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Abstract

Background. Previous research has suggested that statistical power is suboptimal in many bio-
medical disciplines, but it is unclear whether power is better in trials for particular interven-
tions, disorders, or outcome types. We therefore performed a detailed examination of power
in trials of psychotherapy, pharmacotherapy, and complementary and alternative medicine
(CAM) for mood, anxiety, and psychotic disorders.
Methods. We extracted data from the Cochrane Database of Systematic Reviews (Mental
Health). We focused on continuous efficacy outcomes and estimated power to detect prede-
termined effect sizes (standardized mean difference [SMD] = 0.20–0.80, primary SMD = 0.40)
and meta-analytic effect sizes (ESMA). We performed meta-regression to estimate the influ-
ence of including underpowered studies in meta-analyses.
Results. We included 256 reviews with 10 686 meta-analyses and 47 384 studies. Statistical
power for continuous efficacy outcomes was very low across intervention and disorder
types (overall median [IQR] power for SMD = 0.40: 0.32 [0.19–0.54]; for ESMA: 0.23 [0.09–
0.58]), only reaching conventionally acceptable levels (80%) for SMD = 0.80. Median power
to detect the ESMA was higher in treatment-as-usual (TAU)/waitlist-controlled (0.49–0.63)
or placebo-controlled (0.12–0.38) trials than in trials comparing active treatments (0.07–
0.13). Adequately-powered studies produced smaller effect sizes than underpowered studies
(B =−0.06, p⩽ 0.001).
Conclusions. Power to detect both predetermined and meta-analytic effect sizes in psychiatric
trials was low across all interventions and disorders examined. Consistent with the presence of
reporting bias, underpowered studies produced larger effect sizes than adequately-powered
studies. These results emphasize the need to increase sample sizes and to reduce reporting
bias against studies reporting null results to improve the reliability of the published literature.

Introduction

Mental disorders are responsible for a large proportion of the global disease burden
(Whiteford et al., 2013). Effective treatment options are, however, available – mainly various
forms of pharmacotherapy and psychotherapy (Huhn et al., 2014), although some comple-
mentary and alternative medicine (CAM) treatments (e.g. mindfulness) also appear to be
effective for some disorders (Asher et al., 2017; Kuyken et al., 2016). Consistent with the ideals
of evidence-based medicine (EBM), treatment efficacy is supported by randomized controlled
trials (RCTs), the gold standard for high-quality evidence. However, there has been increasing
concern that the evidence base that EBM depends on is distorted. The efficacy of antidepres-
sants and antipsychotics, for instance, has been inflated by reporting bias (de Vries et al., 2018;
Roest et al., 2015; Turner, Knoepflmacher, & Shapley, 2012; Turner, Matthews, Linardatos,
Tell, & Rosenthal, 2008), and the same is probably true for psychotherapy (de Vries et al.,
2018; Driessen, Hollon, Bockting, Cuijpers, & Turner, 2015). Problems in trial design can
also lead to stacking the deck in favor of a treatment (Heres et al., 2006; Leichsenring et al.,
2017) or to difficulty generalizing results to clinical practice (Lorenzo-Luaces,
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Zimmerman, & Cuijpers, 2018). Here, we focus on one particular
problem in trial design, namely inadequate statistical power.

Statistical power is the probability of detecting an effect of a
specific size if that effect is actually present. The threshold for
adequate power is conventionally set at 80% (Cohen, 1992).
Inadequate statistical power not only increases the likelihood of
false negatives, but also the likelihood that statistically significant
effects represent false-positive findings (Button et al., 2013). The
problem of underpowered trials can in principle be resolved
through meta-analysis: by combining underpowered studies, a
well-powered meta-analysis yields a precise estimate (Guyatt,
Mills, & Elbourne, 2008). However, the problem of low power
is more pernicious when combined with reporting bias, which
is ubiquitous (Song et al., 2010). While underpowered studies
are as likely to yield an underestimate of the true effect size as
they are to yield an overestimate, reporting bias filters out (statis-
tically non-significant) underestimates. This may result in
a literature dominated by false-positives and inflated effect sizes.

