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A B S T R A C T

Human-robot collaboration (HRC) allows seamless communication and collaboration between humans and
robots to fulfil flexible manufacturing tasks in a shared workspace. Nevertheless, existing HRC systems lack an
efficient integration of robotic and human cognitions. Empowered by advanced cognitive computing, this paper
proposes a visual reasoning-based approach for mutual-cognitive HRC. Firstly, a domain-specific HRC knowl-
edge graph is established. Next, the holistic manufacturing scene is perceived by visual sensors as a temporal
graph. Then, a collaborative mode with similar instructions can be inferred by graph embedding. Lastly,
mutual-cognitive decisions are immersed into the Augmented Reality execution loop for intuitive HRC support.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)
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Fig. 1. Visual reasoning-based mutual-cognitive HRC system.
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1. Introduction

In modern factories, personalized production of many complicated
mechanical products relies on both robots’ precision manipulation and
human operators’ agile operations. In this context, human-robot collaboration
(HRC) has attracted much interest from the industry and academia, which
leverages humans' high flexibility and robots' high efficiency and reliability
[1]. Human and robotic agents have complementary operation goals and
capabilities, and collaboratively conduct manufacturing tasks in a shared
workspace. To date, numerous research efforts on HRC solutions have
emerged, such as human safety [2], accurate robot control [3], multimodal
communication [4], task allocation [5,6], and context awareness [7,8], of
which the cognitive capability [9] is critical to achieve flexible automation in
the dynamic manufacturing process.

However, the mutual-cognitive capabilities in HRC systems remain
unsolved, especially when facing similar but new subtasks in real cases.
Three major limitations exist: 1) Context-aware capabilities of existing HRC
systems focus on the perception of the working environment, rather than a
human-like understanding of the task process. 2) Current HRC systems
directly transmit perceptual results into reactive control, and seldom con-
sider knowledge learning of operation rules for proactive path planning
and intuitive support. 3) The planner for robot execution and human opera-
tions is normally predefined, lacking on-the-fly adjustment capabilities
during task fulfilment progress.

To address these issues, it is assumed that a mutual-cognitive HRC
should embrace human-like intelligence and capabilities, which percept
holistic surrounding scenes, recognize suitable collaborative modes,
assign reconfigurable operation sequences, and transmit intuitive instruc-
tions to proactively support long-duration co-work between humans and
robots. Hence, the main characteristics of mutual-cognitive HRC include
1) proactive operations of human and robotic agents, desired by partners
and required by the actual situation in task progressing; 2) collaborative
cognition derived from the holistic scene understanding of human, robot
and environment, and knowledge learning of manufacturing information;
3) spatio-temporal subtasks fulfilment conducted in a shared workspace,
under the same goal; and 4) mixed reality-enabled execution loop, where
digital twins of the entire scene, along with their mutual cognitions are
immersed into the augmented reality (AR) execution loop for human
operation support and robot planning feedback [10].
2. Visual reasoning-based mutual-cognitive HRC system

To achieve it, the overall architecture of the proposed visual reason-
ing-based mutual-cognitive HRC system is shown in Fig. 1.
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Firstly, along the manufacturing task progressing, visual sensors sam-
ple live video streams and depth images of the entire workspace for holis-
tic scene perception [11], including (1) human intention recognition, (2)
object 6 Degree of Freedom (DoF) estimation, and (3) robot perception of
the working environment. The perceptual results are then constructed as
a temporal graph, which depicts relations of perceived objects, such as
‘human hand’ holding a ‘screwdriver’, ‘robot’ picking up a ‘toolbox’, etc.

Followed by the representation learning step, which captures the
intrinsic similarity of perceptual results with previously seen manufactur-
ing scenarios in the domain-specific HRC knowledge graphs (KGs). Mean-
while, cognitive intelligence is generated by injecting dynamism [12] into
the knowledge representation of task allocation and updating sequential
operation planning for humans and robots. Hence, a specific collaborative
mode between a human and a robot can be inferred by graph embedding
calculations based on extracted similarity of a new task, including:

(1) Human-centric operation represents that a human plays an active
Fig. 3. Human action recognition by transfer learning-based ST-GCN.
role with robot support, where the KG can search linked entities
as instructions and guidance for human support, and the robot
conducts assistive operations. With the information guide, a
human can take mental-free operations assisted by the robot.

(2) Adaptive operation requires both the human and robot are
actively engaged in a bidirectional manner, whereas KG ensures
the dynamism of the graph sequence to evolve its link prediction.
The linked entities are mutual planners which generate robot
adaptive execution and visualize human required operations. The
relationship between them is closer with mutual understanding.

