPC-3 

(Table 1). This phenomenon of reduced spectrum of β-lactamase activity has been 

described for other blaKPC-3 mutants associated with CAZ/AVI resistance (3-6). 

However, in a KP21 background, this reduction in activity was seen to a lesser extent 

when the KPC-3 V239G variant was proesent (Table 1). This observation fits with 

previous reports that K. pneumoniae carrying the V239G mutant blaKPC-3 remain 

meropenem resistant, while those carrying the D178Y mutant are meropenem 

susceptible (15, 17). However, AZT/AVI and IMI/REL MICs were not greatly elevated 

against KP21 carrying pKPC-3 V239G in comparison with KP21 carrying pKPC-3, 

and all these KP21 recombinants remained AZT/AVI and IMI/REL susceptible (Table 

1). We conclude, therefore, that mutating blaKPC-3 in a way that gives CAZ/AVI 

resistance is not sufficient to give AZT/AVI or IMI/REL resistance, even in a ramR 

mutant K. pneumoniae background.  
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Addition of an OXA-232 (class D carbapenemase) plasmid (pOXA-232, as described 

in our previous work [17]) to KP21 carrying pKPC-3 D178Y or pKPC-3 did not confer 

IMI/REL resistance (Table 1). This is because, despite the fact that REL does not 

notably inhibit class D β-lactamases (7), pOXA-232 does not confer IMI resistance, 

even in the absence of REL in KP21 (Table 1). Hence, if KPC-3 is inhibited by REL, 

OXA-232 cannot confer IMI resistance in KP21 alone (Table 1). However, 

importantly, adding pOXA-232 to the KP21 recombinant carrying pKPC-3 V239G 

conferred IMI/REL (but not AZT/AVI) resistance, showing that even the weakly 

expressed imipenemase OXA-232 can act in synergy with the partially inhibited 

KPC-3 V239G variant and together they can confer IMI/REL resistance.  

Disruption of the ompK36 porin gene in KP21 (as described previously[17]) conferred 

AZT/AVI and IMI/REL resistance when the recombinant was carrying pKPC-3 

V239G, but not when it carried pKPC-3 D178Y or pKPC-3. Addition of pOXA-232 to 

the KP21 ompK36 recombinants further raised IMI/REL MICs against the pKPC-3 

V239G recombinant, and conferred IMI/REL resistance by acting in synergy with 

wild-type KPC-3 in the recombinant carrying pKPC-3, but not pKPC-3 D178Y (Table 

1). Using the ramR wild-type isolate KP47 engineered to have an ompK36 mutation 

we confirmed that ramR mutation is essential for the AZT/AVI (but not IMI/REL) 

resistance seen in KP21 ompK36 pKPC-3 V239G (Table 1). 

We therefore conclude that three steps: mutation of ramR, mutation of ompK36 and 

carriage of the V239G variant of blaKPC-3 is sufficient for K. pneumoniae to become 

resistant to both AZT/AVI and IMI/REL. However, prior to clinical approval of 

AZT/AVI, this combination is usually created clinically by adding AZT to CAZ/AVI 
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therapy. A checkerboard assay confirmed that AZT/AVI and IMI/REL resistant 

derivative KP21[ramR] ompK36 pKPC-3 V239G is also resistant to CAZ/AVI plus 

AZT, with MICs of CAZ (>32 µg.ml-1) and AZT (16 µg.ml-1) against this recombinant 

(Figure 1). 

We have previously shown that this combination of ramR and ompK36 mutation 

coupled with acquisition of pKPC-3 V239G also gives resistance to CAZ/AVI and 

another licenced β-lactam/β-lactamase inhibitor combination, 

meropenem/vaborbactam (17). Finally, therefore, we tested cefepime/taniborbactam 

a combination in late stage clinical trials (18). Notably, in the KP21[ramR] ompK36 

background, pKPC-3 D178Y supported lower cefepime MICs than pKPC-3 and 

pKPC-3 V239G (Table 2), as seen for the other β-lactams (Table 1) and this was 

also true for cefepime/taniborbactam MICs (Table 2). In contrast, pKPC-3 V239G 

supported the same cefepime/taniborbactam MIC as pKPC-3 in KP21[ramR] 

ompK36, being 8 µg.ml-1, which is one doubling dilution below the cefepime 

resistance breakpoint (11) (Table 2). Further addition of pOXA-232 elevated 

cefepime MICs against the KP21[ramR] ompK36 pKPC-3 D178Y recombinant 

(Table 2), as expected since OXA enzymes are known to hydrolyse cefepime (19). 

Even without OXA-232, cefepime MIC against KP21[ramR] ompK36 pKPC-3 KPC-3 

or pKPC-3 V239G were >256 µg.ml-1, so any additional effect of OXA-232 could not 

be measured. Nonetheless, cefepime/taniborbactam MIC remained at ≤ 8 µg.ml-1 

against all KP21[ramR] ompK36 recombinants, indicating successful inhibition of 

OXA-232 (Table 2). However, additional insertional inactivation of the ompK35 porin 

gene (performed as described previously [17]) pushed the cefepime/taniborbactam 

MIC against the KP21[ramR] ompK36 recombinant carrying pOXA-232 and pKPC-3 
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V239G (but not pKPC-3 or pKPC-3 D178Y) to 16 µg.ml-1, which is classed as 

cefepime resistant (Table 2). 