Low power to detect relevant effect sizes has previously been
demonstrated for studies in neuroscience (Button et al., 2013),
biomedicine (Dumas-Mallet, Button, Boraud, Gonon, &
Munafò, 2017), and the social sciences (Smaldino & McElreath,
2016). An examination of the Cochrane Database of Systematic
Reviews (CDSR) by Turner et al. found that the median power
to detect a relative risk reduction of 30% was only 14% in mental
health trials (comparable with 13% for medicine in general).
Furthermore, effect sizes were reduced by 12–15% when only
adequately-powered studies were considered (Turner, Bird, &
Higgins, 2013).

So far, no study has specifically focused on the mental health
field. Although it is to be expected that power will be lower than
recommended in this field as well, important questions remain.
For instance, Turner et al. only included binary outcomes, even
though the primary outcome in psychiatric trials is usually con-
tinuous [e.g. decrease in symptoms (Cuijpers, Li, Hofmann, &
Andersson, 2010a; Roest et al., 2015; Turner et al., 2012, 2008)].
Examining only binary outcomes, for which trials were not pow-
ered, could result in a lower estimate of power than for continuous
outcomes. It is therefore possible that the situation is not quite as
bad as suggested by this work. Furthermore, Turner et al. only
examined the power to detect the meta-analysis-specific effect
size across all trials, regardless of medical specialty or intervention
type. This may be important because effect sizes vary widely.
Comparing antidepressants with placebo, for instance, the stan-
dardized mean difference (SMD) is around 0.3 (Roest et al.,
2015; Turner et al., 2008), while the SMD for psychotherapy is
around 0.9 when compared to waitlist, but much lower when
compared to more active control conditions (Cuijpers, van
Straten, Bohlmeijer, Hollon, & Andersson, 2010b). As statistical
power primarily depends on sample size and effect size, using
the same effect size across disorders, interventions, and compara-
tors could lead to an underestimate or overestimate of power for
interventions that are actually markedly more or less effective
than the chosen effect size. There is some preliminary evidence
that this might be the case, as a study of psychotherapy trials
for depression reported that the average power to detect the
meta-analytic effect size was much better, at 49% (Flint,
Cuijpers, Horder, Koole, & Munafò, 2015). Moreover, pharmaco-
therapy trials take place within an entirely different context (e.g.
often funded by industry and performed in response to regulatory
requirements) than trials of psychotherapy or CAM (e.g. usually
performed by academic centers with little outside oversight).

The same is true for different disorders, as academic fields tend
to be rather siloed and may have their own traditions, with espe-
cially little overlap between researchers working on psychotic dis-
orders and those working on mood or anxiety disorders.

In this study, therefore, we performed a detailed examination
of statistical power to detect both predetermined and
meta-analysis-specific effect sizes in trials of psychotherapy,
pharmacotherapy, and CAM for mood, anxiety, and psychotic
disorders, the three major classes of mental disorders included
in the Cochrane Collaboration’s Mental Health section. We
focused on continuous efficacy outcomes, but also examined
other outcomes (binary efficacy and safety). We also examined
whether statistical power is increasing over time. Finally, we
examined whether the inclusion of underpowered studies in
meta-analyses results in inflated effect sizes. This fine-grained
comparison of statistical power can provide clinicians and
researchers with a better sense of where the problem of low
power is most acute and hence with starting points for
improvements.

Methods

Data source and selection

This study was registered after we received the data, but before
performing any analyses (osf.io/hgaec). With permission from
the Cochrane Collaboration, we received an export of currently
published systematic reviews of interventions in the Mental
Health area in RevMan (RM5) format in October 2017 and an
updated dataset in March 2022. We extracted the following infor-
mation from each review: review title, comparison, outcome, sub-
group, names of group 1 and group 2, effect direction, study
names, type of effect measure (e.g. SMD), effect size with confi-
dence interval and standard error (if available), number of events
in each group (for binary outcomes), and sample size in each
group. Each combination of comparison, outcome, and subgroup
made up a single meta-analysis.

Reviews were categorized by topic and intervention by YV
(checked by JB). We categorized each review into mood disorders,
anxiety disorders, and psychotic disorders. Reviews that did not
fit one of these categories (e.g. interventions for aggression) or
fit multiple categories were excluded, unless individual
meta-analyses could be assigned to a specific category. We also
assigned each review to pharmacotherapy (PHT), psychotherapy
(PST), or CAM [defined based on a topic list provided for the
Cochrane Collaboration (Wieland, Manheimer, & Berman,
2005)]. Reviews that did not clearly fit one of these categories
were excluded. Reviews or meta-analyses that investigated com-
bination PHT and PST were assigned to PST if the comparator
was PHT, to PHT if the comparator was PST, or excluded if the
comparator was treatment as usual.