(3) Robot-centric operation refers to the robot active, human sup-
portive manner, where the most repetitive workload is carried
out by the robot. The KG constructs production strategies as cog-
nitive support for robotic operations in tasks, whereas human
operators may act under supervisory control and plan for robots.
The performance of robots is improved by rationale-based motion
planning enabled by the human and task cognitions.

Lastly, the generated mutual cognition is deployed in the AR execution
loop as a strategy assignment [13]. The co-work strategy contains on-demand
support for human operators, such as the preview of complicated operations
and information feedback. Meanwhile, considering the permissible speed, the
robot arm and base are respectively controlled by the re-planned trajectory
and a navigationmap from the strategy for safe co-workwith humans. Hence,
both humans and robots can receive cognitive support and services on the fly
in the execution loop as elaborated in Section 3.

3. The proposed stepwise visual reasoning approach

3.1. HRC knowledge graph construction

To describe the HRC process in a hierarchical and systematic manner, a
domain-specific HRC KG should be established, based on accumulated
expertise in HRC task allocation and planning, which can be divided into 5
node types with 3 layers, as shown in Fig. 2.
Fig. 2. The proposed HRC KG schema.

Fig. 4. Object 6-DoF estimation from occluded observations in HRC.
The HRC task layer triggers the location of new tasks and describes the
sequential order, the complementary relationship among different subtasks,
and corresponding executive stages. It can provide a sequential-based task-
oriented configuration search to avoid any unsafe issues. Meanwhile, the allo-
cation layer plays a critical role to associate various HRC subtasks with
humans and robots. It indicates the involved humans and robots in subtasks
through the inter-layer relations, and also introduces various relationships
between them (e.g., human-human, robot-robot, and human-robot interac-
tions). The action and movement elicitation of humans and robots are elabo-
rated by the relationship (edge) ‘part of’, ‘has’, ‘to do’, etc. Moreover, with the
extension of robots’ structure and the description of human action [14], the
configuration layer offers comprehensive solutions to the humans and robots
for similar task fulfilment. Hence, HRC subtasks can be allocated to various
humans/robots, effectively.
3.2. HRC holistic scene perception

Human intention recognition. In HRC tasks, humans’ actions represent
their operation intentions, i.e., “what the worker is doing”. Based on our
previous work [7], a transfer learning-based Spatial-Temporal Graph Con-
volutional Network (ST-GCN) is proposed for action recognition in Fig. 3.
It includes two parts: (1) pre-processing for human pose estimation, and
(2) action recognition for skeleton patterns extraction and classification.
For human pose estimation, Azure Kinect is utilised to capture live
video streams from the workspace, which contain human operators’
action sequences. Then, with Openpose Toolbox, human skeleton joints of
poses can be estimated from the videos.

For action recognition, the estimated human body joints are firstly
constructed into skeleton graphs, including the natural connection of
skeleton joints (spatial graph) and linking of the same joints across
sequential frames (temporal graph). Followed by nine ST-GCN layers and
one classifier, these stacked neural networks are used to extract patterns
of human skeleton topology and classify pattern presentations. During
the training process, the maximum mean discrepancy (MMD) is intro-
duced to align action patterns between the source and the target datasets.

Object 6-DoF estimation. Precise 6-DoF pose estimation helps to recognise
the 3D location and posture of target workpieces or tools, i.e., “where and
what is the object”, even with partial occlusions in the HRC environment. As
presented in Fig. 4, a modified high-resolution network (HRNet)-based
approach [11] is proposed to estimate 6-DoF poses of industrial parts, even in
close range HRC with partial occlusions. The high-resolution features of
observed visual images are extracted, together with a mask-guided attention
mechanism leveraged to model the occlusion area (e.g., hand).
In this way, the extracted feature map is aware of the occlusion area.
Then, the model predicts the translation parameters t = (tx, ty, tz)

T and the
rotation parameters R = (Rroll, Rpitch, Ryaw)

T. During the training process,
the loss function constrains the predicted posed parameters, which are



Algorithm 1. Pseudocode of graph embedding-based HRC task planning

Notations: ST_Num represents the total number of subtask nodes, where ST_En
denotes the nth node; lEG is the layer number in EvolveGCN; cij is the edge vector
between nodes i and j; MLP is the multilayer perception model.
Input: Holistic scene perception Xh , existing KG
Output: Subtask Instructions, updated KG
Methods: Subtask Encoding and EvolveGCN-based link prediction
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close to the ground truth ones. Hence, estimated workpiece posture can
be obtained by applying the 6-DoF pose parameters to the 3D CAD model.