We conclude, therefore, that whilst three events (ramR, ompK36, blaKPC-3  V239G) 

are sufficient to cause CAZ/AVI/AZT, IMI/REL and, as previously shown, 

meropenem/vaborbactam resistance in K. pneumoniae, additional events are 

required to give cefepime/taniborbactam resistance. Furthermore, whilst many 

blaKPC-3  mutations leading to CAZ/AVI resistance do come with the collateral effect 

of increased susceptibility to carbapenems, late generation cephalosporins and AZT, 

KPC-3 V239G does not suffer from this effect to the same degree. This explains why 

KPC-3 V239G, rather than KPC-3 D178Y, which does suffer from collateral 

increased susceptibility, is able to confer resistance to multiple β-lactam/β-lactamase 

inhibitor combinations, provided their accumulation is slowed. The biochemical basis 

of why KPC-3 V239G does not behave like KPC-3 D178Y, which as an activity 

biased towards ceftazidime (20) requires clarification. Nonetheless, the emergence 

of this blaKPC-3 V239G variant should be watched with caution. 
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Figure Legend 

 

Figure 1. Checkerboard assays for CAZ and AZT in the presence of AVI against 

K. pneumoniae KP21[ramR] ompK36 producing KPC-3 V239G.  

The image represents duplicate assays for an 8×8 array of wells in a 96-well plate. 

All wells contained CA-MHB including avibactam (4 µg.ml-1). A serial dilution of 

aztreonam (AZT, x-axis) and ceftazidime (CAZ, y-axis) was created from 32 µg.ml-1 

in each plate as recorded. All wells were inoculated with a suspension of bacteria, 

made as per CLSI microtiter MIC guidelines (10), and the plate was incubated at 

37°C for 20 h. Growth was recorded by measuring OD600 and growth above 

background (broth) is recorded as a yellow block; no growth is recorded as a white 

block. Growth in the red edged block indicates resistance to both AZT and CAZ.  
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Figure 1 
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Table 1 MICs of aztreonam or imipenem with or without avibactam or relebactam 

against K. pneumoniae clinical isolates and derivatives of isolates KP21 and KP47 

Isolate (relevant genotype 
MIC (µg.ml-1) 

AZT AZT/AVI IMI IMI/REL 

KP31 (wild-type) ≤0.5 ≤0.5 ≤0.5 ≤0.5 

KP21 (ramR TEM-1) ≤0.5 ≤0.5 ≤0.5 ≤0.5 

KP11 (ramR OXA-232 CTX-M-15 TEM-1) >128 ≤0.5 4 4 

KP30 (ramR ompK35 KPC-3 TEM-1)  >128 1 >128 1 

KP4 (ramR NDM-1 OXA-232 CTX-M-15 

TEM-1) 

>128 ≤0.5 64 16 

KP21[ramR] pUBYT 0.5 ≤0.5 0.5 ≤0.5 

KP21[ramR] pKPC-3 >128 1 64 2 

KP21[ramR] pKPC-3 D178Y 1 ≤0.5 1 0.5 

KP21[ramR] pKPC-3 V239G >128 2 32 2 

     

KP21[ramR] pUBYT pOXA-232 0.5 ≤0.5 2 1 

KP21[ramR] pKPC-3 pOXA-232 >128 2 128 2 

KP21[ramR] pKPC-3 D178Y pOXA-232 16 2 2 2 

KP21[ramR] pKPC-3 V239G pOXA-232 >128 4 32 8 

     

KP21[ramR] ompK36 pUBYT 0.5 1 2 0.5 

KP21[ramR] ompK36 pKPC-3 >128 2 128 2 

KP21[ramR] ompK36 pKPC-3 D178Y 8 2 1 0.5 

KP21[ramR] ompK36 pKPC-3 V239G >128 16 128 4 

     

KP21[ramR] ompK36 pUBYT pOXA-232 1 1 4 2 

KP21[ramR] ompK36 pKPC-3 pOXA-232 >128 2 >128 32 

KP21[ramR] ompK36 pKPC-3 D178Y 
pOXA-232 

8 4 8 2 

KP21[ramR] ompK36 pKPC-3 V239G 
pOXA-232 

>128 16 >128 32 

     

KP47 ompK36 pUBYT 0.5 ≤0.5 0.5 0.5 

KP47 ompK36 pKPC-3 >128 1 >128 8 

KP47 ompK36 pKPC-3 D178Y 16 2 1 0.5 

KP47 ompK36 pKPC-3 V239G >128 4 >128 16 

Shading indicates resistance based on CLSI breakpoints (11)
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Table 2 MICs of cefepime/taniborbactam against derivatives of K. pneumoniae 

clinical isolate KP21 

 

Isolate 

MIC (µg.ml-1) 

Cefepime 
Cefepime/ 

Taniborbactam 

KP21[ramR] ompK36 pUBYT 8 1 

KP21[ramR] ompK36 pKPC-3 >256 8 

KP21[ramR] ompK36 pKPC-3 D178Y 16 2 

KP21[ramR] ompK36 pKPC-3 V239G >256 8 

   

KP21[ramR] ompK36 pUBYT pOXA-232 8 1 

KP21[ramR] ompK36 pKPC-3 pOXA-232 >256 8 

KP21[ramR] ompK36 pKPC-3 D178Y pOXA-232 64 1 

KP21[ramR] ompK36 pKPC-3 V239G pOXA-232 >256 8 

   

KP21[ramR] ompK36 ompK35 pUBYT 8 1 

KP21[ramR] ompK36 ompK35 pKPC-3 >256 8 

KP21[ramR] ompK36 ompK35 pKPC-3 D178Y 16 2 

KP21[ramR] ompK36 ompK35 pKPC-3 V239G >256 8 

   

KP21[ramR] ompK36 ompK35 pUBYT pOXA-232 8 2 

KP21[ramR] ompK36 ompK35 pKPC-3 pOXA-232 >256 8 

KP21[ramR] ompK36 ompK35 pKPC-3 D178Y 

pOXA-232 
64 2 

KP21[ramR] ompK36 ompK35 pKPC-3 V239G 

pOXA-232 
>256 16 
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