We excluded meta-analyses that only included a single study;
that were not analyzable because the event rate was 0, the outcome
was time-to-event, or the sample size was clearly mistaken (0 or 1
in each group); or that used unusual control interventions (i.e.
that did not match pharmacotherapy, psychotherapy, CAM, pla-
cebo, treatment as usual, waitlist, or a combination of these).
Meta-analyses were assigned to one of four categories by YV
based on the description of the outcome (with any unclear out-
comes checked by JB) and the effect measure (odds ratio [OR]/
risk ratio/risk difference v. (standardized) mean difference): (1)
continuous efficacy outcome (e.g. symptom questionnaires), (2)
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binary efficacy outcome (e.g. relapse), (3) continuous safety out-
come (e.g. weight gain), or (4) binary safety outcome (e.g. occur-
rence of nausea). We chose the continuous efficacy measure as
our primary outcome, as change in disorder symptoms is most
commonly used as the primary outcome in psychiatry.
However, most studies provided multiple continuous efficacy out-
comes, and no information was available about which of these
outcomes (if any) was the original primary trial outcome, so we
included all available trial outcomes.

Effect size and power calculations

We first re-calculated meta-analyses using a mean difference, risk
difference, or risk ratio as an outcome to use the SMD or OR
instead. Hence, we mean a standardized effect size (SMD or
OR) whenever we refer to effect size. Random-effects
meta-analysis was performed using restricted maximum likeli-
hood estimation (REML) via the rma command from the metafor
package (2.4–0) in R (4.0.0). We multiplied SMDs by −1 and took
the inverse of ORs where necessary to ensure that positive SMDs
or ORs greater than 1 favored the intervention group. For active v.
active comparisons (e.g. antidepressant v. another antidepres-
sant), we used the absolute effect size or the inverse of the OR
(if OR < 1), as experimental and comparator conditions can be
seen as interchangeable.

We estimated the power of each study to detect predetermined
small to large effect sizes (SMD= 0.20, 0.40, 0.60 or 0.80, or the
roughly equivalent OR = 1.5, 2.0, 3.0, and 4.5, using the formula
log(OR) = SMD× π/sqrt(3) (Da Costa et al., 2012) and rounded
to the nearest 0.5). We set SMD = 0.40 as the primary effect size
in our study (i.e. the effect size of greatest interest), as this is
close to the mean effect size for psychiatric treatments in general
(Huhn et al., 2014; Leucht, Hierl, Kissling, Dold, & Davis, 2012).
We also estimated each study’s power to detect the effect size of
the meta-analysis it was included in (ESMA), as a proxy for the
true effectiveness/safety of an intervention. We calculated the
power for each study using the pwr.t2n.test command for continu-
ous outcomes and the pwr.2p2n.test command for binary outcomes
[ pwr package (1.3–0)]. To illustrate, the formula to determine
power for a two-sided, two-sample t test is:

Power = P Z . z1−a
2
− |m1 − m2|���������

s2
1

n1
+ s2

2

n2

√
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠
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2
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This formula illustrates that power is dependent upon α (cus-
tomarily set at 0.05), sample sizes (n1 and n2), the difference in
means between the groups (μ1− μ2), and variability in the out-
come (s2

1 and s2
2). The latter are essentially taken together in a

standardized effect size, which incorporates both the difference
in means and variability.

To examine trends in power to detect SMD = 0.40 over time,
we plotted median power against the publication year.

Meta-regression analysis of adequate power

Following Turner et al. (Turner et al., 2013), we investigated the
impact of underpowered studies on the estimated effect size of
continuous efficacy outcomes. We selected meta-analyses that
included ⩾5 studies, of which ⩾2 were adequately powered
(⩾80%) and ⩾1 was underpowered. For each group of studies
in a meta-analysis, we fit a random-effects meta-regression
model with a term for ‘adequate power’. Subsequently, we used
random-effects meta-analysis to summarize the effect of adequate
power across meta-analyses.