Robot perception of the working environment. Environment parsing
equips the robot with the skills to perceive and model geometric interpreta-
tion of the entire workspace, where the 3D point cloud is considered as the
3D representation for robot perception, as shown in Fig. 5. Specifically, the
captured visual and depth images (RGB-D data) are transformed into the
point cloud with n £ 3 shape, of which each point is represented by a 3D
coordinate and n denotes the number of points. The PointNet model is then
utilized to extract features of the point cloud. The original features of the 3D
point cloud are encoded into vectors with a length of 1024 and decoded
sequentially to output an n £ m matrix, where m represents categories for
each point. The category with the maximum confidence value is the correct
classification result. By stacking a softmax operation to the output, 3D point
cloud segmentation results are obtained with a label for each point.
Fig. 5. 3D point cloud semantic segmentation of working environment.

1 Xe = Encoder(Xh) //Encoder representation of Xh

2 Similar_Edge = max
n �ST_Num

ðSimilarityðST_En ;XeÞÞ
3 KG KG_add_edge(Similar_Edge) //Add subtask as a node in KG
4 For l 2 lEG do //Update graph-embedding
5 W ðlÞ

t ¼ GRU
�
Hðl�1Þ

t ;W ðl�1Þ
t�1

�
//Weight matrix at timestamp t

6 HðlÞ
t ¼ GCN_layer

�
Hðl�1Þ

t ;W ðlÞ
t

�
//Embedding at timestamp t

7 End for
8 P ¼ MLPðcÞ //Calculate the probability of each edge in c

9 Predicted_edges ¼ FilterðPÞ //Find the most relevant edges
10 KG KG_add_edge(Predicted_edges) //KG complement
11 Subtask Instructions = Parser(Predicted_edges)
3.3. Graph embedding-based HRC task planning

The information obtained from the holistic scene perception in Sec-
tion 3.2 is isolated, which should be further aggregated through an
Encoder model, as denoted below:

Xe ¼ s WhXh þ bhð Þ ð1Þ
where Xh = {H, O, R, E} is the concatenate of the holistic scene result. H
represents the human intention, O is the object 6-DoF pose, R refers to the
robot status, and E denotes the environment parsing. Meanwhile, Xe is the
Encoder representation, and Wh and bh denote the weight matrix and
bias, respectively. Eq. (1) aims to transfer the perception result to node-
level embedding. Based on it, a new subtask can be linked with an existing
subtask (dashed line in Fig. 6), denoted as a Subtask node in the KG by cal-
culating the most similar pair. Then, relevant edges in the existing KG can
be predicted, as feasible configurations, to provide context-based instruc-
tions to humans and robots in the HRC process.
Fig. 6. The structure of EvolveGCN method for various HRC modes.
Fig. 7. The mutual-cognitive HRC system deployment structure.
To achieve it, an EvolveGCN approach, combining the GCN with Gated
Recurrent Unit (GRU) for link prediction in the dynamic changing human-
robot roles in subtasks is introduced, as shown in Fig. 6. In timestamp t,
the aggregation of GCN is iterated by:

H lþ1ð Þ
t ¼ s Ât H

lð Þ
t W lð Þ

t

� �
ð2Þ

where Ât ¼ ~D
�1

2 ~At
~D
�1

2 is the normalization of an adjacency matrix At ,
~At ¼ At þ I, ~D ¼ diag

P
j
~At ij

� �
; I is an identity matrix; ~D is the degree

matrix, W ðlÞ
t is the weight matrix in layer l, and HðlÞ

t is the node embedding
matrix in layer l, where the initial embedding matrix comes from node
features. Algorithm 1 is the pseudocode of the graph embedding-based
dynamic HRC task planning.

Based on the different link prediction results in KG, the system can eas-
ily recognize the specific HRC mode, such as human-centric, adaptive, or
robot-centric one, as shown in Fig. 6. For instance, the new subtask in t1 is
recognized as a human-centric operation, since most of the linked nodes
are human nodes, where human operators take the leading role. Similarly,
robot-centric operation ðt2Þ and adaptive operation ðt3Þ can also be discov-
ered by the amount and types of linked nodes, respectively. Therefore,
based on the specific mode, the proposed mutual-cognitive HRC system
not only can provide essential instructions to humans and robots, but also
regulate each party’s permissions to avoid any conflicts (e.g., misleading
orders by humans).
//Convert the predicted result into exercisable instructions
12 Return Subtask instructions, updated KG
4. System deployment

The mutual-cognitive HRC system is deployed in the Industrial Inter-
net environment, including high-performance computing in the INDICS
cloud, and Kinect, HoloLens, ROS, robot controller and GPU server in the
edge plane, as shown in Fig. 7.
RGB-D video streams are first input to the visual perception models,
and then perceptual results of the holistic scene are transmitted to the
cloud server via TCP/IP protocol. In the cloud plane, reasonable collabora-
tion modes are first generated by semantic matching and embedding
between the temporal graph and the established HRC KG. Then, detailed
mutual-cognitive knowledge is learnt by EvolveGCN models, and the gen-
erated cognitions are transferred to HoloLens, ROS, and robot control-
ler in the edge. The HoloLens device provides an intuitive user
interface with robot control modules, to augment human operators’
skills in HRC tasks. Meanwhile, these user commands are delivered to
the ROS, where suitable navigation maps and robot trajectories can
be generated with dynamics and kinetics library, while robot joint,
speed, and the cartesian space states are monitored. Supported by
ROS control commands and retrieved knowledge, the robot controller
dynamically changes gripper, joint, and base variables in the servo
controller for feasible execution.