Sensitivity analyses

We performed several planned sensitivity analyses for the con-
tinuous efficacy outcome. First, we calculated the power to detect
the ESavg, defined as the meta-analytic average effect size of all
meta-analyses for each combination of outcome (efficacy v.
safety), outcome type (binary v. continuous), experimental
group, and comparator group. While the ESMA is a specific, but
potentially very noisy, proxy for the ‘true’ effect size of a specific
intervention for a specific outcome (e.g. paroxetine v. placebo for
depressive symptoms), the ESavg is more stable but less specific
because it is aggregated across similar interventions and outcomes
(e.g. pharmacotherapy v. placebo for any continuous efficacy out-
come). Second, we recalculated the power to detect the ESMA after
excluding meta-analyses with very small effect sizes (ESMA < 0.2).
Third, we recalculated power using the effect size of the largest
trial in each meta-analysis, to account for possible publication
bias. Finally, because studies could be included in multiple
meta-analyses, we recalculated power while only including each
study once.

Results

Data selection and characteristics of included reviews

We received 686 reviews, of which 568 included usable data (see
Fig. 1 for a flow chart). After exclusion of ineligible reviews (most
commonly because the topic was dementia/cognition or a mixed
group of mental disorders) and meta-analyses, we retained 256
reviews with 10 684 meta-analyses. Among these meta-analyses,
2843 concerned continuous efficacy outcomes, 295 continuous
safety outcomes, 2296 binary efficacy outcomes, and 5250 binary
safety outcomes. The final dataset contained 47 382 observations
(i.e. studies), but many studies were included in multiple
meta-analyses; there were only approximately 4714 distinct stud-
ies. Each review included on average 41.4 meta-analyses (median
= 20.5, range = 1–436), while each meta-analysis included on
average 4.3 studies (median = 3, range = 2–80).

Effect sizes and power for continuous efficacy outcomes

Figure 2 shows the distribution of ESMA for continuous efficacy
outcomes (see also online Supplementary Table S1). The overall
median effect size was 0.28 (interquartile range [IQR] = 0.11–
0.52). Meta-analyses for anxiety disorders had larger effect sizes
(median [IQR] = 0.39 [0.19–0.62]) than those for mood disorders
(0.22 [0.09–0.41]) or psychotic disorders (0.18 [0.08–0.40]).
Meta-analyses of CAM interventions also had larger effect sizes
(0.44 [0.11–0.65]) than meta-analyses of PHT (0.23 [0.09–0.43])
or PST (0.35 [0.15–0.62]). These differences may be related, at
least in part, to the comparators frequently used. Only 19% of
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meta-analyses for anxiety disorders compared the intervention
with another similarly active comparator, compared to 36% of
those for mood disorders and 65% of those for schizophrenia.
Similarly, only 26% of CAM meta-analyses and 27% of PST
meta-analyses compared the intervention with another similarly
active comparator, compared to 43% of PHT meta-analyses.
Effect sizes were larger for comparisons of active therapy with
TAU/waitlist (median ESMA = 0.48–0.70) or placebo/attention
control (median ESMA = 0.18–0.32), and of combination therapy
with monotherapy (median ESMA = 0.28–0.55), than for compar-
isons of monotherapy v. another monotherapy (median ESMA =
0.14–27) (online Supplementary Table S2).

Figure 3 shows the distribution of estimated power to detect
SMD = 0.40 among studies with continuous efficacy outcomes
(see also online Supplementary Table S3). Overall, median
power was 0.32 (IQR = 0.19–0.54) and only 12.4% of studies
were adequately-powered (⩾80%). Median power only exceeded
the recommended threshold of 80% for SMD = 0.80 (0.84
[0.57–0.98]). Median power was slightly higher in studies of
PHT (0.35 [0.20–0.64]) and CAM (0.36 [0.22–0.61]) than in
studies of PST (0.28 [0.18–0.46]). It was also higher in studies
of mood disorders (0.36 [0.20–0.73]) and psychotic disorders
(0.37 [0.26–54]) than in studies of anxiety disorders (0.25
[0.17–0.43]). Consistent with the low median meta-analytic effect
size (SMD = 0.28), power to detect the ESMA was generally lower
than the estimated power to detect an SMD = 0.40. Overall power
to detect the ESMA was only 0.23 [0.09–0.58] and 15.3% of studies
were adequately-powered (⩾80%). Consistent with the differences
in effect sizes, the power to detect the ESMA was generally better in
trials using TAU/waitlist (0.49–0.63) or placebo (0.12–0.38) as a
comparator than in trials with active v. active comparisons
(0.07–0.13) (see online Supplementary Table S4).

Examining the trend in median power to detect an SMD = 0.40
over time suggested an increase in power, from a median of
around 0.25 from 1960 until 1990, increasing to close to 0.40 in
recent years, although this increase appears to have stalled
recently (Fig. 4). This trend appeared to be present for each inter-
vention type (online Supplementary Fig. S1).

Effect sizes and power for other outcomes

Online Supplementary Tables S5 through S10 contain the median
ESMA by disorder and intervention type and by intervention-
comparator combination for continuous safety outcomes and
for binary safety and efficacy outcomes. Overall, the median
ESMA for continuous safety outcomes was SMD = 0.14 [IQR =
0.03–0.35]. The median ESMA for binary efficacy and safety out-
comes was OR = 1.39 [1.04–2.25] and OR = 1.32 [1.04–1.92],
respectively. Online Supplementary Tables S11 through S16 pro-
vide detailed information on power to detect the full range of
effect sizes by disorder and intervention type and by intervention-
comparator combination for these outcomes. In brief, median
power to detect SMD = 0.40 among trials examining a continuous
safety outcome was quite high, at 0.78 [0.35–0.95]. However,
median power to detect OR = 2.0 was 0.24 [0.16–0.44] for binary
efficacy outcomes and 0.21 [0.13–0.39] for binary safety out-
comes. Consistent with the low median ESMA for all outcomes,
power to detect the ESMA was lower than the power to detect
SMD = 0.40 or OR = 2.0. For binary efficacy outcomes, but not
for safety outcomes, patterns mirrored those for continuous
efficacy outcomes, with a higher power in trials using placebo
or TAU/waitlist (0.46–0.54) than in trials with active v. active
comparisons (0.07–0.23).

Impact of underpowered studies on meta-analyses

For this analysis, 172 meta-analyses met inclusion criteria. On aver-
age, underpowered studies had an effect size (SMD) of 0.31, and
there was a significant difference in effect size between adequately-
powered and underpowered studies (B =−0.06, p < 0.001, τ2 = 0.01,
I2 = 35%), indicating that adequately-powered studies had an effect
size 0.06 (or about 20%) smaller than that of underpowered studies.

Sensitivity analyses

We performed several sensitivity analyses for the continuous effi-
cacy outcome (online Supplementary Tables S17–S19). Overall,
the ESavg was similar to the median ESMA for most intervention-
comparator combinations (online Supplementary Table S17), and
power to detect the ESavg was also similar to the power to detect
the ESMA found in our main analyses, but with less variation (0.20
[0.11–0.42] compared to 0.23 [0.09–0.58]). Exclusion of
meta-analyses with very small effect sizes resulted in a small
increase in overall median power to detect the ESMA (to 0.43
[0.22–0.76]). Basing the ESMA on the largest trial in a
meta-analysis only slightly decreased the overall median power
to detect the ESMA (estimated at 0.17 [0.07–0.49]). Finally, esti-
mates of power were nearly identical when we only included
each study once (e.g. overall power to detect SMD = 0.40 was
0.33 [0.20–0.58] v. 0.32 [0.19–0.54] in our main analyses). This
suggests that our main analyses were not overly influenced by a
small subset of studies included in many meta-analyses.

Fig. 1. Flow chart of study selection process.
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Discussion

Principal findings

In this study, we provide a detailed examination of statistical
power in psychiatric trials. As expected, we found that power is
low: median power to detect a medium effect size (SMD = 0.40)
was 0.32, well below recommended levels (80%). The median
power to detect the meta-analysis-specific effect size (ESMA) was
even lower, at only 0.23. Despite the fact that trials for different
disorders and intervention types are performed by different
teams of researchers, often working in somewhat siloed fields
and in different contexts (e.g. academic v. industry), we found
only small differences among the different disorders and different
intervention types. However, trials that compared an active treat-
ment to a less active treatment (e.g. pharmacotherapy v. placebo
or psychotherapy compared to TAU/waitlist) had a much higher

median power to detect the ESMA (0.12–0.63) than trials that
compared similarly active treatments (0.07–0.13).