Table 2
Response time of each stage.

Response
time (ms)

Holo
Lens to ROS ROS planning

ROS to
controller

KG link
prediction

Overall
latency

Max 207 109 11.639 31.913 359.552
Min 4.64 49 1.659 24.934 55.299
Average 35.068 60.57 2.921 27.387 125.946
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5. Case study

Motivated by Wang [15], a case study on the quality checking of elec-
tronic vehicle batteries (EVBs) is conducted, to demonstrate the feasibility
and effectiveness of the proposed HRC system in the lab environment,
containing visual sensors (Azure Kinect and Intel D435), AR device (Holo-
Lens 2), a GPU server (RTX 3080), and a mobile robot (UR5 and MiR100),
as shown in Fig. 8.
Fig. 8. Prototype system setup for EVBs quality checking.
The EVBs-based KG has been established, which consists of 341 entities
(nodes) in 5 types, and 638 edges. For demonstration simplicity, the three
typical visual reasoning based HRC operations are performed in querying
similar subtasks to indicate their effectiveness for cognitive support, as
listed in Table 1. For instance, by observing the scene of a screwdriver and
battery shells, the HRC KG firstly links it to a most similar subtask node
‘unscrew’ (p1=0.575). Based on the new subtask node, the ‘required tool’
edge corresponding to different target nodes can be predicted by the Evol-
veGCN model, representing a human-centric operation, and then infer
knowledge of the unscrewing process of EVBs for mutual cognition. The
result shows that ‘screwdriver’ is the most probable target node (p2=0.753),
denoting that operator requires a screwdriver in this subtask in the AR
environment for intuitive unscrewing guidance. Similarly, in the robot-cen-
tric operation, the HRC KG infers suitable inspection manners and feedback
control commands to the robot and provides a preview digital twin of the
robot path planning in advance via AR devices, ensuring human safety in
the collaboration. Lastly, for the adaptive HRC operation, robot path plan-
ning preview and human intuitive guidance are essential for effective col-
laboration, which dynamically generate interactive HRC task planning via
AR for human and robotic agents.
Table 1
The preliminary experimental results of different HRC modes.

HRCmode Top 3
similar
subtasks

Probability
(p1)

Predicted link
in most similar
subtask

Target
node

Probability
(p2)

AR scene

Human-
centric
operation

Unscrew 0.575 Screwdriver 0.753
Current test 0.458 Spanner 0.679
Screw 0.162 Electric drill 0.597

Robot-
centric
operation

Inspect 0.555 Snapshot 0.938
Pick 0.381 Probing 0.917
Handover 0.250 � -

Adaptive
operation

Uninstall 0.489 Gripper 0.660
Package 0.324 Sucker 0.612
Install 0.142 Screwdriver 0.592
Meanwhile, the response time among various hardware devices and
software systems is evaluated, as listed in Table 2. Among 10 random tri-
als, the average communication interval between the AR glasses and the
system with ROS is 35.068 ms via UDP protocol, resulting in a large devia-
tion due to the shared WIFI channel in the lab environment. The average
ROS-enabled path-planning costs 60.57 ms, where target positions of
robot are uniformly sampled in the workspace. Meanwhile, the control
latency from ROS to the UR5 robot in average is 2.921 ms, which is quite
stable via ethernet cable connection. In summary, the maximum overall
latency of the vision-based mutual cognitive HRC system is less than 0.4 s,
which can be well adapted for onsite collaborative operations efficiently.
6. Conclusions and future work

To ensure a more efficient and intuitive HRC process, this research
introduced a visual reasoning-based approach for establishing the
mutual-cognitive HRC system, by considering the human action, work-
piece 6D pose, working environment, and manufacturing task information
integrally. It specified, realised and validated several aspects advancing
the state of the art: (1) the system structure with elaborated steps for
achieving mutual-cognitive HRC, (2) the holistic scene perception method,
(3) the vision-based HRC KG querying for link prediction, and (4) the AR
execution system deployment. Their feasibility and effectiveness were
further demonstrated in the quality inspection process of an aging EVB
module with some preliminary results. In the future, the mutual cognition
for multiple HRC, and computational accuracy and robustness of the pro-
posed system can be further improved with advanced AR techniques,
more comprehensive HRC KG, and complex operations and manufactur-
ing scenarios.
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