We also examined binary efficacy outcomes as well as binary
and continuous safety outcomes. Surprisingly, we found that the
median power to detect SMD = 0.40 was relatively high for con-
tinuous safety outcomes (median power = 0.78). However, such
outcomes (e.g. weight change) were uncommon and almost exclu-
sively used in trials comparing two antipsychotics. As mental
health trials are seldom powered specifically to detect safety
issues, it seems more likely that these outcomes just happened
to be included in large trials than that this was a deliberate
attempt to adequately power these specific outcomes. In contrast,
the median power to detect OR = 2.0 for binary outcomes was
very low, at 0.21–0.24. These findings are fairly consistent with
previous work by Turner et al. (2013), who found a median
power of 0.14 for binary outcomes, and indicate that statistical

Fig. 2. Distribution of meta-analytic effect sizes for
continuous efficacy outcomes. Distributions are
shown by disorder and intervention category. Dots
indicate individual meta-analytic effect sizes, while
the black bar represents the median meta-analytic
effect size. The distribution is shown through a
smoothed density.

Fig. 3. Distribution of power to detect SMD = 0.40 for
continuous efficacy outcomes. Distributions are
shown by disorder and intervention category. Dots
indicate individual trial power estimates, while the
black bar represents the median power estimate. The
distribution is shown through a smoothed density.
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power for the (usually) continuous primary outcome in psychi-
atric trials is actually somewhat better than suggested by previous
work, although still inadequate. The lower power for binary out-
comes compared to continuous outcomes reflects the fact that lar-
ger sample sizes are required to detect a similar effect size for
binary outcomes. Given this, avoiding unnecessary dichotomiza-
tion of continuous variables (e.g. into remission v. non-remission)
is one way to increase statistical power.

Implications and comparison with previous literature

It is generally recommended that trials should have a power of
80% to detect a desired effect size. This effect size might be the
expected effect size based on previous literature [although this
is fraught with difficulties (Anderson, Kelley, & Maxwell, 2017)]
or the minimal clinically relevant effect size. Our findings suggest
that trialists in the mental health field implicitly work under the
assumption that SMD = 0.80 is a realistic or minimal clinically
relevant effect size, as median power only exceeded the 80%
threshold for this SMD. Realistically, however, effect sizes in
psychiatry are commonly in the range of 0.20–0.60 (Huhn
et al., 2014). The apparent tendency to expect very large effects
may be, in part, a consequence of biases in the literature, which
have led to inflated effect sizes. It may also be due to calculating
power based on small pilot studies, which tend to overestimate
effect size (if only statistically significant pilot studies are followed
up) (Anderson et al., 2017). Effect sizes are not intuitive and
commonly-used rules of thumb (e.g. that an SMD of 0.20 is
‘small’, 0.50 is ‘medium’, and 0.80 is ‘large’) may lead researchers
to think that fairly large effect sizes are more likely than they are
or that realistic (but small) effect sizes are clinically irrelevant.
Lack of funding may also be a reason to limit sample size, particu-
larly for non-industry-funded trials. On the other hand, trialists
may have sometimes planned an adequate sample size but
encountered problems in achieving this (e.g. due to difficulties
in recruiting participants within a grant time frame, or higher
than expected attrition); some of the included trials may also
have had low power because they were intended as pilot studies.
Additionally, outcome variability may have been greater than
expected, reducing power. Future research could investigate the
mechanisms behind our findings of low power across the mental
health field.

We also found that active v. control comparisons had larger
effect sizes than active v. active comparisons. This finding is prob-
ably unsurprising to almost everyone in the mental health field, so
one might expect trialists to adjust their planned sample size
accordingly and use larger samples in trials of active v. active
comparisons. However, we find little indication that they do so
at all, since the power to detect SMD = 0.40 is similar across com-
parators, implying that sample sizes in active v. active trials are
similar to those in active v. control trials. As we are fortunate to
have reached the point in psychiatry that several effective treat-
ments are available for mood, anxiety and psychotic disorders,
the question of real interest now is not ‘does this treatment
work better than placebo/waitlist/care-as-usual?’ but ‘does this
treatment work better than other treatments?’. Our findings
imply that this question will be particularly difficult to answer
with any confidence based on our current evidence base. These
findings also demonstrate that previous findings suggesting
much higher power for psychotherapy trials (Flint et al., 2015;
Sakaluk, Williams, Kilshaw, & Rhyner, 2019) are largely due to
the fact that psychotherapy is often compared to an inactive
and problematic control condition [waitlist, which has previously
been found to have a nocebo effect (Furukawa et al., 2014)].
Comparisons of psychotherapy to better control conditions with
smaller effect sizes are just as underpowered as comparisons of
other interventions.

Our results also show that statistical power is improving over
time, although it remains well below recommended levels
(80%). This is in contrast to previous work that found no increase
in power over time (Lamberink et al., 2018; Smaldino &
McElreath, 2016). This might suggest that trends are different
in psychiatric clinical trials than in other areas. However, the dif-
ference may also be due to methodological differences, such as the
fact that we specifically examined continuous efficacy outcomes
and looked at power to detect an SMD of 0.40, rather than the
ESMA. Unfortunately, the improvement in power over time also
appears to have stalled out in the previous five years or so.

We also found that low power does have consequences for the
published literature, as underpowered studies tended to yield
higher effect sizes. This is consistent with previous work by
Turner et al. (Turner et al., 2013), although the difference between
underpowered and adequately-powered studies was somewhat lar-
ger in our study. This finding is consistent with reporting bias

Fig. 4. Median power by year of trial publication.
Number of trials by year is indicated through the size
of the dot. The line represents a Loess smoother.
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against underpowered studies with nonsignificant findings. It
therefore remains important for meta-analysts to carefully con-
sider the possible biasing effects of underpowered studies in a
meta-analysis and to use methods to mitigate or explore these
effects. However, the limited number of studies in most
meta-analyses makes it difficult to address potential problems
with underpowered studies.

Strengths and limitations

An important strength of our study is that we used the highly
comprehensive Cochrane dataset. Our analysis was also specific
enough to illuminate possible differences among disorders, inter-
vention types, comparators, and outcome types. Because trials are
generally only powered to detect their primary outcome, our
examination of continuous efficacy outcomes separately from
safety and binary efficacy outcomes make the results more clearly
applicable to clinicians. We also examined power from multiple
angles, including the power to detect both predetermined and
meta-analytic effect sizes. The fine-grained nature of our analysis
adds important new information to previous studies, for instance
regarding the differences among comparators.

Our study also has several limitations. Some of these limita-
tions may have led to an overestimate of power due to an overesti-
mate of effect sizes. First, since our analysis was based on the
published literature, estimated effect sizes may be inflated due
to reporting bias. Second, we used the absolute effect size for com-
parisons of two active treatments, as the direction of effects is
somewhat arbitrary. This may have led to an overestimate of
ESavg (although not ESMA). These limitations imply that the prob-
lem of low power may actually be even greater than our results
already suggest. On the other hand, similar to previous studies,
we did not determine the primary outcome of each of the nearly
5000 included trials. Therefore, it is likely that we also included
secondary outcomes for which trials were not explicitly powered,
given that we included, on average, about four continuous efficacy
outcomes per study. Secondary outcomes may have systematically
smaller effect sizes, as trialists presumably often select the out-
come they expect to be most directly affected by an intervention
as the primary outcome. However, all of these limitations would
only affect our analyses based on the ESMA and/or ESavg and
not our main analyses based on a predetermined effect size
(SMD = 0.40), as these are only dependent on sample size and
outcome type.

Conclusions

In this examination of the comprehensive Cochrane database, we
found that power was somewhat better than might have been
expected based on previous research, but still highly inadequate.
Median power has increased somewhat over time, but remains
far below the recommended 80% level. Power was low regardless
of the specific disorder or intervention under investigation. Our
findings suggest that trialists are implicitly working under the
assumption that very large effect sizes are realistic and do not adjust
sample sizes for different types of trials, in particular for trials with
more v. less active comparators. Consequently, head-to-head trials
are especially likely to be underpowered to detect realistic effect
sizes, which may pose a significant obstacle to the project of preci-
sion medicine. Importantly, underpowered studies resulted in
higher effect sizes than adequately powered studies, consistent
with the presence of reporting bias. These findings emphasize the

urgent need to increase sample sizes in clinical trials and to reduce
reporting bias against studies with nonsignificant results to improve
the reliability of the published literature.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722001362.
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